
Documentation:

AspectC++ Language Reference

pure-systems GmbH

Matthias Urban

and Olaf Spinczyk

Version 1.1, 11th July 2003

(c) 2002-2003 Olaf Spinczyk1 and pure-systems GmbH2

1os@aspectc.org

www.aspectc.org

2aspectc@pure-systems.com

www.pure-systems.com

Agnetenstr. 14

39106 Magdeburg

Germany

mailto:os@aspectc.org
http://www.aspectc.org
mailto:aspectc@pure-systems.com
http://www.pure-systems.com

(c) 2002-2003 Olaf Spinczyk and pure-systems GmbH

All rights reserved.

CONTENTS CONTENTS

Contents

1 About 5

2 Basic Concepts 5

2.1 Pointcuts . 5

2.1.1 Match Expressions . 5

2.1.2 Pointcut Expressions . 6

2.1.3 Types of Join Points . 7

2.1.4 Pointcut declarations . 8

2.2 Advice Code . 9

2.2.1 Introductions . 10

2.2.2 Advice Ordering . 11

2.3 Aspects . 11

2.3.1 Aspect Instantiation . 12

2.4 Runtime Support . 13

2.4.1 Support for Advice Code . 13

2.4.2 Actions . 15

3 Match Expressions 15

3.1 Type Matching . 15

3.2 Namespace and Class Matching . 15

3.3 Attribute Matching . 16

3.4 Function Matching . 16

4 Predefined Pointcut Functions 16

4.1 Types . 16

4.2 Control Flow . 17

4.3 Scope . 18

4.4 Functions . 19

4.5 Context . 20

4.6 Algebraic Operators . 20

5 Advice Declarations 20

6 JoinPoint API 21

6.1 Types . 21

6.2 Functions . 21

3

CONTENTS CONTENTS

7 Advice Ordering 22

7.1 Aspect Precedence . 22

7.2 Advice Precedence . 23

7.3 Effects of Advice Precedence . 23

A Grammar 24

List of Examples 28

Index 28

4

2 BASIC CONCEPTS

1 About

This document is intended to be used as a reference book for the AspectC++ language

elements. It describes in-depth the use and meaning of each element providing examples.

For experienced users the contents of this document is summarized in the AspectC++

Quick Reference. A step-by-step introduction how to program with AspectC++ is given in

the AspectC++ Programming Guide. Detailed information about the AspectC++ compiler

ac++ can be looked up in the AC++ Compiler Manual.

AspectC++ is an aspect-oriented extension to the C++ language1. It is similar to As-

pectJ2 but, due to the nature of C++, in some points completely different. The first part

of this document introduces the basic concepts of the AspectC++ language. The in-depth

description of each language element is subject of the second part.

2 Basic Concepts

2.1 Pointcuts

Aspects in AspectC++ implement crosscutting concerns in a modular way. With this in

mind the most important element of the AspectC++ language is the pointcut. Pointcuts

describe a set of join points by determining on which condition an aspect shall take effect.

Thereby each join point can either refer to a function, an attribute, a type, a variable, or

a point from which a join point is accessed so that this condition can be for instance the

event of reaching a designated code position. Depending on the kind of pointcuts, they are

evaluated at compile time or at runtime.

2.1.1 Match Expressions

There are two types of pointcuts in AspectC++: code pointcuts and name pointcuts. Name

pointcuts describe an intersection through the set of names known in a program. In detail

these names can be the names of types, attributes, functions, variables, and namespaces.

One way to describe name pointcuts are the so-called match expressions, i.e. string con-

stants containing a search pattern. In such a search pattern the special character “%”

is interpreted as a wildcard for names or parts of a signature. The special character se-

quence “...” matches any number of parameters in a function signature.

1defined in the ISO/IEC 14882:1998(E) standard
2www.aspectj.org

5

http://www.aspectc.com/ac++quickref.pdf
http://www.aspectc.com/ac++quickref.pdf
http://www.aspectc.com/doc.html
http://www.aspectc.com/ac++compilerman.pdf
http://www.aspectj.org

2.1 Pointcuts 2 BASIC CONCEPTS

Example: match expressions (name pointcuts)

"int"

matches the C++ built-in scalar type int

"%List"

matches any class, struct or union whose name ends with “List”

"% printf(...)"

matches the function printf having any number of parameters and returning any

type

The signatures given in match expressions are internally separated into result type, entity

name3, and arguments3. This makes it possible to match even complex C++ signatures.

The signature "void (*fct())(int)" describing a function taking no argument and re-

turning a pointer to a function taking a single argument of type int can be for instance

successfully matched by the match expression "% fct()".

2.1.2 Pointcut Expressions

The other type of pointcuts, the code pointcuts, describe an intersection through the set of

the points in the control flow of a program. A code pointcut can refer to a call or execution

point of a function. They can only be created with the help of name pointcuts because all

join points supported by AspectC++ require at least one name to be defined. This is done

by calling predefined pointcut functions in a pointcut expression that expect a pointcut as

argument. Such a pointcut function is for instance within (pointcut), which filters all join

points that are within the functions or classes in the given pointcut.

Name and code pointcuts can be combined in pointcut expressions by using the alge-

braic operators “&&”, “||”, and “!”.

Example: pointcut expressions

"%List" && !derived("Queue")

describes the set of classes with names that end with “List” and that are not derived

from the class Queue

call("void draw()") && within("Shape")

describes the set of calls to the function draw that are within methods of the class

Shape

3if present

6

2 BASIC CONCEPTS 2.1 Pointcuts

2.1.3 Types of Join Points

According to the two types of pointcuts supported by AspectC++ there are also two types

of join points. Based on a short code fragment the differences and relations between these

two types of join points shall be clarified.

class Shape;

void draw(Shape&);

namespace Circle {

typedef int PRECISION;

class S_Circle : public Shape {

PRECISION m_radius;

public:

...

void radius(PRECISION r) { m_radius=r; }

};

void draw(PRECISION r) {

S_Circle circle;

circle.radius(r);

draw(circle);

}

}

int main() {

Circle::draw(10);

return 0;

}

Code join points are used to form code pointcuts and name join points (i.e. names) are

used to form name pointcuts. Figure 1 on the following page shows some join points of the

code fragment and how they correlate.

Every execution join point is associated with the name of an executable function. Pure

virtual functions are not executable. Thus, advice code for execution join points would

never be triggered for this kind of function. However, the call of such a function, i.e. a call

join point with this function as target, is absolutely possible.

Every call join point is associated with two names: the name of the source and the

target function of a function call. As there can be multiple function calls within the same

function, each function name can be associated with a list of call join points.

7

2.1 Pointcuts 2 BASIC CONCEPTS

Name Name
relation between names

and names
relation between code

code join pointname join point

Legend

containedcontained

attribute

contained base class

method

namespace

class

class

function attribute

function function

function type

Call

Call

Execution

Call

Execution

Execution

Set

Execution

"main"

"draw" "PRECISION"

"Circle"

"S_Circle"

"radius" "m_radius"

"draw""Shape"

Figure 1: join points and their relations

2.1.4 Pointcut declarations

AspectC++ provides the possibility to name pointcut expressions with the help of pointcut

declarations. This makes it possible to reuse pointcut expressions in different parts of a

program. They are allowed where C++ declarations are allowed. Thereby the usual C++

name lookup and inheritance rules are also applicable for pointcut declarations.

A pointcut declaration is introduced by the keyword pointcut.

Example: pointcut declaration

pointcut lists() = derived("List");

lists can now be used everywhere in a program where a pointcut expression can

be used to refer to derived("List")

Furthermore pointcut declarations can be used to define pure virtual pointcuts. This en-

ables the possibility of having re-usable abstract aspects that are discussed in section 2.3.

The syntax of pure virtual pointcut declarations is the same as for usual pointcut declara-

tions except the keyword virtual following pointcut and that the pointcut expression is

“0”.

Example: pure virtual pointcut declaration

pointcut virtual methods() = 0;

methods is a pure virtual pointcut that has to be redefined in a derived aspect to

8

2 BASIC CONCEPTS 2.2 Advice Code

refer to the actual pointcut expression

2.2 Advice Code

To a code join point so-called advice code can be bound. Advice code can be understood

as an action activated by an aspect when a corresponding code join point in a program is

reached. The activation of the advice code can happen before, after, or before and after

the code join point is reached. The AspectC++ language element to specify advice code

is the advice declaration. It is introduced by the keyword advice followed by a pointcut

expression defining where and under which conditions the advice code shall be activated.

Example: advice declaration

advice execution("void login(...)") : before() {

cout < < "Logging in." < < endl;

}

The code fragment :before() following the pointcut expression determines that the ad-

vice code shall be activated directly before the code join point is reached. It is also pos-

sible here to use :after() which means after reaching the code join point respectively

:around() which means that the advice code shall be executed instead of the code de-

scribed by the code join point. In an around advice the advice code can explicitly trigger

the execution of the program code at the join point so that advice code can be executed be-

fore and after the join point. There are no special access rights of advice code regarding

to program code at a join point.

Beside the pure description of join points pointcuts can also bind variables to context

information of a join point. Thus for instance the actual argument values of a function call

can be made accessible to the advice code.

Example: advice declaration with access to context information

pointcut new_user(const char *name) =

execution("void login(...)") && args(name);

advice new_user(name) : before(const char *name) {

cout < < "User " < < name < < " is logging in." < < endl;

}

In the example above at first the pointcut new_user is defined including a context variable

name that is bound to it. This means that a value of type const char* is supplied every

time the join point described by the pointcut new_user is reached. The pointcut function

9

2.2 Advice Code 2 BASIC CONCEPTS

args used in the pointcut expression delivers all join points in the program where an argu-

ment of type const char* is used. Therefore args(name) in touch with the execution

join point binds name to the first and only parameter of the function login.

The advice declaration in the example above following the pointcut declaration binds

the execution of advice code to the event when a join point described in new_user is

reached. The context variable that holds the actual value of the parameter of the reached

join point has to be declared as a formal parameter of before, after, or around. This

parameter can be used in the advice code like an oridinary function parameter.

Beside the pointcut function args the binding of context variables is performed by

that, target, and result. At the same time these pointcut functions act as filters cor-

responding to the type of the context variable. For instance args in the example above

filters all join points having an argument of type const char*.

2.2.1 Introductions

The second type of advice supported by AspectC++ are the introductions. Introductions

are used to extend program code and data structures in particular. The following example

extends two classes each by an attribute and a method.

Example: introductions

pointcut shapes() = "Circle" || "Polygon";

advice shapes() : bool m_shaded;

advice shapes() : void shaded(bool state) {

m_shaded = state;

}

Like an ordinary advice declaration an introduction is introduced by the keyword advice.

If the following pointcut is a name pointcut the C++ declaration following the token “:” is

introduced in the classes and namespaces described by the pointcut. Introduced code can

then be used in normal program code like any other function, attribute, etc. Advice code in

introductions has full access rights regarding to program code at a join point, i.e. a method

introduced in a class has access even to private members of that class.

A special kind of introduction is the base class introduction. It is used to extend the

base class list of one or more classes, e.g. to let classes provide a special abstract inter-

face. In the first line of the following example it is made sure that every class with a name

that ends with “Object” is derived from a class MemoryPool. This class may implement an

own memory management by overloading the new and delete operators. Classes that

inherit from MemoryPool must redefine the pure virtual method release that is part of the

10

2 BASIC CONCEPTS 2.3 Aspects

implemented memory management. This is done in the second line for all classes in the

pointcut.

Example: base class introduction

advice "%Object" : baseclass(MemoryPool);

advice "%Object" : virtual void release() { ... }

2.2.2 Advice Ordering

If more than one advice affects the same join point it might be necessary to define an

order of advice execution if there is a dependency between the advice codes (“aspect

interaction”). The following example shows how the precedence of advice code can be

defined in AspectC++.

Example: advice ordering

advice execution("void send(...)") : order("Encrypt", "Log");

If advice of both aspects (see 2.3) Encrypt and Log should be run when the function

send(...) is executed this order declaration defines that the advice of Encrypt has

a higher precedence. More details on advice ordering and precedence can be found in

section 7 on page 22.

2.3 Aspects

The aspect is the language element of AspectC++ to collect introductions and advice code

implementing a common crosscutting concern in a modular way. This put aspects in a

position to manage common state information. They are formulated by means of aspect

declarations as a extension to the class concept of C++. The basic structure of an aspect

declaration is exactly the same as an usual C++ class definition, except for the keyword

aspect instead of class, struct or union. According to that, aspects can have attributes

and methods and can inherit from classes and even other aspects.

Example: aspect declaration

aspect Counter {

static int m_count;

Counting() : m_count(0) {}

11

2.3 Aspects 2 BASIC CONCEPTS

pointcut counted() = "Circle" || "Polygon";

advice counted() : class Helper {

Helper() { Counter::m_count++; }

} m_counter;

advice execution("% main(...)") : after() {

cout < < "Final count: " < < m_count < < " objects" < < endl;

}

};

In this example the count of object instantiations for a set of classes is determined. There-

fore an attribute is introduced into the classes described by the pointcut incrementing a

global counter on construction time. By applying advice code for the function main the

final count of object instantiations is displayed when the program terminates.

This example can also be rewritten as an abstract aspect that can for instance be

archived in an aspect library for the purpose of reuse. It only require to reimplement the

pointcut declaration to be pure virtual.

Example: abstract aspect

aspect Counter {

static int m_count;

Counting() : m_count(0) {}

pointcut virtual counted() = 0;

...

};

It is now possible to inherit from Counter to reuse its functionality by reimplementing

counted to refer to the actual pointcut expression.

Example: reused abstract aspect

aspect MyCounter : public Counter {

pointcut counted() = derived("Shape");

};

2.3.1 Aspect Instantiation

By default aspects in AspectC++ are automatically instantiated as global objects. The idea

behind it is that aspects can also provide global program properties and therefore have to

12

2 BASIC CONCEPTS 2.4 Runtime Support

be always accessible. However in some special cases it may be desired to change this

behavior, e.g. in the context of operating systems when an aspect shall be instantiated per

process or per thread.

The default instantiation scheme can be changed by defining the static method

aspectof resp. aspectOf that is otherwise generated for an aspect. This method is

intended to be always able to return an instance of the appropriate aspect.

Example: aspect instantiation using aspectof

aspect ThreadCounter : public Counter {

pointcut counted() = "Thread";

advice counted() : ThreadCounter m_instance;

static ThreadCounter *aspectof() {

return tjp->target()->m_instance;

}

};

The introduction of m_instance into Thread guarantees that every thread object has an

instance of the aspect. By calling aspectof it is possible to get this instance at any join

point which is essential for accessing advice code and members of the aspect. For this

purpose code in aspectof has full access to the actual join point in a way described in

the next section.

2.4 Runtime Support

2.4.1 Support for Advice Code

For many aspects access to context variables may not be sufficient to get enough infor-

mation about the join point where advice code was activated. For instance a control flow

aspect for a complete logging of function calls in a program would need information about

function arguments and its types on runtime to be able to produce a type-compatible out-

put.

In AspectC++ this information is provided by the members of the class JoinPoint

(see table below).

types:

Result result type

That object type

Target target type

13

2.4 Runtime Support 2 BASIC CONCEPTS

AC::Type encoded type of an object

AC::JPType join point types

static methods:

int args() number of arguments

AC::Type type() typ of the function or attribute

AC::Type argtype(int) types of the arguments

const char *signature() signature of the function or attribute

unsigned id() identification of the join point

AC::Type resulttype() result type

AC::JPType jptype() type of join point

non-static methods:

void *arg(int) actual argument

Result *result() result value

That *that() object refered to by this

Target *target() target object of a call

void proceed() execute join point code

AC::Action &action() Action structure

Table 1: API of class JoinPoint available in advice code

Types and static methods of the JoinPoint API deliver information that is the same

for every advice code activation. The non-static methods deliver information that dif-

fer from one activation to another. These methods are accessed by the object tjp

resp. thisJoinPoint which is of type JoinPoint and is always available in advice code,

too.

The following example illustrates how to implement a re-usable control flow aspect

using the JoinPoint API.

Example: re-usable trace aspect

aspect Trace {

pointcut virtual methods() = 0;

advice execution(methods()) : around() {

cout < < "before " < < JoinPoint::signature() < < "(";

for (unsigned i = 0; i < JoinPoint::args(); i++)

printvalue(tjp->arg(i), JoinPoint::argtype(i));

cout < < ")" < < endl;

tjp->proceed();

14

3 MATCH EXPRESSIONS

cout < < "after" < < endl;

}

};

This aspect weaves tracing code into every function specified by the virtual pointcut rede-

fined in a derived aspect. The helper function printvalue is responsible for the formated

output of the arguments given at the function call. After calling printvalue for every

argument the program code of the actual join point is executed by calling proceed on

the JoinPoint object. The functionality of proceed is achieved by making use of the

so-called actions.

2.4.2 Actions

In AspectC++ an action is the statement sequence that would follow a reached join point in

a running program if advice code would not have been activated. Thus tjp->proceed()

triggers the execution of the program code of a join point. This can be the call or ex-

ecution of a function. The actions concept is realized in the AC::Action structure. In

fact, proceed is implemented as action().trigger() so that tjp->proceed() may

also be replaced by tjp->action().trigger(). Thereby the method action() of the

JoinPoint API returns the actual action object for a join point.

3 Match Expressions

This section provides sample match expressions for matching types, attributes, and func-

tions.

3.1 Type Matching

"unsigned long"

matches the C++ built-in scalar type unsigned long int

"% *"

matches pointers to any class or named C++ data type

3.2 Namespace and Class Matching

"Chain"

matches the class, struct, or union Chain

"Memory%"

matches any class, struct or union whose name starts with “Memory”

15

3.3 Attribute Matching 4 PREDEFINED POINTCUT FUNCTIONS

3.3 Attribute Matching

"Chain* Chain::next"

matches the attribute next of class Chain having type Chain* (pointer to Chain)

"% Chain::%"

matches any attribute of class Chain

3.4 Function Matching

"void reset()"

matches the function reset having no parameters and returning void

"% printf(...)"

matches the function printf having any number of parameters and returns any

type

"void %(int,%)"

matches any function having exactly two parameters (from which the first one must

be int) and returning void

4 Predefined Pointcut Functions

On the following pages a complete list of the pointcut functions supported by AspectC++ is

presented. For every pointcut function it is indicated which type of pointcut is expected as

argument(s) and of which type the result pointcut is. Thereby “N” stands for name pointcut

and “C” for code pointcut. The optionally given index is an assurance about the type of join

point(s) described by the result pointcut4.

4.1 Types

base (pointcut) N→NC,F

returns all base classes of classes in the pointcut

derived (pointcut) N→NC,F

returns all classes in the pointcut and all classes derived from them

4C, CC, CE, CS, CG: Code (any, only Call, only Execution, only Set, only Get); N, NN, NC, NF , NT :
Names (any, only Namespace, only Class, only Function, only Type)

16

4 PREDEFINED POINTCUT FUNCTIONS 4.2 Control Flow

Example: type matching

A software may contain the following class hierarchy.

class Shape { ... };

class Point : public Shape { ... };

...

class Rectangle : public Line, public Rotatable { ... };

With the following aspect a special feature is added to a designated set of classes of this

class hierarchy.

aspect Scale {

pointcut scalable() =

(base("Rectangle") && derived("Point")) || "Rectangle";

advice "Point" : baseclass("Scalable");

advice scalable() : void scale(int value) { ... }

};

The pointcut describes the classes Point and Rectangle and all classes derived from

Point that are direct or indirect base classes of Rectangle. With the first advice Point

gets a new base class. The second advice adds a corresponding method to all classes in

the pointcut.

4.2 Control Flow

cflow (pointcut) N→C

captures join points occuring in the dynamic execution context of join points in the

pointcut

Example: function call matching

The following example demonstrates the use of the cflow pointcut function.

class Constant {

int m_value;

public:

Constant(int v) : m_value(v) {}

operator int() { return m_value; }

int get_value() { return m_value; }

17

4.3 Scope 4 PREDEFINED POINTCUT FUNCTIONS

};

int main() {

Constant year(2003);

...

int y = year.get_value();

...

return 0;

}

The function get_value may be deprecated and a warning shall be displayed if it is still

used in the program. A corresponding aspect using the cflow pointcut function is shown

below.

aspect Deprecated {

pointcut functions() = call("% Constant::get_value()") &&

cflow(execution ("% main(...)"));

advice functions() : before() {

cout < < "Warning: Use of get_value() is deprecated." < < endl;

}

};

The pointcut describes all the calls to the function get_value that come from the function

main and any function called in main and any function called in a function called in main

and so on. The advice provides the warning message for every join point in the pointcut.

The message is displayed before get_value is called.

4.3 Scope

within (pointcut) N→C

filters all join points that are within the functions or classes in the pointcut

Example: matching in scopes

aspect Logger {

pointcut calls() =

call("void transmit()") && within("Transmitter");

advice calls() : around() {

cout < < "transmitting ... " < < flush;

18

4 PREDEFINED POINTCUT FUNCTIONS 4.4 Functions

tjp->proceed();

cout < < "finished." < < endl;

}

};

This aspect inserts code logging all calls to transmit that are within the methods of class

Transmitter.

4.4 Functions

call (pointcut) N→CC

Provides all join points where a named entity in the pointcut is called. The pointcut

may contain function names or class names. In the case of a class name all calls to

methods of that class are provided.

execution (pointcut) N→CE

provides all join points referring to the implementation of a named entity in the point-

cut. The pointcut may contain function names or class names. In the case of a class

name all implementations of methods of that class are provided.

Example: function matching

The following aspect weaves debugging code into a program that checks whether a method

is called on a null pointer and whether the argument of the call is null.

aspect Debug {

pointcut fct() = "% MemPool::dealloc(void*)";

pointcut exec() = execution(fct());

pointcut calls() = call(fct());

advice exec() && args(ptr) : before(void *ptr) {

assert(ptr && "argument is NULL");

}

advice calls() : before() {

assert(tjp->target() && "’this’ is NULL");

}

};

The first advice provides code to check the argument of the function dealloc before the

function is executed. A check whether dealloc is called on a null object is provided by

the second advice. This is realized by checking the target of the call.

19

4.5 Context 5 ADVICE DECLARATIONS

4.5 Context

that (type pattern) N→C

returns all join points where the current C++ this pointer refers to an object which

is an instance of a type that is compatible to the type described by the type pattern

target (type pattern) N→C

returns all join points where the target object of a call is an instance of a type that is

compatible to the type described by the type pattern

args (type pattern, ...) (N,...)→C

receives a list of type patterns and filters all methods or attributes with a matching

signature

Instead of the type pattern it is also possible here to deliver the name of a variable to which

the context information is bound. In this case the type of the variable is used for the type

matching.

Example: context matching

4.6 Algebraic Operators

pointcut && pointcut (N,N)→N, (C,C)→C

intersection of the join points in the pointcuts

pointcut || pointcut (N,N)→N, (C,C)→C

union of the join points in the pointcuts

! pointcut N→N, C→C

exclusion of the join points in the pointcut

Example: combining pointcut expressions

5 Advice Declarations

This section provides a summary of the AspectC++ placement functions allowed in advice

declarations.

before (...)

the advice code is executed before the join points in the pointcut

after (...)

the advice code is executed after the join points in the pointcut

20

6 JOINPOINT API

around (...)

the advice code is executed in place of the join points in the pointcut

baseclass (classname)

a new base class is introduced to the classes in the pointcut

Example: advice placement

6 JoinPoint API

The following sections provide a complete description of the JoinPoint API.

6.1 Types

Result

result type of a function

That

object type (object initiating a call)

Target

target object type (target object of a call)

Example: type usage

6.2 Functions

static AC::Type type()

returns the encoded type for the join point conforming with the C++ ABI V3 specifi-

cation5

static int args()

returns the number of arguments of a function for call and execution join points

static AC::Type argtype(int number)

returns the encoded type of an argument conforming with the C++ ABI V3 specifica-

tion

static const char *signature()

gives a textual description of the join point (function name, class name, ...)

5www.codesourcery.com/cxx-abi/abi.html#mangling

21

http://www.codesourcery.com/cxx-abi/abi.html#mangling

7 ADVICE ORDERING

static unsigned int id()

returns a unique numeric identifier for this join point

static AC::Type resulttype()

returns the encoded type of the result type conforming with the C++ ABI V3 specifi-

cation

static AC::JPType jptype()

returns a unique identifier describing the type of the join point

Example: static function usage

void *arg(int number)

returns a pointer to the memory position holding the argument value with index

number

Result *result()

returns a pointer to the memory location designated for the result value or 0 if the

function has no result value

That *that()

returns a pointer to the object initiating a call or 0 if it is a static method or a global

function

Target *target()

returns a pointer to the object that is the target of a call or 0 if it is a static method or

a global function

void proceed()

executes the original join point code in an around advice by calling

action().trigger()

AC::Action &action()

returns the runtime action object containing the execution environment to execute

the original functionality encapsulated by an around advice

Example: non-static function usage

7 Advice Ordering

7.1 Aspect Precedence

AspectC++ provides a very flexible mechanism to define aspect precedence. The prece-

dence is used to determine the execution order of advice code if more than one aspect

22

7 ADVICE ORDERING 7.2 Advice Precedence

affect the same join point. The precedence in AspectC++ is an attribute of a join point.

This means that the precedence relationship between two aspects might vary in differ-

ent parts of the system. The compiler checks the following conditions to determine the

precendence of aspects:

order declaration: if the programmer provides an order declaration, which defines the

precedence relationship between two aspects for a join point, the compiler will obey

this definition or abort with a compile-time error if there is a cycle in the precedence

graph. Order declarations have the following syntax:

advice pointcut-expr : order (high, ...low)

The argument list of order has to contain at least two elements. Each element is a

pointcut expression, which describes a set of aspects. Each aspect in a certain set

has a higher precedence than all aspects, which are part of a set following later in

the list (on the right hand side). For example ’("A1"||"A2","A3"||"A4")’ means

that A1 has precedence over A3 and A4 and that A2 has precedence over A3 and

A4. This order directive does not define the relation between A1 and A2 or A3 and

A4. Of course, the pointcut expressions in the argument list of order may contain

named pointcuts and even pure virtual pointcuts.

inheritance relation: if there is no order declaration given and one aspect has a base

aspect the derived aspect has a higher precedence than the base aspect.

7.2 Advice Precedence

The precedence of advice is determined with a very simple scheme:

• if two advice declarations belong to different aspects and there is a precedence re-

lation between these aspects (see section 7.1 on the facing page) the same relation

will be assumed for the advice.

• if two advice declarations belong to the same aspect the one that is declared first

has the higher precedence.

7.3 Effects of Advice Precedence

Only advice predecence has an effect on the generated code. The effect depends on the

kind of join point, which is affected by two advice declarations.

Class Join Points

Advice on class join points can extend the attribute list or base class list. If advice has a

higher precedence than another it will be handled first. For example, an introduced new

23

A GRAMMAR

base class of advice with a high precedence will appear in the base class list on the left

side of a base class, which was inserted by advice with lower precedence. This means

that the execution order of the constructors of introduced base classes can be influenced,

for instance, by order declarations.

The order of introduced attributes also has an impact on the constructor/destructor

execution order as well as the object layout.

Code Join Points

Advice on code join points can be before, after, or around advice. For before and

around advice a higher precedence means that the corresponding advice code will be run

first. For after advice a higher precedence means that the advice code will be run later.

If around advice code does not call tjp->proceed() or trigger() on the action

object no advice code with lower precedence will be run. The execution of advice with

higher precedence is not affected by around advice with lower precedence.

For example, consider an aspect that defines advice6 in the following order: BE1, AF1,

AF2, AR1, BE2, AR2, AF3. As described in section 7.2 on the page before the declaration

order also defines the precedence: BE1 has the highest and AF3 the lowest. The result is

the following advice code execution sequence:

1. BE1 (highest precedence)

2. AR1 (the indented advice will only be executed if proceed() is called!)

(a) BE2 (before AR2, buts depends on AR1)

(b) AR2 (the indented code will only be executed if proceed() is called!)

i. original code under the join point

ii. AF3

3. AF2 (does not depend on AR1 and AR2, because of higher precedence)

4. AF1 (run after AF2, because it has a higher precedence)

A Grammar

The AspectC++ syntax is an extension to the C++ syntax. It adds three new keywords

to the C++ language: aspect, advice, and pointcut. Additionally it extends the C++

language by advice and pointcut declarations. In contrast to pointcut declarations, advice

declarations may only occur in aspect declarations.

6BE is before advice, AF after advice, and AR around advice

24

A GRAMMAR

class-key:

aspect

declaration:

pointcut-declaration

advice-declaration

member-declaration:

pointcut-declaration

advice-declaration

pointcut-declaration:

pointcut declaration

pointcut-expression:

constant-expression

advice-declaration:

advice pointcut-expression : order-declaration

advice pointcut-expression : declaration

order-declaration:

order (pointcur-expression-seq)

25

A GRAMMAR

26

LIST OF EXAMPLES LIST OF EXAMPLES

List of Examples

match expressions (name pointcuts), 6

pointcut expressions, 6

pointcut declaration, 8

pure virtual pointcut declaration, 8

advice declaration, 9

advice declaration with access to context information, 9

introductions, 10

base class introduction, 11

advice ordering, 11

aspect declaration, 11

abstract aspect, 12

reused abstract aspect, 12

aspect instantiation using aspectof, 13

re-usable trace aspect, 14

type matching, 17

function call matching, 17

matching in scopes, 18

function matching, 19

context matching, 20

combining pointcut expressions, 20

advice placement, 21

type usage, 21

static function usage, 22

non-static function usage, 22

27

INDEX INDEX

Index

abstract aspect, 8, 12

ac++, 5

action, 9, 15

trigger(), 15

action(), 15, 22

advice, 9–11

after, 9, 20

around, 9, 21

baseclass, 11, 21

before, 9, 20

code, 9–10

declaration, 9, 20–21, 25

introduction, 10–11

order, 11

ordering, 22

runtime support, 13–15

after, 9, 20

arg(), 22

args(), 10, 20, 21

argtype(), 21

around, 9, 21

aspect, 8, 11–13

abstract, 8, 12

declaration, 11

instantiation, 12–13

aspect interaction, 11

aspectOf(), 13

aspectof(), 13

base(), 16

base class introduction, 10

baseclass, 11, 21

before, 9, 20

call(), 19

call join point, 7

cflow(), 17

code join point, 7, 9

code pointcut, 6

context variables, 9, 10, 13

control flow, 6, 13, 14, 17–18

crosscutting concern, 5, 11

derived(), 16

execution(), 19

execution join point, 7, 10

grammar, 24

id(), 22

introduction, 10–11

access rights, 10

base class, 10

join point, 5, 7

call, 7

code, 7, 9

execution, 7, 10

JoinPoint, 21–22

JoinPoint, 13, 15

action(), 15, 22

arg(), 22

args(), 21

argtype(), 21

id(), 22

jptype(), 22

proceed(), 15, 22

Result, 21

result(), 22

resulttype(), 22

signature(), 21

Target, 21

target(), 22

That, 21

that(), 22

28

INDEX INDEX

type(), 21

jptype(), 22

match expression, 5–6, 15–16

search pattern, 5

name pointcut, 5, 8, 10

order, 11

declaration, 25

ordering, 11

pointcut, 5–9

code, 6

declaration, 8–9, 25

expression, 6, 25

function, 6, 16–20

name, 5, 8, 10

pure virtual, 8

pointcut function, 6, 16–20

args(), 10, 20

base(), 10, 16

call(), 19

cflow(), 17

derived(), 16

execution(), 19

target(), 10, 20

that(), 10, 20

within(), 18

precedence, 11

effects, 23

of advice, 23

of aspects, 22

proceed(), 15, 22

pure virtual

functions, 7

pointcut, 8, 12, 15

Result, 21

result(), 22

result(), 10

resulttype(), 22

runtime support, 13

action, 9, 15

for advice code, 13–15

JoinPoint, 21–22

JoinPoint, 13, 15

thisJoinPoint, 14

search pattern, 5

match expression, 5–6, 15–16

signature(), 21

Target, 21

target(), 22

target(), 10, 20

That, 21

that(), 22

that(), 10, 20

thisJoinPoint, 14

tjp, 14

trigger(), 15

type(), 21

within(), 18

29

	1 About
	2 Basic Concepts
	2.1 Pointcuts
	2.1.1 Match Expressions
	2.1.2 Pointcut Expressions
	2.1.3 Types of Join Points
	2.1.4 Pointcut declarations

	2.2 Advice Code
	2.2.1 Introductions
	2.2.2 Advice Ordering

	2.3 Aspects
	2.3.1 Aspect Instantiation

	2.4 Runtime Support
	2.4.1 Support for Advice Code
	2.4.2 Actions

	3 Match Expressions
	3.1 Type Matching
	3.2 Namespace and Class Matching
	3.3 Attribute Matching
	3.4 Function Matching

	4 Predefined Pointcut Functions
	4.1 Types
	4.2 Control Flow
	4.3 Scope
	4.4 Functions
	4.5 Context
	4.6 Algebraic Operators

	5 Advice Declarations
	6 JoinPoint API
	6.1 Types
	6.2 Functions

	7 Advice Ordering
	7.1 Aspect Precedence
	7.2 Advice Precedence
	7.3 Effects of Advice Precedence

	A Grammar
	List of Examples
	Index

