
Documentation:
AspectC++ Language Reference

pure-systems GmbH

Matthias Urban

and Olaf Spinczyk

Version 1.9, April 1, 2012

(c) 2002-2012 Olaf Spinczyk1 and pure-systems GmbH2

1os@aspectc.org
www.aspectc.org

2aspectc@pure-systems.com
www.pure-systems.com

Agnetenstr. 14
39106 Magdeburg

Germany

mailto:os@aspectc.org
http://www.aspectc.org
mailto:aspectc@pure-systems.com
http://www.pure-systems.com

(c) 2002-2012 Olaf Spinczyk and pure-systems GmbH
All rights reserved.

CONTENTS CONTENTS

Contents

1 About 5

2 Basic Concepts 5
2.1 Pointcuts . 5

2.1.1 Match Expressions . 5
2.1.2 Pointcut Expressions . 6
2.1.3 Types of Join Points . 7
2.1.4 Pointcut declarations . 8

2.2 Slices . 9
2.3 Advice Code . 9

2.3.1 Introductions . 11
2.3.2 Advice Ordering . 12

2.4 Aspects . 12
2.4.1 Aspect Instantiation . 14

2.5 Runtime Support . 14
2.5.1 Support for Advice Code 14
2.5.2 Actions . 16

3 Match Expressions 16
3.1 Name Matching . 17

3.1.1 Simple Name Matching . 17
3.1.2 Operator Function and Conversion Function Name Matching 18
3.1.3 Constructors and Destructors 18
3.1.4 Scope Restrictions . 19

3.2 Scope Matching . 19
3.3 Type Matching . 19

3.3.1 The Match Mechanism . 19
3.3.2 Matching of Named Types 20
3.3.3 Matching of “Pointer to Member” Types 20
3.3.4 Matching of Qualified Types (const/volatile) 20
3.3.5 Handling of Conversion Function Types 21
3.3.6 Ellipses in Function Type Patterns 21
3.3.7 Matching Virtual Functions 21
3.3.8 Matching Static Functions 21
3.3.9 Argument Type Adjustment 22

3

CONTENTS CONTENTS

4 Predefined Pointcut Functions 22
4.1 Types . 22
4.2 Control Flow . 23
4.3 Scope . 24
4.4 Functions . 25
4.5 Object Construction and Destruction 26
4.6 Context . 27
4.7 Algebraic Operators . 27

5 Slices 28
5.1 Class Slice Declarations . 28

6 Advice 29
6.1 Advice for Dynamic Join Points . 29
6.2 Advice for Static Join Points . 29

7 JoinPoint API 30
7.1 Types . 30
7.2 Functions . 30

8 Advice Ordering 32
8.1 Aspect Precedence . 32
8.2 Advice Precedence . 33
8.3 Effects of Advice Precedence . 33

A Grammar 34

B Match Expression Grammar 35

List of Examples 40

Index 40

4

2 BASIC CONCEPTS

1 About

This document is intended to be used as a reference book for the AspectC++
language elements. It describes in-depth the use and meaning of each element
providing examples. For experienced users the contents of this document is sum-
marized in the AspectC++ Quick Reference. A step-by-step introduction how to
program with AspectC++ is given in the AspectC++ Programming Guide1. De-
tailed information about the AspectC++ compiler ac++ can be looked up in the
AspectC++ Compiler Manual.

AspectC++ is an aspect-oriented extension to the C++ language2. It is similar
to AspectJ3 but, due to the nature of C++, in some points completely different.
The first part of this document introduces the basic concepts of the AspectC++
language. The in-depth description of each language element is subject of the
second part.

2 Basic Concepts

2.1 Pointcuts

Aspects in AspectC++ implement crosscutting concerns in a modular way. With
this in mind the most important element of the AspectC++ language is the point-
cut. Pointcuts describe a set of join points by determining on which condition an
aspect shall take effect. Thereby each join point can either refer to a function,
an attribute, a type, a variable, or a point from which a join point is accessed so
that this condition can be for instance the event of reaching a designated code
position. Depending on the kind of pointcuts, they are evaluated at compile time
or at runtime.

2.1.1 Match Expressions

There are two types of pointcuts in AspectC++: code pointcuts and name point-
cuts. Name pointcuts describe a set of (statically) known program entities like
types, attributes, functions, variables, or namespaces. All name pointcuts are
based on match expressions. A match expression can be understood as a search
pattern. In such a search pattern the special character “%” is interpreted as a
wildcard for names or parts of a signature. The special character sequence “...”

1Sorry, but the Programming Guide is not written yet :-(
2defined in the ISO/IEC 14882:1998(E) standard
3http://www.eclipse.org/aspectj/

5

http://www.aspectc.com/ac++quickref.pdf
http://www.aspectc.org/Documentation.5.0.html
http://www.aspectc.com/fileadmin/documentation/ac-compilerman.pdf
http://www.eclipse.org/aspectj/

2.1 Pointcuts 2 BASIC CONCEPTS

matches any number of parameters in a function signature or any number of
scopes in a qualified name. A match expression is a quoted string.

Example: match expressions (name pointcuts)

"int C::%(...)"

matches all member functions of the class C that return an int

"%List"

matches any class, struct, union, or enum whose name ends with “List”

"% printf(const char *, ...)"

matches the function printf (defined in the global scope) having at least
one parameter of type const char * and returning any type

"const %& ...::%(...)"

matches all functions that return a reference to a constant object

Match expressions select program entities with respect to their definition scope,
their type, and their name. A detailed description of the match expression seman-
tics follows in section 3 on page 16. The grammar which defines syntactically valid
match expressions is shown in appendix B on page 35.

2.1.2 Pointcut Expressions

The other type of pointcuts, the code pointcuts, describe an intersection through
the set of the points in the control flow of a program. A code pointcut can refer to
a call or execution point of a function. They can only be created with the help of
name pointcuts because all join points supported by AspectC++ require at least
one name to be defined. This is done by calling predefined pointcut functions
in a pointcut expression that expect a pointcut as argument. Such a pointcut
function is for instance within(pointcut), which filters all join points that are within
the functions or classes in the given pointcut.

Name and code pointcuts can be combined in pointcut expressions by using
the algebraic operators “&&”, “||”, and “!”.

Example: pointcut expressions

"%List" && !derived("Queue")

describes the set of classes with names that end with “List” and that are not
derived from the class Queue

6

2 BASIC CONCEPTS 2.1 Pointcuts

call("void draw()") && within("Shape")

describes the set of calls to the function draw that are within methods of the
class Shape

2.1.3 Types of Join Points

According to the two types of pointcuts supported by AspectC++ there are also
two types of join points. Based on a short code fragment the differences and
relations between these two types of join points shall be clarified.

class Shape;

void draw(Shape&);

namespace Circle {

typedef int PRECISION;

class S_Circle : public Shape {

PRECISION m_radius;

public:

...

void radius(PRECISION r) { m_radius=r; }

};

void draw(PRECISION r) {

S_Circle circle;

circle.radius(r);

draw(circle);

}

}

int main() {

Circle::draw(10);

return 0;

}

Code join points are used to form code pointcuts and name join points
(i.e. names) are used to form name pointcuts. Figure 1 on the following page
shows some join points of the code fragment and how they correlate.

Every execution join point is associated with the name of an executable func-
tion. Pure virtual functions are not executable. Thus, advice code for execution

7

2.1 Pointcuts 2 BASIC CONCEPTS

Name Name

relation between names
and names
relation between code

code join pointname join point

Legend

containedcontained

attribute

contained base class

method

namespace

class

class

function attribute

function function

function type

Call

Call

Execution

Call

Execution

Execution

Set

Execution

"main"

"draw" "PRECISION"

"Circle"

"S_Circle"

"radius" "m_radius"

"draw""Shape"

Figure 1: join points and their relations

join points would never be triggered for this kind of function. However, the call
of such a function, i.e. a call join point with this function as target, is absolutely
possible.

Every call join point is associated with two names: the name of the source and
the target function of a function call. As there can be multiple function calls within
the same function, each function name can be associated with a list of call join
points. A construction joinpoint means the class specific instruction sequence
executed when an instance is created. In analogy, a destruction joinpoint means
the object destruction.

2.1.4 Pointcut declarations

AspectC++ provides the possibility to name pointcut expressions with the help
of pointcut declarations. This makes it possible to reuse pointcut expressions
in different parts of a program. They are allowed where C++ declarations are
allowed. Thereby the usual C++ name lookup and inheritance rules are also
applicable for pointcut declarations.

A pointcut declaration is introduced by the keyword pointcut.

Example: pointcut declaration

pointcut lists() = derived("List");

lists can now be used everywhere in a program where a pointcut expres-

8

2 BASIC CONCEPTS 2.2 Slices

sion can be used to refer to derived("List")

Furthermore pointcut declarations can be used to define pure virtual pointcuts.
This enables the possibility of having re-usable abstract aspects that are dis-
cussed in section 2.4. The syntax of pure virtual pointcut declarations is the
same as for usual pointcut declarations except the keyword virtual following
pointcut and that the pointcut expression is “0”.

Example: pure virtual pointcut declaration

pointcut virtual methods() = 0;

methods is a pure virtual pointcut that has to be redefined in a derived
aspect to refer to the actual pointcut expression

2.2 Slices

A slice is a fragment of a C++ language element that defines a scope. It can be
used by advice to extend the static structure of the programm. For example, the
elements of a class slice can be merged into one or more target classes by intro-
duction advice. The following example shows a simple class slice declaration.

Example: class slice declaration

slice class Chain {

Chain *_next;

public:

Chain *next () const { return _next; }

};

2.3 Advice Code

To a code join point so-called advice code can be bound. Advice code can be
understood as an action activated by an aspect when a corresponding code join
point in a program is reached. The activation of the advice code can happen
before, after, or before and after the code join point is reached. The AspectC++
language element to specify advice code is the advice declaration. It is introduced
by the keyword advice followed by a pointcut expression defining where and
under which conditions the advice code shall be activated.

9

2.3 Advice Code 2 BASIC CONCEPTS

Example: advice declaration

advice execution("void login(...)") : before() {

cout << "Logging in." << endl;

}

The code fragment :before() following the pointcut expression determines that
the advice code shall be activated directly before the code join point is reached.
It is also possible here to use :after() which means after reaching the code
join point respectively :around() which means that the advice code shall be
executed instead of the code described by the code join point. In an around
advice the advice code can explicitly trigger the execution of the program code at
the join point so that advice code can be executed before and after the join point.
There are no special access rights of advice code regarding to program code at
a join point.

Beside the pure description of join points pointcuts can also bind variables to
context information of a join point. Thus for instance the actual argument values
of a function call can be made accessible to the advice code.

Example: advice declaration with access to context information

pointcut new_user(const char *name) =

execution("void login(...)") && args(name);

advice new_user(name) : before(const char *name) {

cout << "User " << name << " is logging in." << endl;

}

In the example above at first the pointcut new_user is defined including a context
variable name that is bound to it. This means that a value of type const char* is
supplied every time the join point described by the pointcut new_user is reached.
The pointcut function args used in the pointcut expression delivers all join points
in the program where an argument of type const char* is used. Therefore
args(name) in touch with the execution join point binds name to the first and
only parameter of the function login.

The advice declaration in the example above following the pointcut declaration
binds the execution of advice code to the event when a join point described in
new_user is reached. The context variable that holds the actual value of the
parameter of the reached join point has to be declared as a formal parameter of
before, after, or around. This parameter can be used in the advice code like
an oridinary function parameter.

10

2 BASIC CONCEPTS 2.3 Advice Code

Beside the pointcut function args the binding of context variables is performed
by that, target, and result. At the same time these pointcut functions act as
filters corresponding to the type of the context variable. For instance args in the
example above filters all join points having an argument of type const char*.

2.3.1 Introductions

The second type of advice supported by AspectC++ are the introductions. Intro-
ductions are used to extend program code and data structures in particular. The
following example extends two classes each by an attribute and a method.

Example: introductions

pointcut shapes() = "Circle" || "Polygon";

advice shapes() : slice class {

bool m_shaded;

void shaded(bool state) {

m_shaded = state;

}

};

Like an ordinary advice declaration an introduction is introduced by the keyword
advice. If the following pointcut is a name pointcut the slice declaration following
the token “:” is introduced in the classes and aspects described by the pointcut.
Introduced code can then be used in normal program code like any other function,
attribute, etc. Advice code in introductions has full access rights regarding to
program code at a join point, i.e. a method introduced in a class has access even
to private members of that class.

Slices can also be used to introduce new base classes. In the first line of the
following example it is made sure that every class with a name that ends with
“Object” is derived from a class MemoryPool. This class may implement an own
memory management by overloading the new and delete operators. Classes
that inherit from MemoryPool must redefine the pure virtual method release

that is part of the implemented memory management. This is done in the second
line for all classes in the pointcut.

Example: base class introduction

advice "%Object" : slice class : public MemoryPool {

11

2.4 Aspects 2 BASIC CONCEPTS

virtual void release() = 0;

}

2.3.2 Advice Ordering

If more than one advice affects the same join point it might be necessary to de-
fine an order of advice execution if there is a dependency between the advice
codes (“aspect interaction”). The following example shows how the precedence
of advice code can be defined in AspectC++.

Example: advice ordering

advice execution("void send(...)") : order("Encrypt", "Log");

If advice of both aspects (see 2.4) Encrypt and Log should be run when the
function send(...) is executed this order declaration defines that the advice of
Encrypt has a higher precedence. More details on advice ordering and prece-
dence can be found in section 8 on page 32.

2.4 Aspects

The aspect is the language element of AspectC++ to collect introductions and
advice code implementing a common crosscutting concern in a modular way.
This put aspects in a position to manage common state information. They are
formulated by means of aspect declarations as a extension to the class concept
of C++. The basic structure of an aspect declaration is exactly the same as an
usual C++ class definition, except for the keyword aspect instead of class,
struct or union. According to that, aspects can have attributes and methods
and can inherit from classes and even other aspects.

Example: aspect declaration

aspect Counter {

static int m_count;

pointcut counted() = "Circle" || "Polygon";

advice counted() : slice struct {

class Helper {

12

2 BASIC CONCEPTS 2.4 Aspects

Helper() { Counter::m_count++; }

} m_counter;

};

advice execution("% main(...)") : after() {

cout << "Final count: " << m_count << " objects" << endl;

}

};

... and at an appropriate place

#include "Counter.ah"

int Counter::m_count = 0;

In this example the count of object instantiations for a set of classes is determined.
Therefore, an attribute m_counter is introduced into the classes described by the
pointcut incrementing a global counter on construction time. By applying advice
code for the function main the final count of object instantiations is displayed
when the program terminates.

This example can also be rewritten as an abstract aspect that can for instance
be archived in an aspect library for the purpose of reuse. It only require to reim-
plement the pointcut declaration to be pure virtual.

Example: abstract aspect

aspect Counter {

static int m_count;

Counter() : m_count(0) {}

pointcut virtual counted() = 0;

...

};

It is now possible to inherit from Counter to reuse its functionality by reimple-
menting counted to refer to the actual pointcut expression.

Example: reused abstract aspect

aspect MyCounter : public Counter {

pointcut counted() = derived("Shape");

};

13

2.5 Runtime Support 2 BASIC CONCEPTS

2.4.1 Aspect Instantiation

By default aspects in AspectC++ are automatically instantiated as global objects.
The idea behind it is that aspects can also provide global program properties and
therefore have to be always accessible. However in some special cases it may be
desired to change this behavior, e.g. in the context of operating systems when an
aspect shall be instantiated per process or per thread.

The default instantiation scheme can be changed by defining the static method
aspectof resp. aspectOf that is otherwise generated for an aspect. This
method is intended to be always able to return an instance of the appropriate
aspect.

Example: aspect instantiation using aspectof

aspect ThreadCounter : public Counter {

pointcut counted() = "Thread";

advice counted() : ThreadCounter m_instance;

static ThreadCounter *aspectof() {

return tjp->target()->m_instance;

}

};

The introduction of m_instance into Thread guarantees that every thread ob-
ject has an instance of the aspect. By calling aspectof it is possible to get this
instance at any join point which is essential for accessing advice code and mem-
bers of the aspect. For this purpose code in aspectof has full access to the
actual join point in a way described in the next section.

2.5 Runtime Support

2.5.1 Support for Advice Code

For many aspects access to context variables may not be sufficient to get enough
information about the join point where advice code was activated. For instance
a control flow aspect for a complete logging of function calls in a program would
need information about function arguments and its types on runtime to be able to
produce a type-compatible output.

In AspectC++ this information is provided by the members of the class
JoinPoint (see table below).

14

2 BASIC CONCEPTS 2.5 Runtime Support

types:
Result result type
That object type
Target target type
AC::Type encoded type of an object
AC::JPType join point types

static methods:
int args() number of arguments

AC::Type type() typ of the function or attribute
AC::Type argtype(int) types of the arguments
const char *signature() signature of the function or attribute

unsigned id() identification of the join point
AC::Type resulttype() result type
AC::JPType jptype() type of join point

non-static methods:
void *arg(int) actual argument

Result *result() result value
That *that() object refered to by this

Target *target() target object of a call
void proceed() execute join point code

AC::Action &action() Action structure

Table 1: API of class JoinPoint available in advice code

Types and static methods of the JoinPoint API deliver information that is the
same for every advice code activation. The non-static methods deliver information
that differ from one activation to another. These methods are accessed by the
object tjp resp. thisJoinPoint which is of type JoinPoint and is always
available in advice code, too.

The following example illustrates how to implement a re-usable control flow
aspect using the JoinPoint API.

Example: re-usable trace aspect

aspect Trace {

pointcut virtual methods() = 0;

advice execution(methods()) : around() {

15

3 MATCH EXPRESSIONS

cout << "before " << JoinPoint::signature() << "(";

for (unsigned i = 0; i < JoinPoint::args(); i++)

printvalue(tjp->arg(i), JoinPoint::argtype(i));

cout << ")" << endl;

tjp->proceed();

cout << "after" << endl;

}

};

This aspect weaves tracing code into every function specified by the virtual point-
cut redefined in a derived aspect. The helper function printvalue is respon-
sible for the formated output of the arguments given at the function call. After
calling printvalue for every argument the program code of the actual join point
is executed by calling proceed on the JoinPoint object. The functionality of
proceed is achieved by making use of the so-called actions.

2.5.2 Actions

In AspectC++ an action is the statement sequence that would follow a reached
join point in a running program if advice code would not have been activated.
Thus tjp->proceed() triggers the execution of the program code of a join
point. This can be the call or execution of a function. The actions con-
cept is realized in the AC::Action structure. In fact, proceed is equiv-
alent to action().trigger() so that tjp->proceed() may also be re-
placed by tjp->action().trigger(). Thereby the method action() of the
JoinPoint API returns the actual action object for a join point.

3 Match Expressions

Match expressions are a used to describe a set of statically known program en-
tities in an AspectC++ program. They can either be match expressions for func-
tions or for types. A class is seen as a special kind of type in this context.

For function matching a match expression is internally decomposed into the
function type pattern, the scope pattern, and the name pattern.

Example: type, scope, and name parts of a function match expression

"const % Puma::...::parse_% (Token *)"

16

3 MATCH EXPRESSIONS 3.1 Name Matching

This match expression describes the following requirements on a compared func-
tion name:

name: the function name has to match the name pattern parse_%

scope: the scope in which the function is defined has to match Puma::...::

type: the function type has to match const %(Token *)

For classes and other types this decomposion is not necessary. For example, the
type name “Puma::CCParser” is sufficient to describe a class, because this is
the same as the class name.

If an entity matches all parts of the match expression, it becomes an element
of the set, which should be defined by the match expression.

The grammar used for match expression parsing is shown in appendix B on
page 35. The following subsections separately describe the name, scope, and
type matching mechanisms. Note, that name and scope matching is used for
matching of function names as well as matching of named types like classes.

3.1 Name Matching

3.1.1 Simple Name Matching

Name matching is trivial as long as the compared name is a normal C++ iden-
tifier. If the name pattern does not contain the special wildcard character %, it
matches a name only if it is exactly the same. Otherwise each wildcard char-
acter matches an arbitrary sequence of characters in the compared name. The
wildcard character also matches an empty sequence.

Example: simple name patterns

Token only matches Token
% matches any name
parse_% matches any name beginning with parse_ like

parse_declarator or parse_
parse_%_id% matches names like parse_type_id,

parse_private_identifier, etc.
%_token matches all names that end with _token like start_token,

end_token, and _token

17

3.1 Name Matching 3 MATCH EXPRESSIONS

3.1.2 Operator Function and Conversion Function Name Matching

The name matching mechanism is more complicated if the pattern is compared
with the name of a conversion function or an operator function. Both are matched
by the name pattern %. However, with a different name pattern than % they are
only matched if the pattern begins with "operator ". The pattern "operator %"
matches any operator function or conversion function name.

C++ defines a fixed set of operators which are allowed to be overloaded. In
a name pattern the same operators may be used after the "operator " prefix
to match a specific operator function name. Operator names in name patterns
are not allowed to contain the wildcard character. For ambiguity resolution the
operators % and %= are matched by %% and %%= in a name pattern.

Example: operator name patterns

operator % matches any operator function name (as well as any con-
version function name)

operator += matches only the name of a += operator
operator %% matches the name of an operator %

Conversion functions don’t have a real name. For example, the conversion
function operator int*() defined in a class C defines a conversion from a C

instance into an object of type int*. To match conversion functions the name
pattern may contain a type pattern after the prefix "operator ". The type match-
ing mechanism is explained in section 3.3.

Example: conversion function name patterns

operator % matches any conversion function name
operator int* matches any name of a conversion that converts something

into an int* object
operator %* matches any conversion function name if that function con-

verts something into a pointer

3.1.3 Constructors and Destructors

Name patterns cannot be used to match constructor or destructor names.

18

3 MATCH EXPRESSIONS 3.2 Scope Matching

3.1.4 Scope Restrictions

In a match expression a name pattern can optionally be prefixed by a scope
pattern. A scope pattern (see section 3.2) is used to describe restrictions on the
definition scope of matched entities. If no scope pattern is given, a compared
function or type has to be defined in the global scope to be matched.

3.2 Scope Matching

Restrictions on definition scopes can be described by scope patterns. This is a
sequence of name patterns (or the special any scope sequence pattern ...),
which are separated by ::, like in Puma::...::. A scope pattern always ends
with :: and should never start with ::, because scope patterns are interpreted
relative to the global scope anyway4. The definition scope can either be a names-
pace or a class.

A scope pattern matches the definition scope of a compared function or type if
every part can successfully be matched with a corresponding part in the qualified
name of the definition scope. The compared qualified name has to be relative to
the global scope and should not start with ::, which is optional in a C++ nested-
name-specifier. The special ... pattern matches any (even empty) sequence of
scope names.

Example: scope patterns

...:: matches any definition scope, even the global scope
Puma::CCParser:: matches the scope Puma::CCParser exactly
...::%Compiler%:: matches any class or namespace, which matches the name

pattern %Compiler%, in any scope
Puma::...:: matches any scope defined within the class or namespace

Puma and Puma itself

3.3 Type Matching

3.3.1 The Match Mechanism

C++ types can be represented as a tree. For example, the function type
int(double) is a function type node with two children, one is an int node,
the other a double node. Both children are leaves of the tree.

4This restriction is also needed to avoid ambiguities in the match expression grammer: Does
“A :: B :: C(int)” mean “A ::B::C(int)” or “A::B ::C(int)”?

19

3.3 Type Matching 3 MATCH EXPRESSIONS

The types used in match expressions can also be interpreted as trees. As
an addition to normal C++ types they can also contain the % wildcard character,
name patterns, and scope patterns. A single wildcard character in a type pattern
becomes a special any type node in the tree representation.

For comparing a type pattern with a specific type the tree representation is
used and the any type node matches an arbitrary type (sub-)tree.

Example: type patterns with the wildcard character

% matches any type
void (*)(%) matches any pointer type that points to functions with a sin-

gle argument and a void result type
%* matches any pointer type

3.3.2 Matching of Named Types

Type patterns may also contain name and scope patterns. They become a named
type node in the tree representation and match any union, struct, class, or enu-
meration type if its name and scope match the given pattern (see section 3.1 and
3.2).

3.3.3 Matching of “Pointer to Member” Types

Patterns for pointers to members also contain a scope pattern, e.g.
% (Puma::CSyntax::*)(). In this context the scope pattern is mandatory.
The pattern is used for matching the class associated with a pointer to member
type.

3.3.4 Matching of Qualified Types (const/volatile)

Many C++ types can be qualified as const or volatile. In a type pattern these
qualifier can also be used, but they are interpreted restrictions. If no const or
volatile qualifier is given in a type pattern, the pattern also matches qualified
types5.

5Matching only non-constant or non-volatile types can be achieved by using the operators
explained in section 4.7 on page 27. For example, !"const %" describes all types which are not
constant.

20

3 MATCH EXPRESSIONS 3.3 Type Matching

Example: type patterns with const and volatile

% matches any type, even types qualified with
const or volatile

const % matches only types qualified by const
% (*)() const volatile matches the type of all pointers to functions that

are qualified by const and volatile

3.3.5 Handling of Conversion Function Types

The result type of conversion functions is interpreted as a special undefined
type in type patterns as well as in compared types. The undefined type is only
matched by the any type node and the undefined type node.

3.3.6 Ellipses in Function Type Patterns

In the list of function argument types the type pattern ... can be used to match
an arbitrary (even empty) list of types. The ... pattern should not be followed by
other argument type patterns in the list of argument types.

3.3.7 Matching Virtual Functions

The decl-specifier-seq of a function type match expression may include the key-
word virtual. In this case the function type match expression only matches
virtual or pure virtual member functions. As const and volatile, the virtual

keyword is regarded as a restriction. This means that a function type match ex-
pression without virtual matches virtual and non-virtual functions.

Example: type patterns with virtual

virtual % ...::%(...) matches all virtual or pure virtual functions in any
scope

% C::%(...) matches all member functions of C, even if they
are virtual

3.3.8 Matching Static Functions

Matching static functions works similar as matching virtual functions. The decl-
specifier-seq of a function type match expression may include the keyword
static. In this case the function type match expression only matches static

21

4 PREDEFINED POINTCUT FUNCTIONS

functions in global or namespace scope and static member functions of classes.
As const and volatile, the static keyword is regarded as a restriction. This
means that a function type match expression without static matches static and
non-static functions.

Example: type patterns with static

static % ...::%(...) matches all static member and non-member
functions in any scope

% C::%(...) matches all member functions of C, even if they
are static

3.3.9 Argument Type Adjustment

Argument types in type patterns are adjusted according to the usual C++ rules,
i.e. array and function types are converted to pointers to the given type and
const/volatile qualifiers are removed. Futhermore, argument type lists con-
taining a single void type are converted into an empty argument type list.

4 Predefined Pointcut Functions

On the following pages a complete list of the pointcut functions supported by
AspectC++ is presented. For every pointcut function it is indicated which type
of pointcut is expected as argument(s) and of which type the result pointcut is.
Thereby “N” stands for name pointcut and “C” for code pointcut. The optionally
given index is an assurance about the type of join point(s) described by the result
pointcut6.

4.1 Types

base(pointcut) N→NC,F

returns all base classes of classes in the pointcut

derived(pointcut) N→NC,F

returns all classes in the pointcut and all classes derived from them

6C, CC, CE, CS, CG: Code (any, only Call, only Execution, only Set, only Get); N, NN , NC, NF ,
NT : Names (any, only Namespace, only Class, only Function, only Type)

22

4 PREDEFINED POINTCUT FUNCTIONS 4.2 Control Flow

Example: type matching

A software may contain the following class hierarchy.

class Shape { ... };

class Point : public Shape { ... };

...

class Rectangle : public Line, public Rotatable { ... };

With the following aspect a special feature is added to a designated set of classes
of this class hierarchy.

aspect Scale {

pointcut scalable() =

(base("Rectangle") && derived("Point")) || "Rectangle";

advice "Point" : baseclass("Scalable");

advice scalable() : void scale(int value) { ... }

};

The pointcut describes the classes Point and Rectangle and all classes de-
rived from Point that are direct or indirect base classes of Rectangle. With
the first advice Point gets a new base class. The second advice adds a corre-
sponding method to all classes in the pointcut.

4.2 Control Flow

cflow(pointcut) C→C
captures join points occuring in the dynamic execution context of join points
in the pointcut. Currently the language features being used in the argument
pointcut are restricted. The argument ist not allowed to contain any con-
text variable bindings (see 4.6) or other pointcut functions which have to be
evaluated at runtime like cflow(pointcut) itself.

Example: control flow dependant advice activation

The following example demonstrates the use of the cflow pointcut function.

class Bus {

void out (unsigned char);

unsigned char in ();

};

23

4.3 Scope 4 PREDEFINED POINTCUT FUNCTIONS

Consider the class Bus shown above. It might be part of an operating system
kernel and is used there to access peripheral devices via a special I/O bus. The
execution of the member functions in() and out() should not be interrupted,
because this would break the timing of the bus communication. Therefore, we
decide to implement an interrupt synchronization aspect that disables interrupts
during the execution of in() and out():

aspect BusIntSync {

pointcut critical() = execution("% Bus::%(...)");

advice critical() && !cflow(execution("% os::int_handler()")) :

around() {

os::disable_ints();

tjp->proceed();

os::enable_ints();

}

};

As the bus driver code might also be called from an interrupt handler, the in-
terrupts should not be disabled in any case. Therefore, the pointcut expression
exploits the cflow() pointcut function to add a runtime condition for the advice
activation. The advice body should only be executed if the control flow did not
come from the interrupt handler os::int_handler(), because it is not inter-
ruptable by definition and os::enable_ints() in the advice body would turn
on the interrupts too early.

4.3 Scope

within(pointcut) N→C
filters all join points that are within the functions or classes in the pointcut

Example: matching in scopes

aspect Logger {

pointcut calls() =

call("void transmit()") && within("Transmitter");

advice calls() : around() {

cout << "transmitting ... " << flush;

tjp->proceed();

cout << "finished." << endl;

24

4 PREDEFINED POINTCUT FUNCTIONS 4.4 Functions

}

};

This aspect inserts code logging all calls to transmit that are within the methods
of class Transmitter.

4.4 Functions

call(pointcut) N→CC

Provides all join points where a named entity in the pointcut is called. The
pointcut may contain function names or class names. In the case of a class
name all calls to methods of that class are provided.

execution(pointcut) N→CE

provides all join points referring to the implementation of a named entity in
the pointcut. The pointcut may contain function names or class names. In
the case of a class name all implementations of methods of that class are
provided.

Example: function matching

The following aspect weaves debugging code into a program that checks whether
a method is called on a null pointer and whether the argument of the call is null.

aspect Debug {

pointcut fct() = "% MemPool::dealloc(void*)";

pointcut exec() = execution(fct());

pointcut calls() = call(fct());

advice exec() && args(ptr) : before(void *ptr) {

assert(ptr && "argument is NULL");

}

advice calls() : before() {

assert(tjp->target() && "’this’ is NULL");

}

};

The first advice provides code to check the argument of the function dealloc

before the function is executed. A check whether dealloc is called on a null
object is provided by the second advice. This is realized by checking the target of
the call.

25

4.5 Object Construction and Destruction4 PREDEFINED POINTCUT FUNCTIONS

4.5 Object Construction and Destruction

construction(pointcut) N→CCons

all join points where an instance of the given class(es) is constructed. The
construction joinpoint begins after all base class and member construction
joinpoints. It can be imagined as the execution of the constructor. However,
advice for construction joinpoints work, even if there is no constructor de-
fined explicitly. A construction joinpoint has arguments and argument types,
which can be exposed or filtered, e.g. by using the args pointcut function.

destruction(pointcut) N→CDes

all join points where an instance of the given class(es) is destructed. The
destruction joinpoint ends before the destruction joinpoint of all members
and base classes. It can be imagined as the execution of the destructor, al-
though a destructor does not to be defined explicitly. A destruction joinpoint
has an empty argument list.

Example: instance counting

The following aspect counts how many instances of the class ClassOfInterest
are created and destroyed.

aspect InstanceCounting {

// the class for which instances should be counted

pointcut observed() = "ClassOfInterest";

// count constructions and destructions

advice construction (observed ()) : before () { _created++; }

advice destruction (observed ()) : after () { _destroyed++; }

public:

// Singleton aspects can have a default constructor

InstanceCounting () { _created = _destroyed = 0; }

private:

// counters

int _created;

int _destroyed;

};

The implementation of this aspect is straightforward. Two counters are initialized
by the aspect constructor and incremented by the construction/destruction ad-
vice. By defining observed() as a pure virtual pointcut the aspect can easily be
transformed into a reusable abstract aspect.

26

4 PREDEFINED POINTCUT FUNCTIONS 4.6 Context

4.6 Context

that(type pattern) N→C
returns all join points where the current C++ this pointer refers to an object
which is an instance of a type that is compatible to the type described by
the type pattern

target(type pattern) N→C
returns all join points where the target object of a call is an instance of a
type that is compatible to the type described by the type pattern

result(type pattern) N→C
returns all join points where the result object of a call/execution is an in-
stance of a type matched by the type pattern

args(type pattern, ...) (N,...)→C
The argument list of args contains type patterns that are used to filter all
joinpoints, e.g. calls to functions or function executions, with a matching
signature.

Instead of the type pattern it is also possible here to pass the name of a variable
to which the context information is bound (a context variable). In this case the
type of the variable is used for the type matching. Context variables must be
declared in the argument list of before(), after(), or around() and can be used
like a function argument in the advice body.

The that() and target() pointcut functions are special, because they might
cause a run-time type check. The args() and result() functions are evaluated at
compile time.

Example: context matching

4.7 Algebraic Operators

pointcut && pointcut (N,N)→N, (C,C)→C
intersection of the join points in the pointcuts

pointcut || pointcut (N,N)→N, (C,C)→C
union of the join points in the pointcuts

! pointcut N→N, C→C
exclusion of the join points in the pointcut

27

5 SLICES

Example: combining pointcut expressions

5 Slices

This section defines the syntax and semantics of slice declarations. The next
section will describe how slices can be used by advice in order to introduce code.
Currently, only class slices are defined in AspectC++.

5.1 Class Slice Declarations

Class slices may be declared in any class or namespace scope. They may be
defined only once, but there may be an arbitrary number forward declarations. A
qualified name may be used if a class slice that is already declared in a certain
scope is redeclared or defined as shown in the following example:

slice class ASlice;

namespace N {

slice class ASlice; // a different slice!

}

slice class ASlice { // definition of the ::ASlice

int elem;

};

slice class N::ASlice { // definition of the N::ASlice

long elem;

};

If a class slice only defines a base class, an abbreviated syntax may be used:

slice class Chained : public Chain;

Class slices may be anonymous. However, this only makes sense as part of
an advice declaration. A class slice my also be declared with the aspect or
struct keyword instead of class. While there is no difference between class
and aspect slices, the default access rights to the elements of a struct slice in
the target classes are public instead of private. It is forbidden to declare aspects,
pointcuts, advice, or slices as members of a class slice.

Class slices may have members that are not defined within the body of a class
slice declaration, e.g. static attributes or non-inline functions:

slice class SL {

static int answer;

28

6 ADVICE

void f();

};

//...

slice int SL::answer = 42;

slice void SL::f() { ... }

These external member declarations have to appear after the corresponding slice
declaration in the source code.

6 Advice

This section describes the different types of advice offered by AspectC++. Advice
be categorized in advice for join points in the dynamic control flow of the running
program, e. g. function call or executions, and advice for static join points like
introductions into classes.

In either case the compiler makes sure that the code of the aspect header file,
which contains the advice definition (if this is the case), is compiled prior to the
affected join point location.

6.1 Advice for Dynamic Join Points

before(...)
the advice code is executed before the join points in the pointcut

after(...)
the advice code is executed after the join points in the pointcut

around(...)
the advice code is executed in place of the join points in the pointcut

6.2 Advice for Static Join Points

Static join points in AspectC++ are classes or aspects. Advice for classes or
aspects can introduce new members or add a base class. Whether the new
member or base class becomes private, protected, or public in the target class
depends on the protection in the advice declaration in the aspect.

baseclass(classname)
a new base class is introduced to the classes in the pointcut

29

7 JOINPOINT API

introduction declaration
a new attribute, member function, or type is introduced

Introduction declarations are only semantically analyzed in the context of the tar-
get. Therefore, the declaration may refer, for instance, to types or constants,
which are not known in the aspect definition, but only in the target class or classes.
To introduce a constructor or destructor the name of the aspect, to which the in-
troduction belongs, has to be taken as the constructor/destructor name.

Non-inline introductions can be used for introductions of static attributes or
member function introduction with separate declaration an definition. The name
of the introduced member has to be a qualified name in which the nested name
specifier is the name of the aspect to which the introduction belongs.

7 JoinPoint API

The following sections provide a complete description of the JoinPoint API.

7.1 Types

Result

result type of a function

That

object type (object initiating a call)

Target

target object type (target object of a call)

Example: type usage

7.2 Functions

static AC::Type type()

returns the encoded type for the join point conforming with the C++ ABI V3
specification7

7http://www.codesourcery.com/cxx-abi/abi.html\#mangling

30

http://www.codesourcery.com/cxx-abi/abi.html%5C#mangling

7 JOINPOINT API 7.2 Functions

static int args()

returns the number of arguments of a function for call and execution join
points

static AC::Type argtype(int number)

returns the encoded type of an argument conforming with the C++ ABI V3
specification

static const char *signature()

gives a textual description of the join point (function name, class name, ...)

static unsigned int id()

returns a unique numeric identifier for this join point

static const char *filename()

returns the name of the file in which the join-point (shadow) is located

static int line()

the number of the line in which the join-point (shadow) is located

static AC::Type resulttype()

returns the encoded type of the result type conforming with the C++ ABI V3
specification

static AC::JPType jptype()

returns a unique identifier describing the type of the join point

Example: static function usage

void *arg(int number)

returns a pointer to the memory position holding the argument value with
index number

Result *result()

returns a pointer to the memory location designated for the result value or 0
if the function has no result value

That *that()

returns a pointer to the object initiating a call or 0 if it is a static method or a
global function

Target *target()

returns a pointer to the object that is the target of a call or 0 if it is a static
method or a global function

31

8 ADVICE ORDERING

void proceed()

executes the original join point code in an around advice by calling
action().trigger()

AC::Action &action()

returns the runtime action object containing the execution environment to
execute the original functionality encapsulated by an around advice

Example: non-static function usage

8 Advice Ordering

8.1 Aspect Precedence

AspectC++ provides a very flexible mechanism to define aspect precedence. The
precedence is used to determine the execution order of advice code if more than
one aspect affect the same join point. The precedence in AspectC++ is an at-
tribute of a join point. This means that the precedence relationship between two
aspects might vary in different parts of the system. The compiler checks the
following conditions to determine the precendence of aspects:

order declaration: if the programmer provides an order declaration, which de-
fines the precedence relationship between two aspects for a join point, the
compiler will obey this definition or abort with a compile-time error if there
is a cycle in the precedence graph. Order declarations have the following
syntax:
advice pointcut-expr : order (high, ...low)

The argument list of order has to contain at least two elements. Each
element is a pointcut expression, which describes a set of aspects. Each
aspect in a certain set has a higher precedence than all aspects, which are
part of a set following later in the list (on the right hand side). For example
’("A1"||"A2","A3"||"A4")’ means that A1 has precedence over A3
and A4 and that A2 has precedence over A3 and A4. This order directive
does not define the relation between A1 and A2 or A3 and A4. Of course,
the pointcut expressions in the argument list of order may contain named
pointcuts and even pure virtual pointcuts.

inheritance relation: if there is no order declaration given and one aspect has
a base aspect the derived aspect has a higher precedence than the base
aspect.

32

8 ADVICE ORDERING 8.2 Advice Precedence

8.2 Advice Precedence

The precedence of advice is determined with a very simple scheme:

• if two advice declarations belong to different aspects and there is a prece-
dence relation between these aspects (see section 8.1 on the facing page)
the same relation will be assumed for the advice.

• if two advice declarations belong to the same aspect the one that is declared
first has the higher precedence.

8.3 Effects of Advice Precedence

Only advice predecence has an effect on the generated code. The effect depends
on the kind of join point, which is affected by two advice declarations.

Class Join Points

Advice on class join points can extend the attribute list or base class list. If advice
has a higher precedence than another it will be handled first. For example, an
introduced new base class of advice with a high precedence will appear in the
base class list on the left side of a base class, which was inserted by advice with
lower precedence. This means that the execution order of the constructors of
introduced base classes can be influenced, for instance, by order declarations.

The order of introduced attributes also has an impact on the construc-
tor/destructor execution order as well as the object layout.

Code Join Points

Advice on code join points can be before, after, or around advice. For
before and around advice a higher precedence means that the correspond-
ing advice code will be run first. For after advice a higher precedence means
that the advice code will be run later.

If around advice code does not call tjp->proceed() or trigger() on the
action object no advice code with lower precedence will be run. The execution
of advice with higher precedence is not affected by around advice with lower
precedence.

For example, consider an aspect that defines advice8 in the following order:
BE1, AF1, AF2, AR1, BE2, AR2, AF3. As described in section 8.2 the declaration

8BE is before advice, AF after advice, and AR around advice

33

A GRAMMAR

order also defines the precedence: BE1 has the highest and AF3 the lowest. The
result is the following advice code execution sequence:

1. BE1 (highest precedence)

2. AR1 (the indented advice will only be executed if proceed() is called!)

(a) BE2 (before AR2, buts depends on AR1)

(b) AR2 (the indented code will only be executed if proceed() is called!)

i. original code under the join point

ii. AF3

3. AF2 (does not depend on AR1 and AR2, because of higher precedence)

4. AF1 (run after AF2, because it has a higher precedence)

A Grammar

The AspectC++ syntax is an extension to the C++ syntax. It adds four new key-
words to the C++ language: aspect, advice, slice, and pointcut. Addition-
ally it extends the C++ language by advice and pointcut declarations. In contrast
to pointcut declarations, advice declarations may only occur in aspect declara-
tions.

class-key:
aspect

declaration:
pointcut-declaration
slice-declaration
advice-declaration

member-declaration:
pointcut-declaration
slice-declaration
advice-declaration

pointcut-declaration:
pointcut declaration

pointcut-expression:
constant-expression

34

B MATCH EXPRESSION GRAMMAR

advice-declaration:
advice pointcut-expression : order-declaration
advice pointcut-expression : slice-reference
advice pointcut-expression : declaration

order-declaration:
order (pointcur-expression-seq)

slice-reference:
slice ::opt nested-name-specifieropt unqualified-id ;

slice-declaration:
slice declaration

B Match Expression Grammar

Match expression in AspectC++ are used to define a type pattern and an op-
tional object name pattern to select a subset of the known program entities like
functions, attributes, or argument/result types. The grammer is very similar to
the grammer of C++ declarations. Any rules, which are referenced here but not
defined, should be looked up in the ISO C++ standard.

match-expression:
match-declaration

match-id:
%

nondigit
match-id %

match-id nondigit
match-id digit

match-declaration:
match-decl-specifier-seqopt match-declarator

match-decl-specifier-seq:
match-decl-specifier-seqopt match-decl-specifier

match-decl-specifier:
nested-match-name-specifieropt match-id
cv-qualifier
match-function-specifier

35

B MATCH EXPRESSION GRAMMAR

char

wchar_t

bool

short

int

long

signed

unsigned

float

double

void

match-function-specifier:
virtual

static

nested-match-name-specifier:
match-id :: nested-match-name-specifieropt

... :: nested-match-name-specifieropt

match-declarator :
direct-match-declarator
match-ptr-declarator match-declarator

abstract-match-declarator :
direct-abstract-match-declarator
match-ptr-declarator abstract-match-declarator

direct-match-declarator:
match-declarator-id
direct-match-declarator (match-parameter-declaration-clause) cv-
qualifier-seqopt

direct-match-declarator [match-array-size]

direct-abstract-match-declarator:
direct-abstract-match-declarator (match-parameter-declaration-clause)

cv-qualifier-seqopt

direct-abstract-match-declarator [match-array-size]

match-array-size:
%

decimal-literal

36

B MATCH EXPRESSION GRAMMAR

match-ptr-operator:

* cv-qualifier-seqopt

&

nested-match-name-specifier * cv-qualifier-seqopt

match-parameter-declaration-clause:
...

match-parameter-declaration-listopt

match-parameter-declaration-list , ...

match-parameter-declaration-list:
match-parameter-declaration
match-parameter-declaration-list , match-parameter-declaration

match-parameter-declaration:
matct-decl-specifier-seq match-abstract-declaratoropt

match-declarator-id:
nested-match-name-specifieropt match-id
nested-match-name-specifieropt match-operator-function-id
nested-match-name-specifieropt match-conversion-function-id

match-operator-function-id:
operator %

operator match-operator

match-operator: one of
new delete new[] delete[]

+ - * / %% ^ & | ~ ! = < >

+= -= *= /= %%= ^= &= |= << >> >>= <<= ==

!= <= >= && || ++ -- , ->* -> () []

match-conversion-function-id:
operator match-conversion-type-id

match-conversion-type-id:
match-type-specifier-seq match-conversion-declaratoropt

match-conversion-declarator:
match-ptr-operator match-conversion-declaratoropt

37

B MATCH EXPRESSION GRAMMAR

38

LIST OF EXAMPLES LIST OF EXAMPLES

List of Examples

match expressions (name pointcuts), 6
pointcut expressions, 6
pointcut declaration, 8
pure virtual pointcut declaration, 9
class slice declaration, 9
advice declaration, 10
advice declaration with access to context information, 10
introductions, 11
base class introduction, 11
advice ordering, 12
aspect declaration, 12
abstract aspect, 13
reused abstract aspect, 13
aspect instantiation using aspectof, 14
re-usable trace aspect, 15
type, scope, and name parts of a function match expression, 16
simple name patterns, 17
operator name patterns, 18
conversion function name patterns, 18
scope patterns, 19
type patterns with the wildcard character, 20
type patterns with const and volatile, 21
type patterns with virtual, 21
type matching, 23
control flow dependant advice activation, 23
matching in scopes, 24
function matching, 25
instance counting
context matching, 27
combining pointcut expressions, 28
advice placement, ??
type usage, 30
static function usage, 31
non-static function usage, 32

39

INDEX INDEX

Index
..., 19, 21
%, 17, 18, 20
%%, 18

A
abstract aspect, 9, 13
ac++, 5
action(), 9, 32

trigger(), 16
advice,

after, 9, 10, 29
around, 10, 29
baseclass, 29
before, 9, 10, 29
code,
declaration, 9
introduction,
introduction declaration, 30
order, 12
ordering,
runtime support,

after, 9, 10, 29
any scope sequence, 19
any type node, 20
arg(), 31
args(), 11, 27, 31
argtype(), 31
argument types, 22
around, 10, 29
aspect, 9

abstract, 9, 13
declaration, 12
instantiation,

aspect interaction, 12
aspectOf(), 14
aspectof(), 14

B
base(), 22
baseclass, 29
before, 9, 10, 29

C
call(), 25
call join point, 8
cflow(), 23
code join point, 7, 9
code pointcut, 6
const, 20
construction(), 26
context variables, 10, 14
control flow, 6, 14, 15
conversion function name pattern, 18
crosscutting concern, 5, 12

D
derived(), 22
destruction(), 26

E
execution(), 25
execution join point, 7, 10

F
filename(), 31

G
grammar, 34

I
id(), 31
introduction,

access rights, 11
introduction declaration, 30

J
join point, 5

40

INDEX INDEX

call, 8
code, 7, 9
execution, 7, 10

JoinPoint, 14, 16
action(), 16, 32
arg(), 31
args(), 31
argtype(), 31
filename(), 31
id(), 31
jptype(), 31
line(), 31
proceed(), 16, 32
Result, 30
result(), 31
resulttype(), 31
signature(), 31
Target, 30
target(), 31
That, 30
that(), 31
type(), 30

jptype(), 31

L
line(), 31

M
match expression,

conversion function name pattern,
18

grammar, 35
name matching,
operator name pattern, 18
scope matching,
scope pattern, 19
search pattern, 5
simple name pattern, 17
type matching,
type pattern with %, 20

type pattern with cv qualifier, 21
type pattern with static keyword, 22
type pattern with virtual keyword, 21

match expression grammar, 35

N
name matching,
name pattern, 16, 17
name pointcut, 5, 8, 11
named type, 20

O
operator name pattern, 18
order, 12

declaration, 35
ordering,

P
pointcut,

code, 6
declaration,
expression,
function, 6
name, 5, 8, 11
pure virtual, 9

pointcut function, 6
args(), 11, 27
base(), 11, 22, 27
call(), 25
cflow(), 23
construction(), 26
derived(), 22
destruction(), 26
execution(), 25
target(), 11, 27
that(), 11, 27
within(), 24

pointer to member, 20
precedence, 12

effects,

41

INDEX INDEX

of advice,
of aspects,

proceed(), 16, 32
pure virtual

functions, 7
pointcut, 9, 13, 16

R
Result, 30
result(), 11, 27, 31
resulttype(), 31
runtime support,

action, 9
for advice code,
JoinPoint, 14, 16
thisJoinPoint, 15

S
scope matching,
scope pattern, 16, 19
search pattern, 5

match expression,
signature(), 31
simple name pattern, 17
slice,

declaration, 35
reference, 35

T
Target, 30
target(), 11, 27, 31
That, 30
that(), 11, 27, 31
thisJoinPoint, 15
tjp, 15
trigger(), 16
type(), 30
type matching,
type pattern, 16
type pattern with %, 20

type pattern with cv qualifier, 21
type pattern with static keyword, 22
type pattern with virtual keyword, 21

U
undefined type, 21

V
volatile, 20

W
within(), 24

42

	About
	Basic Concepts
	Pointcuts
	Match Expressions
	Pointcut Expressions
	Types of Join Points
	Pointcut declarations

	Slices
	Advice Code
	Introductions
	Advice Ordering

	Aspects
	Aspect Instantiation

	Runtime Support
	Support for Advice Code
	Actions

	Match Expressions
	Name Matching
	Simple Name Matching
	Operator Function and Conversion Function Name Matching
	Constructors and Destructors
	Scope Restrictions

	Scope Matching
	Type Matching
	The Match Mechanism
	Matching of Named Types
	Matching of ``Pointer to Member'' Types
	Matching of Qualified Types (const/volatile)
	Handling of Conversion Function Types
	Ellipses in Function Type Patterns
	Matching Virtual Functions
	Matching Static Functions
	Argument Type Adjustment

	Predefined Pointcut Functions
	Types
	Control Flow
	Scope
	Functions
	Object Construction and Destruction
	Context
	Algebraic Operators

	Slices
	Class Slice Declarations

	Advice
	Advice for Dynamic Join Points
	Advice for Static Join Points

	JoinPoint API
	Types
	Functions

	Advice Ordering
	Aspect Precedence
	Advice Precedence
	Effects of Advice Precedence

	Grammar
	Match Expression Grammar
	List of Examples
	Index

