4. The Syntax and Semantics of A+

Chapter 4. The Syntax and Semanticsof A+

24

The main purpose of this chapter isto describe the syntax of A+, but through a series of examples, rather than
inaformal way. Consequently some commonly understood terms are used without being formally defined.
In particular, the phrase A+ expression, or simply expression, is taken to have the same general meaning it
does in mathematics, namely awell-formed sentence that produces avalue. In addition, some discussion of
semantics has been included, but only where it seemed reasonablein order to complete adescription. A brief
discussion of well-formed expressions is presented at the end of this section, after all the rules for the com-
ponents of expressions have been presented.

Names and Symbols

Primitive Function Symbols

A+ uses a mathematical symbol set to denote the functions that are native to the language, which are called
primitive functions. This symbol set, part of the APL character set, consists of common mathematical sym-
bolssuch as+ and «, commonly used punctuation symbols, and specialized symbolssuchas and . Insome
cases it takes more than one symbol to represent a primitive function, asin +/ , but the meaning can be
deduced from the individual symbols. The symbols are listed in Table B-1, page 225.

Two of the symbols can be used alone, viz., Band . If the execution of afunction or operator has been sus-
pended, they mean resume execution (with increased workspace size if necessary) and abandon execution,
respectively; in the absence of a suspension, they areignored. Instead of , adollar sign ($) can be used.
Inside a function definition, an expression can consist of the symbol 3 alone, but it will be ignored, and the
parser rejects alone as atoken error.

User Names

User namesfall into two categories, unqualified and qualified. An unqualified name is made up of alphanu-
meric (a phabetic and numeric) characters and underbars (_). Thefirst character must be alphabetic. For

example, a,alc,anda_lc areunqualified names, but 3xy and_xy arenot. (Although underbar iscurrently
permitted as the first character in user names, this manual has been written asif it were not, and you should
consider thisform reserved for system namesand avoidit.) Theidentifyingwordsin control statements (case,
do, elsg, if, while) arereserved by A+ for that use; they cannot appear as user names, even in qualified names.

A qualified nameiseither an unqualified user name preceded by adot (.), or apair of unqualified user names
separated by adot. In either case there are no intervening blanks. For example, . xwl andw_2.r2_a are

qualified user names. An unqualified name preceding the dot in aqualified name isthe name of a context. If
there isadot but no preceding name, the context is the root context.

System Names

System function names are unqualified names preceded by an underbar, with no intervening spaces, _argv
for instance. The use of system function namesis reserved by A+.

The name of an object traditionally (and thereforein A+) called asystem variableisan unqualified name pre-
ceded by abackquote, with nointervening spaces. For example, ‘rl isthename of the system variable called
Random Link. These objects cannot be dealt with directly in A+, but only through certain system and prim-
itive functions and system commands, to which they act as parameters. Asindicated in“Symbolsand Symbol
Constants”, page 27, they look just like symbols (and may be considered such). They are not, however, the
symbol forms of names: A+ will not recognizerl , for instance, as having anything to do with ‘rl ; the
quoted form'rl’ , however, isrecognized by system functionssuchas_gsv .

A+ Language Reference November 2000

4. The Syntax and Semantics of A+

System Command Names

System command names begin with adollar sign, followed immediately by an unqualified name, whichis
the name of the command. The name is sometimes followed by a space and then by a sequence of characters
whose meaning is specific to the command, usually separated from the name by a space.

Comments

Comments can appear either alone on aline or to the right of an expression. A comment isindicated by the
a symbol (usually called “lamp,” sinceit lookslike abulb filament and since commentsilluminate code), and
it and everything to its right on the line constitute the comment. For example:

a+b a8 Thisisthe A+ notation for addition.

I nfix Notation and Ambi-valence

A+ isamathematical notation, and as such usesinfix notation for primitive functions with two arguments.
In infix notation, the symbol or user name for a function with two arguments appears between them. For
example, a+b denotes addition, a-b subtraction, a«<b multiplication, and a b division.

In mathematics, the symbol - can also be used with one argument, asin -b, in which caseit denotes negation.

Thisistruein A+ aswell. Because the symbol denotes two functions, one with one argument and the other
with two, it iscalled ambi-valent (i.e., it uses “both valences’). A+ has extended the idea of ambi-valenceto
most of its primitive functions. For example, just as-b denotes the negative of b, so b denotes the recip-
rocal of b.

Defined functions cannot be ambi-valent.

Functions with one argument are called monadic, and functions with two arguments are called dyadic. One
often speaks of the monadic use or dyadic use of an ambi-valent primitive function symbol.

Syntactic Classes

Numeric Constants

Individual numbers can be expressed in the usual integer, decimal, and exponential formats, with one excep-
tion: negative number constants begin with a“high minus’ sign (¢)—including ¢Inf , which we will come
to later—instead of the more conventional minus sign (-), although negative exponents in the exponential
format are denoted by the conventional minus sign.

Exponential format is of theform 1.23e5 , meaning 1.23 times 10 to the power 5, ¢5e2, meaning -500, and
le-2 , meaning .01. Only numbers can appear around the e. The one following it must be an integer—no
decimal point—and have aregular minus sign if negative: a high minus there elicits a parse error report. A
negative number before the e must have ahigh minus: aregular minusis considered to lie outside the format.

Itisalso possible to expressalist of numbers as a constant, simply by separating the individual numbers by
one or more blank spaces. For example:
1.23 ¢7 45 3e-5

isanumeric constant with four numbers: 1.23, negative 7, 45, and .00003. Inf can appear insuch alist. If
you omit the blanks, A+ will give you anumeric vector, but probably not the one you intended. |f anumber
isbeing parsed and a character is encountered that can’t be part of the number, then anew number is started
if the character could begin anumber. For instance,

le-3.5 40.358.62.7 isread by A+ as0.001 0.5 40.358 0.62 0.7 .

A+ Language Reference November 2000 25

4. The Syntax and Semantics of A+

26

Character Constants

A character constant is expressed as alist of characters surrounded by apair of single quote marks or a pair
of double quote marks. For a quote mark of the same kind as the surrounding quote marks to be included in
alist of characters, it must be doubled. For example, both 'abc”d’ and"abc'd" areconstant expressions
for thelist of charactersabc’d . Thereis, however, a distinction between the two kinds of quotation marks.

Within single quotes (’) the C escape sequences and indeed any \ ¢ are not treated in any way, but left asis.

In strings contained within double quotes (") these sequences and \c are treated as follows:
\n isreplaced by anewline character;
\ 0,\ 00, and \ 0oo (each o adigit) are replaced by a character (see below); and
the other sequences simply have the leading backslash removed.

These sequences and their trand ations are (where parenthesis indicates that A+ does not perform the substi-
tution that the parenthesized term implies):

Table 4-1: Double-Quote Trandlations

Name String Trangdlation Comment
newline \n newline character
(horizontal tab) | \t | for tab use "\11"
(vertical tab) \v %
(backspace) \b b for backspace use "\10"
(carriagereturn) | \r Ir for carriage return use "\15"
(formfeed) \f f for formfeed use "\14"
(audible alert) \a a
backslash \\
question mark \? ?
single quote \
double quote \" '
octal number \ooo acharacter see below
(hex number) \x hh xhh
(any other char) | \c c

Thus™\?2\\" isequal to’?\" and"\r\t" isequal to’rt’ ; \" preventsthe double quote from ending a
string within double quotes, and \\ allows literal inclusion of \ in atransated string in double quotes.

Thetrandation of an octal sequence— which is of variable length and could be shown as\ [[0]o]o—is best
understood as occurring in three steps. First, the digits to be trandated are found: thereis at least one (else
this would not be an octal sequence) and at most three, but the end of the string and any nondigit character
also act asterminators. Second, the string of digitsis taken as an octal number and istrandated to a decimal
number. Any 8 and 9 digits are accepted as 10 octal and 11 octal, and any overflow isignored, since only the
256 residueisused. Third, the ASCII character corresponding to that number isfound. If the string being
trandated isdigits , thetrandationis
‘char'8"10 10 10, digits where 1/(digitsy3 and 'digits is‘char .

A+ Language Reference November 2000

4. The Syntax and Semantics of A+

The foregoing implies these equivalences:
"\99"R "\121" "\6a"3 "\006a"? "06"’a’ "\123456"3 "\123",'456’

Symbols and Symbol Constants

A symbol isabackquote (*) followed immediately by acharacter string made up of alphanumeric characters,
underscores(_), anddots(.). Symbol constants can bethought of as character-based counterpartsto numeric
constants, aggregating several charactersinto asinglesymbol. Justas1 2.34 12e3 3e5 isalist of four
numbers, so‘a.s ‘12 ‘b'w_3 isalist of four symbols. A backquote alone representsthe empty symbol.

A user name, like balance , can be put in symbol form by placing a backquote beforeit, asin ‘balance
A user namein symbolic form is always taken to refer to a global object (see“ Scope of Names’, page 177),
never alocal object. If it hasnodotinit, it refersto aglobal object in the current context.

System variable names, like ‘rl , arein the form of symbols. Unlike backquoted user names, they are not
decomposable. If var isauser name, then ‘var isrecognized by A+ in certain situations as referring to the
same object. A+ sees no relation, however, between rl - and the system variable ‘rl

TheNull

The Null isaspecial constant that can be formed asfollows: () . It isneither numeric nor character, but has
aspecid type, null. Itisan empty vector, i.e., itsrank is 1 and the length of itsonly axisisO.

Variables

Variables are data objects that are named. They receive their values through Assignment, or Specification,
which is denoted by the left-pointing arrow (). For example, the expression

abcR12 3
assigns the three-element list consisting of 1, 2, and 3 to the variable named abc. Any user name can serve
asavariable name. For more on assignment, see “ Assignment, or Specification”, page 31.

Functions and Function Call Expressions

Functions take zero or more arguments and return results. A sequence of characters that constitutes avalid
reference to afunction will be called a function call expression. That is, afunction call expression includes
afunction symbol or name together with all its arguments and all necessary punctuation. 1t may also include
unnecessary parentheses and blanks; if it does not, we will call it irredundant. In general, the arguments of
afunction are data objects, which may appear in function call expressions as variable names, constants, or
expressions that require evaluation. In addition, for the various forms of function call expressions using
braces, arguments can be function expressions (see “ Function Expressions’, page 29). For example,
f{9.98;.0775;«} and f{59;125;g} ,whereg isadefined function, arevalid function call expressions.

A function with no arguments, or parameters,—which must be adefined or system, not a primitive, function
—issaid to be niladic. The only valid irredundant function call expression for aniladic function f isf{} .

Functionswith one argument, monadic functions, can be primitive, defined, or system. Thevalid irredundant
function call expressionsfor afunctionf withoneargumenta aref a andf{a} . Intheformf a , the
blank isrequired only if f followed by someinitial part of a would form avalid name.

Dyadic functions can also be primitive, defined, or system. The valid irredundant function call expressions
for afunction f with two argumentsa andb area f b andf{a;b} , wherea iscalled the left argument
and b the right argument. In theinfix form, each blank isrequired only if its absence could cause anameto
be extended, and if the left argument isitself an infix expression it must be parenthesized.

Functions with more than two arguments must be defined or system, not primitive, functions. The only valid
irredundant function call expression for afunction of morethan two argumentsa, b, ..., c isf{a;b; ...;c} .

A+ Language Reference November 2000 27

4. The Syntax and Semantics of A+

Infunctional expressionsthat use braces, any position adjacent to asemicolon can beleft blank. For example,
each of thefollowing isavalid functional expression: f{a;} ,f{;b} ,f{;} ,f;a;b} ,f{;;b} . How-
ever, if f ismonadicthenf{} isnot valid becausef{} isreserved for niladic function call expressions.
When an argument position is legitimately left blank, A+ assumes that the argument is the Null.

The number of argumentsthat afunction takesiscalled itsvalence. Thevalence of adefined function isfixed
by the form of its definition.

Table 4-4, page 34, summarizes the function call expressions discussed here.

Operatorsand Derived Functions

There are three primitive formal operatorsin A+, known as Apply, Each, and Rank. By aformal operator
we mean an operator in the mathematical sense, i.e., afunction that takes a function as an operand, or pro-
duces afunction as aresult, or both. The resulting function is called a derived function.

The Apply and Each operators are both denoted by thedieresis, j . For afunctionf , the function derived from
the Each operator is denoted by f; . Thefunction f can be either monadic or dyadic, and fi has the same
valenceasf . For agiven function scalar g, whereg isequal to <{f} , the function derived from the Apply
operator isdenoted by gj . Thefunctionf canbeeither monadic or dyadic, andgj hasthesamevaenceasf .

The Rank operator is denoted by the at symbol, @ Unlike Each, the Rank operator has both a function argu-
ment and a dataargument. For afunctionf and datavalue a, the function derived from the Rank operator is
denoted by f@a. Thisderived function has the same valence asf , which can be either monadic or dyadic.

A+ permits defined operators. Aswith primitive operators, only infix notation is alowed for operator and
operands. Like Each, the operand of amonadic defined operator isto theleft of the operator name. For exam-
ple, if the operator isopmthen +opmisthe derived function for +. For adyadic defined operator, one operand
ison the left of the operator name and the other is on the right, like the Rank operator. For example, if the
operator isdyop then +dyop« denotesthe derived functionfor + and «. A dyadic defined operator can have
adataright operand: see the note following Table 4-5, page 35. See also “Operator Syntax”, page 178.

Unlike a primitive operator, the valence of afunction derived from a defined operator is not determined by
the valence of the function operands, but, like a defined function, by the form of the operator definition.

There arefive other symbols (°/fi) that can appear with certain primitive function symbols, the resulting
sequences representing functions. Their syntax might suggest that these symbols represent operators; how-
ever, not all primitive function symbols can be used in these sequences, and neither can defined function
names. Conseguently it would be misleading to think of them asformal operators, so we have simply listed
all the sequencesthat are allowed. It is often convenient, however, to speak loosely of these sequences as
representing derived functions, and of the five symbolsin question as representing operators, namely, Inner
Product, Outer Product (°.), Reduce, Scan, and Bitwise.

From now on, the general terms operator and derived function will include Apply, Each, Rank, defined oper-
ators, their derived functions, and the “operators’ and “derived functions’ in Table 4-2.

28 A+ Language Reference November 2000

4. The Syntax and Semantics of A+

Table 4-2: Special Character Sequences (Quasi-Operators)

“Operator’ Name “Derived” Functions
Bitwise 'fi (Cast and Or) i ~fi <fiAfi =fi ffi >fi ofi
[nner Product t«w T4+

Outer Product +< (>(/f*; D

Reduction +H o« N

Scan Ho AN

Operator call expressions should be understood in terms of derived functions and function call expressions.
Namely, an operator symbol and its function operands, or in the case of the Rank operator, its function oper-
andtoitsleft and its data object operand immediately toitsright, form aderived function. A derived function
issyntactically like any other function, and so can be used in the function position of any function call expres-
sion,asinf@a{c;d} andb f@a c . SeeTable4-3forasummary; it shows both irredundant expressions
and expressionsin which the derived functions are parenthesized. Asin function call expressions, the blanks
are not required in some instances and the left argument may need to be in parenthesis, moreover, aconstant
data operand and a constant right argument may require punctuation to separate them.

Table 4-3: Operator Call Expressions

Operator | Formsfor Derived Function Formsfor Derived Function
Valence | Having Monadic Vaence Having Dyadic Valence

(f op)a flop a a(f op)b aflopb
monadic

(f op){a} f pp{a} (f op){a;b} f op{a;b}

(f op g)a flop g a a(f op g)b afppghb
dyadic

(fop g)fa} fppogfa} (fopglab} fop g{ghb}

Function Expressions

The function arguments of operators are function expressions. The simplest function expressions are the
names of defined functions and the symbolsfor primitive functions other than Assignment and Bracket | ndex-
ing. Any formulation of aderived function is also a function expression (see “ Operators and Derived
Functions’, page 28).

Function expressions are limited to infix notation, since operators are limited to it.

A function expression can be enclosed in parentheses. For example, a(f@1)b isequivaenttoa f@1b
Moreover, afunction expression is avalid function argument to aformal operator, and therefore quite com-
plicated function expressions can be built. For example, +/ isafunction expression, and therefore so are
thefollowing: +/j , +/jj ,and +/j@a. See"Scope Rulesfor Function Expressions’, page 32.

A+ Language Reference November 2000 29

4. The Syntax and Semantics of A+

30

Bracket Indexing

A+ dataobjects are arrays, and Bracket Indexing isaway to select subarrays. Bracket Indexing uses special
syntax, whose formis

X[a;b; ...;c]

where x represents a variable name or an expression in parenthesis, a, b, ...,c denote expressions, and the
number of semicolonsisat most one less than the rank of the array being indexed. (Theform x[] is, how-
ever, alowed for scalars.) The space between the left bracket and the first semicolon, between successive
semicolons, and between the last semicolon and the right bracket, can be empty. If there are no semicolons,
the space between the |l eft and right brackets can be empty. Inserting semicolonsimmediately to the left of
the right bracket does not change the meaning of the entire expression, as long as the maximum allowable
number of semicolonsisnot exceeded. Theform[a;b; ...;c] isanindexgroup. See“ Sequencesof Expres-
sions’, page 32, and “Bracket Indexing”, page 57.

Expression Group

An expression group is a sequence of expressions contained in a pair of bracesin which the expressions are
separated by semicolons, where there is not a function expression immediately preceding it (except perhaps
for spaces), so it is not aset of arguments for afunction. Any of the expressions can be null, consisting of
zero or more blanks. For example:

{a;b;...;c:}
and

{a;b;...;c}
are expression groups, where a, b, ... ,c denote expressions. See.

Expression Result and Expression Group Result

The result of an expression is the result of the last function executed in the expression, whether primitive,
defined, or derived. See“Well-Formed Expressions’, page 35.

Theresult of an expression group is the result of the last expression executed. It is possible that the last
expression in the group may not be the last one executed—indeed, may not be executed at all; seethe
“Result” section, page 89.

Strands

Aggregate data objects (nested arrays) can be formed by separating theindividual data objects by semicolons
and surrounding the result with apair of parentheses. For example:

(a;b; ...;0)
wherea, b, ..., ¢ denote expressions. Any of these expressions can be function expressions. There must be
at least one semicolon. See* Sequences of Expressions’, page 32.

Function Scalars

The above strand notation produces objects with at least two elements. One-element aggregates of data can
be formed with the primitive function Enclose (page 66), denoted by <. A one-element object such as

<{a}

where a isafunction expression, is called a function scalar.

Thesymboal i , used also for the Each operator, serves asthe Apply operator when the operand (argument) of
the operator isafunction scalar. For example, a(<{ })ib isa b.

A+ Language Reference November 2000

4. The Syntax and Semantics of A+

Assignment, or Specification

The Assignment primitive, denoted by [3, is used to associate a name with avalue. For example:

ail

f3+
assignsthe value 1 to the name a and the function Add to the namef . The nameto theleft of the assignment
arrow isassigned the value of the expression to theright. If that expressionisafunction expression, the name
to which it is assigned represents a function—not the name of afunction, but afunction itself. Otherwiseit
represents avariable.

A series of names can be associated with a series of values, using strand notation; for example,
(a;b;c)B(1 2 3;34 7;'txt)

Ordinary Assignment can also be expressed as (a)l3b . Any appearance of al3b inside afunction or operator
definition meansthat a will bealocal variable, if a isan unqualified name. Theform (a)Bb can beusedto
assign avalueto theglobal variable a, provided that ai3... doesn’t appear elsewherein the definition. If
both al3... and (a)R3... appear, they are equivalent: the latter has no special significance.

Assignment behaves somewhat like adyadic function, in that it has aresult, namely, theright argument. The
left argument expression is syntactically limited to certain forms. See Table 7-2, page 92, for a summary of
Selective Assignment target expressions, which are additional to thosein ordinary assignment.

Assignment, in any form, cannot be the operand of an operator.

Precedence Rules

Precedence rules describe a hierarchy in the syntactic elements of alanguage that determines how these ele-
ments are grouped for execution in an expression. For example, in mathematics « hashigher precedence than
+, which means that « is evaluated before +. For example, in the mathematical expression a«b+c, the sub-
expression a«b is grouped for execution, and the result is added to c.

The precedencerulesin A+ aresimple:

« al functions have equal precedence, whether primitive, defined, or derived
« all operators have equal precedence

* operators have higher precedence than functions

« the formation of numeric constants has higher precedence than operators.

Right-to-L eft Order of Execution

Theway to read A+ expressionsis from left to right, like English. For the most part we al so read mathemat-
ical notation from left to right, although not strictly, because the notation is two dimensional. To illustrate
reading A+ expressions from left to right, consider the following examples.

b+c+d a8 Read as: “b plustheresult of ¢ plusd.”
X-y a8 Read as: “x minus the reciprocal of y.”

Asyou can see, reading from | eft to right in the suggested styleimpliesthat execution takes place right to | ft.
Inthefirst example, to say “b plustheresult of ¢ plusd” meansthat c+d must be formed first, and then added
tob. Andinthe second example, to say “x minusthe reciprocal of y” meansthat y must be formed before
it is subtracted from x.

To besure, reading from left to right is not necessarily associated with execution fromright to left. For exam-
ple, the expression b c+d isread left to right in conventional mathematical notation as well as A+, but the
order of evaluation is different in the two; in mathematics b divided by ¢ isformed and added to d, and con-

A+ Language Reference November 2000 31

4. The Syntax and Semantics of A+

32

sequently the expressionisread as “b divided by c, [pause] plusd,” whilein A+, bisdivided by c+d. The
order of execution is controlled by the relative precedence of the functions, or operations. 1n mathematics,
division has higher precedence than addition, so that inb c+d, division is performed before addition.

Another way to say that A+ expressions are executed from right to left isthat functions have long right scope
and short left scope. For example, consider:

atb-c e«f

Thearguments of the subtraction function areb on theleft (short scope) andc e«f ontheright (long scope).

Theleft argument isfound by starting at the subtraction symbol and moving to the left until the smallest pos-
sible complete subexpressionisfound. Inthisexampleitissimply thenameb. If thefirst nonblank character
to the left of the symbol had been aright parenthesis, then the left argument would have included everything
to the left up to the matching left parenthesis. For example, the left argument of subtraction in a+(x b)-

c e«f isx b.

The right argument isfound by starting at the function symbol and moving to theright, all the way to theend
of the expression; or until a semicolon is encountered at the same level of parenthesization, bracketing, or
braces; or until aright parenthesis, brace, or bracket is encountered whose matching left partner isto the left
of the symbol. In the above example, the right argument of subtraction is everything to itsright. If the case
of atb-(c e)«f ,therightargumentisalsoeverythingtoitsright. However, for a+(b-c e)«f ,theright
argumentisc e.

Scope Rulesfor Function Expressions

Interestingly enough, the scope rules for function expressions are the mirror image of those for ordinary
expressions. Namely, operators have long scope to theleft and short scopeto theright. For example, +/i@a
isequivalent to ((+/)j)@a , andif dyop isadyadic defined operator, +dyop | isequivalent to

(+dyop)i , not+dyop(i)

Sequences of Expressions

Index groups, expression groups, and strandsareformsfor sequences of expressions separated by semicolons.

The expressionsin an expression group are executed in the order suggested for reading, from left toright, like
successive statementsin afunction. Index groups and strands, however, fall within other expressionsand are
executed right to left. For example, if the variable a has the value 2 and the strand

bR3(al5;a«a)

is executed, the value in the second element of b will be 4, proving that the assignment a5 happened after
the multiplication a«a. (A Strand Assignment, however, like an expression group, is executed left to right,
after its righthand argument has been evaluated in the usual way.)

To improve readability in source files, sequences of expressions are often broken at the semicolons and con-
tinued on the next physical line. Notethat in such cases for expression groups the | eft to right order of
execution for the expressions within a sequence becomes a natural top to bottom order.

Execution Stack References

Execution stack references are &, &0, &1, etc. The symbol & can be used in afunction definition to refer to
that function. For example, afactorial function can be defined in either of the following ways:

fact{n}:if (n>0) n«fact{n-1} else 1
fact{n}:if (n>0) n«&{n-1} else 1

A+ Language Reference November 2000

4. The Syntax and Semantics of A+

When execution is suspended, the objects on the execution stack can be referred to by &0 (top of the stack),
&1, and so on. These objects can be examined and respecified, and execution resumed (3). The left to right
order of arguments generally corresponds to increasing stack humbers.

In the definition of a dependency a, the symbol & refersto that definition but a always denotes the (stored)
value of a, whereas in the definition of afunction f , both & and f denote the definition of f .

Control Statements

For the interpretation of these control statements, see “Control Statements’, page 120. The words case, do,
else, if, and while are reserved by A+; they cannot be employed as user names.

Case Statement

The form of a case statement is the word case, followed by an expression in parentheses, followed by an
expression group. When case followed by an expression in parenthesis is entered alone on aline (with no
pending unbalanced punctuation), the statement is taken to be complete, with Null for the expression group.

Do Statement

There are two do statements, which together have the same syntax as an ambi-valent primitive function (with
theword do in place of the function symbol). Both the monadic and dyadic forms have an expression or
expression group to the right of theword do. The dyadic form also has an expression to the left which would
serve astheleft argument if the word do were the name of adyadic function. In the absence of pending punc-
tuation, if do isentered alone on aline, it istaken to be complete, and echoed by A+, and if it is preceded by
an expression but followed by nothing, a parse error is reported.

If Statement

The form of an if statement isthe word if, followed by an expression in parentheses, followed by another
expression or an expression group. When if followed by an expression in parenthesisis entered alone on a
line (with no pending unbalanced punctuation), the statement is taken to be complete, with Null for the
expression group.

| f-Else Statement

The form of an if-else statement is the word if, followed by an expression in parenthesis, followed by an
expression or expression group, followed by the word else, followed by another expression or expression
group. When anif-elseisentered, if thereisnothing following the else, aparse error isreported in the absence
of pending punctuation.

While Statement

The form of awhile statement is the word while, followed by an expression in parentheses, followed by
another expression or an expression group. When while followed by an expression in parenthesisis entered
alone on aline (with no pending unbalanced punctuation), the statement is taken to be complete, with Null
for the expression group. If the expression in parenthesisis valid and nonzero, it is necessary to interrupt
execution (by Control-c Control-c) before anything else can be done.

Function Definitions

A function definition consists of afunction header, followed by acolon, followed by the function body, which
is either an A+ expression or an expression group.

Function headers take the same forms as functional expressions (see “ Functions and Function Call Expres-
sions’, page 27), except that only names can appear and none can be omitted. A function header has the

A+ Language Reference November 2000 33

4. The Syntax and Semantics of A+

monadic form, dyadic form, or general form. The monadic form is the function name followed by the argu-
ment name, with the two names separated by at least one space. For example, if the function name is
correlate then

correlate a:{...}
isafunction definition with the monadic form of the header.

The dyadic form of function header is the function name with one argument name on each side, with the
names separated by at least one blank. For example:

a correlate b:{...}
is afunction definition with the dyadic form of the header.

The third form of function header is the general form, which is the function name followed by a left brace,
followed by alist of from zero to nine argument names separated by semicolons, and terminated by aright
brace. For example:

correlate{a;b;c}:{...}
isafunction definition with the general form of the header. Inthisexamplethefunction hasthree arguments.
Names must appear in all positions of the argument list—no position can beleft empty. (Inaniladic function
definition no argument position is left empty; there just is no argument position.)

A function with one argument can be defined with either the monadic form of function header or the general
form and a function with two arguments can be defined with either the dyadic form or the general form. Ina
reference to the function, either form (of the correct valence) can be used, no matter how it was defined.

The number of arguments of a defined function is nine or fewer. See Table 4-4 for asummary of function
header formats.

Function Result

Theresult of adefined function is the result of the expression or expression group that forms the function
body. The result can be used in the same ways as the result of a primitive function.

Table 4-4: Function Call Expressions and Function Header Formats

Valence Forms
niladic f}

monadic fa o f{a}
dyadic afb or f{ab} (A position nextto asemicolon can be empty for calls)
genera fa;b; ..;c} (A position next to a semicolon can be empty for calls)

Operator Definitions

An operator definition consists of an operator header, followed by a colon, followed by the body of the defi-
nition, either an A+ expression or an expression group. The header must be in infix, not general, form.

An operator can be monadic or dyadic, depending on whether it has one argument or two, and the derived
function can also be monadic or dyadic. Consequently there are four formsfor the header. See Table 4-5for
asummary of operator header formats.

Note the parentheses in the forms in “ Operator Header Formats’. While parentheses are not necessary in
operator call expressions, they are necessary in operator definition headers to specify the function expression
part. Compare with “Operator Call Expressions’, page 29.

34 A+ Language Reference November 2000

4. The Syntax and Semantics of A+

Operator Result

Theresult of adefined operator, which is strictly speaking the result of the derived function, is the result of

Table 4-5: Operator Header For mats

Operator Valence Monadic Derived Function | Dyadic Derived Function

monadic (f op)a a(f op)b

dyadic (f op h)a a(f op h)b

the expression or expression group that forms the body of the definition. The result can be used in the same
ways as the result of a primitive operator.

NOTE: Inthe dyadic form, if the right operand isthe letter g, then it must be a function; otherwise, it must
be data unless every occurrence in the body of the operator syntactically requiresit to be afunction.

Dependency Definitions

A dependency definition consists of aname (the name of the dependency), followed by a colon, followed by
either an A+ expression, or an expression group. Anitemwise dependency has the same form except that the
nameisfollowed by [] wherei can be any unqualified user name (except the name of the dependency).

Dependency Result

Theresult of adependency is either avalue that was assigned to the name, or the result of the expression or
expression group that forms the definition, or, for itemwise dependencies, a combination of the two—see
“Dependencies’, page 186. The results of dependencies are referenced in the same way that values of vari-
ables are referenced, simply by their names.

Well-Formed Expressions

A well-formed expression is one of the basic forms described above, in which all of the constituent expres-
sionsarewell formed. The potential for complicated expressions arises from the fact that every one of these
basic forms produces a result and can therefore be used as a constituent in other forms, except that the right
arrow () can only appear alone and the left arrow ([3) must appear alone unlessit has an expression to its
right. In this building of expressions from simpler ones A+ is very much like mathematical notation.

The concept of the principal subexpression of an expressionisuseful for analysis. Asexecution of an expres-
sion proceedsin the manner described in “ Right-to-Left Order of Execution”, page 31, one can imagine that
parts of the expression are executed and replaced by their results, and then other partsare executed using these
results, and are replaced by their results, and so on. Ultimately the execution comesto the last expression to
be executed, which is called the principal subexpression. Onceit is executed, its value is the value of the
expression. If the principal subexpression isafunction call expression or operator call expression, that func-
tion or derived function is called the principal function.

For example, the principal subexpression of (a+b c¢-d)*10«n isx*y , wherex istheresult of a+b c-d
andy istheresult of 10«n. The power function * isthe principal function.

As asecond example, the principal expression of (x+y;x-y) is(w;z) ,wherewisx+y andz isx-y . In
this case we do not refer to a principal function; the last thing done in executing the expression iswhat is
implied by the strand notation—enclosing wand z and catenating them.

A+ Language Reference November 2000 35

