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1 General Information on the PPL

1.1 The Main Features

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of numerical information
that can be represented by points in some n-dimensional vector space. For instance, one of the key domains
the PPL supports is that of rational convex polyhedra (Section Convex Polyhedra). Such domains are
employed in several systems for the analysis and verification of hardware and software components, with
applications spanning imperative, functional and logic programming languages, synchronous languages
and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not meant
to target a particular problem, the design of its interface has been largely influenced by the needs of the
above class of applications. That is the reason why the library implements a few operators that are more or
less specific to static analysis applications, while lacking some other operators that might be useful when
working, e.g., in the field of computational geometry.

The main features of the library are the following:

e itis user friendly: you write x + 2%y + 5%z <= 7 when you mean it;

* it is fully dynamic: available virtual memory is the only limitation to the dimension of anything;

* it provides full support for the manipulation of convex polyhedra that are not topologically closed;
* it is written in standard C++: meant to be portable;

* it is exception-safe: never leaks resources or leaves invalid object fragments around;

* it is rather efficient: and we hope to make it even more so;

* it is thoroughly documented: perhaps not literate programming but close enough;

* it has interfaces to other programming languages: including C, Java, OCaml and a number of Prolog
systems;

e it is free software: distributed under the terms of the GNU General Public License.

In the following section we describe all the domains available to the PPL user. More detailed descrip-
tions of these domains and the operations provided will be found in subsequent sections.

In the final section of this chapter (Section Using the Library), we provide some additional advice on
the use of the library.

1.1.1 Semantic Geometric Descriptors

A semantic geometric descriptor is a subset of R™. The PPL provides several classes of semantic GDs.
These are identified by their C++ class name, together with the class template parameters, if any. These
classes include the simple classes:

e C_Polyhedron,

* NNC_Polyhedron,

* BD_Shape<T>,

* Octagonal_Shape<T>,
e Box<ITV>,and

e Grid,

where:



e T is a numeric type chosen among mpz_class, mpg.class, signed char, short, int,
long, long long (or any of the C99 exact width integer equivalents int 8_t, intl16_t, and so forth);
and

e ITVis an instance of the Interval template class.

Other semantic GDs, the compound classes, can be constructed (also recursively) from all the GDs
classes. These include:

e Pointset_Powerset<PSET>,
* Partially Reduced Product<Dl, D2, R>,

where PSET, D1 and D2 can be any semantic GD classes and R is the reduction operation to be applied to
the component domains of the product class.

A uniform set of operations is provided for creating, testing and maintaining each of the semantic GDs.
However, as many of these depend on one or more syntactic GDs, we first describe the syntactic GDs.

1.1.2 Syntactic Geometric Descriptors

A syntactic geometric descriptor is for defining, modifying and inspecting a semantic GD. There are three
kinds of syntactic GDs: basic GDs, constraint GDs and generator GDs. Some of these are generic and
some specific. A generic syntactic GD can be used (in the appropriate context) with any semantic GD;
clearly, different semantic GDs will usually provide different levels of support for the different subclasses
of generic GDs. In contrast, the use of a specific GD may be restricted to apply to a given subset of the
semantic GDs (i.e., some semantic GDs provide no support at all for them).

Basic Geometric Descriptors The following basic GDs currently supported by the PPL are:
* space dimension;
¢ variable and variable set;
e coefficient;
* linear expression;
* relation symbol,;
* vector point.

These classes, which are all generic syntactic GDs, are used to build the constraint and generator GDs
as well as support many generic operations on the semantic GDs.

Constraint Geometric Descriptors The PPL currently supports the following classes of generic con-
straint GDs:

¢ linear constraint;
* linear congruence.

Each linear constraint can be further classified to belong to one or more of the following syntactic
subclasses:

* inconsistent constraints (e.g., 0 > 2);
* tautological constraints (e.g., 0 < 2);

* interval constraints (e.g., x < 2);



bounded-difference constraints (e.g., x — y < 2);

* octagonal constraints (e.g., z + y < 2);

* linear equality constraints (e.g., z = 2);

* non-strict linear inequality constraints (e.g., x — 3y < 2);
e strict linear inequality constraints (e.g., z — 3y < 2).

Note that the subclasses are not disjoint.
Similarly, each linear congruence can be classified to belong to one or more of the following syntactic
subclasses:

* inconsistent congruences (e.g., 0 =3 1);
* tautological congruences (e.g., 0 =3 2);
* linear equality, i.e., non-proper congruences (e.g., = + 3y =¢ 0);
 proper congruences (e.g.,  + 3y =5 0).

The library also supports systems, i.e., finite collections, of either linear constraints or linear congru-
ences (but see the note below).

Each semantic GD provides optimal support for some of the subclasses of generic syntactic GDs listed
above: here, the word “optimal” means that the considered semantic GD computes the best upward ap-
proximation of the exact meaning of the linear constraint or congruence. When a semantic GD operation
is applied to a syntactic GD that is not optimally supported, it will either indicate its unsuitability (e.g., by
throwing an exception) or it will apply an upward approximation semantics (possibly not the best one).

For instance, the semantic GD of topologically closed convex polyhedra provides optimal support for
non-strict linear inequality and equality constraints, but it does not provide optimal support for strict in-
equalities. Some of its operations (e.g., add_constraint and add_congruence) will throw an ex-
ception if supplied with a non-trivial strict inequality constraint or a proper congruence; some other op-
erations (e.g., refine_with_constraint or refine_with_congruence) will compute an over-
approximation.

Similarly, the semantic GD of rational boxes (i.e., multi-dimensional intervals) having integral values as
interval boundaries provides optimal support for all interval constraints: even though the interval constraint
22 < 5 cannot be represented exactly, it will be optimally approximated by the constraint z < 3.

Note

When providing an upward approximation for a constraint or congruence, we consider it in isolation:
in particular, the approximation of each element of a system of GDs is independent from the other
elements; also, the approximation is independent from the current value of the semantic GD.

Generator Geometric Descriptors The PPL currently supports two classes of generator GDs:
¢ polyhedra generator: these are polyhedra points, rays and lines;
* grid generator: these are grid points, parameters and lines.
Rays, lines and parameters are specific of the mentioned semantic GDs and, therefore, they cannot

be used by other semantic GDs. In contrast, as already mentioned above, points are basic geometric
descriptors since they are also used in generic PPL operations.



1.1.3 Generic Operations on Semantic Geometric Descriptors

1. Constructors of a universe or empty semantic GD with the given space dimension.

2. Operations on a semantic GD that do not depend on the syntactic GDs.

is_empty (), is_.universe (), is_topologically closed (), is_.discrete(),
is_bounded (), contains_integer_point ()

test for the named properties of the semantic GD.

total memory_in bytes (), external memory_in bytes ()
return the total and external memory size in bytes.

OK ()

checks that the semantic GD has a valid internal representation. (Some GDs provide this
method with an optional Boolean argument that, when true, requires to also check for non-
emptiness.)

space_dimension(),affine_dimension ()

return, respectively, the space and affine dimensions of the GD.
add_space_dimensions_and_embed (),add_space_dimensions_and_project (),

expand_space_dimension (), remove_space_dimensions (), fold_space_.dimensions (),
map-space_dimensions ()

modify the space dimensions of the semantic GD; where, depending on the operation, the
arguments can include the number of space dimensions to be added or removed a variable or

set of variables denoting the actual dimensions to be used and a partial function defining a
mapping between the dimensions.

contains (), strictly_contains(),is_-disjoint_from()

compare the semantic GD with an argument semantic GD of the same class.

topological closure_assign(),intersection_assign(),upper_bound.assign(),
difference_assign(),time_elapse_assign(),widening_assign(),concatenate—
_assign (), m_swap ()

modify the semantic GD, possibly with an argument semantic GD of the same class.

constrains (),bounds_from_above (), bounds_from_below (),maximize (),minimize ().
These find information about the bounds of the semantic GD where the argument variable or

linear expression define the direction of the bound.

affine_image (),affine_preimage(),generalized.affine_image (),generalized-
_,affine preimage (),bounded affine_image (),bounded_affine preimage ().

These perform several variations of the affine image and preimage operations where, depending
on the operation, the arguments can include a variable representing the space dimension to
which the transformation will be applied and linear expressions with possibly a relation symbol
and denominator value that define the exact form of the transformation.

ascii_load(),ascii_dump ()

are the ascii input and output operations.

3. Constructors of a semantic GD of one class from a semantic GD of any other class. These con-
structors obey an upward approximation semantics, meaning that the constructed semantic GD is
guaranteed to contain all the points of the source semantic GD, but possibly more. Some of these
constructors provide a complexity parameter with which the application can control the complex-
ity/precision trade-off for the construction operation: by using the complexity parameter, it is pos-
sible to keep the construction operation in the polynomial or the simplex worst-case complexity
class, possibly incurring into a further upward approximation if the precise constructor is based on
an algorithm having exponential complexity.



4. Constructors of a semantic GD from a constraint GD; either a linear constraint system or a linear
congruence system. These constructors assume that the given semantic GD provides optimal support
for the argument syntactic GD: if that is not the case, an invalid argument exception is thrown.

5. Other interaction between the semantic GDs and constraint GDs.

e add_constraint (),add_-constraints(),add.-recycled._constraints(),add-
_congruence (), add_congruences (), add_-recycled_congruences ().
These methods assume that the given semantic GD provides optimal support for the argument
syntactic GD: if that is not the case, an invalid argument exception is thrown.

For add_recycled_constraints () and add_recycled_congruences (), the only
assumption that can be made on the constraint GD after return (successful or exceptional) is
that it can be safely destroyed.

e refinewith constraint (), refinewith constraints(),refine with_congruence(),
refinewith_congruences ().
If the argument constraint GD is optimally supported by the semantic GD, the methods behave
the same as the corresponding add_x methods listed above. Otherwise the constraint GD is
used only to a limited extent to refine the semantic GD; possibly not at all. Notice that, while
repeating an add operation is pointless, this is not true for the refine operations. For example,
in those cases where

Semantic_GD.add-constraint (c)

raises an exception, a fragment of the form

Semantic_GD.refine_with_constraint (c)

// Other add.constraint (s) or refinewith_constraint (s) operations
// on Semantic_GD.

Semantic_GD.refine_with_constraint (c)

may give more precise results than a single

Semantic_GD.refine_with_constraint (c) .
// Other add.constraint(s) or refinewith_constraint (s) operations
// on Semantic.GD.

e constraints(),minimized constraints (), congruences(),minimized congruences ().
Returns the indicated system of constraint GDs satisfied by the semantic GD.

* can_recycle_constraint_systems (), can_.recycle_congruence_systems ().
Return true if and only if the semantic GD can recycle the indicated constraint GD.

e relation_with ().

This takes a constraint GD as an argument and returns the relations holding between the seman-
tic GD and the constraint GD. The possible relations are: TS_INCLUDED (), SATURATES (),
STRICTLY_INTERSECTS (), IS.DISJOINT () and NOTHING (). This operator also can
take a polyhedron generator GD as an argument and returns the relation SUBSUMES () or
NOTHING () that holds between the generator GD and the semantic GD.

1.2 Upward Approximation

The Parma Polyhedra Library, for those cases where an exact result cannot be computed within the specified
complexity limits, computes an upward approximation of the exact result. For semantic GDs this means
that the computed result is a possibly strict superset of the set of points of R™ that constitutes the exact
result. Notice that the PPL does not provide direct support to compute downward approximations (i.-
e., possibly strict subsets of the exact results). While downward approximations can often be computed
from upward ones, the required algorithms and the conditions upon which they are correct are outside
the current scope of the PPL. Beware, in particular, of the following possible pitfall: the library provides
methods to compute upward approximations of set-theoretic difference, which is antitone in its second



argument. Applying a difference method to a second argument that is not an exact representation or a
downward approximation of reality, would yield a result that, of course, is not an upward approximation
of reality. It is the responsibility of the library user to provide the PPL’s method with approximations of
reality that are consistent with respect to the desired results.

1.3 Approximating Integers

The Parma Polyhedra Library provides support for approximating integer computations using the geometric
descriptors it provides. In this section we briefly explain these facilities.

1.3.1 Dropping Non-Integer Points

When a geometric descriptor is used to approximate integer quantities, all the points with non-integral
coordinates represent an imprecision of the description. Of course, removing all these points may be
impossible (because of convexity) or too expensive. The PPL provides the operator drop_some_non_-—
integer_points to possibly tighten a descriptor by dropping some points with non-integer coordinates,
using algorithms whose complexity is bounded by a parameter. The set of dimensions that represent integer
quantities can be optionally specified. It is worth to stress the role of some in the operator name: in general
no optimality guarantee is provided.

1.3.2 Approximating Bounded Integers

The Parma Polyhedra Library provides services that allow to compute correct approximations of bounded
arithmetic as available in widespread programming languages. Supported bit-widths are 8, 16, 32 and
64 bits, with some limited support for 128 bits. Supported representations are binary unsigned and two’s
complement signed. Supported overflow behaviors are:

Wrapping: this means that, for a w-bit bounded integer, the computation happens modulo 2%. In turn,
this signifies that the computation happens as if the unbounded arithmetic result was computed and
then wrapped. For unsigned integers, the wrapping function is simply x mod 2", most conveniently
defined as

wrapy, () ety ow |x/2%].

For signed integers the wrapping function is, instead,

wraps, (z) {Wrap%(m), if Wrap.g(a:) < 2w—l;
wraph (x) — 2%, otherwise.

Undefined: this means that the result of the operation resulting in an overflow can take any value. This
is useful to partially model systems where overflow has unspecified effects on the computed result.
Even though something more serious can happen in the system being analyzed —due to, e.g., C’s
undefined behavior—, here we are only concerned with the results of arithmetic operations. It is the
responsibility of the analyzer to ensure that other manifestations of undefined behavior are conser-
vatively approximated.

Impossible: this is for the analysis of languages where overflow is trapped before it affects the state, for
which, thus, any indication that an overflow may have affected the state is necessarily due to the
imprecision of the analysis.

Wrapping Operator One possibility for precisely approximating the semantics of programs that operate
on bounded integer variables is to follow the approach described in [SKO7]. The idea is to associate space
dimensions to the unwrapped values of bounded variables. Suppose 7 is a w-bit, unsigned program variable
associated to a space dimension labeled by the variable z. If z is constrained by some numerical abstraction
to take values in a set S C R, then the program variable j can only take values in { wrapl (z) | zeS }
There are two reasons why this is interesting: firstly, this allows for the retention of relational information



by using a single numerical abstraction tracking multiple program variables. Secondly, the integers modulo
2" form a ring of equivalence classes on which addition and multiplication are well defined. This means,
e.g., that assignments with affine right-hand sides and involving only variables with the same bit-width and
representation can be safely modeled by affine images. While upper bounds and widening can be used
without any precaution, anything that can be reconducted to intersection requires a preliminary wrapping
phase, where the dimensions corresponding to bounded integer types are brought back to their natural
domain. This necessity arises naturally for the analysis of conditionals and conversion operators, as well
as in the realization of domain combinations.

The PPL provides a general wrapping operator that is parametric with respect to the set of space di-
mensions (variables) to be wrapped, the width, representation and overflow behavior of all these variables.
An optional constraint system can, when given, improve the precision. This constraint system, which
must only depend on variables with respect to which wrapping is performed, is assumed to represent the
conditional or looping construct guard with respect to which wrapping is performed. Since wrapping re-
quires the computation of upper bounds and due to non-distributivity of constraint refinement over upper
bounds, passing a constraint system in this way can be more precise than refining the result of the wrapping
operation afterwards. The general wrapping operator offered by the PPL also allows control of the com-
plexity/precision ratio by means of two additional parameters: an unsigned integer encoding a complexity
threshold, with higher values resulting in possibly improved precision; and a Boolean controlling whether
space dimensions should be wrapped individually, something that results in much greater efficiency to the
detriment of precision, or collectively.

Note that the PPL assumes that any space dimension subject to wrapping is being used to capture the
value of bounded integer values. As a consequence the library is free to drop, from the involved numerical
abstraction, any point having a non-integer coordinate that corresponds to a space dimension subject to
wrapping. It must be stressed that freedom to drop such points does not constitute an obligation to remove
all of them (especially because this would be extraordinarily expensive on some numerical abstractions).
The PPL provides operators for the more systematic removal of points with non-integral coordinates.

The wrapping operator will only remove some of these points as a by-product of its main task and only
when this comes at a negligible extra cost.

1.4 Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail. For more
information about the definitions and results stated here see [BRZHO02b], [Fuk98], [NW88], and [Wil93].
1.4.1 Vectors, Matrices and Scalar Products

We denote by R™ the n-dimensional vector space on the field of real numbers R, endowed with the standard
topology. The set of all non-negative reals is denoted by R,.. For each i € {0,...,n — 1}, v; denotes the
i-th component of the (column) vector v = (v, . . . ,vn_l)T € R™. We denote by 0 the vector of R"”,
called the origin, having all components equal to zero. A vector v € R™ can be also interpreted as a matrix
in R"*! and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denoted by v™.

The scalar product of v, w € R", denoted (v, w), is the real number

n—1
’UT’UJ = Z V;W; .
i=0
For any S1, S2 C R™, the Minkowski’s sum of S7 and Ss is: S1+.52 = {v1+vs |v1 € S1,v5 € Sa }.

1.4.2 Affine Hyperplanes and Half-spaces

For each vector @ € R™ and scalar b € R, where a # 0, and for each relation symbol 1 € {=, >, >}, the
linear constraint (a, x) < b defines:

* an affine hyperplane if it is an equality constraint, i.e., if < € {=};



* atopologically closed affine half-space if it is a non-strict inequality constraint, i.e., if 1 € {>};
* atopologically open affine half-space if it is a strict inequality constraint, i.e., if > € {>}.

Note that each hyperplane (a, ) = b can be defined as the intersection of the two closed affine half-
spaces (a,x) > band (—a,x) > —b. Also note that, when a = 0, the constraint (0, z) > b is either
a tautology (i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vector
space R™ or the empty set &.

1.4.3 Convex Polyhedra

The set P C R" is a not necessarily closed convex polyhedron (NNC polyhedron, for short) if and only if
either P can be expressed as the intersection of a finite number of (open or closed) affine half-spaces of R™
orn = (0 and P = @. The set of all NNC polyhedra on the vector space R" is denoted PP,,.

The set P € IP,, is a closed convex polyhedron (closed polyhedron, for short) if and only if either P can
be expressed as the intersection of a finite number of closed affine half-spaces of R™” orn = 0and P = @.
The set of all closed polyhedra on the vector space R™ is denoted CP,,.

When ordering NNC polyhedra by the set inclusion relation, the empty set & and the vector space R"
are, respectively, the smallest and the biggest elements of both PP, and CP,,. The vector space R™ is also
called the universe polyhedron.

In theoretical terms, IP,, is a lattice under set inclusion and CIP,, is a sub-lattice of IP,,.

Note

In the following, we will usually specify operators on the domain P,, of NNC polyhedra. Unless
an explicit distinction is made, these operators are provided with the same specification when ap-
plied to the domain CP,, of topologically closed polyhedra. The implementation maintains a clearer
separation between the two domains of polyhedra (see Topologies and Topological-compatibility):
while computing polyhedra in P,, may provide more precise results, polyhedra in CP,, can be repre-
sented and manipulated more efficiently. As a rule of thumb, if your application will only manipulate
polyhedra that are topologically closed, then it should use the simpler domain CP,,. Using NNC
polyhedra is only recommended if you are going to actually benefit from the increased accuracy.

1.4.4 Bounded Polyhedra
An NNC polyhedron P € P, is bounded if there exists a A € R, such that:

PQ{.’EGR” f/\ngg)\forj:O,...,nfl}.

A bounded polyhedron is also called a polytope.

1.5 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

1.5.1 Constraints Representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequality as a constraint.

By definition, each polyhedron P € PP, is the set of solutions to a constraint system, i.e., a finite number
of constraints. By using matrix notation, we have

Pdéf{mekn|A1m:b1,A2mZb2,A3m>b3},

where, for all i € {1,2,3}, A; € R™ x R™ and b; € R™i, and mq,ma2, m3 € N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.



1.5.2 Combinations and Hulls

Let S = {x1,...,zx} C R" be a finite set of vectors. For all scalars A1,...,\; € R, the vector
v = Z?Zl Ajx; is said to be a linear combination of the vectors in S. Such a combination is said to be

* a positive (or conic) combination, if Vj € {1,...,k} : A\; e R;
e an affine combination, if 25:1 Aj=1;
* a convex combination, if it is both positive and affine.

We denote by linear.hull(.S) (resp., conic.hull(.S), affine.hull(S), convex.hull(S)) the set of all the
linear (resp., positive, affine, convex) combinations of the vectors in .S.

Let P,C C R", where P U C = S. We denote by nnc.hull(P, C) the set of all convex combinations
of the vectors in .S such that A\; > 0 for some x; € P (informally, we say that there exists a vector of P
that plays an active role in the convex combination). Note that nnc.hull(P, C) = nnc.hull(P, P U C') so
that, if C C P,

convex.hull(P) = nnc.hull(P, @) = nnc.hull(P, P) = nnc.hull(P, C).

It can be observed that linear.hull(.S) is an affine space, conic.hull(.S) is a topologically closed convex
cone, convex.hull(.S) is a topologically closed polytope, and nnc.hull(P, C') is an NNC polytope.

1.5.3 Points, Closure Points, Rays and Lines
Let P € P,, be an NNC polyhedron. Then
* avector p € P is called a point of P;
* avector ¢ € R" is called a closure point of P if it is a point of the topological closure of P;

e avector r € R™, where r # 0, is called a ray (or direction of infinity) of P if P # & and p+Ar € P,
for all points p € P andall A € R ;

» avector I € R" is called a line of P if both I and —I are rays of P.

A point of an NNC polyhedron P € P, is a vertex if and only if it cannot be expressed as a convex
combination of any other pair of distinct points in P. A ray = of a polyhedron P is an extreme ray if and
only if it cannot be expressed as a positive combination of any other pair ; and r5 of rays of P, where
T # Ary, v # Argand r1 # Arg for all A € R, (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

1.5.4 Generators Representation

Each NNC polyhedron P € P,, can be represented by finite sets of lines L, rays R, points PP and closure
points C of P. The 4-tuple G = (L, R, P, C) is said to be a generator system for P, in the sense that

P = linear.hull(L) + conic.hull(R) 4+ nnc.hull(P, C),

where the symbol * 4’ denotes the Minkowski’s sum.
When P € CP, is a closed polyhedron, then it can be represented by finite sets of lines L, rays R and
points P of P. In this case, the 3-tuple G = (L, R, P) is said to be a generator system for P since we have

P = linear.hull(L) + conic.hull(R) 4 convex.hull(P).

Thus, in this case, every closure point of P is a point of P.

For any P € P, and generator system G = (L, R, P, C) for P, we have P = & if and only if P = &.
Also P must contain all the vertices of P although P can be non-empty and have no vertices. In this
case, as P is necessarily non-empty, it must contain points of P that are not vertices. For instance, the
half-space of R? corresponding to the single constraint 4 > 0 can be represented by the generator system
G =(L,R,P,C)suchthat L = {(1,0)T}, R = {(0,1)"}, P = {(0,0)T}, and C = . It is also worth
noting that the only ray in R is not an extreme ray of P.



1.5.5 Minimized Representations

A constraints system C for an NNC polyhedron P € P, is said to be minimized if no proper subset of C is
a constraint system for P.

Similarly, a generator system G = (L, R, P, C') for an NNC polyhedron P € P,, is said to be minimized
if there does not exist a generator system G’ = (L', R’, P',C") # G for P suchthat L’ C L, R’ C R,
P'CPandC’' CC.

1.5.6 Double Description

Any NNC polyhedron P can be described by using a constraint system C, a generator system G, or both
by means of the double description pair (DD pair) (C,G). The double description method is a collection
of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NN-
C polyhedra: this is because some operators, such as intersections and poly-hulls, are provided with a
natural and efficient implementation when using one of the representations in a DD pair, while being rather
cumbersome when using the other.

1.5.7 Topologies and Topological-compatibility

As indicated above, when an NNC polyhedron P is necessarily closed, we can ignore the closure points
contained in its generator system G = (L, R, P, C') (as every closure point is also a point) and represent P
by the triple (L, R, P). Similarly, P can be represented by a constraint system that has no strict inequali-
ties. Thus a necessarily closed polyhedron can have a smaller representation than one that is not necessarily
closed. Moreover, operators restricted to work on closed polyhedra only can be implemented more effi-
ciently. For this reason the library provides two alternative “topological kinds” for a polyhedron, NNC and
C. We shall abuse terminology by referring to the topological kind of a polyhedron as its topology.

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation
must obey the following topological-compatibility rules:

* polyhedra are topologically-compatible if and only if they have the same topology;

« all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

* strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if it is NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology,
build the corresponding polyhedron having the other topology.
1.5.8 Space Dimensions and Dimension Compatibility

The space dimension of an NNC polyhedron P € P, (resp., a C polyhedron P € CP,) is the dimension
n € N of the corresponding vector space R™. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation
must obey the following (space) dimension-compatibility rules:

¢ polyhedra are dimension-compatible if and only if they have the same space dimension;
* the constraint (@, ) > b where 1 € {=,>,>} and a,z € R™, is dimension-compatible with a

polyhedron having space dimension n if and only if m < n;
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* the generator x € R™ is dimension-compatible with a polyhedron having space dimension 7 if and
only if m < n;

* a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted
when needed, the space dimension of a polyhedron can only be changed by explicit calls to operators
provided for that purpose.

1.5.9 Affine Independence and Affine Dimension

A finite set of points {x1,...,xr} C R" is affinely independent if, for all Ay,..., \x € R, the system of
equations

k k
Z)\imi:O, ZAl:O
i=1 i=1

implies that, foreachi =1,...,k, A\; = 0.

The maximum number of affinely independent points in R™ is n + 1.

A non-empty NNC polyhedron P € P, has affine dimension k € N, denoted by dim(P) = k, if the
maximum number of affinely independent points in P is k + 1.

We remark that the above definition only applies to polyhedra that are not empty, so that 0 < dim(P) <
n. By convention, the affine dimension of an empty polyhedron is 0 (even though the “natural” generaliza-
tion of the definition above would imply that the affine dimension of an empty polyhedron is —1).

Note

The affine dimension £ < n of an NNC polyhedron P € P,, must not be confused with the space
dimension n of P, which is the dimension of the enclosing vector space R™. In particular, we can
have dim(P) # dim(Q) even though P and Q are dimension-compatible; and vice versa, P and Q
may be dimension-incompatible polyhedra even though dim(P) = dim(Q).

1.5.10 Rational Polyhedra

An NNC polyhedron is called rational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to
polyhedra, but also to the other numeric arguments that may be required by the operators considered, such
as the coefficients defining (rational) affine transformations.

1.6 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.

1.6.1 Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedra Py, P2 € P, the intersection of P; and P,, defined as the set intersection
P1 N Pa, is the biggest NNC polyhedron included in both P; and Ps; similarly, the convex polyhedral hull
(or poly-hull) of P; and P,, denoted by P; W Po, is the smallest NNC polyhedron that includes both P,
and Ps. The intersection and poly-hull of any pair of closed polyhedra in CPP,, is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the binary meet and the
binary join operators on the lattices IP,, and CP,,.
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1.6.2 Convex Polyhedral Difference

For any pair of NNC polyhedra Py, Py € P, the convex polyhedral difference (or poly-difference) of P,
and P is defined as the smallest convex polyhedron containing the set-theoretic difference of P; and Ps.

In general, even though Py, Py € CP, are topologically closed polyhedra, their poly-difference may be
a convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

1.6.3 Concatenating Polyhedra

Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples
obtained by concatenating an ordered pair of polyhedra. Formally, the concatenation of the polyhedra
P € P, and Q € P, (taken in this order) is the polyhedron R € P,, ,, such that

def
R = {("I"Ou'--yxnflvy()a"’7ym71)T € RTH_"L (m07-'-7xn71)T € P7 (ZI/Ow-wym—l)T € Q}

Another way of seeing it is as follows: first embed polyhedron P into a vector space of dimension n + m
and then add a suitably renamed-apart version of the constraints defining Q.

1.6.4 Adding New Dimensions to the Vector Space

The library provides two operators for adding a number ¢ of space dimensions to an NNC polyhedron
P € P,, therefore transforming it into a new NNC polyhedron Q € P, ;. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operator add_space_dimensions_and_embed embeds the polyhedron P into the new vector
space of dimension 7 + n and returns the polyhedron Q defined by all and only the constraints defining P
(the variables corresponding to the added dimensions are unconstrained). For instance, when starting from
a polyhedron P C R? and adding a third space dimension, the result will be the polyhedron

Q= {(zg,21,22)T €R? | (zg,21)" € P }.

In contrast, the operator add_space_dimensions_and_project projects the polyhedron P into
the new vector space of dimension ¢ + n and returns the polyhedron Q whose constraint system, besides
the constraints defining P, will include additional constraints on the added dimensions. Namely, the cor-
responding variables are all constrained to be equal to 0. For instance, when starting from a polyhedron
P C R? and adding a third space dimension, the result will be the polyhedron

0= { (z0,71,0)T € R? | (zg,21)" € 77}.

1.6.5 Removing Dimensions from the Vector Space

The library provides two operators for removing space dimensions from an NNC polyhedron P € P,
therefore transforming it into a new NNC polyhedron Q € P, where m < n.

Given a set of variables, the operator remove_space_dimensions removes all the space dimen-
sions specified by the variables in the set. For instance, letting P € P4 be the singleton set {(3, 1,0, 2)T} -
R*, then after invoking this operator with the set of variables {x1, 22} the resulting polyhedron is

Q={(3,2"} cRr

Given a space dimension m less than or equal to that of the polyhedron, the operator remove_—
higher_space_dimensions removes the space dimensions having indices greater than or equal to
m. For instance, letting P € P4 defined as before, by invoking this operator with m = 2 the resulting
polyhedron will be

9={(3,1)"} CR%
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1.6.6 Mapping the Dimensions of the Vector Space

The operator map_space_dimensions provided by the library maps the dimensions of the vector space
R" according to a partial injective function p: {0,...,n — 1} — N such that p({0,...,n — 1}) =
{0,...,m — 1} with m < n. Dimensions corresponding to indices that are not mapped by p are removed.
If m = 0, i.e., if the function p is undefined everywhere, then the operator projects the argument
polyhedron P € P,, onto the zero-dimension space R?; otherwise the result is Q € P,,, given by

def

T
QY { (vproyr-- v 1m) |

(vo,...,vn_1)T €P }

1.6.7 Expanding One Dimension of the Vector Space to Multiple Dimensions

The operator expand_space_dimension provided by the library adds m new space dimensions to a
polyhedron P € P, with n > 0, so that dimensions n, n + 1, ..., n + m — 1 of the result Q are exact
copies of the i-th space dimension of P. More formally,

Jv,weP . u; =v;
QLY e rrtm AVji=nn+1l,....n+m-—1:u; =w,
AVE=0,....n—1:k#i = up =v =wy

This operation has been proposed in [GDDetal04].

1.6.8 Folding Multiple Dimensions of the Vector Space into One Dimension

The operator fold_space_dimensions provided by the library, given a polyhedron P € P,,, with
n > 0, folds a set of space dimensions J = {jo, ..., jm—1}, withm < n and j < n for each j € J, into
space dimension ¢ < n, where ¢ ¢ J. The result is given by

Q% H‘JQd
d=0
where
deéf w e R™™ FJveP . uy=v; |
AVE=0,....n—1:k#1i = up =vg

and, ford =0, ...,m—1,

o {u cR*™

HUEP.UZ—/ :’Ujd
/\Vk:(),...,n—l:k#i:uk/:fuk ’

and, finally, fork =0, ...,n — 1,

e —#{jed|k>j},

( # S denotes the cardinality of the finite set ).
This operation has been proposed in [GDDetal04].

1.6.9 Images and Preimages of Affine Transfer Relations
For each relation ¢ C R™ x R™, we denote by ¢(S) C R™ the image under ¢ of the set S C R™; formally,

o(S) & {weR™|FweS. (v,w)eo}.
Similarly, we denote by ¢~1(S”) C R™ the preimage under ¢ of S’ C R™, that is

»~ (S déf{’v ER"|[FweS . (v,w) €}
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If n = m, then the relation ¢ is said to be space dimension preserving.
The relation ¢ C R™ x R™ is said to be an affine relation if there exists £ € N such that

¢
Yo e R",w e R™: (v,w) € ¢ <= /\((ci,w> > (@i, v) + b;),
i=1

where a; € R", ¢; € R™, b; e Randx; € {<,<,=,>,>},foreachi=1,... L.
As a special case, the relation ¢ C R™ x R™ is an affine function if and only if there exist a matrix
A € R™ x R™ and a vector b € R™ such that,

Vo e R, weR™: (v,w) € p < w=Av+b.

The set P,, of NNC polyhedra is closed under the application of images and preimages of any space di-
mension preserving affine relation. The same property holds for the set CP,, of closed polyhedra, provided
the affine relation makes no use of the strict relation symbols < and >. Images and preimages of affine
relations can be used to model several kinds of transition relations, including deterministic assignments of
affine expressions, (affinely constrained) nondeterministic assignments and affine conditional guards.

A space dimension preserving relation ¢ C R™ x R™ can be specified by means of a shorthand notation:

e the vector & = (x,...,7,_1)T of unprimed variables is used to represent the space dimensions of
the domain of ¢;

e the vector ©’ = (x),...,x!,_)T of primed variables is used to represent the space dimensions of
the range of ¢;

* any primed variable that “does not occur” in the shorthand specification is meant to be unaffected
by the relation; namely, for each index ¢ € {0,...,n — 1}, if in the syntactic specification of the
relation the primed variable z; only occurs (if ever) with coefficient 0, then it is assumed that the
specification also contains the constraint =, = x;.

As an example, assuming ¢ C R3 x R3, the notation xy — T4 > 2x9 — o1, Where the primed variable
x| does not occur, is meant to specify the affine relation defined by

Vo € R3 w e R : (v,w) € ¢ <= (wo —wa > 2vg —v1) A (w1 = vy).

The same relation is specified by z( + 0 - ] — 25 > 229 — 21, since 2} occurs with coefficient 0.
The library allows for the computation of images and preimages of polyhedra under restricted sub-
classes of space dimension preserving affine relations, as described in the following.

1.6.10 Single-Update Affine Functions.

Given a primed variable «}, and an unprimed affine expression (a, @)+, the affine function ¢ = (), = (a,x) +b): R" —
R™ is defined by
Vv € R": ¢p(v) = Av + b,

where
1 0 0 0 0
0 1 0 0 0
A=lay -+ ar—1 ak Ag+1 +° Ap—-1 |, b=1]b
0 0 1 0 0
o --- 0 0 1 0

and the a; (resp., b) occur in the (k 4 1)st row in A (resp., position in b). Thus function ¢ maps any vector
(’Uo, e ,’U"_l)T to

T
(’UQ, ey (Z?;Olaivi + b), . ,'Un_l) .
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The affine image operator computes the affine image of a polyhedron P under z}, = (a,x) + b. For
instance, suppose the polyhedron P to be transformed is the square in R? generated by the set of points
{(0,0)T,(0,3)T,(3,0)T,(3,3)T}. Then, if the primed variable is 2, and the affine expression is ¢ +
2r1 +4 (sothat k = 0, a9 = 1,a9 = 2,b = 4), the affine image operator will translate P to the
parallelogram P; generated by the set of points {(4,0)", (10,3)T, (7,0)T, (13,3)™} with height equal to
the side of the square and oblique sides parallel to the line ¢y — 2x;. If the primed variable is as before
(i.e., k = 0) but the affine expression is z; (so that ay = 0,a; = 1,b = 0), then the resulting polyhedron
Ps is the positive diagonal of the square.

The affine preimage operator computes the affine preimage of a polyhedron P under z, = (a,x) + b.
For instance, suppose now that we apply the affine preimage operator as given in the first example using
primed variable x( and affine expression xy + 21 + 4 to the parallelogram P;; then we get the original
square P back. If, on the other hand, we apply the affine preimage operator as given in the second example
using primed variable xy and affine expression x; to P, then the resulting polyhedron is the stripe obtained
by adding the line (1,0)7 to polyhedron Ps.

Observe that provided the coefficient ay, of the considered variable in the affine expression is non-zero,
the affine function is invertible.

1.6.11 Single-Update Bounded Affine Relations.

Given a primed variable x}, and two unprimed affine expressions Ib = (a, ) + b and ub = (¢, z) + d, the
bounded affine relation ¢ = (Ib < x}. < ub) is defined as

Yo e R, weR": (v,w) € ¢ — ((a,v>+b§wk§<c,v>+d)/\< /\ wizvi).
0<i<n,izk

1.6.12 Affine Form Relations.

Let F; be the set of floating point numbers representables in a certain format f and let I be the set of real
intervals with bounds in F¢. We can define a floating-point interval linear form (a, ) + [ as:

<a7w> +B8=apro+ ...+ 17Ty +ﬁ7

where 3, o, € Iy foreach k =0,...,n — 1.

Given a such linear form 1If and a primed variable ) the affine form image operator computes the
bounded affine image of a polyhedron P under Ib < zj < ub, where 1b and ub are the upper and lower
bound of If respectively.

1.6.13 Generalized Affine Relations.

Similarly, the generalized affine relation ¢ = (1hs' < rhs), where lhs = (¢, x) + d and ths = (a, z) + b
are affine expressions and <t € {<, <, =, >, >} is a relation symbol, is defined as

Yo e R", weR": (v,w) € ¢ < ((c,w>+dl>4<a,v>+b)A( /\ wi:vi).
0<i<n,c;=0

When lhs = xj, and <t € {=}, then the above affine relation becomes equivalent to the single-update affine
function xj, = rhs (hence the name given to this operator). It is worth stressing that the notation is not
symmetric, because the variables occurring in expression lhs are interpreted as primed variables, whereas
those occurring in rhs are unprimed; for instance, the transfer relations lhs’ < rhs and rhs’ > lhs are not
equivalent in general.
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1.6.14 Cylindrification Operator

The operator unconstrain computes the cylindrification [HMT71] of a polyhedron with respect to one
of its variables. Formally, the cylindrification @ € P,, of an NNC polyhedron P € P,, with respect to
variable index ¢ € {0,...,n — 1} is defined as follows:

Q:{'wGR"|3v€P.Vj€{O,...,n71}:j7éi = wj:vj}.

Cylindrification is an idempotent operation; in particular, note that the computed result has the same space
dimension of the original polyhedron. A variant of the operator above allows for the cylindrification of a
polyhedron with respect to a finite set of variables.

1.6.15 Time-Elapse Operator

The time-elapse operator has been defined in [HPR97]. Actually, the time-elapse operator provided by
the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two NNC
polyhedra P, Q € P, the time-elapse between P and Q, denoted P " Q, is the smallest NNC polyhedron
containing the set

{p+XgeR"|peP,gec QAER, }.

Note that the above set might not be an NNC polyhedron.

1.6.16 Positive Time-Elapse Operator

The positive time-elapse operator has been defined in [BFM11,BFM13]. The operator provided by the
library works on NNC polyhedra. For any two NNC polyhedra P, Q € P, the positive time-elapse
between P and Q, denoted P 5o Q, is the NNC polyhedron containing exactly the set

{p+AgeR" |peP,ge QAR },

where R>? denotes the set of strictly positive reals. Notice that, differently from the case of the time-elapse
operator, the set P s Q is always an NNC polyhedron, if P and Q are.

The exact version of the time-elapse operator P ,* Q defined in Section Time-Elapse Operator, which
may not be an NNC polyhedron, can be computed as the union of two NNC polyhedra, according to the
following equation: P ,* Q =P U (P 759 Q).

1.6.17 Meet-Preserving Enlargement and Simplification

Let P, Q, R € P, be NNC polyhedra. Then:
* R is meet-preserving with respect to P using context Qif RN Q=P N Q;
e R is an enlargement of P if R O P.

e R is a simplification with respect to P if r < p, where r and p are the cardinalities of minimized
constraint representations for R and P, respectively.

Notice that an enlargement need not be a simplification, and vice versa; moreover, the identity function
is (trivially) a meet-preserving enlargement and simplification.

The library provides a binary operator (simplify_using.-context) for the domain of NNC poly-
hedra that returns a polyhedron which is a meet-preserving enlargement simplification of its first argument
using the second argument as context.

The concept of meet-preserving enlargement and simplification also applies to the other basic domains
(boxes, grids, BD and octagonal shapes). See below for a definition of the concept of meet-preserving
simplification for powerset domains.
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1.6.18 Relation-With Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

Suppose P is an NNC polyhedron and C an arbitrary constraint system representing P. Suppose also
that ¢ = ((a,x) ©< b) is a constraint with 1 € {=,>,>} and Q the set of points that satisfy c. The
possible relations between P and c are as follows.

* P is disjoint from c if P N Q = &; that is, adding c to C gives us the empty polyhedron.

o P strictly intersects c it PN Q # @ and P N Q C P; that is, adding ¢ to C gives us a non-empty
polyhedron strictly smaller than P.

e Pisincluded in c if P C Q; that is, adding c to C leaves P unchanged.

» P saturates c ift P C H, where H is the hyperplane induced by constraint c, i.e., the set of points
satisfying the equality constraint (a, ) = b; that is, adding the constraint (a,x) = b to C leaves P
unchanged.

The polyhedron P subsumes the generator ¢ if adding g to any generator system representing P does
not change P.

1.6.19 Widening Operators

The library provides two widening operators for the domain of polyhedra. The first one, that we call
H79-widening, mainly follows the specification provided in the PhD thesis of N. Halbwachs [Hal79], also
described in [HPR97]. Note that in the computation of the H79-widening P V Q of two polyhedra
P,Q € CP, it is required as a precondition that P C Q (the same assumption was implicitly present in
the cited papers).

The second widening operator, that we call BHRZ03-widening, is an instance of the specification pro-
vided in [BHRZ03a]. This operator also requires as a precondition that P C Q and it is guaranteed to
provide a result which is at least as precise as the H79-widening.

Both widening operators can be applied to NNC polyhedra. The user is warned that, in such a case,
the results may not closely match the geometric intuition which is at the base of the specification of the
two widenings. The reason is that, in the current implementation, the widenings are not directly applied
to the NNC polyhedra, but rather to their internal representations. Implementation work is in progress and
future versions of the library may provide an even better integration of the two widenings with the domain
of NNC polyhedra.

Note

As is the case for the other operators on polyhedra, the implementation overwrites one of the two
polyhedra arguments with the result of the widening application. To avoid trivial misunderstandings,
it is worth stressing that if polyhedra P and Q (where P C Q) are identified by program variables
p and g, respectively, then the call g.H79_widening_assign (p) will assign the polyhedron
P V Q to variable g. Namely, it is the bigger polyhedron Q which is overwritten by the result of
the widening. The smaller polyhedron is not modified, so as to lead to an easier coding of the usual
convergence test (P O P V Qcanbe coded as p.contains (q) ). Note that, in the above context,
acall such as p.H79_widening_assign (qg) is likely to result in undefined behavior, since the
precondition @ C P will be missed (unless it happens that P = Q). The same observation holds for
all flavors of widenings and extrapolation operators that are implemented in the library and for all the
language interfaces.

1.6.20 Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parameter k£ and only apply widenings starting from the k-th iteration.
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The library also supports an improved widening delay strategy, that we call widening with tokens [B-
HRZ03a]. A token is a sort of wild card allowing for the replacement of the widening application by the
exact upper bound computation: the token is used (and thus consumed) only when the widening would
have resulted in an actual precision loss (as opposed to the potential precision loss of the classical delay
strategy). Thus, all widening operators can be supplied with an optional argument, recording the number of
available tokens, which is decremented when tokens are used. The approximated fixpoint computation will
start with a fixed number k of tokens, which will be used if and when needed. When there are no tokens
left, the widening is always applied.

1.6.21 Extrapolation Operators

Besides the two widening operators, the library also implements several extrapolation operators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a corresponding limited extrapolation operator,
which can be used to implement the widening “up to” technique as described in [HPR97]. Each limited
extrapolation operator takes a constraint system as an additional parameter and uses it to improve the
approximation yielded by the corresponding widening operator. Note that a convergence guarantee can
only be obtained by suitably restricting the set of constraints that can occur in this additional parameter.
For instance, in [HPR97] this set is fixed once and for all before starting the computation of the upward
iteration sequence.

The bounded extrapolation operators further enhance each one of the limited extrapolation operators
described above by intersecting the result of the limited extrapolation operation with the box obtained as a
result of applying the CC76-widening to the smallest boxes enclosing the two argument polyhedra.

1.7 Intervals and Boxes

The PPL provides support for computations on non-relational domains, called boxes, and also the interval
domains used for their representation.

An interval in R is a pair of bounds, called lower and upper. Each bound can be either (1) closed and
bounded, (2) open and bounded, or (3) open and unbounded. If the bound is bounded, then it has a value in
R. For each vector @ € R™ and scalar b € R, and for each relation symbol it € {=, >, >}, the constraint
(@, x) > b is said to be a interval constraint if there exist an index ¢ € {0,...,n — 1} such that, for all
ke {0,...,i—1,i+1,...,n — 1}, arp = 0. Thus each interval constraint that is not a tautology or
inconsistent has the formz =r,x <r,z > r,x <rorx > r, withr € R.

Letting BB be a sequence of n intervals and e; = (0,...,1,...,0)" be the vector in R™ with 1 in the
1’th position and zeroes in every other position; if the lower bound of the 7’th interval in B is bounded, the
corresponding interval constraint is defined as (e;, ) >1 b, where b is the value of the bound and < is > if
it is a closed bound and > if it is an open bound. Similarly, if the upper bound of the ¢’th interval in 5 is
bounded, the corresponding interval constraint is defined as (e;, ) > b, where b is the value of the bound
and > is < if it is a closed bound and < if it is an open bound.

A convex polyhedron P € CP, is said to be a box if and only if either P is the set of solutions to a
finite set of interval constraints or n = 0 and P = @. Therefore any n-dimensional box P in R™ where
n > 0 can be represented by a sequence of n intervals B in R and P is a closed polyhedron if every bound
in the intervals in B is either closed and bounded or open and unbounded.

1.7.1 Widening and Extrapolation Operators on Boxes

The library provides a widening operator for boxes. Given two sequences of intervals defining two n-
dimensional boxes, the CC76-widening applies, for each corresponding interval and bound, the interval
constraint widening defined in [CC76]. For extra precision, this incorporates the widening with thresholds
as defined in [BCCetal02] with {—2, —1,0, 1,2} as the set of default threshold values.
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1.8 Weakly-Relational Shapes

The PPL provides support for computations on numerical domains that, in selected contexts, can achieve
a better precision/efficiency ratio with respect to the corresponding computations on a “fully relational”
domain of convex polyhedra. This is achieved by restricting the syntactic form of the constraints that can
be used to describe the domain elements.

1.8.1 Bounded Difference Shapes

For each vector a € R™ and scalar b € R, and for each relation symbol xi € {=, >}, the linear constraint
(@, x) 1 b is said to be a bounded difference if there exist two indices 4, j € {0,...,n — 1} such that:

® ai, a5 € {—1,0, 1} and qa; 75 aj;
e ap=0,forallk ¢ {i,j}.

A convex polyhedron P € CP,, is said to be a bounded difference shape (BDS, for short) if and only if
either P can be expressed as the intersection of a finite number of bounded difference constraints or n = 0
and P = @.

1.8.2 Octagonal Shapes

For each vector a € R™ and scalar b € R, and for each relation symbol <t € {=, >}, the linear constraint
(a,x) > b is said to be an octagonal if there exist two indices i, j € {0,...,n — 1} such that:

* a;,a; € {—1,0,1};
e ap=0,forall k ¢ {i,j}.

A convex polyhedron P € CP, is said to be an octagonal shape (OS, for short) if and only if either P
can be expressed as the intersection of a finite number of octagonal constraints orn = 0 and P = &.

Note that, since any bounded difference is also an octagonal constraint, any BDS is also an OS. The
name “octagonal” comes from the fact that, in a vector space of dimension 2, a bounded OS can have eight
sides at most.

1.8.3 Weakly-Relational Shapes Interface

By construction, any BDS or OS is always topologically closed. Under the usual set inclusion ordering,
the set of all BDSs (resp., OSs) on the vector space R" is a lattice having the empty set & and the universe
R™ as the smallest and the biggest elements, respectively. In theoretical terms, it is a meet sub-lattice of
CP,,; moreover, the lattice of BDSs is a meet sublattice of the lattice of OSs. The least upper bound of a
finite set of BDSs (resp., OSs) is said to be their bds-hull (resp., oct-hull).

As far as the representation of the rational inhomogeneous term of each bounded difference or octagonal
constraint is concerned, several rounding-aware implementation choices are available, including:

* bounded precision integer types;
* bounded precision floating point types;
* unbounded precision integer and rational types, as provided by GMP.

The user interface for BDSs and OSs is meant to be as similar as possible to the one developed for
the domain of closed polyhedra: in particular, all operators on polyhedra are also available for the do-
mains of BDSs and OSs, even though they are typically characterized by a lower degree of precision. For
instance, the bds-difference and oct-difference operators return (the smallest) over-approximations of the
set-theoretical difference operator on the corresponding domains. In the case of (generalized) images and
preimages of affine relations, suitable (possibly not-optimal) over-approximations are computed when the
considered relations cannot be precisely modeled by only using bounded differences or octagonal con-
straints.
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1.84 Widening and Extrapolation Operators on Weakly-Relational Shapes

For the domains of BDSs and OSs, the library provides a variant of the widening operator for convex
polyhedra defined in [CH78]. The implementation follows the specification in [BHMZ05a,BHMZ05b],
resulting in an operator which is well-defined on the corresponding domain (i.e., it does not depend on the
internal representation of BDSs or OSs), while still ensuring convergence in a finite number of steps.

The library also implements an extension of the widening operator for intervals as defined in [CC76].
The reader is warned that such an extension, even though being well-defined on the domain of BDSs and
OSs, is not provided with a convergence guarantee and is therefore an extrapolation operator.

1.9 Rational Grids

In this section we introduce rational grids as provided by the library. See also [BDHetal05] for a detailed
description of this domain.

The library supports two representations for the grids domain; congruence systems and grid generator
systems. We first describe linear congruence relations which form the elements of a congruence system.

1.9.1 Congruences and Congruence Relations

For any a, b, f € R, a =; b denotes the congruence 3y € Z .a —b = pf.
Let S € {Q,R}. For each vector @ € S™ \ {0} and scalars b, f € S, the notation (a, x) =; b stands
for the linear congruence relation in S™ defined by the set of vectors

{vER"‘HuGZ.(a,v)zb—i—uf};

when f # 0, the relation is said to be proper; (a,x) =q b (i.e., when f = 0) denotes the equality
(a,x) = b. f is called the frequency or modulus and b the base value of the relation. Thus, provided
a # 0, the relation (a, ) =; b defines the set of affine hyperplanes

{(a,) =b+puf) |peZl;

if b =5 0, (0, ) =y b defines the universe R™ and the empty set, otherwise.

1.9.2 Rational Grids

The set L C R™ is a rational grid if and only if either L is the set of vectors in R™ that satisfy a finite
system C of congruence relations in Q" orn = 0 and £ = &.

We also say that L is described by C and that C is a congruence system for L.

The grid domain G,, is the set of all rational grids described by finite sets of congruence relations in
Q".

If the congruence system C describes the &, the empty grid, then we say that C is inconsistent. For
example, the congruence systems {(0,z) =o 1} meaning that 0 = 1 and {(a,z) =; 0, (a,z) = 1},
for any @ € R”, meaning that the value of an expression must be both even and odd are both inconsistent
since both describe the empty grid.

When ordering grids by the set inclusion relation, the empty set @ and the vector space R™ (which is
described by the empty set of congruence relations) are, respectively, the smallest and the biggest elements
of G,,. The vector space R" is also called the universe grid.

In set theoretical terms, G,, is a lattice under set inclusion.

1.9.3 Integer Combinations

Let S = {x1,...,xr} C R™ be a finite set of vectors. For all scalars p1,...,ur € Z, the vector
v = 2521 ;2 is said to be a integer combination of the vectors in .S.

We denote by int.hull(S) (resp., int.affine.hull(S)) the set of all the integer (resp., integer and affine)
combinations of the vectors in S.
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1.9.4 Points, Parameters and Lines
Let £ be a grid. Then
» avector p € L is called a grid point of L;

* avector g € R, where q # 0, is called a parameter of L if L # & and p + puq € L, for all points
p € Landall 4 € Z;

e avector I € R" is called a grid line of L if L # @ and p + Al € L, for all points p € £ and all
AeR.

1.9.5 The Grid Generator Representation

We can generate any rational grid in G,, from a finite subset of its points, parameters and lines; each point
in a grid is obtained by adding a linear combination of its generating lines to an integral combination of its
parameters and an integral affine combination of its generating points.

If L, Q, P are each finite subsets of Q™ and

L = linear.hull(L) + int.hull(Q)) + int.affine.hull(P)

where the symbol * +’ denotes the Minkowski’s sum, then £ € G, is a rational grid (see Section 4.4
in [Sch99] and also Proposition 8 in [BDHetal05]). The 3-tuple (L, @, P) is said to be a grid generator
system for £ and we write £ = ggen(L, Q, P).

Note that the grid £ = ggen(L, @, P) = & if and only if the set of grid points P = @. If P # &, then
L = ggen(L, &, Qp U P) where, forsomep e P,Qp ={p+q|qecQ}.

1.9.6 Minimized Grid Representations

A minimized congruence system C for £ is such that, if C’ is another congruence system for £, then
#C < #C’. Note that a minimized congruence system for a non-empty grid has at most n congruence
relations.

Similarly, a minimized grid generator system G = (L, @, P) for L is such that, if ¢’ = (L', Q’, P’)
is another grid generator system for £, then # L < # L' and #Q + # P < # Q' + # P’. Note that a
minimized grid generator system for a grid has no more than a total of n + 1 grid lines, parameters and
points.

1.9.7 Double Description for Grids

As for convex polyhedra, any grid £ can be described by using a congruence system C for £, a grid
generator system G for £, or both by means of the double description pair (DD pair) (C,G). The double
description method for grids is a collection of theoretical results very similar to those for convex polyhedra
showing that, given one kind of representation, there are algorithms for computing a representation of the
other kind and for minimizing both representations.

As for convex polyhedra, such changes of representation form a key step in the implementation of many
operators on grids such as, for example, intersection and grid join.

1.9.8 Space Dimensions and Dimension-compatibility for Grids

The space dimension of a grid L € G, is the dimension n € N of the corresponding vector space R".
The space dimension of congruence relations, grid generators and other objects of the library is defined
similarly.

1.9.9 Affine Independence and Affine Dimension for Grids

A non-empty grid L € G, has affine dimension k € N, denoted by dim(G) = k, if the maximum number
of affinely independent points in G is k£ 4 1. The affine dimension of an empty grid is defined to be 0. Thus
we have 0 < dim(G) < n.

21



1.10 Operations on Rational Grids

In general, the operations on rational grids are the same as those for the other PPL domains and the def-
initions of these can be found in Section Operations on Convex Polyhedra. Below we just describe those
operations that have features or behavior that is in some way special to the grid domain.

1.10.1 Affine Images and Preimages

As for convex polyhedra (see Single-Update Affine Functions), the library provides affine image and preim-
age operators for grids: given a variable xj, and linear expression expr = (a, x) + b, these determine the
affine transformation ¢ = (z, = (a, @) + b): R" — R" that transforms any point (vy,...,v,—1)" ina
grid £ to

n—1 T
(’U(), ey (Zi:o a;v; + b), e ,Unfl) .

The affine image operator computes the affine image of a grid £ under zj, = (a, ) + b. For instance,
suppose the grid £ to be transformed is the non-relational grid in R? generated by the set of grid points
{(0,0)™,(0,3)T,(3,0)T}. Then, if the considered variable is zo and the linear expression is 3z + 221 + 1
(sothat k = 0, ag = 3,a1 = 2,b = 1), the affine image operator will translate £ to the grid £, generated
by the set of grid points {(1,0)", (7,3)™, (10,0)™ } which is the grid generated by the grid point (1,0) and
parameters (3, —3), (0,9); or, alternatively defined by the congruence system {x =35 1,z +y =g 1}. If the
considered variable is as before (i.e., k = 0) but the linear expression is z; (so that ay = 0,a; = 1,0 = 0),
then the resulting grid £, is the grid containing all the points whose coordinates are integral multiples of 3
and lie on line x = y.

The affine preimage operator computes the affine preimage of a grid £ under ¢. For instance, suppose
now that we apply the affine preimage operator as given in the first example using variable zy and linear
expression 3zg + 21 + 1 to the grid £;; then we get the original grid £ back. If, on the other hand, we
apply the affine preimage operator as given in the second example using variable x( and linear expression
x1 to Lo, then the resulting grid will consist of all the points in R? where the y coordinate is an integral
multiple of 3.

Observe that provided the coefficient ay, of the considered variable in the linear expression is non-zero,
the affine transformation is invertible.

1.10.2 Generalized Affine Images

Similarly to convex polyhedra (see Generalized Affine Relations), the library provides two other grid oper-
ators that are generalizations of the single update affine image and preimage operators for grids. The gen-
eralized affine image operator ¢ = (lhs’, rhs, f): R™ — R", where lhs = (¢, z) + d and rhs = (a,x) + b
are affine expressions and f € Q, is defined as

Vo eR" weR": (v,w) € ¢ < ((c,w)+d=; <a7v>+b)/\< /\ wi:vi)

0<i<n,c;=0

Note that, when lhs = xj, and f = 0, so that the transfer function is an equality, then the above operator is
equivalent to the application of the standard affine image of £ with respect to the variable x; and the affine
expression rhs.

1.10.3 Frequency Operator

Let £ € G,, be any non-empty grid and expr = ((a, x) + b) be a linear expression. Then if, for some
¢, f € R, all the points in £ satisfy the congruence cg = (expr =y ¢), then the maximum f such that this
holds is called the frequency of £ with respect to expr.
The frequency operator provided by the library returns both the frequency f and a value val = (a, w)+
b where w € £ and
|val| = min{ |(a,v) + b ‘ vE E}.
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Observe that the above definition is also applied to other simple objects in the library like polyhedra,
octagonal shapes, bd-shapes and boxes and in such cases the definition of frequency can be simplified. For
instance, the frequency for an object P € IP,, is defined if and only if there is a unique value c such that P
saturates the equality (expr = c¢); in this case the frequency is 0 and the value returned is c.

1.10.4 Time-Elapse Operator
For any two grids L1, Lo € G, the time-elapse between L1 and Lo, denoted £, * Lo, is the grid

{p+ugeR" |peLly,qeLounclZ}.

1.10.5 Relation-with Operators

The library provides operators for checking the relation holding between a grid and a congruence, a grid
generator, a constraint or a (polyhedron) generator.

Suppose L is a grid and C an arbitrary congruence system representing £. Suppose also that cg =
((a,z) =/ b) is a congruence relation with L., = gcon({cg}). The possible relations between £ and cg
are as follows.

* L is disjoint from cg if LN L., = @, that is, adding cg to C gives us the empty grid.

* L strictly intersects cg if LN Leg # @ and LN Ly C L; that is, adding cg to C gives us a non-empty
grid strictly smaller than L.

» Lis included in cg if L C Lg; that is, adding cg to C leaves £ unchanged.
o L saturates cg if L is included in cg and f = 0, i.e., cg is an equality congruence.

For the relation between £ and a constraint, suppose that ¢ = ((a, x) b) is a constraint with
< € {=,>,>} and Q the set of points that satisfy c. The possible relations between £ and c are as
follows.

e Lisdisjoint fromcif LN Q = @.

o L strictly intersects cit LN Q # T and LN Q C L.
e Lisincludedin cif L C Q.

» L saturates c if L is included in c and < is =.

A grid L subsumes a grid generator g if adding ¢ to any grid generator system representing £ does not
change L.

A grid £ subsumes a (polyhedron) point or closure point ¢ if adding the corresponding grid point to
any grid generator system representing £ does not change £. A grid £ subsumes a (polyhedron) ray or line
g if adding the corresponding grid line to any grid generator system representing £ does not change L.

1.10.6 Wrapping Operator

The operator wrap_assign provided by the library, allows for the wrapping of a subset of the set of space
dimensions so as to fit the given bounded integer type and have the specified overflow behavior. In order
to maximize the precision of this operator for grids, the exact behavior differs in some respects from the
other simple classes of geometric descriptors.

Suppose £ € G, is a grid and J a subset of the set of space dimensions {0, ...,n — 1}. Suppose also
that the width of the bounded integer type is w so that the range of values R = {r e R | 0 < r < 2%}
if the type is unsigned and R = {r € R | —2¥~1 < r < 2%~} otherwise. Consider a space dimension
j € J and a variable v; for dimension j.

If the value in £ for the variable v; is a constant in the range R, then it is unchanged. Otherwise the
result £’ of the operation on £ will depend on the specified overflow behavior.
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* Overflow impossible. In this case, it is known that no wrapping can occur. If the grid £ has no value
for the variable v; in the range R, then L is set empty. If v; has exactly one value a € R in £, then
v; is set equal to a. Otherwise, L' = L.

* Overflow undefined. In this case, for each value a for v; in the grid £, the wrapped value can be any
value a+2z € R where z € Z. Therefore L' is obtained by adding the parameter (0, . .., 0, v;,0,...,0),
where v; = 1, to the generator system for L.

* Overflow wraps. In this case, if £ already satisfies the congruence v; = ¢ mod 2%, for some a € R,
then v; is set equal to a’ where ' = a mod 2% and o’ € R. Otherwise, £’ is obtained by adding
the parameter (0,...,0,v;,0,...,0), where v; = 2", to the generator system for L.

1.10.7 Widening Operators

The library provides grid widening operators for the domain of grids. The congruence widening and
generator widening follow the specifications provided in [BDHetal05]. The third widening uses either the
congruence or the generator widening, the exact rule governing this choice at the time of the call is left
to the implementation. Note that, as for the widenings provided for convex polyhedra, all the operations
provided by the library for computing a widening £, V L5 of grids L1, Lo € G,, require as a precondition
that £; C L».

Note

As is the case for the other operators on grids, the implementation overwrites one of the two grid
arguments with the result of the widening application. It is worth stressing that, in any widening
operation that computes the widening £1 V Lo, the resulting grid will be assigned to overwrite the
store containing the bigger grid £5. The smaller grid £, is not modified. The same observation holds
for all flavors of widenings and extrapolation operators that are implemented in the library and for all
the language interfaces.

1.10.8 Widening with Tokens

This is as for widening with tokens for convex polyhedra.

1.10.9 Extrapolation Operators

Besides the widening operators, the library also implements several extrapolation operators, which differ
from widenings in that their use along an upper iteration sequence does not ensure convergence in a finite
number of steps.

In particular, for each grid widening that is provided, there is a corresponding limited extrapolation
operator, which can be used to implement the widening “up to” technique as described in [HPR97]. Each
limited extrapolation operator takes a congruence system as an additional parameter and uses it to improve
the approximation yielded by the corresponding widening operator. Note that, as in the case for convex
polyhedra, a convergence guarantee can only be obtained by suitably restricting the set of congruence
relations that can occur in this additional parameter.

1.11 The Powerset Construction

The PPL provides the finite powerset construction; this takes a pre-existing domain and upgrades it to
one that can represent disjunctive information (by using a finite number of disjuncts). The construction
follows the approach described in [Bag98], also summarized in [BHZ04] where there is an account of
generic widenings for the powerset domain (some of which are supported in the pointset powerset domain
instantiation of this construction described in Section The Pointset Powerset Domain).
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1.11.1 The Powerset Domain

The domain is built from a pre-existing base-level domain D which must include an entailment relation
F’, meet operation ‘ ®’, a top element ‘ 1’ and bottom element “ 0’.

AsetS € p(D) is called non-redundant with respect to " if and only if 0 ¢ S and Vd;,dy € S : dy
dy = dj = da. The set of finite non-redundant subsets of D (with respect to ‘ I-”) is denoted by pf (D).
The function Q' : pe(D) — pf, (D), called Omega-reduction, maps a finite set into its non-redundant
counterpart; it is defined, for each S € p¢(D), by

def

QS YSs\{deS|d=0orId €S .dIFd}.

where d I d' denotes d - d' Ad # d'.

As the intended semantics of a powerset domain element S € g¢(D) is that of disjunction of the
semantics of D, the finite set S is semantically equivalent to the non-redundant set ', (S); and elements
of S will be called disjuncts. The restriction to the finite subsets reflects the fact that here disjunctions are
implemented by explicit collections of disjuncts. As a consequence of this restriction, for any S € g¢(D)
such that S # {0}, Q7 (S) is the (finite) set of the maximal elements of S.

The finite powerset domain over a domain D is the set of all finite non-redundant sets of D and denoted
by Dy. The domain includes an approximation ordering ‘ I’ defined so that, for any S; and Sy € Dy,
Sy Fp Sy if and only if

Vdy € 81 :ddy € Sy . dy = ds.
Therefore the top element is {1} and the bottom element is the emptyset.

Note

As far as Omega-reduction is concerned, the library adopts a lazy approach: an element of the pow-
erset domain is represented by a potentially redundant sequence of disjuncts. Redundancies can
be eliminated by explicitly invoking the operator omega_reduce (), e.g., before performing the
output of a powerset element. Note that all the documented operators automatically perform Omega-
reductions on their arguments, when needed or appropriate.

1.12 Operations on the Powerset Construction

In this section we briefly describe the generic operations on Powerset Domains that are provided by the
library for any given base-level domain D.

1.12.1 Meet and Upper Bound

Given the sets S and Sy € Dy, the meet and upper bound operators provided by the library returns the set
QL ({di ®@d2 | di € S1,d2 € Sy }) and Omega-reduced set union €2}, (S; U S) respectively.

1.12.2 Adding a Disjunct

Given the powerset element S € Dy and the base-level element d € D, the add disjunct operator provided
by the library returns the powerset element 7, (S U {d}).

1.12.3 Collapsing a Powerset Element

If the given powerset element is not empty, then the collapse operator returns the singleton powerset con-
sisting of an upper-bound of all the disjuncts.
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1.13 The Pointset Powerset Domain

The pointset powerset domain provided by the PPL is the finite powerset domain (defined in Section The
Powerset Construction) whose base-level domain D is one of the classes of semantic geometric descriptors
listed in Section Semantic Geometric Descriptors.

In addition to the operations described for the generic powerset domain in Section Operations on the
Powerset Construction, the PPL provides all the generic operations listed in Generic Operations on Se-
mantic Geometric Descriptors. Here we just describe those operations that are particular to the pointset
powerset domain.

1.13.1 Meet-Preserving Simplification

Let Si = {di,...,dn}, S2 = {c1,...,cn} and S = {s1,...,54} be Omega-reduced elements of a
pointset powerset domain over the same base-level domain. Then:

* S is powerset meet-preserving with respect to S; using context S if the meet of S and S is equal
to the meet of S; and So;

* S is a powerset simplification with respect to Sy if ¢ < m.

* S is a disjunct meet-preserving simplification with respect to Sy if, for each s, € S, there exists
d; € &; such that, for each c; € Ss, s;, is a meet-preserving enlargement and simplification of d;
using context ¢;.

The library provides a binary operator (simplify_using_context) for the pointset powerset do-
main that returns a powerset which is a powerset meet-preserving, powerset simplification and disjunct
meet-preserving simplification of its first argument using the second argument as context.

Notice that, due to the powerset simplification property, in general a meet-preserving powerset simpli-
fication is not an enlargement with respect to the ordering defined on the powerset lattice. Because of this,
the operator provided by the library is only well-defined when the base-level domain is not itself a powerset
domain.

1.13.2 Geometric Comparisons

Given the pointset powersets S1, Sa over the same base-level domain and with the same space dimension,
then we say that Sy geometrically covers S, if every point (in some disjunct) of S; is also a point in a
disjunct of &;. If S geometrically covers So and Sy geometrically covers &1, then we say that they are
geometrically equal.

1.13.3 Pairwise Merge

Given the pointset powerset S over a base-level semantic GD domain D, then the pairwise merge operator
takes pairs of distinct elements in S whose upper bound (denoted here by W) in D (using the PPL operator
upper_bound_assign () for D) is the same as their set-theoretical union and replaces them by their
union. This replacement is done recursively so that, for each pair ¢, d of distinct disjuncts in the result set,
we have cW d # cU d.

1.13.4 Powerset Extrapolation Operators

The library implements a generalization of the extrapolation operator for powerset domains proposed in [B-
GP99]. The operator BGP99_extrapolation_assign is made parametric by allowing for the specifi-
cation of any PPL extrapolation operator for the base-level domain. Note that, even when the extrapolation
operator for the base-level domain D is known to be a widening on D, the BGP99_extrapolation_—
assign operator cannot guarantee the convergence of the iteration sequence in a finite number of steps
(for a counter-example, see [BHZ04]).
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1.13.5 Certificate-Based Widenings

The PPL library provides support for the specification of proper widening operators on the pointset pow-
erset domain. In particular, this version of the library implements an instance of the certificate-based
widening framework proposed in [BHZ03b].

A finite convergence certificate for an extrapolation operator is a formal way of ensuring that such an
operator is indeed a widening on the considered domain. Given a widening operator on the base-level
domain D, together with the corresponding convergence certificate, the BHZ03 framework is able to lift
this widening on D to a widening on the pointset powerset domain; ensuring convergence in a finite number
of iterations.

Being highly parametric, the BHZ03 widening framework can be instantiated in many ways. The
current implementation provides the templatic operator BHZ03_widening.assign<Certificate,
Widening> which only exploits a fraction of this generality, by allowing the user to specify the base-
level widening function and the corresponding certificate. The widening strategy is fixed and uses two
extrapolation heuristics: first, the upper bound operator for the base-level domain is tried; second, the BG-
P99 extrapolation operator is tried, possibly applying pairwise merging. If both heuristics fail to converge
according to the convergence certificate, then an attempt is made to apply the base-level widening to the
upper bound of the two arguments, possibly improving the result obtained by means of the difference
operator for the base-level domain. For more details and a justification of the overall approach, see [BH-
Z03b] and [BHZ04].

The library provides several convergence certificates. Note that, for the domain of Polyhedra, while
Parma_Polyhedra_Library::BHRZ03_Certificate the "BHRZ03_Certificate” is compatible with both the B-
HRZ03 and the H79 widenings, H79_Certificate is only compatible with the latter. Note that using different
certificates will change the results obtained, even when using the same base-level widening operator. It is
also worth stressing that it is up to the user to see that the widening operator is actually compatible with
a given convergence certificate. If such a requirement is not met, then an extrapolation operator will be
obtained.

1.14 Analysis of floating point computations

This section describes the PPL abstract domains that are used for approximating floating point computa-
tions in software analysis. We follow the approch described in [Min04] and more detailedly in [Min05].
We will denote by V the set of all floating point variables in the analyzed program. We will also denote by
F, the set of floating point numbers in the format used by the analyzer (that is, the machine running the
PPL) and by [, the set of floating point numbers in the format used by the machine that is expected to run
the analyzed program. Recall that floating point numbers include the infinities —oo and +oo.

1.14.1 Linear forms with interval coefficients

Generic concrete floating point expressions on Iy are represented by the Floating Point _Expression
abstract class. Its concrete derivate classes are:

* Cast_Floating_Point_Expression,
* Constant_Floating_ Point_Expression,
* Variable Floating_ Point_Expression,

* Opposite_Floating_Point _Expression , that is the negation (unary minus) of a floating
point expression,

* Sum_Floating.-Point_Expression, thatis the sum of two floating point expressions,

e Difference Floating Point _Expression, thatis the difference of two floating point ex-
pressions,
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e Multiplication Floating Point_Expression, thatis the product of two floating point
expressions, and

* Division Floating Point_Expression, thatis the division of two floating point expres-
sions.

The set of all the possible values in F; of a floating point expression at a given program point in a
given abstract store can be overapproximated by a linear form with interval coefficients, that is a linear
expression of this kind:

i+ i,

where all v are free floating point variables and ¢ and all ¢, are elements of I, defined as the set of
all intervals with boundaries in F,. This operation is called linearization and is performed by the method
linearize of floating point expression classes.

Even though the intervals may be open, we will always use closed intervals in the documentation for
the sake of simplicity, with the exception of unbounded intervals that have oo boundaries. We denote the
set of all linear forms on F, by L.

The Linear_Form class provides common algebraic operations on linear forms: you can add or
subtract two linear forms, and multiply or divide a linear form by a scalar. We are writing only about
interval linear forms in this section, so our scalars will always be intervals with floating point boundaries.
The operations on interval linear forms are intuitively defined as follows:

(i +3 ivv) B (z" +3 m) E et i)+ (ot

veV veV veV
i—i—Zivv g# z"+Zi;v def (i o™i +Z (i, ©% i) v,
veV veV veV
i )% Z—I—sz f Z®# +Z(i®#i;)v
veV veV
veV UGV

Where &%, ©#, @#, and ©# are the corresponding operations on intervals. Note that these operations
always round the interval’s lower bound towards —oo and the upper bound towards +oo in order to obtain
a correct overapproximation.

A (composite) floating point abstract store is used to associate each floating point variable with its
currently known approximation. The store is composed by two parts:

* an interval abstract store p*: V — I, associating each variable with its current approximating
interval, and

* a linear form abstract store pf : ¥V — L, associating each variable with its current approximating
linear form.

An interval abstract store is represented by a Box with floating point boundaries, while a linear form
abstract store is a map of the Standard Template Library. The 1inearize method requires both stores as
its arguments. Please see the documentation of floating point expression classes for more information.

The linearization of a floating point expression e in the composite abstract store [[p# ]] will be
denoted by (e) [[p#, P H . There are two ways a linearization attempt can fail:
* whenever an interval boundary overflows to +o00 or —oo, and

* when we try to divide by an interval that contains 0.
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1.14.2 Use of other abstract domains for floating point analysis

Three of the other abstract domains of the PPL ( BD_Shape , Octagonal_Shape,and Polyhedron)

provide a few optimized methods to be used in the analysis of floating point computations. They are recog-

nized by the fact that they take interval linear forms and/or an interval abstract stores as their parameters.
Please see the methods’ documentation for more information.

1.15 Using the Library
1.15.1 A Note on the Implementation of the Operators

When adopting the double description method for the representation of convex polyhedra, the implemen-
tation of most of the operators may require an explicit conversion from one of the two representations into
the other one, leading to algorithms having a worst-case exponential complexity. However, thanks to the
adoption of lazy and incremental computation techniques, the library turns out to be rather efficient in many
practical cases.

In earlier versions of the library, a number of operators were introduced in two flavors: a lazy version
and an eager version, the latter having the operator name ending with _and . minimize. In principle,
only the lazy versions should be used. The eager versions were added to help a knowledgeable user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version
0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

One of the cases when an eager computation might still make sense is when the well-known fail-first
principle comes into play. For instance, if you have to compute the intersection of several polyhedra and you
strongly suspect that the result will become empty after a few of these intersections, then you may obtain a
better performance by calling the eager version of the intersection operator, since the minimization process
also enforces an emptiness check. Note anyway that the same effect can be obtained by interleaving the
calls of the lazy operator with explicit emptiness checks.

Warning

For the reasons mentioned above, starting from version 0.10 of the library, the usage of the eager ver-
sions (i.e., the ones having a name ending with _.and_minimize) of these operators is deprecated,
this is in preparation of their complete removal, which will occur starting from version 0.11.

1.15.2 On Pointset_Powerset and Partially_Reduced Product Domains: A Warning

For future versions of the PPL library all practical instantiations for the disjuncts for a pointset_powerset
and component domains for the partially_reduced_product domains will be fully supported. However, for
version 0.10, these compound domains should not themselves occur as one of their argument domains.
Therefore their use comes with the following warning.

Warning

The Pointset_Powerset<PSET>andPartially_Reduced Product<D1l, D2, R>should
only be used with the following instantiations for the disjunct domain template PSET and compo-
nent domain templates D1 and D2: C_Polyhedron, NNC_Polyhedron, Grid, Octagonal_—
Shape<T>, BD_Shape<T>, Box<T>.

1.15.3 On Object-Orientation and Polymorphism: A Disclaimer

The PPL library is mainly a collection of so-called “concrete data types”: while providing the user with a
clean and friendly interface, these types are not meant to — i.e., they should not — be used polymorphically
(since, e.g., most of the destructors are not declared virtual). In practice, this restriction means that the
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library types should not be used as public base classes to be derived from. A user willing to extend the
library types, adding new functionalities, often can do so by using containment instead of inheritance; even
when there is the need to override a protected method, non-public inheritance should suffice.

1.15.4 On Const-Correctness: A Warning about the Use of References and Iterators

Most operators of the library depend on one or more parameters that are declared “const”, meaning that
they will not be changed by the application of the considered operator. Due to the adoption of lazy com-
putation techniques, in many cases such a const-correctness guarantee only holds at the semantic level,
whereas it does not necessarily hold at the implementation level. For a typical example, consider the ex-
traction from a polyhedron of its constraint system representation. While this operation is not going to
change the polyhedron, it might actually invoke the internal conversion algorithm and modify the genera-
tors representation of the polyhedron object, e.g., by reordering the generators and removing those that are
detected as redundant. Thus, any previously computed reference to the generators of the polyhedron (be
it a direct reference object or an indirect one, such as an iterator) will no longer be valid. For this reason,
code fragments such as the following should be avoided, as they may result in undefined behavior:

// Find a reference to the first point of the non-empty polyhedron ‘ph’.
const Generator._System& gs = ph.generators();
Generator_System: :const_iterator i = gs.begin();
for (Generator_System::const_iterator gs.end = gs.end(); i != gs_end; ++1i)
if (i->is_point())
K
const Generator& p = *1i;
// Get the constraints of ‘ph’.
const Constraint_System& cs = ph.constraints();
// Both the const iterator ‘i’ and the reference ‘p’
// are no longer valid at this point.
cout << p.divisor () << endl; // Undefined behavior!
++1; // Undefined behavior!

As a rule of thumb, if a polyhedron plays any role in a computation (even as a const parameter), then
any previously computed reference to parts of the polyhedron may have been invalidated. Note that, in
the example above, the computation of the constraint system could have been placed after the uses of the
iterator i and the reference p. Anyway, if really needed, it is always possible to take a copy of, instead of
a reference to, the parts of interest of the polyhedron; in the case above, one may have taken a copy of the
generator system by replacing the second line of code with the following:

Generator_System gs = ph.generators();

The same observations, modulo syntactic sugar, apply to the operators defined in the C interface of the
library.
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