Chapter

3

Scientific Data Sets (SD API)

3.1

3.2

Chapter Overview

This chapter describes the scientific data model and the interface routines provided by HDF for
creating and accessing the data structures included in the model. This interface is known as the
SD interface or the SD API.

The Scientific Data Set Data Model

The scientific data set, or SDS, is a group of data structures used to store and describe multidimen-
sional arrays of scientific data. Refer to Figure 3a for a graphical overview of the SD data set.
Note that in this chapter the terr8®S SD data setanddata setare used interchangeably; the
termsSDS arrayandarray are also used interchangeably.

A scientific data set consists of required and optional components, which will be discussed in the
following subsections.

FIGURE 3a

The Contents of a Scientific Data Set

SDS
/ Required Components Optional Components \
SDS Array
Predefined Attributes
Name ) .
User-defined Attributes
Data Type
Dimension Scales
Dimensions

June 24, 1998 3-19



National Center for Supercomputing Applications

3.2.1 Required SDS Components

Every SDS must contain the following componentsS&S6 array aname adata type and the
dimensionsof the SDS, which are actually the dimensions of the SDS array.

SDS Array

An SDS arrayis a multidimensional data structure that serves as the core structure of an SDS.
This is the primary data component of the SDS model and can be compressed (refer to
Section 3.5.2 on page 46 for a description of SDS compression) and/or stored in external files
(refer the Section 3.5.3.3 on page 52 for a description of external SDS storage). Users of netCDF
should note that SDS arrays are conceptually equivalestritablesin the netCDF data model

An SDS has an index and a reference number associated with ihdEixés a non-negative inte-

ger that describes the relative position of the data set in the file. A valid index ranges from 0 to the
total number of data sets in the file minus 1. Téference numbelis a unique positive integer
assigned to the data set by the SD interface when the data set is created. Various SD interface rou-
tines can be used to obtain an SDS index or reference number depending on the available informa-
tion about the SDS. The index can also be determined if the sequence in which the data sets are
created in the file is known.

In the SD interface, aBDS identifieruniquely identifies a data set within the file. The identifier is
created by the SD interface access routines when a new SDS is created or an existing one is
selected. The identifier is then used by other SD interface routines to access the SDS until the
access to this SDS is terminated. For an existing data set, the index of the data set can be used to
obtain the identifier. Refer to Section 3.4.1 on page 26 for a description of the SD interface routine
that creates SDSs and assigns identifiers to them.

SDS Name

Thenameof an SDS can be provided by the calling program, or is set to "DataSet" by the HDF
library at the creation of the SDS. The name consists of case-sensitive alphanumeric characters, is
assigned only when the data set is created, and cannot be changed. SDS names do not have to be
unique within a file, but their uniqueness makes it easy to semantically distinguish among data
sets in the file.

Data Type

The data contained in an SDS array hakata typeassociated with it. The standard data types
supported by the SD interface include 32- and 64-bit floating-point numbers, 8-, 16- and 32-bit
signed integers, 8-, 16- and 32-bit unsigned integers, and 8-bit characters. The SD interface also
allows the creation of SD data sets consisting of data elements of non-standard lengths (1 to 32
bits). See Section 3.7.6 on page 71 for more information.

Dimensions

SDSdimensionsspecify the shape and size of an SDS array. The number of dimensions of an
array is referred to as th@ank of the array. Each dimension has an index and an identifier
assigned to it. A dimension also has a size and may have a name associated with it.

A dimensionidentifier is a positive number uniquely assigned to the dimension by the library.
This dimension identifier can be retrieved via an SD interface routine. Refer to Section 3.8.1 on
page 72 for a description of how to obtain dimension identifiers.

1. netCDF-3 User’s Guide for Qlune 5, 1997), Section 7, http://www.unidata.ucar.edu/pack-
ages/netcdf/guidec/.

3-20

June 24, 1998



HDF User's Guide

A dimensionindex is a non-negative number that describes the ordinal location of a dimension
among others in a data set. In other words, when an SDS dimension is created, an index number is
associated with it and is one greater than the index associated with the last created dimension that
belongs to the same data set. The dimension index is convenient in a sequential search or when the
position of the dimension among other dimensions in the SDS is known.

Namescan optionally be assigned to dimensions, however, dimension names are not treated in the
same way as SDS array names. For example, if a name assigned to a dimension was previously
assigned to another dimension the SD interface treats both dimensions as the same data compo-
nent and any changes made to one will be reflected in the other.

Thesizeof a dimension is a positive integer. Also, one dimension of an SDS array can be assigned
the predefined siz6D_UNLIMITED(or 0). This dimension is referred to asamimited dimension

which, as the name suggests, can grow to any length. Refer to Section 3.5.1.3 on page 40 for more
information on unlimited dimensions.

3.2.2 Optional SDS Components

There are three types of optional SDS componests-defined attributespredefined attributes
anddimension scalesThese optional components are only created when specifically requested by
the calling program.

Attributesdescribe the nature and/or the intended usage of the file, data set, or dimension they are

attached to. Attributes have a nhame and value which contains one or more data entries of the same
data type. Thus, in addition to name and value, the data type and number of values are specified
when the attribute is created.

User-Defined Attributes

User-defined attributesare defined by the calling program and contain auxiliary information
about a file, SDS array, or dimension. They are more fully described in Section 3.9 on page 85.

Predefined Attributes

Predefined attributedrave reserved names and, in some cases, predefined data types and/or num-
ber of data entries. Predefined attributes are useful because they establish conventions that appli-
cations can depend on. They are further described in Section 3.10 on page 95.

Dimension Scales

A dimension scale is a sequence of numbers placed along a dimension to demarcate intervals
along it. Dimension scales are described in Section 3.8.4 on page 74.

3.2.3 Annotations and the SD Data Model

In the past, annotations were supported in the SD interface to allow the HDF user to attach
descriptive information (called metadata) to a data set. With the expansion of the SD interface to
include user-defined attributes, the use of annotations to describe metadata should be eliminated.
Metadata once stored as an annotation is now more conveniently stored as an attribute. However,
to ensure backward compatibility with scientific data sets and applications relying on annotations,
the AN annotation interface, described in ChapterAtbotations (AN APIxan be used to anno-

tate SDSs.

There is no cross-compatibility between attributes and annotations; creating one does not auto-
matically create the other.

June 24, 1998 3-21



National Center for Supercomputing Applications

3.3 The SD Interface

The SD interface provides routines that store, retrieve, and manipulate scientific data using the
SDS data model. The SD interface supports simultaneous access to more than one SDS in more
than one HDF file. In addition, the SD interface is designed to support a general scientific data
model which is very similar to the netCDF data model developed by the Unidata Progran]l.Center

For those users who have been using the DFSD interface, the SD interface provide a model com-
patible with that supported by the DFSD interface. It is recommended that DFSD users apply the

SD model and interface to their applications since the DFSD interface is less flexible and less

powerful than the SD interface and will eventually be removed from the HDF library.

This section specifies the header file to be used with the SD interface and lists all available SD
interface routines, each of which is accompanied by its purpose and the section where the routine
is discussed.

3.3.1 Header and Include Files Used by the SD Interface

The “mfhdf.h” header file must be included in programs that invoke SD interface routines. FOR-
TRAN-77 users should refer to Section 2.4.3 on page 16.

3.3.2 SD Interface Routines
All C routines in the SD interface begin with the prefix "SD". The equivalent FORTRAN-77 rou-
tines use the prefix "sf'. These routines are categorized as follows:

Access routinesnitialize and terminate access to HDF files and data sets.

Read and write routinesead and write data sets.

General inquiry routinesreturn information about the location, contents, and description of
the scientific data sets in an HDF file.

Dimension routinesaccess and define characteristics of dimensions within a data set.
Dimension scale routineslefine and access dimension scales within a data set.

User-defined attribute routineglescribe and access characteristics of an HDF file, data set
or dimension defined by the HDF user.

Predefined attribute routinesccess previously-defined characteristics of an HDF file, data
set, or dimension.

Compression routinesompress SDS data.

Chunking/tiling routines manage chunked data sets.

Miscellaneous routinegprovide other operations such as external file, n-bit data set, and
compatibility operations.

The SD routines are listed in the following table and are discussed in the following sections of this
document.

1. netCDF-3 User’s Guide for Qlune 5, 1997), Section 2, http://www.unidata.ucar.edu/pack-
ages/netcdf/guidec/.

3-22 June 24, 1998



HDF User's Guide

TABLE 3A SD Interface Routines
Routine Name
Category Description and Reference
C FORTRAN-77
Opens the HDF file and initializes the SD interface (Section 3.4.1
SDstart fstart
on page 26)
SDcreate sfcreate Creates a new data set (Section 3.4.1 on page 26)
Access SDselect sfselect Selects an existing SDS using its index (Section 3.4.1 on page 26)
SDendaccess sfendacc Terminates access to an SDS (Section 3.4.2 on page 27)
Sbend sfend Terminates access to the SD interface and closes the file
(Section 3.4.2 on page 27)
frdata/sfrc- .
SDreaddata Ze:t: s Reads data from a data set (Section 3.6 on page 55)
Read and Write
) sfwdata/ . .
SDwritedata Writes data to a data set (Section 3.5.1 on page 30)
sfwcdata
- A Retrieves information about the contents of a file (Section 3.7.[L on
SDfileinfo sffinfo
page 63)
SDgetinfo fginfo Retrieves information about a data set (Section 3.7.2 on page|63)
SDidtoref Sidoret Returns the reference number of a data set (Section 3.7.5 on
page 67)
’ ) Distinguishes data sets from dimension scales (Section 3.8.4.4 on
. SDiscoordvar sfiscvar
General Inquiry page 81)
SDisrecord dfisrerd Determines whether a data set is appendable (Section 3.5.1.4 on
page 41)
SDnametoindex L fn2index Returns the index of a data set specified by its name (Section|3.7.3
on page 67)
SDreftoindex shefzindex Retur_ns the index of a data set specified by its reference number
(Section 3.7.4 on page 67)
SDdiminfo kfgdinfo Gets information about a dimension (Section 3.8.4.2 on page ['5)
Dimensions SDgetdimid sfdimid Returns the identifier of a dimension (Section 3.8.1 on page 72)
SDsetdimname sfsdimname Associates a name with a dimension (Section 3.8.2 on page 72)
' Retrieves the scale values for a dimension (Section 3.8.4.3 or
SDgetdimscale gfgdscale
Dimension Scales| page 75)
SDsetdimscale gfsdscale Stores the scale values of a dimension (Section 3.8.4.1 on page 75)
SDattrinfo sfpainfo Gets information about an attribute (Section 3.9.2 on page 89
SDfindattr sthattr Retur_ns the index of an attribute specified by its name
(Section 3.9.2 on page 89)
User-defined - — — -
Attributes SDreadattr sfrnatt/sfr- Reads the values of an attribute specified by its index (Section|3.9.3
catt on page 89)
sfsnatt/sfs- Creates a new attribute and stores its values (Section 3.9.1 ol
SDsetattr
catt page 85)

June 24, 1998

3-23



National Center for Supercomputing Applications

SDgetcal sfgcal Retrieves calibration information (Section 3.10.6.2 on page 1083)

Returns the predefined-attribute strings of a data set

SDgetdatasti fdtst .
gerdatasts sl (Section 3.10.2.2 on page 98)
SDgetdimstrs SFadmstr Returns the predefined-attribute strings of a dimension
9 9 (Section 3.10.3.2 on page 99)
sfgfill/sfgc-

SDgeffillvalue Reads the fill value if it exists (Section 3.10.5.2 on page 101)

fill

Retrieves the range of values in the specified data set

SDgett i :
getange rarange (Section 3.10.4.2 on page 100)
Predefined SDsetcal sfscal Defines the calibration information (Section 3.10.6.1 on page 102)
Attributes Sets predefined attributes of the specified data set (Section 3.10.2.1
SDsetdatastrs sfsdtstr
on page 97)
SDsetdimstrs chsdmstr Sets predefined attributes of the specified dimension
(Section 3.10.3.1 on page 98)
. sfsfill/sfsc- Defines the fill value for the specified data set (Section 3.10.5.[1 on
SDsetffillvalue )
fill page 101)
sDsetfilmode sibfimd Sets the fill mode to be applied to all data sets in the specified| file

(Section 3.10.5.3 on page 102)

Defines the maximum and minimum values of the specified data set

SDseti f: )
setrange pisrange (Section 3.10.4.1 on page 99)
Compresses a data set using a specified compression metho
SDsetcompress sfscompress .
. (Section 3.5.2 on page 46)
Compression - -
) ) Defines the non-standard bit length of the data set data
SDsetnbitdataset sfsnbit .
(Section 3.7.6 on page 71)
. . Obtains information about a chunked data set (Section 3.11.5|on
SDgetchunkinfo sfgichnk
page 109)
sfrchnk/ .
SDreadchunk shrechnk Reads data from a chunked data set (Section 3.11.4 on page [L09)
Chunking/ -
. _u ing Makes a non-chunked data set a chunked data set (Section 3{11.1
Tiling SDsetchunk sfschnk
on page 104)
SDsetchunkcache $fechnk Sets the size of the chunk cache (Section 3.11.2 on page 106
) sfwchnk/ . .
SDwritechunk stweehnk Writes data to a chunked data set (Section 3.11.3 on page 107)
) Sets the block size used for storing data sets with unlimited dimen-
SDsetblocksize sfpblsz R .
sion (Section 3.5.1.5 on page 41)
SDsetexternalfile stseker Specifies that a data set is to be stored in an external file
_ (Section 3.5.3.3 on page 52)
Miscellaneous - — - -
SDisdimval bweom fisdmve Determines the current compatibility mode of a dimension
- P (Section 3.8.3.2 on page 74)
SDsetdimval_comp tedmve Sets the future compatibility mode of a dimension (Section 3.§4.3.1

on page 73)

3.3.3 Tags in the SD Interface

A complete list of SDS tags and their descriptions appears in Table D in Appendix A. Refer to
Section 2.2.2.1 on page 8 for a description of tags.

3.4 Programming Model for the SD Interface

This section describes the routines used to initialize the SD interface, create a new SDS or access
an existing one, terminate access to that SDS, and shut down the SD interface. Writing to existing
scientific data sets will be described in Section 3.5 on page 30.

To support multifile access, the SD interface relies on the calling program to initiate and terminate
access to files and data sets. The SD programming model for creating and accessing an SDS in an
HDF file is as follows:

3-24 June 24, 1998



HDF User's Guide

[

Open a file and initialize the SD interface.

Create a new data set or open an existing one using its index.
3. Perform desired operations on this data set.

4. Terminate access to the data set.

5. Terminate access to the SD interface and close the file.

N

To access a single SDS in an HDF file, the calling program must contain the following calls:

C: sd_id = SDstart(filename, access_mode);

sds_id = SDcreate(sd_id, sds_name, data_type, rank,
dim_sizes);
OR sds_id = SDselect(sd_id, sds_index);
<Optional operations>

status = SDendaccess(sds_id);
status = SDend(sd_id);

FORTRAN: sd_id = sfstart(filename, access_mode)

sds_id = sfcreate(sd_id, sds_name, data_type, rank, dim_sizes)
OR sds_id = sfselect(sd_id, sds_index)
<Optional operations>

status = sfendacc(sds_id)
status = sfend(sd_id)

To access several files at the same time, a program must obtain a separate SD file identifier
(sd_id ) for each file to be opened. Likewise, to access more than one SDS, a calling program
must obtain a separate SDS identifisds(id ) for each SDS. For example, to open two SDSs

stored in two files a program would execute the following series of function calls.

C: sd_id_1 = SDstart(flename_1, access_mode);
sds_id_1 = SDselect(sd_id_1, sds_index_1);
sd_id_2 = SDstart(flename_2, access_mode);
sds_id_2 = SDselect(sd_id_2, sds_index_2);
<Optional operations>
status = SDendaccess(sds_id_1);
status = SDend(sd_id_1);
status = SDendaccess(sds_id_2);
status = SDend(sd_id_2);

FORTRAN: sd_id_1 = sfstart(filename_1, access_mode)
sds_id_1 =sfselect(sd_id_1, sds_index_1)
sd_id_2 = sfstart(filename_2, access_mode)
sds_id_2 = sfselect(sd_id_2, sds_index_2)
<Optional operations>
status = sfendacc(sds_id_1)
status = sfend(sd_id_1)
status = sfendacc(sds_id_2)
status = sfend(sd_id_2)

June 24, 1998

3-25



National Center for Supercomputing Applications

3.4.1 Establishing Access to Files and Data Sets: SDstart, SDcreate, and
SDselect

In the SD interfaceSDstart is used to open files rather thedopen. SDstart takes two argu-
ments,flename andaccess_mode , and returns the SD interface identifist,id . Note that the
SD interface identifiersd_id , is notinterchangeable with the file identifidile_id , created by
Hopenand used in other HDF APIs.

The argumenfilename is the name of an HDF or netCDF file.

The argumendccess_mode specifies the type of access required for operations on the file. All the
valid values foraccess_mode are listed in Table 3B. If the file does not exist, specifying
DFACC_READor DFACC WRITE will cause SDstart to return aFALL (or -1) . Specifying
DFACC_CREATEreates a new file with read and write accesBFNCC_CREATIS specified and the

file already exists, the contents of this file will be replaced.

TABLE 3B

File Access Code Flags

File Access Flag Flag Value Description
DFACC_READ 1 Read only access
DFACC_WRITE 2 Read and write access
DFACC_CREATE 4 Create with read and write access

The SD interface identifiers can be obtained and discarded in any order and all SD interface iden-
tifiers must be individually discarded, BDend before the termination of the calling program.

Although it is possible to open a file more than once, it is recommended that the appropriate
access mode be specified é@dstart called only once per file. Repeatedly call®@Dstart on the
same file and with different access modes may cause unexpected results.

SDstart returns an SD identifier or a valuer#iL (or-1). The parameters &Dstart are defined
in Table 3C on page 27.

SDcreate defines a new SDS using the argumesttsd , sds_name, data_type , rank , and
dim_sizes and returns the data set identifisis_id .

The parametesds_name is a character string containing the name to be assigned to the SDS. The
SD interface will generate a default name, "Data Set", for the SDS, if one is not provided, i.e.,
when the parametads_name is set taNULL in C, or an empty string in FORTRAN-77. The max-
imum length of an SDS name64 characters and, #s_name contains more thaé characters,

the name will be truncated before being assigned.

The parametedata_type is a defined name, prefaced DFNT and specifies the type of the data
to be stored in the data set. The header file "hntdefs.h" contains the definitions of all valid data
types, which are described in ChapteHBDF Fundamentalsand listed in Table 2E on page 14.

The parameterank is a positive integer specifying the number of dimensions of the SDS array.
The maximum rank of an SDS array is definedv®x_VAR_DIMSor 32), which is defined in the
header file "netcdf.h".

Each element of the one-dimensional ardmy sizes specifies the length of the corresponding
dimension of the SDS array. The sizedinf_sizes must be the value of the parametak . To
create a data set with an unlimited dimension, assign the val@® @NLIMITED (or 0) to
dim_sizes|0] in C, and talim_sizes(rank) in FORTRAN-77.

3-26

June 24, 1998



HDF User's Guide

Once an SDS is created, you cannot change its name, data type, size, or shape. However, it is pos-
sible to modify the data set data or to create an empty data set and later add values. To add data or
modify an existing data set, uS®selecto get the data set identifier insteadS@icreate

Note that the SD interface retains no definitions about the size, contents, or rank of an SDS from
one SDS to the next, or from one file to the next.

SDselectinitiates access to an existing data set. The routine takes two argusdeidts:and
sds_index and returns the SDS identifigds id . The argumerdd_id is the SD interface identi-
fier returned bySDstart, andsds_index is the position of the data set in the file. The argument
sds_index is zero-based, meaning that the index of first SDS in the file is 0.

Similar to SD interface identifiers, SDS identifiers can be obtained and discarded in any order as
long as they are discarded properly. Each SDS identifier must be individually disposed of, by
SDendaccessbefore the disposal of the identifier of the interface in which the SDS is opened.

SDcreateandSDselecteach returns an SDS identifier or a valugat (or-1). The parameters
of SDstart, SDcreateandSDselectare further described in Table 3C.

3.4.2 Terminating Access to Files and Data Sets: SDendaccess and SDend

SDendaccess$erminates access to the data set and disposes of the data set iddsitifier The
calling program must make oiPendaccessall for everySDselector SDcreatecall made dur-
ing its execution. Failing to caBDendacces$or each call t&sDselector SDcreatemay result in
a loss of data.

SDendterminates access to the file and the SD interface and disposes of the file idehtifier
The calling program must make o88endcall for everySDstart call made during its execution.
Failing to callSDendfor eachSDstart may result in a loss of data.

SDendaccesandSDendeach returns either a valueSyfCCEE{or 0) or FAIL (or-1). The param-
eters ofSDendaccesandSDendare further described in Table 3C.

TABLE 3C

SDstart, SDcreate, SDselect, SDendaccess, and SDend Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
SDstart filename char * character*(*) | Name of the HDF or netCDF file
[int32]
(sfstart) access_mode int32 integer Type of access
sd_id int32 integer SD interface identifier
SDcreate sds_name char * character*(*)| ASCII string containing the name of the data set|
int: ata_type int. integer ata type of the data set
int32 d int32 i D f the d
(sfereate) rank int32 integer Number of dimensions in the array
dim_sizes int32[] integer(*) | Array defining the size of each dimension
SDselect sd_id int32 integer SD interface identifier
[int32]
(sfselect) sds_index int32 integer Position of the data set within the file
SDendaccess
[intn] sds_id int32 integer Data set identifier
(sfendacc)
SDend
[intn] sd_id int32 integer SD interface identifier
(sfend)

June 24, 1998 3-27



National Center for Supercomputing Applications

EXAMPLE 1. Creating an HDF file and an Empty SDS.

This example illustrates the use ®Dstart/sfstart, SDcreate/sfcreate SDendaccess/sfendacc
and SDend/sfendto create the HDF file named SDS.hdf, and an empty data set with the name
SDStemplate in the file.

Note that the Fortran program uses a transformed array to reflect the difference between C and
Fortran internal data storages. When the actual data is written to the data set, SDS.hdf will contain
the same data regardless of the language being used.

C:

#include "mfhdf.h"

#define FILE_NAME  "SDS.hdf"

#define SDS_NAME  "SDStemplate"

#define X_LENGTH 5

#define Y_LENGTH 16

#define RANK 2 [* Number of dimensions of the SDS */

main()

{

/ Variable declaration /

int32 sd_id, sds_id; /* SD interface and data set identifiers */

int32 dim_sizes[2];  /* sizes of the SDS dimensions */

intn status; /* status returned by some routines; has value
SUCCEED or FAIL ¥/

Jradkxksikxiiiokkx End of variable declaration ** sk |

/*

* Create the file and initialize the SD interface.

*

sd_id = SDstart (FILE_NAME, DFACC_CREATE);

/*

* Define the dimensions of the array to be created.
*/

dim_sizes[0] = Y_LENGTH;

dim_sizes[1] = X_LENGTH;

/*

* Create the data set with the name defined in SDS_NAME. Note that

* DFNT_INT32 indicates that the SDS data is of type int32. Refer to

* Table 2E for definitions of other types.

*/

sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

/*

* Terminate access to the data set.
*

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*

status = SDend (sd_id);

3-28 June 24, 1998



HDF User's Guide

FORTRAN:

C
C
C

OO0

C

C**** \ariable declaration

C

C

C** End of variable declaration

O000

O0000 [eNeN¢e]

[eNeN¢e]

[eNeNe]

program create_SDS
implicit none

Parameter declaration.

character*7 FILE_NAME

character*11 SDS_NAME

integer X_LENGTH, Y_LENGTH, RANK
parameter (FILE_NAME ='SDS.hdf,

+ SDS_NAME ='SDStemplate’,
+ X_LENGTH =5,

+ Y_LENGTH =16,

+ RANK =2)

integer DFACC_CREATE, DFNT_INT32
parameter (DFACC_CREATE =4,
+ DFNT_INT32 = 24)

Function declaration.

integer sfstart, sfcreate, sfendacc, sfend

integer sd_id, sds_id, dim_sizes(2)
integer status

Create the file and initialize the SD interface.
sd_id = sfstart(FILE_NAME, DFACC_CREATE)
Define dimensions of the array to be created.

dim_sizes(1) = X_LENGTH
dim_sizes(2) = Y_LENGTH

Create the array with the name defined in SDS_NAME.
Note that DFNT_INT32 indicates that the SDS data is of type

integer. Refer to Tables 2E and 2! for the definition of other types.

sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK,
dim_sizes)

Terminate access to the data set.
status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.
status = sfend(sd_id)

end

June 24, 1998

3-29



National Center for Supercomputing Applications

3.5 Writing Data to an SDS

An SDS can be written partially or entirely. Partial writing includes writing to a contiguous region

of the SDS and writing to selected locations in the SDS according to patterns defined by the user.
This section describes the routiBBwritedata and how it can write data to part of an SDS or to

an entire SDS. The section also illustrates the concepts of compressing SDSs and using external
files to store scientific data.

3.5.1 Writing Data to an SDS Array: SDwritedata

SDwritedata can completely or partially fill an SDS array or append data along the dimension
that is defined to be of unlimited length (see Section 3.5.1.3 on page 40 for a discussion of unlim-
ited-length dimensions). It can also skip a specified number of SDS array elements between write
operations along each dimension.

To write to an existing SDS, the calling program must contain the following sequence of routine
calls:

C: sds_id = SDselect(sd_id, sds_index);
status = SDwritedata(sds_id, start, stride, edges, data);

FORTRAN: sds_id = sfselect(sd_id, sds_index)
status = sfwdata(sds_id, start, stride, edges, data)
OR status = sfwedata(sds_id, start, stride, edges, data)

To write to a new SDS, simply replace the calselectwith the call SDcreate which is
described in Section 3.4.1 on page 26.

SDwritedata takes five argumentsds id , start , stide , edges, anddata . The argument
sds_id is the data set identifier returned P createor SDselect

Before proceeding with the description of the remaining arguments, an explanation of the term
hyperslab(or slab, as it will be used in this chapter) is in ordeslabis a group of SDS array ele-
mentsthat are stored in consecutive locatiottscan be of any size and dimensionality as long as

it is a subset of the array, which means that a single array element and the entire array can both be
considered slabs. A slab is defined by the multidimensional coordinate of its initial vertex and the
lengths of each dimension.

Given this description of the slab concept, the usage of the remaining arguments should become
apparent. The argumestart  is a one-dimensional array specifying the location in the SDS array

at which the write operation will begin. The values of each element of thesgtay are relative

to 0 in both the C and FORTRAN-77 interfaces. The sizaaf must be the same as the num-

ber of dimensions in the SDS array. In addition, each vals@rin must be smaller than its cor-
responding SDS array dimension unless the dimension is unlimited. Violating any of these
conditions causeSDwritedata to returnFAIL .

The argumenstride is a one-dimensional array specifying, for each dimension, the interval
between values to be written. For example, setting the first element of thetadeay equal to 1

writes data to every location along the first dimension. Setting the first element of the array
stride  to 2 writes data to every other location along the first dimension. Figure 3b illustrates this
example, where the shading elements are written and the white elements are skipped. If the argu-
mentstride  is set toNULLin C (or eithero or 1 in FORTRAN-77),SDwritedata operates as if

every element oftide  contains a value of 1, and a contiguous write is performed. For better
performance, it is recommended that the valusridé  be defined aslULL(i.e.,0 or1 in FOR-
TRAN-77) rather than being set to 1.

3-30

June 24, 1998



HDF User's Guide

The size of the arragtide  must be the same as the number of dimensions in the SDS array.
Also, each value istride  must be smaller than or equal to its corresponding SDS array dimen-
sion unless the dimension is unlimited. Violating any of these conditions caDseatedata to
returnFAIL .

FIGURE 3b

An Example of Access Pattern ("Strides")

stride[0] = 2

Array 0 1 2 3 4 5 6 N
Location

The argumengdges is a one-dimensional array specifying the length of each dimension of the
slab to be written. If the slab has fewer dimensions than the SDS data set has, thedgee of

must still be equal to the number of dimensions in the SDS array and all the elements correspond-
ing to the additional dimensions must be set to 1.

Each value in tharrayedges must not be larger than the length of the corresponding dimension in
the SDS data set unless the dimension is unlimited. Attempting to write slabs larger than the size
of the SDS data set will result in an error condition.

In addition, the sum of each value in #reayedges and the corresponding value in thtart
array must be smaller than or equal to its corresponding SDS array dimension unless the dimen-
sion is unlimited. Violating any of these conditions cauPsvritedata to returnFAIL .

The parametedata contains the SDS data to be written. If the SDS array is smaller than the
bufferdata , the amount of data written will be limited to the maximum size of the SDS array.

Be aware that the mapping between the dimensions of a slab and the order in which the slab val-
ues are stored in memory is different between C and FORTRAN-77. In C, the values are stored
with the assumption that the last dimension of the slab varies fastest (or "row-major order" stor-
age), but in FORTRAN-77 the first dimension varies fastest (or "column-major order" storage).
These storage order conventions can cause some confusion when data written by a C program is
read by a FORTRAN-77 program or vice versa.

There are two FORTRAN-77 versions of this routisfvdata and sfwcdata The routinesfw-
data writes numeric scientific data asfivcdatawrites character scientific data.

SDwritedata returns either a value SJJCCEEjor 0) or FAIL (or-1). The parameters of this rou-
tine are described in Table 3D.

June 24, 1998 3-31



National Center for Supercomputing Applications

TABLE 3D SDwritedata Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) c FORTRAN-77
sds_id int32 integer Data set identifier
) . Array containing the position at which the
start int32 ] integer(") write will start for each dimension
SDwritedata o -
. . . . Array specifying the interval between the val-
fintn] stride int32 {1 integer(*) ues that will be read along each dimension,
(sfwdata/
sfwcdata) } ) Array containing the number of data elemepts
edges ints2 [} integer(*) that will be written along each dimension
data VOIDP <valid numeric data type>(* Buffer for the data to be written
character*(*)
3.5.1.1 Filling an Entire Array
Filling an array is a simple slab operation where the slab begins at the origin of the SDS array and
fills every location in the arragDwritedata fills an entire SDS array with data when all elements
of the arraystart are set t@, the argumendtide  is set equal tt?lULLin C or each element of
the arraystride is set tol in both C and FORTRAN-77, and each element of the atges is
equal to the length of each dimension.
EXAMPLE 2. Writing to an SDS.

This example illustrates the use of the routi®&&select/sfselecand SDwritedata/sfwrite to
select the first SDS in the file SDS.hdf created in Example 1 and to write actual data to it.

C:
#include "mfhdf.h"

#define FILE_NAME  "SDS.hdf"
#define X_LENGTH 5
#define Y_LENGTH 16

main( )

{

/ Variable declaration /

int32 sd_id, sds_id, sds_index;

intn status;

int32 start[2], edges[2];

int32 data[Y_LENGTH][X_LENGTH];
int i, j;

/**kk*************—**k* End of Val’lable deClal’athn *****************kkkk**/

/*
* Data set data initialization.
*/
for (j= 0;j < Y_LENGTH; j++) {
for (i=0; i< X_LENGTH; i++)
datafjJil = (i+j) + 1;

/*
* Open the file and initialize the SD interface.
*

3-32

June 24, 1998



HDF User's Guide

sd_id = SDstart (FILE_NAME, DFACC_WRITE);

/*

* Attach to the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*

* Define the location and size of the data to be written to the data set.
*

start[0] = 0;

start[1] = 0;

edges[0] = Y_LENGTH;

edges[1] = X_LENGTH;

/*

* Write the stored data to the data set. The third argument is set to NULL
* t0 specify contiguous data elements. The last argument must

* be explicitly cast to a generic pointer since SDwritedata is designed

* to write generic data.

*/

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

/*

* Terminate access to the data set.
*

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:

OO0

C

program write_data
implicit none

Parameter declaration.

character*7 FILE_NAME

character*11 SDS_NAME

integer  X_LENGTH, Y_LENGTH, RANK
parameter (FILE_NAME ='SDS.hdf,

+ SDS_NAME ='SDStemplate’,

+ X_LENGTH =5,

+ Y_LENGTH =16,

+ RANK =2)

integer DFACC_WRITE, DFNT_INT32
parameter (DFACC_WRITE =2,

+ DFNT_INT32 = 24)

C  Function declaration.

C

C

C*** \ariable declaration

C

integer sfstart, sfselect, sfwdata, sfendacc, sfend

integer sd_id, sds_id, sds_index, status
integer start(2), edges(2), stride(2)

June 24,

1998 3-33



National Center for Supercomputing Applications

integer i, j

integer data(X_LENGTH, Y_LENGTH)
C
C** End of variable declaration
C

C
C Data set data initialization.
C
do20j=1, Y_LENGTH
do10i=1, X_LENGTH
data(i,j)=i+j-1
10 continue
20 continue

Open the file and initialize the SD interface.

OO0

sd_id = sfstart(FILE_NAME, DFACC_WRITE)

Attach to the first data set.

[eNeNe]

sds_index=0
sds_id = sfselect(sd_id, sds_index)

Define the location and size of the data to be written
to the data set. Note that setting values of the array stride to 1
specifies the contiguous writing of data.

O0O000

start(1) =0

start(2) =0

edges(1l) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) =1

stride(2) =1

Write the stored data to the data set named in SDS_NAME.
Note that the routine sfwdata is used instead of sfwcdata
to write the numeric data.

O0O000

status = sfwdata(sds_id, start, stride, edges, data)

Terminate access to the data set.

OO0

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

OO0

status = sfend(sd_id)

end

3-34 June 24, 1998



HDF User's Guide

3.5.1.2 Writing Slabs to an SDS Array

To allow preexisting data to be modified, the HDF library does not pr&&@ntritedata from

overwriting one slab with another. As a result, the calling program is responsible for managing
any overlap when writing slabs. The HDF library will issue an error if a slab extends past the valid
boundaries of the SDS array. However, appending data along an unlimited dimension is allowed.

EXAMPLE 3.

Writing a Slab of Data to an SDS.

This example shows how to fill a 3-dimensional SDS array with data by writing series of 2-dimen-

sional slabs to it.

C:

#include "mfhdf.h"

#define FILE_NAME  "SLABS.hdf"
#define SDS_NAME  "FilledBySlabs"
#define X_LENGTH 4

#define Y_LENGTH 5

#define Z LENGTH 6

#define RANK 3

main()

{

/ Variable declaration /

int32 sd_id, sds_id;

intn status;

int32 dim_sizes[3], start[3], edges[3];

int32 data[Z_LENGTH][Y_LENGTH][X_LENGTH]J;
int32 zx_data[Z_LENGTH][X_LENGTH];

int i,j,k;

[FIxwwRk xRk Rk End of variable declaration **skik ik ik ok |

/*
* Data initialization.
*/
for (k=0; k<Z_LENGTH; k++)
for (j=0; j<Y_LENGTH; j++)
for (i=0;i <X_LENGTH; i++)
data[K|[j]i] = (i+1) + (+ 1) + (k+ 1);

/*

* Create the file and initialize the SD interface.

*/

sd_id = SDstart (FILE_NAME, DFACC_CREATE);

/*

* Define dimensions of the array to be created.
*/

dim_sizes[0] = Z LENGTH,;

dim_sizes[1] = Y_LENGTH,;

dim_sizes[2] = X_LENGTH,;

/*
* Create the array with the name defined in SDS_NAME.
*/

sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

/*

June 24, 1998

3-35



National Center for Supercomputing Applications

* Set the parameters start and edges to write

* a 6x4 element slab of data to the data set; note

* that edges[1] is set to 1 to define a 2-dimensional slab
* parallel to the ZX plane.

* start[1] (slab position in the array) is initialized inside

* the for loop.

*/

for (j=0;j<Y_LENGTH; j++)
{
start[1] = j;

/*

* |nitialize zx_data buffer (data slab).
*/

for (k=0; k< Z_LENGTH; k++)

{ for (i=0;i<X_LENGTH; i++)
{ zx_data[K][i] = data[K][j[i];
} }
/*

* Write the data slab into the SDS array defined in SDS_NAME.
* Note that the 3rd parameter is NULL which indicates that consecutive
* glabs in the Y direction are written.
*
/
status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)zx_data);
}

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:

program write_slab
implicit none

Parameter declaration.

OO0

character*9 FILE_NAME

character*13 SDS_NAME

integer  X_LENGTH, Y_LENGTH, Z_LENGTH, RANK
parameter (FILE_NAME ='SLABS.hdf,

+ SDS_NAME = "FilledBySlabs’,
X_LENGTH =4,

Y_LENGTH =5,

Z LENGTH =6,

RANK =3)

integer DFACC_CREATE, DFNT_INT32
parameter (DFACC_CREATE =4,

+ + + +

3-36 June 24, 1998



HDF User's Guide

[eNeNe]

C

C**** \ariable declaration

C

C

C** End of variable declaration

OO0

10
20

+ DFNT_INT32 = 24)

Function declaration.

integer sfstart, sfcreate, sfwdata, sfendacc, sfend

integer sd_id, sds_id

integer dim_sizes(3), start(3), edges(3), stride(3)
integer i, j, k, status

integer data(X_LENGTH, Y_LENGTH, Z_LENGTH)
integer xz_data(X_LENGTH, Z_LENGTH)

Data initialization.

do30k=1,Z LENGTH
do20j=1,Y_LENGTH
do10i=1, X_LENGTH
data(i, j, Ky =i+j+k
continue
continue

30 continue

Cc
C
C

OO0

OO0

C
C
C

O0O00000O0

Create the file and initialize the SD interface.
sd_id = sfstart(FILE_NAME, DFACC_CREATE)
Define dimensions of the array to be created.

dim_sizes(1) = X_LENGTH

dim_sizes(2) = Y_LENGTH
dim_sizes(3) =Z_LENGTH

Create the data set with the name defined in SDS_NAME.

sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK,

dim_sizes)

Set the parameters start and edges to write
a 4x6 element slab of data to the data set;

note that edges(2) is set to 1 to define a 2 dimensional slab

parallel to the XZ plane;
start(2) (slab position in the array) is initialized inside the
for loop.

edges(1l) = X_LENGTH
edges(2) =1

edges(3) =Z_LENGTH
start(1) =0

start(3) =0

stride(1) =1

stride(2) =1

stride(3) =1

do60j=1,Y_LENGTH
start(2) =j- 1

Initialize the buffer xz_data (data slab).

June 24, 1998

3-37



National Center for Supercomputing Applications

do50k=1,Z LENGTH
do40i=1,X_LENGTH
xz_data(i, k) = data(i, j, k)
40  continue
50 continue

Write the data slab into SDS array defined in SDS_NAME.
Note that the elements of array stride are setto 1 to
specify that the consecutive slabs in the Y direction are written.

O0O000

status = sfwdata(sds_id, start, stride, edges, xz_data)
60 continue
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

[eNeN¢e]

status = sfend(sd_id)

end

EXAMPLE 4. Altering Values within an SDS Array.

This example demonstrates how the rousi®writedata can be used to alter the values of the
elements in the 10th and 11th rows, at the 2nd column, in the SDS array created in the Example 1
and written in Example 2. FORTRAN-77 routisivdata is used to alter the elements in the 2nd
row, 10th and 11th columns, to reflect the difference between C and Fortran internal storage.

C:

#include "mfhdf.h"
#define FILE_NAME  "SDS.hdf"
main( )

{

/ Variable declaration /

int32 sd_id, sds_id, sds_index;
intn status;

int32 start[2], edges|[2];

int32 new_data[2];

int i, j;

/********************* End Of Vanable declaratlon ***********************/
/*
* Open the file and initialize the SD interface with write access.
*,
/
sd_id = SDstart (FILE_NAME, DFACC_WRITE);

/*

* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*
* Set up the start and edge parameters to write new element values
* into 10th row, 2nd column place, and 11th row, 2nd column place.

3-38 June 24, 1998



HDF User's Guide

*/

start[0] =9; /* starting at 10th row */

start[1] =1; /* starting at 2nd column */

edges[0] =2; /*rows 10th and 11th */
edges[1] =1; /*column 2nd only */

/*

* |nitialize buffer with the new values to be written.
*/

new_data[0] = new_data[1] = 1000;

/*
* Write the new values.
*
/
status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)new_data);

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:

program alter_data
implicit none

Parameter declaration.

OO0

character*7 FILE_NAME

integer DFACC_WRITE
parameter (FILE_NAME ='SDS.hdf,
+ DFACC_WRITE = 2)

Function declaration.

OO0

integer sfstart, sfselect, sfwdata, sfendacc, sfend
C
C**** Variable declaration
C

integer sd_id, sds_id, sds_index
integer start(2), edges(2), stride(2)
integer status
integer new_data(2)
C
C*+ End of variable declaration
C

Open the file and initialize the SD interface.

OO0

sd_id = sfstart(FILE_NAME, DFACC_WRITE)

Select the first data set.

OO0

sds_index=0
sds_id = sfselect(sd_id, sds_index)

June 24, 1998 3-39



National Center for Supercomputing Applications

Initialize the start, edge, and stride parameters to write
two elements into 2nd row, 10th column and 11th column places.

Specify 2nd row.

O0O0000

start(1) =1

Specify 10th column.

OO0

start(2) =9
edges(1) =1

Two elements are written along 2nd row.

OO0

edges(2) =2
stride(1) =1
stride(2) =1

Initialize the new values to be written.

OO0

new_data(1) = 1000
new_data(2) = 1000

Write the new values.

OO0

status = sfwdata(sds_id, start, stride, edges, new_data)

Terminate access to the data set.

OO0

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

[eNeNe]

status = sfend(sd_id)

end

3.5.1.3 Appending Data to an SDS Array along an Unlimited Dimension

An SDS array can be made appendable, however, only along one dimension. This dimension must
be specified as amppendable dimensiowhen it is created.

In C, only the first element of ti&Dcreateparametetim_sizes (i.e., the dimension of the low-

est rank or the slowest-changing dimension) can be assigned thespaliNtIMITED (or 0) to

make the first dimension unlimited. In FORTRAN-77, only B®¢ dimension (i.e., the dimen-

sion of the highest rank or the slowest-changing dimension) can be unlimited. In other words, in
FORTRAN-77dim_sizes(rank) must be set to the vali@® UNLIMITEDto make the last dimen-

sion appendable.

To append data to a data set without overwriting previously-written data, the user must specify the
appropriate coordinates in teart parameter of th&Dwritedata routine. For example, if 15

data elements have been written to an unlimited dimension, appending data to the array requires a
start  coordinate of 15. Specifying a starting coordinate less than the current number of elements
written to the unlimited dimension will result in data being overwritten. In either case, all of the
coordinates in the array except the one corresponding to the unlimited dimension must be equal to
or less than the lengths of their corresponding dimensions.

Any time an unlimited dimension is appended to, the HDF library will automatically adjust the
dimension record to the new length. If the newly-appended data begins beyond the previous length

3-40

June 24, 1998



HDF User's Guide

of the dimension, the locations between the old data and the beginning of the newly-appended
data are initialized to the assigned fill value if there is one defined by the user, or the default fill
value if none is defined. Refer to Section 3.10.5 on page 100 for a discussion of fill value.

3.5.1.4 Determining whether an SDS Array is Appendable: SDisrecord

SDisrecord determines whether the data set identified by the paramstéd is appendable,
which means that the slowest-changing dimension of the SDS array is declared unlimited when
the data set is created. The syntagDisrecordis as follows:

C: status = SDisrecord(sds_id);
FORTRAN: status = sfisrcrd(sds_id)

SDisrecordreturnsTRUE(or 1) when the data set specified doig_id is appendable arfeALSE (or
0) otherwise. The parameter of this routine is defined in Table 3E.

TABLE 3E

SDisrecord Parameter List

Routine Name Parameter Type

[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77

SDisrecord
[int32] sds_id int32 integer Data set identifier
(sfisrcrd)

3.5.1.5 Setting the Block Size: SDsetblocksize

SDsetblocksizesets the size of the blocks used for storing the data for unlimited dimension data
sets. This is used only when creating new data sets; it does not have any affect on existing data
sets. The syntax of this routine is as follows:

C: status = SDsetblocksize(sds_id, block_size);
FORTRAN: status = sfshisz(sds_id, block_size)

SDsetblocksizemust be called afte3Dcreateor SDselectand beforeSDwritedata. The parame-
terblock size  should be set to a multiple of the desired buffer size.

SDsetblocksizereturns a value oSUCCEED(or 0) or FAIL (or -1). Its parameters are further
described in Table 3F.

TABLE 3F

SDsetblocksize Parameter List

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
SDsetblocksize sds_id int32 integer Data set identifier
[intn] - ) - ;
(sfsblsz) block_size int32 integer Block size

June 24, 1998 3-41



National Center for Supercomputing Applications

EXAMPLE 5.

Appending Data to an SDS Array with an Unlimited Dimension.

This example creates a 10x10 SDS array with one unlimited dimension and writes data to it. The
file is reopened and the routir8Disrecord/sfisrcrd is used to determine whether the selected
SDS array is appendable. Then new data is appended, starting at the 11th row.

C:

#include "mfhdf.h"

#define FILE_NAME  "SDSUNLIMITED.hdf"
#define SDS_NAME  "AppendableData"
#define X_LENGTH 10

#define Y_LENGTH 10

#define RANK 2

main( )

{

/ Variable declaration /

int32 sd_id, sds_id, sds_index;

intn status;

int32 dim_sizes[2];

int32 data[Y_LENGTH][X_LENGTH], append_data[X LENGTH];
int32 start[2], edges[2];

int i, j;

JrHdxkikxiiioekokx End of variable declaration **#xskssikiskkiciokk |

/*

* Data initialization.

*/

for (j=0;j<Y_LENGTH; j++)

{

for (i=0; i < X_LENGTH; i++)

datafj][i] = (i + 1) + (j + 1);

}

/*

* Create the file and initialize the SD interface.

*/

sd_id = SDstart (FILE_NAME, DFACC_CREATE);

/*

* Define dimensions of the array. Make the first dimension
* appendable by defining its length to be unlimited.

*

dim_sizes[0] = SD_UNLIMITED;

dim_sizes[1] = X_LENGTH,;

/*

* Create the array data set.

*/

sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

/*

* Define the location and the size of the data to be written
* to the data set.

*/

start[0] = start[1] = O;

edges[0] = Y_LENGTH;

edges[1] = X_LENGTH;

3-42

June 24, 1998



HDF User's Guide

/*

* Write the data.

*

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

/*

* Terminate access to the array data set, terminate access
* to the SD interface, and close the file.

*

status = SDendaccess (sds_id);

status = SDend (sd_id);

/*
* Store the array values to be appended to the data set.
*/
for (i=0; i< X_LENGTH; i++)
append_datali] = 1000 + i;

/*

* Reopen the file and initialize the SD interface.
*/

sd_id = SDstart (FILE_NAME, DFACC_WRITE);

/*

* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*

* Check if selected SDS is unlimited. If it is not, then terminate access
* to the SD interface and close the file.

*/

if ( SDisrecord (sds_id) )

{

/*

* Define the location of the append to start at the first column
* of the 11th row of the data set and to stop at the end of the
* eleventh row.

*

start[0] = Y_LENGTH,;
start[1] = 0;

edges|

0]=1
edges[1] = X_LENGTH;

/*

* Append data to the data set.

*

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)append_data);
}

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

June 24, 1998 3-43



National Center for Supercomputing Applications

FORTRAN:

program append_sds
implicit none

Parameter declaration.

[eNeN¢e]

character*16 FILE_NAME

character*14 SDS_NAME

integer  X_LENGTH, Y_LENGTH, RANK
parameter (FILE_NAME ='SDSUNLIMITED.hdf",

+ SDS_NAME = "AppendableData’,

+ X_LENGTH = 10,

+ Y_LENGTH = 10,

+ RANK =2)

integer DFACC_CREATE, DFACC_WRITE, SD_UNLIMITED,
+ DFNT_INT32

parameter (DFACC_CREATE =4,

+ DFACC_WRITE =2,

+ SD_UNLIMITED =0,

+ DFNT_INT32 = 24)

C
C  Function declaration.
C

integer sfstart, sfcreate, sfwdata, sfselect
integer sfendacc, sfend
C
C**** Variable declaration
C
integer sd_id, sds_id, sds_index, status
integer dim_sizes(2)
integer start(2), edges(2), stride(2)
integer i, j
integer data (X_LENGTH, Y_LENGTH), append_data(X_LENGTH)
C
C** End of variable declaration
C
C
C Data initialization.
C
do20j=1,Y_LENGTH
do10i=1, X _LENGTH

data(i, j) =i+]j
10 continue
20 continue
C
C Create the file and initialize the SD interface.
C

sd_id = sfstart(FILE_NAME, DFACC_CREATE)

Define dimensions of the array. Make the
last dimension appendable by defining its length as unlimited.

O000

dim_sizes(1) = X_LENGTH
dim_sizes(2) = SD_UNLIMITED

(@]

Create the array data set.
sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK,
dim_sizes)

Define the location and the size of the data to be written
to the data set. Note that the elements of array stride are
set to 1 for contiguous writing.

3-44 June 24, 1998



HDF User's Guide

start(1) =0

start(2) =0

edges(1l) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) =1

stride(2) =1

Write the data.

OO0

status = sfwdata(sds_id, start, stride, edges, data)

Terminate access to the data set, terminate access
to the SD interface, and close the file.

o000

status = sfendacc(sds_id)
status = sfend(sd_id)

Store the array values to be appended to the data set.

[eNeNe]

do30i=1, X_LENGTH
append_data(i) = 1000 +i- 1
continue

Reopen the file and initialize the SD.

0008

sd_id = sfstart(FILE_NAME, DFACC_WRITE)

Select the first data set.

OO0

sds_index=0
sds_id = sfselect(sd_id, sds_index)

Define the location of the append to start at the 11th
column of the 1st row and to stop at the end of the 10th row.

O000

start(1) =0

start(2) = Y_LENGTH
edges(l) = X_LENGTH
edges(2) =1

Append the data to the data set.

OO0

status = sfwdata(sds_id, start, stride, edges, append_data)

Terminate access to the data set.

OO0

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

OO0

status = sfend(sd_id)

end

June 24, 1998 3-45



National Center for Supercomputing Applications

3.5.2 Compressing SDS Data: SDsetcompress

The SDsetcompressoutine compresses an existing data set or creates a new compressed data set.
It is a simplified interface to theliCcreate routine, and should be used insteadH@icreate
unless the user is familiar with the lower-level routines.

The compression algorithms currently supporte&bBgetcompressire:
Adaptive Huffman
GZIP "deflation” (Lempel/Ziv-77 dictionary coder)
Run-length encoding

In the future, the following algorithms may be included: Lempel/Ziv-78 dictionary coding, an
arithmetic coder, and a faster Huffman algorithm.

The syntax of the routinDsetcompresss as follows:
C: status = SDsetcompress(sds_id, comp_type, &c_info);
FORTRAN: status = sfscompress(sds_id, comp_type, comp_prm)

The parametetomp_type specifies the compression type definition and is s€0OP_CODE_RLE
(or 1) for run-length encoding (RLE)COMP_CODE_SKPHUR@r 3) for Skipping Huffman,
COMP_CODE_DEFLAT@r 4) for GZIP compression, aZOMP_CODE_NOWN& 0) for no compression.

Compression information is specified by the parametéfo in C, and by the parameter
comp_pm in FORTRAN-77. The parameterinfo is a pointer to a union structure of type
comp_info.  (Refer to theSDsetcompresentry in theHDF Reference Manudbr the description

of thecomp_info  structure.) Ifcomp_type is set tocCOMP_CODE_NONECOMP_CODE_R|Ehe param-
etersc_info andcomp_prm are not used;_info can be set tdlULL andcomp_prm can be unde-
fined. If comp_type is set to COMP_CODE_SKPHURRen the structurekphuff in the union
comp_info in C comp_prm(1) in FORTRAN-77) must be provided with the size, in bytes, of the
data elements. If it is set @OMP_CODE_DEFLATHe deflate structure in the uniosmp_info in C
(comp_prm(1) in FORTRAN-77) must be provided with the information about the compression
effort.

For example, to compress signed 16-bit integer data using the adaptive Huffman algorithm, the
following definition andSDsetcompres<all are used.

C: comp_info c_info;
c¢_info.skphuff.skp_size = sizeof(int16);
status = SDsetcompress(sds_id, COMP_CODE_SKPHUFF, &c _info);

FORTRAN: comp_prm(1) =2
COMP_CODE_SKPHUFF =3
status = sfscompress(sds_id, COMP_CODE_SKPHUFF, comp_prm)

To compress a data set using the gzip deflation algorithm with the maximum effort specified, the
following definition andSDsetcompres<all are used.

C: comp_info c_info;
c_info.deflate_level = 9;
status = SDsetcompress(sds_id, COMP_CODE_DEFLATE, &c_info);

FORTRAN: comp_prm(1)=9
COMP_CODE_DEFLATE =4
status = sfscompress(sds_id, COMP_CODE_DEFLATE, comp_prm)

3-46

June 24, 1998



HDF User's Guide

SDsetcompresgunctionality is currently limited to the following:

- Write the compressed data, in its entirety, to the data set. The data set is built in-core then
written in a single write operation.

- Append to a compressed data set. The data of the data set is read into memory, appended
with data along the unlimited dimension, then compressed and written back to the data set.

The existing compression algorithms supported by HDmatoallow partial modification to a
compressed datastream. Overwriting the contents of existing data sets may be supported in the
future. Note also the&8Dsetcompresgperforms the compression of the data, $Divritedata.

SDsetcompresgeturns a value adUCCEEor 0) or FAIL (or-1). The C version parameters are
further described in Table 3G and the FORTRAN-77 version parameters are further described in
Table 3H.

TABLE 3G SDsetcompress Parameter List
Routine Name Parameter Type -
Parameter Description
[Return Type] c
sds_id int32 Data set identifier
SDsetcompress
[intn] comp_type int32 Compression method
c_info comp_info* Pointer to compression information structure
TABLE 3H sfscompress Parameter List
Routine Name Parameter Type -
Parameter Description
FORTRAN-77
sds_id integer Data set identifier
sfscompress comp_type integer Compression method
comp_prm integer(*) Compression parameters array
EXAMPLE 6. Compressing SDS Data.

This example uses the routiB®setcompress/sfscomprese compress SDS data with the GZIP
compression method. See comments in the program regarding the use of the Skipping Huffman or
RLE compression methods.

C:
#include "mfhdf.h"

#define FILE_NAME  "SDScompressed.hdf"
#define SDS_NAME  "SDSgzip"

#define X_LENGTH 5

#define Y_LENGTH 16

#define RANK 2

main( )

{

/ Variable declaration /

int32  sd_id, sds_id, sds_index;

intn  status;

int32 comp_type; /* Compression flag */
comp_info c_info; /* Compression structure */
int32  start[2], edges[2], dim_sizes[2];

June 24, 1998 3-47



National Center for Supercomputing Applications

int32  data[Y_LENGTH][X_LENGTH];
int i

[RIxwwik xRk End of variable declaration **ssik ik ook iok |

/*
* Buffer array data and define array dimensions.
*/
for (j=0;j<Y_LENGTH; j++)
{

for (i=0; i< X_LENGTH; i++)

datafjJi] = (i+]) + 1;

}
dim_sizes[0] = Y_LENGTH,;
dim_sizes[1] = X_LENGTH,;

/*

* Create the file and initialize the SD interface.

*/

sd_id = SDstart (FILE_NAME, DFACC_CREATE);

/*

* Create the data set with the name defined in SDS_NAME.

*

sds_id = SDcreate (sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes);

/*

* |ninitialize compression structure element and compression

* flag for GZIP compression and call SDsetcompress.

*

* To use the Skipping Huffman compression method, initialize
* comp_type = COMP_CODE_SKPHUFF

* c_info.skphuff.skp_size = value

* To use the RLE compression method, initialize

* comp_type = COMP_CODE_RLE

* No structure element needs to be initialized.

*

comp_type = COMP_CODE_DEFLATE;
c_info.deflate.level = 6;

status = SDsetcompress (sds_id, comp_type, &c_info);

/*

* Define the location and size of the data set
* to be written to the file.

*/

start[0] = 0;

start[1] = 0;

edges[0] = Y_LENGTH;
edges[1] = X_LENGTH;
/*

* Write the stored data to the data set. The last argument

* must be explicitly cast to a generic pointer since SDwritedata

* is designed to write generic data.

*

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP)data);

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

3-48 June 24, 1998



HDF User's Guide

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:

program write_compressed_data
implicit none

Parameter declaration.

OO0

character*17 FILE_NAME

character*7 SDS_NAME

integer ~ X_LENGTH, Y_LENGTH, RANK
parameter (FILE_NAME ='SDScompressed.hdf’,
+ SDS_NAME ='SDSgzip’,

+ X_LENGTH =5,

+ Y_LENGTH = 16,

+ RANK =2)

integer  DFACC_CREATE, DFNT_INT32
parameter (DFACC_CREATE =4,

+ DFNT_INT32 = 24)

integer COMP_CODE_DEFLATE
parameter (COMP_CODE_DEFLATE =4)
integer DEFLATE_LEVEL

parameter (DEFLATE_LEVEL =6)

To use Skipping Huffman compression method, declare
integer COMP_CODE_SKPHUFF
parameter(COMP_CODE_SKPHUFF = 3)

To use RLE compression method, declare
integer COMP_CODE_RLE
parameter(COMP_CODE_RLE =1)

C
C
C
C
C
C
C
C
C Function declaration.

C

integer sfstart, sfcreate, sfwdata, sfendacc, sfend,
+ sfscompress

C

C**** Variable declaration
C

integer sd_id, sds_id, status

integer start(2), edges(2), stride(2), dim_sizes(2)
integer comp_type

integer comp_prm(1)

integer data(X_LENGTH, Y_LENGTH)

integer i, j

** End of variable declaration

Buffer array data and define array dimensions.

O000Q0O

do20j=1, Y_LENGTH
do10i=1, X_LENGTH
data(i,j)=i+j-1
10 continue
20 continue
dim_sizes(1) = X_LENGTH
dim_sizes(2) = Y_LENGTH

June 24, 1998 3-49



National Center for Supercomputing Applications

Open the file and initialize the SD interface.

OO0

sd_id = sfstart(FILE_NAME, DFACC_CREATE)

Create the data set with the name SDS_NAME.

OO0

sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT32, RANK, dim_sizes)

Initialize compression parameter (deflate level)

and call sfscompress function

For Skipping Huffman compression, comp_prm(1) should be set
to skipping sizes value (skp_size).

O0O0000

comp_type =COMP_CODE_DEFLATE
comp_prm(1) = deflate_level
status = sfscompress(sds_id, comp_type, comp_prm(1))

Define the location and size of the data that will be written to
the data set.

o000

start(1) =0

start(2) =0

edges(l) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) =1

stride(2) =1

Write the stored data to the data set.

OO0

status = sfwdata(sds_id, start, stride, edges, data)

Terminate access to the data set.

[eNeNe]

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

OO0

status = sfend(sd_id)

end

3.5.3 External File Operations

The HDF library provides routines to store SDS arrays iexaernal filethat is separate from the
primary file containing the metadata for the array. Such an SDS array is caléeedesnal SDS

array. With external arrays, it is possible to link data sets in the same HDF file to multiple external
files or data sets in different HDF files to the same external file.

External arrays are functionally identical to arrays in the primary data file. The HDF library keeps
track of the beginning of the data set and adds data at the appropriate position in the external file.
When data is written or appended along a specified dimension, the HDF library writes along that
dimension in the external file and updates the appropriate dimension record in the primary file.

There are two methods for creating external SDS arrays. The user can create a new data set in an
external file or move data from an existing internal data set to an external file. In either case, only
the array values are stored externally, all metadata remains in the primary HDF file.

When an external array is created, a sufficient amount of space is reserved in the external file for
the entire data set. The data set will begin at the specified byte offset and extend the length of the

3-50

June 24, 1998



HDF User's Guide

data set. The write operation will overwrite the target locations in the external file. The external
file may be of any format, provided the data types, byte ordering, and dimension ordering are sup-
ported by HDF. However, the primary file must be an HDF file.

Routines for manipulating external SDS arrays can only be used with HDF files. Unidata-format-
ted netCDF files are not supported by these routines.
3.56.3.1 Specifying the Directory Search Path of an External File: HXsetdir

There are three filesystem locations the HDF external file routines check when determining the
location of an external file. They are, in order of search precedence:

1. The directory path specified by the last call toltt¥ésetdir routine.
2. The directory path specified by the SHDFEXTDIR shell environment variable.
3. The file system locations searched by the standpeth(3)routine.

The syntax oHXsetdir is as follows:
C: status = HXsetdir(dir_list);
FORTRAN: status = hxisdir(dir_list, dir_length)

HXsetdir has one argument, a string specifying the directory list to be searched. This list can con-
sist of one directory name or a set of directory names separated by colons. The FORTRAN-77 ver-
sion of this routine takes an additional argumeintlength , which specifies the length of the
directory list string.

If an error condition is encountereld Xsetdir leaves the directory search path unchanged. The
directory search path specified BiyXsetdir remains in effect throughout the scope of the calling
program.

HXsetdir returns a value oSUCCEEDor 0) or FAIL (or -1). The parameters dfiXsetdir are
described in Table 31 on page 52.
3.5.3.2 Specifying the Location of the Next External File to be Created: HXsetcreatedir

HXsetcreatedir specifies the directory location of the next external file to be created. It overrides
the directory location specified by $SHDFEXTCREATEDIR and the locations searched by the
open(3)call in the same manner HXsetdir. Specifically, the search precedence is:

1. The directory specified by the last call to tH¥setcreatedir routine.
2. The directory specified by the SHDFEXTCREATEDIR shell environment variable.
3. The locations searched by the standgwen(3)routine.

The syntax oHXsetcreatedir is as follows:
C: status = HXsetcreatedir(dir);
FORTRAN: status = hxiscdir(dir, dir_length)

HXsetcreatedir has one argument, the directory location of the next external file to be created.
The FORTRAN-77 version of this routine takes an additional arguniiefength , which spec-

ifies the length of the directory list string. If an error is encountered, the directory location is left
unchanged.

HXsetcreatedir returns a value (8UCCEEor 0) or FAIL (or-1). The parameters dfXsetcreate-
dir are described in Table 3I.

June 24, 1998 3-51



National Center for Supercomputing Applications

TABLE 3l

HXsetdir and HXsetcreatedir Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) c FORTRAN-77
HXsetdir dir_list char * character*(*) | Directory list to be searched
[intn]
(hxisdir) dir_length Not applicable integer Length of thedir_list string
HXschreatedir dir char * character*(¥) Directory location of the next external file to be crg-
[intn] ated
(hxiscdir) dir_length Not applicable integer | Length of thedir string

3.5.3.3 Creating a Data Set with Data Stored in an External File: SDsetexternalfile
Creating a data set in an external file involves the following steps:

1. Create the data set.
2. Specify that an external data file is to be used.
Write data to the data set.

3.
4. Terminate access to the data set.

To create a data set with data stored in an external file, the calling program must make the follow-
ing calls.

C: sds_id = SDcreate(sd_id, name, data_type, rank, dim_sizes);
status = SDsetexternalfile(sds_id, filename, offset);
status = SDwritedata(sds_id, start, stride, edges, data);
status = SDendaccess(sds_id);

FORTRAN: sds_id = sfcreate(sd_id, name, data_type, rank, dim_sizes)
status = sfsextf(sds_id, filename, offset)

status = sfwdata(sds_id, start, stride, edges, data)
OR status = sfwedata(sds_id, start, stride, edges, data)

status = sfendacc(sds _id)

For a newly-created data s8Dsetexternalfilemarks the SDS identified ks id as one whose
data is to be written to an external file. It does not actually write data to an external file; it marks
the data set as an external data set for all subse§awnitedata operations.

Note that data can only be moved once for any given data sesDsetexternalfilecan only be
called once after a data set has been created. It is the user's responsibility to make sure that the
external data file is kept with the primary HDF file.

The parameteflename is the name of the external data file affset is the number of bytes

from the beginning of the external file to the location where the first byte of data should be writ-
ten. If a file with the name specified Bigname exists in the current directory search path, HDF
will access it as the external file. If the file does not exist, HDF will create one in the directory
named in the last call tBXsetcreatefile If an absolute pathname is specified, the external file
will be created at the location specified by the pathname, overriding the location specified by the
last call toHXsetcreatefile Use caution when writing to existing external or primary files since
the HDF library starts the write operation at the specified offset without determining whether data
is being overwritten.

Once the name of an external file is established, it cannot be changed without breaking the associ-
ation between the data set's metadata and the data it describes.

3-52

June 24, 1998



HDF User's Guide

SDsetexternalfilereturns a value c8UCCEELor 0) or FAIL (or-1). The parameters @Dsetex-
ternalfile are described in Table 3J.

SDsetexternalfile Parameter List

TABLE 3J
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
sds_id int32 integer Data set identifier
SDset[ienxttne]rnalflle filename char * character*(*) | Name of the file to contain the external data set
(sfsextf) ) . Offset in bytes from the beginning of the external file to
offset int32 integer where the SDS data will be written
3.5.3.4 Moving Existing Data to an External File
Data can be moved from a primary file to an external file. The following steps perform this task:
1. Select the data set.
2. Specify the external data file.
3. Terminate access to the data set.
To move data set data to an external file, the calling program must make the following calls:
C: sds_id = SDselect(sd_id, sds_index);
status = SDsetexternalfile(sds_id, filename, offset);
status = SDendaccess(sds_id);
FORTRAN: sds_id = sfselect(sd_id, sds_index)
status = sfsextf(sds_id, filename, offset)
status = sfendacc(sds_id)
For an existing data seDsetexternalfile moves the data to the external file. Any data in the
external file that occupies the space reserved for the external array will be overwritten as a result
of this operation. Data of an existing data set in the primary file can only be moved to the external
file once. During the operation, the data is written to the external file as a contiguous stream
regardless of how it is stored in the primary file. Because data is moved as is, any unwritten loca-
tions in the data set are preserved in the external file. Subsequent read and write operations per-
formed on the data set will access the external file.
EXAMPLE 7. Moving Data to the External File.

This example illustrates the use of the routB@setexternalfile/sfsextfto move the SDS data
written in Example 2 to the external file.

C:
#include "mfhdf.h"

#define FILE_NAME  "SDS.hdf"
#define EXT_FILE_NAME "ExternalSDS"
#define OFFSET 24

main( )

{

/ Variable declaration /

int32 sd_id, sds_id, sds_index, offset;

June 24, 1998 3-53



National Center for Supercomputing Applications

intn status;
/********************* End Of Vanable declaratlon ***********************/

/*

* Open the file and initialize the SD interface.

*/

sd_id = SDstart (FILE_NAME, DFACC_WRITE);

/*

* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*
* Create a file with the name EXT_FILE_NAME and move the data set
* values into it, starting at byte location OFFSET.
*
/
status = SDsetexternalfile (sds_id, EXT_FILE_NAME, OFFSET);

/*
* Terminate access to the data set, SD interface, and file.
*
/
status = SDendaccess (sds_id);
status = SDend (sd_id);

FORTRAN:

program write_extfile
implicit none

Parameter declaration.

OO0

character*7 FILE_NAME

character*11 EXT_FILE_NAME

integer OFFSET

integer DFACC_WRITE
parameter (FILE_NAME =’'SDS.hdf,

+ EXT_FILE_NAME ='ExternalSDS’,
+ OFFSET =24,
+ DFACC_WRITE =2)
C
C  Function declaration.
C
integer sfstart, sfselect, sfsextf, sfendacc, sfend
C
C**** Variable declaration
C
integer sd_id, sds_id, sds_index, offset
integer status
C

C** End of variable declaration

Open the HDF file and initialize the SD interface.

OO0

sd_id = sfstart(FILE_NAME, DFACC_WRITE)

Select the first data set.

OO0

3-54

June 24, 1998



HDF User's Guide

sds_index=0
sds_id = sfselect(sd_id, sds_index)

Create a file with the name EXT_FILE_NAME and move the data set
into it, starting at byte location OFFSET.

o000

status = sfsextf(sds_id, EXT_FILE_NAME, OFFSET)

Terminate access to the data set.

OO0

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

OO0

status = sfend(sd_id)

end

3.6 Reading Data from an SDS Array: SDreaddata

Data of an SDS array can be read as an entire array, a subset of the array, or a set of samples of the
array. SDS data is read from an external file in the same way that it is read from a primary file;
whether the SDS array is stored in an external file is transparent to the user. Reading data from an
SDS array involves the following steps:

1. Select the data set.

2. Define the portion of the data to be read.

3. Read data portion as defined.

To read data from an SDS array, the calling program must contain the following function calls:

C: sds_id = SDselect(sd_id, sds_index);
status = SDreaddata(sds _id, start, stride, edges, data);

FORTRAN: sds_id = sfselect(sd_id, sds_index)
status = sfrdata(sds_id, start, stride, edges, data)
OR status = sfrcdata(sds_id, start, stride, edges, data)

Note that step 2 is not illustrated in the function call syntax; it is carried out by assigning values to
the parameterstart , stride , andedges before the routin&Dreaddatais called in step 3.

SDreaddatareads the data according to the definition specified by the pararmseters stride
andedges and stores the data into the buffer providézth . The argumengds_id is the SDS
identifier returned bysDcreateor SDselect As with SDwritedata, the argumentstart |, stride
andedges describe the starting location, the number of elements to skip after each read, and the
number of elements to be read, respectively, for each dimension. For additional information on the
parameterstart , stride , andedges, refer to Section 3.5.1 on page 30.

There are two FORTRAN-77 versions of this routisfedata reads numeric data arsfircdata
reads character data.

SDreaddatareturns a value cUCCEEor 0), including the situation when the data set does not
contain data, oFAIL (or-1). The parameters &Dreaddataare further described in Table 3K.

June 24, 1998 3-55



National Center for Supercomputing Applications

p=]
=3

TABLE 3K SDreaddata Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) e FORTRAN-77
sds_id int32 integer Data set identifier
) . Array containing the position at which the
%
start int32[ integer(") read will start for each dimension
SDreaddata Array containing the number of data locatig
[intn] stride int32[] integer(*) the current location is to be moved forward
(sfrdata/ before the next read
sfrcdata) L
. . Array containing the number of data elemej
*'
edges int32(] integer(*) to be read along each dimension
- - "
data VOIDP <valid numeric data type>( Buffer the data will be read into
character*(*)
EXAMPLE 8. Reading from an SDS

S

This example uses the routilBDreaddata/sfrdata to read the data that has been written in
Example 2, modified in Example 4, and moved to the external file in the Example 7. Note that the
original file SDS.hdf that contains the SDS metadata and the external file ExternalSDS that con-
tains the SDS raw data should reside in the same directory. The fact that raw data is in the external
file is transparent to the user’s program.

C:
#include "mfhdf.h"

#define FILE_NAME  "SDS.hdf"

#define X_LENGTH 5
#define Y_LENGTH 16

main()

{

/ Variable declaration

int32 sd_id, sds_id, sds_index;

intn status;
int32 start[2], edges|[2];

int32 dataY_LENGTH][X_LENGTH];

int i, j;

[RIxwwik xRk End of variable declaration **ssik ik ik ok |

/*

* Open the file for reading and initialize the SD interface.

*

sd_id = SDstart (FILE_NAME, DFACC_READ);

/*

* Select the first data set.
*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*

* Set elements of array start to 0, elements of array edges
* to SDS dimensions,and use NULL for the argument stride in SDreaddata

* to read the entire data.
*

3-56 June 24, 1998



HDF User's Guide

start[0] = 0;
start[1] = 0;
edges[0] = Y_LENGTH;
edges[1] = X_LENGTH;

/*

* Read entire data into data array.

*/

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)data);

/*

* Print 10th row; the following numbers should be displayed.
* 10100012 1314

*

for (j = 0; j < X_LENGTH; j++) printf (“%d ", data[9][j]);

printf ("\n");

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:

C
C
c

OO0

c
C
C

O000Q0O

program read_data
implicit none

Parameter declaration.

character*7 FILE_NAME

integer X _LENGTH, Y_LENGTH
parameter (FILE_NAME ='SDS.hdf,
+ X_LENGTH =5,

+ Y_LENGTH =16)

integer DFACC_READ, DFNT_INT32
parameter (DFACC_READ =1,

+ DFNT_INT32 = 24)

Function declaration.

integer sfstart, sfselect, sfrdata, sfendacc, sfend

*+% VVariable declaration

integer sd_id, sds_id, sds_index, status
integer start(2), edges(2), stride(2)
integer data(X_LENGTH, Y_LENGTH)
integer j

** End of variable declaration

Open the file and initialize the SD interface.

sd_id = sfstart(FILE_NAME, DFACC_READ)

June 24,

1998 3-57



National Center for Supercomputing Applications

Select the first data set.

OO0

sds_index=0
sds_id = sfselect(sd_id, sds_index)

Set elements of the array start to 0, elements of the array edges to
SDS dimensions, and elements of the array stride to 1 to read the
entire data.

O0O000

start(1) =0

start(2) =0

edges(1l) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) =1

stride(2) =1

Read entire data into data array. Note that sfrdata is used
to read the numeric data.

OO0

status = sfrdata(sds_id, start, stride, edges, data)

Print 10th column; the following numbers are displayed:

10100012 13 14

O0000

write(*,*) (data(j,10), j = 1, X_LENGTH)

Terminate access to the data set.

OO0

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

OO0

status = sfend(sd_id)

end

EXAMPLE 9.

Reading Subsets of an SDS.

This example shows how parametsesst |, stride , andedges of the routineSDreadata/sfrdata
can be used to read three subsets of an SDS array.

C:
For the first subset, the program reads every 3rd element of the 2nd column starting at the
4th row of the data set created in Example 2 and modified in Examples 4 and 7.
For the second subset the program reads the first 4 elements of the 10th row.
For the third subset, the program reads from the same data set every 6th element of each
column and 4th element of each row starting at 1st column, 3d row.
FORTRAN-77:
Fortran program reads transposed data to reflect the difference in C and Fortran internal
storage.

3-58

June 24, 1998



HDF User's Guide

#include "mfhdf.h"

#define FILE_NAME  "SDS.hdf"
#define SUB1_LENGTH 5
#define SUB2_LENGTH 4
#define SUB3_LENGTHL1 2
#define SUB3_LENGTH2 3

main( )

{

/ Variable declaration /

int32 sd_id, sds_id, sds_index;

intn status;

int32 start[2], edges[2], stride[2];

int32 subl_data[SUB1 LENGTH];

int32 sub2_data[SUB2_LENGTH];

int32 sub3_data[SUB3_LENGTH2][SUB3_LENGTH1];
int i,j;

Jradkxkskxiiiokx End of variable declaration **#xskiikiiskkicioxk |

/*

* Open the file for reading and initialize the SD interface.
*

sd_id = SDstart (FILE_NAME, DFACC_READ);

/*

* Select the first data set.

*

sds_index =0;

sds_id = SDselect (sd_id, sds_index);

/*

* Reading the first subset.

* Set elements of start, edges, and stride arrays to read

* every 3rd element in the 2nd column starting at 4th row.

*

start[0] = 3; /* 4th row */

start[1] =1; /*2nd column */

edges[0] = SUB1_LENGTH; /* SUB1_LENGTH elements are read along 2nd column*/
edges[1] = 1;

stride[0] = 3; /* every 3rd element is read along 2nd column */
stride[1] = 1;

/*

* Read the data from the file into sub1_data array.

*/

status = SDreaddata (sds_id, start, stride, edges, (VOIDP)subl_data);

/*

* Print what we have just read; the following numbers should be displayed:
* 58100014 17

*/

for (j = 0; j < SUBL_LENGTH; j++) printf ("%d ", sub1_data[j]);

printf ("\n");

/*
* Reading the second subset.

*

June 24, 1998 3-59



National Center for Supercomputing Applications

* Set elements of start and edges arrays to read

* first 4 elements of the 10th row.

*

start[0] = 9; /* 10th row */

start[1] = 0; /* 1st column */

edges[0] = 1;

edges[1] = SUB2_LENGTH; /* SUB2_LENGTH elements are read along 10th row */

/*

* Read data from the file into sub2_data array. Note that the third

* parameter is set to NULL for contiguous reading.

*/

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)sub2_data);

/*

* Print what we have just read; the following numbers should be displayed:
* 10 1000 12 13

*

for (j = 0; j < SUB2_LENGTH,; j++) printf ("%d ", sub2_data[j]);

printf ("\n");

/*

* Reading the third subset.

* Set elements of the arrays start, edges, and stride to read

* every 6th element in the column and 4th element in the row

* starting at 1st column, 3d row.

*

start[0] = 2; /* 3d row */

start[1] = 0; /* 1st column */

edges[0] = SUB3_LENGTH2; /* SUB3_LENGTH2 elements are read along

each column */

edges[1] = SUB3_LENGTHLI; /* SUB3_LENGTHL1 elements are read along
each row */

6; /* read every 6th element along each column */

stride[0] =
1] = 4, /* read every 4th element along each row */

stride[

/*

* Read the data from the file into sub3_data array.

*/

status = SDreaddata (sds_id, start, stride, edges, (VOIDP)sub3_data);

/*
* Print what we have just read; the following numbers should be displayed:

*

* 37
* 913
* 1519

*/

for (j =0;j < SUB3_LENGTHZ2; j++ ) {
for (i =0; i < SUB3_LENGTHZ; i++) printf ("%d ", sub3_data[j][i]);
printf ("\n");

}

/*

* Terminate access to the data set.

*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*

status = SDend (sd_id);

3-60 June 24, 1998



HDF User's Guide

FORTRAN:

OO0

C
c
C

C

C**** \ariable declaration

C

O000qQO0n

OO0

O0O0000

[eNeN¢e]

** End of variable declaration

program read_subsets
implicit none

Parameter declaration.

character*7 FILE_NAME

parameter (FILE_NAME ='SDS.hdf")
integer DFACC_READ, DFNT_INT32
parameter (DFACC_READ =1,

+ DFNT_INT32 = 24)

integer SUB1_LENGTH, SUB2_LENGTH, SUB3_LENGTH1,
+ SUB3_LENGTH2

parameter (SUB1_LENGTH =5,

+ SUB2_LENGTH =4,

+ SUB3_LENGTH1 =2,

+ SUB3_LENGTH2 =3)

Function declaration.

integer sfstart, sfselect, sfrdata, sfendacc, sfend

integer sd_id, sds_id, sds_index, status

integer start(2), edges(2), stride(2)

integer subl_data(SUB1_LENGTH)

integer sub2_data(SUB2_LENGTH)

integer sub3_data(SUB3_LENGTH1,SUB3_LENGTH2)
integer i, j

Open the file and initialize the SD interface.
sd_id = sfstart(FILE_NAME, DFACC_READ)
Select the first data set.

sds_index=0
sds_id =sfselect(sd_id, sds_index)

Reading the first subset.

Set elements of start, stride, and edges arrays to read
every 3d element in in the 2nd row starting in the 4th column.

start(1) =1

start(2) =3

edges(1l) =1

edges(2) =SUB1_LENGTH
stride(1) =1

stride(2) =3

Read the data from subl_data array.

status = sfrdata(sds_id, start, stride, edges, subl_data)

June 24, 1998 3-61



National Center for Supercomputing Applications

O0O000

O0O0000

O0O000 OO0

O0O0000O0

OO0

O0O0000

50
c
c
C
C

c
C

Print what we have just read, the following nhumbers should be displayed:
581000 14 17

write(*,*) (sub1_data(j), j = 1, SUB1_LENGTH)

Reading the second subset.
Set elements of start, stride, and edges arrays to read
first 4 elements of 10th column.
start(1) =0
start(2) =9
edges(l) = SUB2_LENGTH
edges(2) =1
stride(1) =1
stride(2) =1
Read the data into sub2_data array.

status = sfrdata(sds_id, start, stride, edges, sub2_data)

Print what we have just read; the following humbers should be displayed:
101000 12 13
write(*,*) (sub2_data(j), j = 1, SUB2_LENGTH)
Reading the third subset.
Set elements of start, stride and edges arrays to read
every 6th element in the row and every 4th element in the column
starting at 1st row, 3rd column.
start(1) =0
start(2) =2
edges(1l) = SUB3_LENGTH1
edges(2) = SUB3_LENGTH2
stride(1) =4
stride(2) = 6

Read the data from the file into sub3_data array.

status = sfrdata(sds_id, start, stride, edges, sub3_data)

Print what we have just read; the following humbers should be displayed:

3915
71319

do50i=1, SUB3_LENGTH1
write(*,*) (sub3_data(i,j), j = 1, SUB3_LENGTH2)
continue
Terminate access to the data set.

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

3-62 June 24, 1998



HDF User's Guide

status = sfend(sd_id)

end

3.7 Obtaining Information about SD Data Sets

The routines covered in this section provide methods for obtaining information about all scientific
data sets in a file, for identifying the data sets that meet certain criteria, and for obtaining informa-
tion about specific data sets.

SDfileinfo obtains the numbers of data sets and file attributes, set by SD interface routines, in a
file. SDgetinfo provides information about an individual SDS. To retrieve information about all
data sets in a file, a calling program can 88dileinfo to determine the number of data sets, fol-
lowed by repeated calls ®@Dgetinfoto obtain the information about a particular data set.

SDnametoindexor SDreftoindex can be used to obtain the index of an SDS in a file knowing its
name or reference number, respectively. Refer to Section 3.2.1 on page 20 for a description of the
data set index and reference numig®idtoref is used when the reference number of an SDS is
required by another routine and the SDS identifier is available.

These routines are described individually in the following subsections.

3.7.1 Obtaining Information about the Contents of a File: SDfileinfo

SDfileinfo determines the number of scientific data sets and the number of file attributes con-
tained in a file. This information is often useful in index validation or sequential searches. The
syntax ofSDfileinfo is as follows:

C: status = SDfileinfo(sd_id, &n_datasets, &n_file_attrs);
FORTRAN: status = sffinfo(sd_id, n_datasets, n_file_attrs)

SDfileinfo stores the numbers of scientific data sets and file attributes in the parameters
n_datasets andn_file_attrs , respectively. Note that the value returnednbyatasets  will

include the number of SDS arragsd the number of dimension scales. Refer to Section 3.8.4 on
page 74 and Section 3.8.4.4 on page 81 for the description of dimension scales and its association
with SDS arrays as well as how to distinguish between SDS arrays and dimension scales. The file
attributes are those that are createdsbsetattr for an SD interface identifier instead of an SDS
identifier. Refer to Section 3.9.1 on page 85 for the discussi@Degtattr.

SDfileinfo returns a value oSUCCEEor 0) or FAIL (or -1). The parameters @Dfileinfo are
specified in Table 3L on page 64.

3.7.2 Obtaining Information about a Specific SDS: SDgetinfo

SDgetinfoprovides basic information about an SDS array. Often information about an SDS array
is needed before reading and working with the array. For instance, the rank, dimension sizes, and/
or data type of an array are needed to allocate the proper amount of memory to work with the
array. SDgetinfotakes an SDS identifier as input, and retrieves the name, rank, dimension sizes,
data type, and number of attributes for the corresponding SDS. The syntax of this routine is as fol-
lows:

June 24, 1998 3-63



National Center for Supercomputing Applications

C: status = SDgetinfo(sds_id, sds_name, &rank, dim_sizes,
&data_type, &n_attrs);

FORTRAN: status =sfginfo(sds_id, sds_name, rank, dim_sizes, data_type,
n_attrs)

SDgetinfostores the name, rank, dimension sizes, data type, and number of attributes of the spec-
ified data set into the parameteatis name, rank , dim_sizes , data_type , andn_attrs , respec-

tively. The parametesds name is a character string. Note that the name of the SDS is limited to

64 characters.

If the data set is created with an unlimited dimension, then in the C interface, the first element of
the dim_sizes array (corresponding to the slowest-changing dimension) contains the number of
records in the unlimited dimension; in the FORTRAN-77 interface, the last element of the array
dim_sizes (corresponding to the slowest-changing dimension) contains this information.

The parametedata type contains any type that HDF supports for the scientific data. Refer to
Table 2E on page 14, for the list of supported data types and their corresponding defined values.
The parameter_atirs  only reflects the number of attributes assigned to the data set specified by
sds_id ; file attributes are not included. US®fileinfo to get the number of file attributes.

SDgetinfo returns a value o8UCCEEQor 0) or FAIL (or -1). The parameters @&Dgetinfo are
specified in Table 3L.

TABLE 3L SDfileinfo and SDgetinfo Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
SDfileinfo sd_id int32 integer SD interface identifier
[intn] n_datasets int32 * integer Number of data sets in the file
(sffinfo) n_file_attrs int32 * integer Number of global attributes in the file
sds_id int32 integer Data set identifier
sds_name char* character*(*)| Name of the data set
S[i_geti]nfo rank int32 * integer Number of dimensions in the data set
intn
(sfginfo) dim_sizes int32 ] integer (*) | Size of each dimension in the data set
data_type int32 * integer Data type of the data in the data set
n_attrs int32 * integer Number of attributes in the data set
EXAMPLE 10. Getting Information about a File and an SDSs.

This example illustrates the use of the rouiXileinfo/sffinfo to obtain the number of data sets
in the file SDS.hdf and the routir@Dgetinfo/sfginfoto retrieve the name, rank, dimension sizes,
data type and number of attributes of the selected data set.

C:

#include "mfhdf.h"
#define FILE_NAME  "SDS.hdf"
main( )

{

/ Variable declaration /

int32 sd_id, sds_id;
intn status;

3-64

June 24, 1998



HDF User's Guide

int32 n_datasets, n_file_attrs, index;
int32 dim_sizes[MAX_VAR_DIMS];
int32 rank, data_type, n_attrs;

char name[MAX_NC_NAME];

int i;

[RIxwRk xRk Rk End of variable declaration **ssik ik ik ok |

/*

* Open the file and initialize the SD interface.

*

sd_id = SDstart (FILE_NAME, DFACC_READ);

/*

* Determine the number of data sets in the file and the number
* of file attributes.

*/

status = SDfileinfo (sd_id, &n_datasets, &n_file_attrs);

/*

* Access every data set and print its name, rank, dimension sizes,
* data type, and number of attributes.

* The following information should be displayed:

* name = SDStemplate

* rank = 2

* dimension sizes are : 16 5

* data typeis 24

* number of attributes is 0

*/

for (index = 0; index < n_datasets; index++)
{

sds_id = SDselect (sd_id, index);
status = SDgetinfo (sds_id, name, &rank, dim_sizes,
&data_type, &n_attrs);

printf ("name = %s\n", name);

printf ("rank = %d\n", rank);

printf ("dimension sizes are : *);

for (i=0; i< rank; i++) printf ("%d ", dim_sizes][i]);
printf ("\n");

printf ("data type is %d\n", data_type);

printf ("number of attributes is %d\n", n_attrs);

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

}

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:
program get_data_set_info
implicit none
C
C Parameter declaration.

June 24, 1998 3-65



National Center for Supercomputing Applications

character*7 FILE_NAME

parameter (FILE_NAME ='SDS.hdf’)

integer DFACC_READ, DFNT_INT32
parameter (DFACC_READ =1,

+ DFNT_INT32 = 24)

integer MAX_NC_NAME, MAX_VAR_DIMS
parameter (MAX_NC_NAME =256,

+ MAX_VAR_DIMS = 32)

C
C  Function declaration.
C

integer sfstart, sffinfo, sfselect, sfginfo
integer sfendacc, sfend

C

C**** Variable declaration

C
integer sd_id, sds_id
integer n_datasets, n_file_attrs, index
integer status, n_attrs
integer rank, data_type
integer dim_sizes(MAX_VAR_DIMS)
character name *(MAX_NC_NAME)
integer i

C

C** End of variable declaration

Open the file and initialize the SD interface.

O000

sd_id = sfstart(FILE_NAME, DFACC_READ)

Determine the number of data sets in the file and the number of
file attributes.

O000

status = sffinfo(sd_id, n_datasets, n_file_attrs)

Access every data set in the file and print its name, rank,
dimension sizes, data type, and number of attributes.
The following information should be displayed:

name = SDStemplate
rank= 2

dimension sizesare: 5 16
datatypeis 24

number of attributes is 0

O0O0000O0O00O00O

do 10 index = 0, n_datasets - 1
sds_id = sfselect(sd_id, index)
status = sfginfo(sds_id, name, rank, dim_sizes, data_type,
n_attrs)
write(*,*) "name =", name(1:15)
write(*,*) "rank =", rank
write(*,*) "dimension sizes are : ", (dim_sizes(i), i=1, rank)
write(*,*) "data type is ", data_type
write(*,*) "number of attributes is ", n_attrs

C
C Terminate access to the current data set.
C
status = sfendacc(sds_id)
10 continue
C

C Terminate access to the SD interface and close the file.

3-66 June 24, 1998



HDF User's Guide

C
status = sfend(sd_id)

end

3.7.3 Locating an SDS by Name: SDnametoindex

SDnametoindexdetermines and returns the index of a data set in a file given the data set's name.
The syntax of this routine is as follows:

C: sds_index = SDnametoindex(sd_id, sds_name);
FORTRAN: sds_index = sfn2index(sd_id, sds_name)

The parametesds_name is a character string with the maximum lengtléotharacters. If more
than one data set has the name specifiesiyame, SDnametoindexwill return the index of
the first data set. The index can then be usefilbselectto obtain an SDS identifier for the spec-
ified data set.

The SDnametoindexroutine is case-sensitive to the name specifieddbyname and does not
accept wildcards as part of that name. The hame must exactly match the name of the SDS being
searched for.

SDnametoindexreturns the index of a data setFaiL (or-1). The parameters &Dnametoin-
dex are specified in Table 3M.

3.7.4 Locating an SDS by Reference Number: SDreftoindex

SDreftoindex determines and returns the index of a data set in a file given the data set’s reference
number. The syntax of this routine is as follows:

C: sds_index = SDreftoindex(sd_id, ref);
FORTRAN: sds_index = sfref2index(sd_id, ref)

The reference number can be obtained uSidgltoref if the SDS identifier is available. Remem-
ber that reference numbers do not necessarily adhere to any ordering scheme.

SDreftoindex returns either the index of an SDSFaL (or -1). The parameters of this routine
are specified in Table 3M.

3.7.5 Obtaining the Reference Number Assigned to the Specified SDS:
SDidtoref

SDidtoref returns the reference number of the data set identified by the paratseker if the
data set is found, @¢RAIL (or-1) otherwise. The syntax of this routine is as follows:

C: sds_ref = SDidtoref(sds_id);
FORTRAN: sds_ref = sfid2ref(sds_id)

This reference number is often usedMayldtagref to add the data set to a vgroup. Refer to Chap-
ter 5,Vgroups (V API)for more information.

The parameter ddDidtoref is specified in Table 3M.

June 24, 1998 3-67



National Center for Supercomputing Applications

TABLE 3M SDnametoindex, SDreftoindex, and SDidtoref Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) e FORTRAN-77
SDnametoindex sd_id int32 integer SD interface identifier
[int32]
(sfn2index) sds_name char * character*(*)| Name of the data set
SDreftoindex sd_id int32 integer SD interface identifier
[int32]
(sfref2index) ref int32 integer Reference number of the specified data set
SDidtoref
[int32] sds_id int32 integer Data set identifier
(sfid2ref)
EXAMPLE 11. Locating an SDS by Its Name.

This example uses the routi®nametoindex/sfn2indexto locate the SDS with the specified
name and then reads the data from it.
C:
#include "mfhdf.h"

#define FILE_NAME  "SDS.hdf"
#define SDS_NAME  "SDStemplate”
#define WRONG_NAME "WrongName"
#define X_LENGTH 5

#define Y_LENGTH 16

main()

{

/ Variable declaration /

int32 sd_id, sds_id, sds_index;

intn status;

int32 start[2], edges[2];

int32 data[Y_LENGTH][X_LENGTH];
int i, j;

[rrwsissdissnk End of variable declaration * ik

/*

* Open the file for reading and initialize the SD interface.
*/

sd_id = SDstart (FILE_NAME, DFACC_READ);

/*

* Find index of the data set with the name specified in WRONG_NAME.
* Error condition occurs, since the data set with that name does not exist
* in the file.

*/

sds_index = SDnametoindex (sd_id, WRONG_NAME);

if (sds_index == FAIL)

printf ("Data set with the name \"WrongName\" does not exist\n");

/*

* Find index of the data set with the name specified in SDS_NAME and use
* the index to select the data set.

*/

sds_index = SDnametoindex (sd_id, SDS_NAME);

3-68 June 24, 1998



HDF User's Guide

sds_id = SDselect (sd_id, sds_index);

/*

* Set elements of the array start to 0, elements of the array edges to

* SDS dimensions, and use NULL for stride argument in SDreaddata to read
* the entire data.

*/

start[0] = 0;
start[1] = 0;
edges[0] = Y_LENGTH;
edges[1] = X_LENGTH;

/*

* Read the entire data into the buffer named data.

*/

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)data);

/*

* Print 10th row; the following numbers should be displayed:
* 101000 1213 14

*/

for (j = 0; j < X_LENGTH; j++) printf ("%d ", data[9][j]);

printf ("\n");

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:

OO0

C
c
C

c
C
C

program locate_by name
implicit none

Parameter declaration.

character*7 FILE_NAME

character*11 SDS_NAME

character*9 WRONG_NAME

integer X _LENGTH, Y_LENGTH
parameter (FILE_NAME ='SDS.hdf,
+ SDS_NAME ='SDStemplate’,
+ WRONG_NAME = "WrongName’,
+ X_LENGTH =5,

+ Y_LENGTH =16)

integer DFACC_READ, DFNT_INT32
parameter (DFACC_READ =1,

+ DFNT_INT32 = 24)

Function declaration.

integer sfstart, sfn2index, sfselect, sfrdata, sfendacc, sfend

*++% VVariable declaration

June 24,

1998 3-69



National Center for Supercomputing Applications

O000qQO0n

O0O000

OO0

OO0

OO0 O0O000 [eNeN¢e]

OO0

integer sd_id, sds_id, sds_index, status
integer start(2), edges(2), stride(2)
integer data(X_LENGTH, Y_LENGTH)
integer j

** End of variable declaration

Open the file and initialize the SD interface.
sd_id = sfstart(FILE_NAME, DFACC_READ)
Find index of the data set with the name specified in WRONG_NAME.
Error condition occurs, since a data set with this name
does not exist in the file.
sds_index = sfn2index(sd_id, WRONG_NAME)
if (sds_index .eq. -1) then
write(*,*) "Data set with the name ", WRONG_NAME,
+ " does not exist"
endif

Find index of the data set with the name specified in SDS_NAME
and use the index to attach to the data set.

sds_index = sfn2index(sd_id, SDS_NAME)
sds_id = sfselect(sd_id, sds_index)

Set elements of start array to 0, elements of edges array
to SDS dimensions, and elements of stride array to 1 to read entire data.

start(1) =0
start(2) =0
edges(l) = X_LENGTH
edges(2) = Y_LENGTH
stride(1) =1
stride(2) = 1
Read entire data into array named data.
status = sfrdata(sds_id, start, stride, edges, data)
Print 10th column; the following numbers should be displayed:
101000 12 1314
write(*,*) (data(j,10), j = 1, X_LENGTH)
Terminate access to the data set.
status = sfendacc(sds_id)
Terminate access to the SD interface and close the file.

status = sfend(sd_id)

end

3-70

June 24, 1998



HDF User's Guide

3.7.6 Creating SDS Arrays Containing Non-standard Length Data:
SDsetnbitdataset

Starting with version 4.0r1, HDF provides the routBi@setnbitdataset allowing the HDF user
to specify that a particular SDS array contains data of a non-standard length.

SDsetnbitdatasetspecifies that the data set identified by the paransd¢eid will contain data
of a non-standard length defined by the parametatshit andbit_ len . Additional informa-
tion about the non-standard bit length decoding are specified in the paraswtess and
flLone . The syntax oSDsetnbitdatasets as follows:

C: status = SDsetnbitdataset(sds_id, start_bit, bit_len,
sign_ext, fill_one);

FORTRAN: status = sfsnbit(sds_id, start_bit, bit_len, sign_ext,
fil_one)

Any length between 1 and 32 bits can be specified. AEsetnbitdatasethas been called for an
SDS array, any read or write operations will convert between the new data length of the SDS array
and the data length of the read or write buffer.

Bit lengths of all data types are counted from the right of the bit field starting with 0. In a bit field
containing the value®1111011 , bits 2 and 7 are set toand all the other bits are setito

The parameterstart_bit specifies the left-most position of the variable-length bit field to be
written. For example, in the bit field described in the preceding paragraph a parsanebér
set to4 would correspond to the fourth bit valueidirom the right.

The parametehit_ len  specifies the number of bits of the variable-length bit field to be written.
This number includes the starting bit and the count proceeds toward the right end of the bit field -
toward the lower-bit numbers. For example, starting at bit 5 and writing 4 bits of the bit field
described in the preceding paragraph would result in the bitfie@ being written to the data

set. This would correspond tastart_bit value of5 and abit_len  value of4.

The parametesign_ext specifies whether to use the left-most bit of the variable-length bit field

to sign-extend to the left-most bit of the data set data. For example, if 9-bit signed integer data is
extracted from bits 17-25 and the bit in position 25, ihen when the data is read back from disk,

bits 26-31 will be set ta. Otherwise bit 25 will b@ and bits 26-31 will be set b Thesign_ext
parameter can be setTRUE(or 1) or FALSE (or 0); specify TRUEto sign-extend.

The parametdfil_one  specifies whether to fill the "background” bits with the valwe 0. This
parameter is also set to eit@UE(or 1) or FALSE(or 0).

The "background” bits of a non-standard length data set are the bits that fall outside of the non-
standard length bit field stored on disk. For example, if five bits of an unsigned 16-bit integer data
set located in bits 5 to 9 are written to disk with the paranfittene  set toTRUE(or 1), then

when the data is reread into memory bits 0 to 4 and 10 to 15 would belséftthoe same 5-bit

data was written with @il_one  value ofFALSE(or 0), then bits 0 to 4 and 10 to 15 would be set

to 0.

The operation offill_one is performed before the operation ©ign_ext . For example, using
thesign_ext example above, bits 0 to 16 and 26 to 31 will first be set to the background bit value,
and then bits 26 to 31 will be sett@r 0 based on the value of the 25th bit.

SDsetnbitdatasetreturns a value dBUCCEERor 0) or FAIL (or-1). The parameters f@Dsetnbit-
datasetare specified in Table 3N.

June 24, 1998 3-71



National Center for Supercomputing Applications

TABLE 3N SDsetnbitdataset Parameter List
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) e FORTRAN-77
sds_id int32 integer Data set identifier
SDsetnbitdataset start_bit intn integer Leftmost bit of the field to be written
[intn] bit_len intn integer Length of the bit field to be written
(sfsnbit) sign_ext intn integer Sign-extend specifier
fill_one intn integer Background bit specifier

3.8 SDS Dimension and Dimension Scale Operations

The concept of dimensions is introduced in Section 3.2.1 on page 20. This section describes SD
interface routines which store and retrieve information on dimensions and dimension scales.
When a dimension scale is set for a dimension, the library stores the dimension and its associated
information as an SDS array. In the following discussion, we will refer to that array (recall
NetCDF) as @oordinate variableor dimension recordThe section concludes with consideration

of related data sets and sharable dimensions.

3.8.1 Selecting a Dimension: SDgetdimid

SDS dimensions are uniquely identified Bynension identifiers which are assigned when a
dimension is created. These dimension identifiers are used within a program to refer to a particu-
lar dimension, its scale, and its attributes. Before working with a dimension, a program must first
obtain a dimension identifier by calling t&®getdimid routine as follows:

C: dim_id = SDgetdimid(sds_id, dim_index);
FORTRAN: dim_id = sfdimid(sds_id, dim_index)

SDgetdimid takes two argumentsds_id anddim_index , and returns a dimension identifier,

dim_id . The argumendim_index is an integer from O to the number of dimensions minus 1. The
number of dimensions in a data set is specified at the time the data set is created. Specifying a
dimension index equal to or larger than the number of dimensions in the data setStxgetes

dimid to return a value dfAlL (or-1).

Unlike file and data set identifiers, dimension identifiers do not require explicit disj3i3gt-
dimid returns a dimension identifier BAIL (or-1). The parameters &Dgetdimid are specified
in Table 30 on page 73.

3.8.2 Naming a Dimension: SDsetdimname

SDsetdimnameassigns a name to a dimension. If two dimensions have the same name, they will
be represented in the file by only one SDS. Therefore changes to one dimension will be reflected
in the other. Naming dimensions is optional but encouraged. Dimensions that are not explicitly
named by the user will have names generated by the HDF librargiieninfo to read existing
dimension names. The syntaxSDsetdimnameis as follows:

C: status = SDsetdimname(dim_id, dim_name);
FORTRAN: status = sfsdmname(dim_id, dim_name)

The argumentim_id in SDsetdimnameis the dimension identifier returned BDgetdimid.
The parametedim_name is a string of alphanumeric characters representing the name for the

3-72 June 24, 1998



HDF User's Guide

selected dimension. An attempt to rename a dimension &&sgtdimnamewill cause the old
name to be deleted and a new one to be assigned.

Note that when naming dimensions the name of a particular dimensishbe set before
attributes are assigned; once the attributes have been set, the name must not be changed. In other
words, SDsetdimnamemust only be called before any calls 3®setdimscale(described in

Section 3.8.4.1 on page 7% PDsetattr (described in Section 3.9.1 on page 855@rsetdimstrs
(described in Section 3.10.2.1 on page 97).

SDsetdimnamereturns a value c8UCCEELor 0) or FAIL (or-1). The parameters @Dsetdim-
name are described in Table 30.

TABLE 30 SDgetdimid and SDsetdimname Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
SDgetdimid sds_id int32 integer Data set identifier
[int32]
(sfdimid) dim_index intn integer Dimension index
SDsetdimname dim_id int32 integer Dimension identifier
[intn]
(sfsdmname) dim_name char * character*(*) [ Dimension hame

3.8.3 0Old and New Dimension Implementations

Up to and including HDF version 4.0 betal, dimensions were vgroup objects (described in Chap-
ter 5,Vgroups (V API)containing a single field vdata (described in Chapt&fdétas (VS APJ)

with a class name ddimvalo.0 . The vdata had the same number of records as the size of the
dimension, which consisted of the values 0, 1, 2, ... n - 1, where n is the size of the dimension.
These values were not strictly necessary. Consider the case of applications that create large one
dimensional data sets: the disk space taken by these unnecessary values nearly doubles the size of
the HDF file. To avoid these situations, a new representation of dimensions was implemented for
HDF version 4.0 beta 2 and later versions.

Dimensions are still vgroups in the new representation, but the vdata has only one record with a
value of<dimension size> and the class name of the vdata has been chan@ad\talo.1 to
distinguish it from the old version.

Between HDF versions 4.0 betal and 4.1, the old and new dimension representations were written
by default for each dimension created, and both representations were recognized by routines that
operate on dimensions. From HDF version 4.1 forward, SD interface routines recognize only the
new representation. Two compatibility mode routine§Dsetdimval comp and
SDisdimval_bwcomp are provided to allow HDF programs to distinguish between the two
dimension representations, @mpatibility modes

3.8.3.1 Setting the Future Compatibility Mode of a Dimension: SDsetdimval_comp

SDsetdimval_compsets the compatibility mode for the dimension identified by the parameter
dim_id . This operation determines whether the dimension will have the old and new representa-
tions or the new representation only. The synta@$etdimval_compis as follows:

C: status = SDsetdimval_comp(dim_id, comp_mode);

FORTRAN: status = sfsdmvc(dim_id, comp_mode)

June 24, 1998 3-73



National Center for Supercomputing Applications

The parametercomp_mode specifies the compatibility mode. It can be set to either
SD_DIMVAL_BW_COMer 1), which specifies compatible mode and that the old and new dimension
representations will be written to the file,%D_DIMVAL BW_INCOMFor 0), which specifies incom-
patible mode and that only the new dimension representation will be written to file. As of HDF
version 4.1rl, the default mode is backward-incompatible. Subsequent calls to
SDsetdimval_compwill override the settings established in previous calls to the routine.

Unlimited dimensions are always backward compatible. Ther&bsetdimval_comptakes no
action when the dimension identified diyn_id is unlimited.

SDsetdimval_compreturns a value oBUCCEED(or 0) or FALL (or -1). The parameters of
SDsetdimval_compare specified in Table 3P on page 74.

3.8.3.2 Determining the Current Compatibility Mode of a Dimension:
SDisdimval_bwcomp

SDisdimval_bwcompdetermines whether the specified dimension has the old and new represen-
tations or the new representation only. The synte&sdimval_bwcompis as follows:

C: comp_mode = SDisdimval_bwcomp(dim_id);
FORTRAN: comp_mode = sfisdmvc(dim_id)

SDisdimval_bwcomp returns one of the three valuessD_DIMVAL BW_COMP(or 1),
SD_DIMVAL_BW_INCOMFor 0), and FAIL (or -1). The interpretation oD DIMVAL_BW_COmand
SD_DIMVAL_BW_INCOMg&re as that in the routirgDsetdimval_comp

The parameters @Disdimval_bwcompare specified in Table 3P.

TABLE 3P SDsetdimval_comp and SDisdimval_bwcomp Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) © FORTRAN-77
SDsetdimval_comp dim_id int32 integer Dimension identifier
(sg:r?vc) comp_mode intn integer Compatibility mode
SDisdimval_bwcomp
[intn] dim_id int32 integer Dimension identifier
(sfisdmvc)
3.8.4 Dimension Scales
A dimension scalean be thought of as a series of numbers demarcating intervals along a dimen-
sion. One scale is assigned per dimension. Users of netCDF can think of them as analogous to
coordinate variablesIn the SDS data model, each dimension scale is a one-dimensional array
with name and size equal to its assigned dimension name and size.
For example, if a dimension of length 6 named "depth" is assigned a dimension scale, its scale is a
one-dimensional array of length 6 and is also assigned the name "depth". The name of the dimen-
sion will also appear as the name of the dimension scale.
Recall that when dimension scale is assigned to a dimension, the dimension is implemented as an
SDS array with data being the data scale. Although dimension scales are conceptually different
from SDS arrays, they are implemented as SDS arrays by the SDS interface and are treated simi-
larly by the routines in the interface. For example, whersfileinfo routine returns the number
of data sets in a file, it includes dimension scales in that numberSDisoordvar routine
(described in Section 3.8.4.4 on page 81) distinguishes SDS data sets from dimension scales.
3-74 June 24, 1998



HDF User's Guide

3.8.4.1 Writing Dimension Scales: SDsetdimscale

SDsetdimscalestores scale information for the dimension identified by the paranietad .
The syntax of this routine is as follows:

C: status = SDsetdimscale(dim_id, n_values, data_type, data);
FORTRAN: status = sfsdscale(dim_id, n_values, data_type, data)

The argument_values specifies the number of scale values along the specified dimension. For a
fixed size dimensionn values must be equal to the size of the dimension. The parameter
data type specifies the data type for the scale valuesdated is an array containing the scale
values.

SDsetdimscalereturns a value ;8UCCEEDor 0) or FAIL (or-1). The parameters of this routine are
specified in Table 3Q on page 76.

3.8.4.2 Obtaining Dimension Scale and Other Dimension Information: SDdiminfo

Before working with an existing dimension scale, it is often necessary to determine its characteris-
tics. For instance, to allocate the proper amount of memory for a scale requires knowledge of its
size and data typ&Ddiminfo provides this basic information, as well as the name and the num-
ber of attributes for a specified dimension.

The syntax of this routine is as follows:

C: status = SDdiminfo(dim_id, dim_name, &dim_size, &data_type,
&n_attrs);

FORTRAN: status = sfgdinfo(dim_id, dim_name, dim_size, data_type,
n_attrs)

SDdiminfo retrieves and stores the dimension’s name, size, data type, and number of attributes
into the parameter$m_name, dim_size , data_type , andn_atrs , respectively.

The parametedim_name will contain the dimension name set 8§psetdimnameor the default
dimension namefakeDim[x] , if SDsetdimnamehas not been called, wherg] [denotes the
dimension index. If the name is not desired, the parardietefiame can be set tlULLin C or an
empty string in FORTRAN-77.

An output value of O for the paramet#n_size indicates that the dimension specified by the
parameterim_id is unlimited. UseSDgetinfo to get the number of elements of the unlimited
dimension.

If scale information is available for the specified dimension, $Bsetdimscalehas been called,
the parametetata type will contain the data type of the scale values; otherwlge, type  will
containo.

SDdiminfo returns a value oc8UCCEELor 0) or FAIL (or-1). The parameters of this routine are
specified in Table 3Q.

3.8.4.3 Reading Dimension Scales: SDgetdimscale

SDgetdimscaleretrieves the scale values of a dimension. These values have previously been
stored bySDsetdimscale The syntax of this routine is as follows:

C: status = SDgetdimscale(dim_id, data);

FORTRAN: status = sfgdscale(dim_id, data)

June 24, 1998 3-75



National Center for Supercomputing Applications

SDgetdimscalereads all the scale values and stores them in the lafferwhich is assumed to

be sufficiently allocated to hold all the valu&Ddiminfo should be used to determine whether the

scale has been set for the dimension and to obtain the data type and the number of scale values for
space allocation before callirg@Dgetdimscale Refer to Section 3.8.4.2 on page 75 for a discus-

sion of SDdiminfo.

Note that it is not possible to read a subset of the scale v&Dggtdimscalereturns all of the
scale values stored with the given dimension.

SDgetdimscalereturns a value addUCCEELor 0) or FAIL (or-1). The parameters of this routine
are specified in Table 3Q.

TABLE 3Q SDsetdimscale, SDdiminfo, and SDgetdimscale Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
dim_id int32 integer Dimension identifier
SDs?tdin;scale n_values int32 integer Number of scale values
intn
(sfsdscale) data_type int32 integer Data type to be set for the scale values
data VOIDP <valid data type>(*) | Buffer containing the scale values to be seft
dim_id int32 integer Dimension identifier
SDdiminfo dim_name char * character*(*) Buffer for the dimension name
[intn] n_values int32 * integer Buffer for the dimension size
(sfgdinfo) data_type int32 * integer Buffer for the scale data type
n_attrs int32 * integer Buffer for the attribute count
SDgetdimscale dim_id int32 integer Dimension identifier
intn
(sfédsc]ale) data VOIDP <valid data type>(*) | Buffer for the scale values
EXAMPLE 12. Setting and Retrieving Dimension Information.
This example illustrates the use of the routis&getdimid/sfdimid, SDsetdimname/sfsdm-
name, SDsetdimscale/sfsdscale&SDdiminfo/sfgdinfo, and SDgetdimscale/sfgdscaléo set and
retrieve the dimensions names and dimension scales of the SDS created in Example 2 and modi-
fied in Examples 4 and 7.
C:
#include "mfhdf.h"
#define FILE_NAME  "SDS.hdf"
#define SDS_NAME  "SDStemplate"
#define DIM_NAME_X  "X_Axis"
#define DIM_NAME_Y  "Y_Axis"
#define NAME_LENGTH 6
#define X_LENGTH 5
#define Y_LENGTH 16
#define RANK 2
main( )
{
/ Variable declaration /
int32 sd_id, sds_id, sds_index;
intn  status;
3-76 June 24, 1998



HDF User's Guide

int32 dim_index, dim_id;

int32 n_values, data_type, n_attrs;

intlé data X[X_LENGTH]; /* X dimension dimension scale */
intl6 data_X_outlX_LENGTH];

float64 data_Y[Y_LENGTH]; /*Y dimension dimension scale */
float64 data_Y_out[Y_LENGTH];

char dim_name[NAME_LENGTH];

int i, j, nrow;

[RIxwRk xRk Rk End of variable declaration **kik ik ik ok |

/*

* |nitialize dimension scales.

*/

for (i=0; i < X_LENGTH; i++) data_X[i] = ;

for (i=0; i < Y_LENGTH; i++) data_Y[i]= 0.1 *;

/*

* Open the file and initialize SD interface.

*

sd_id = SDstart (FILE_NAME, DFACC_WRITE);

/*

* Get the index of the data set specified in SDS_NAME.
*/

sds_index = SDnametoindex (sd_id, SDS_NAME);

/*

* Select the data set corresponding to the returned index.
*/

sds_id = SDselect (sd_id, sds_index);

* For each dimension of the data set specified in SDS_NAME,
* get its dimension identifier and set dimension name
* and dimension scale. Note that data type of dimension scale
* can be different between dimensions and can be different from
* SDS data type.
*
for (dim_index = 0; dim_index < RANK; dim_index++)
{

/*

* Select the dimension at position dim_index.

*/

dim_id = SDgetdimid (sds_id, dim_index);

/*
* Assign name and dimension scale to selected dimension.
*/
switch (dim_index)
{
case O:status = SDsetdimname (dim_id, DIM_NAME_Y);
n_values = Y_LENGTH,;
status = SDsetdimscale (dim_id,n_values,DFNT_FLOAT64, \
(VOIDP)data_Y);
break;
case 1:status = SDsetdimname (dim_id, DIM_NAME_X);
n_values = X_LENGTH,;
status = SDsetdimscale (dim_id,n_values,DFNT_INT16, \
(VOIDP)data_X);
break;
default: break;
}

June 24, 1998 3-77



National Center for Supercomputing Applications

/*
* Get and display info about the dimension and its scale values.
* The following information is displayed:

* Information about 1 dimension:

* dimension name is Y_AXxis

* number of scale values is 16

* dimension scale data type is float64
* number of dimension attributes is 0
* Scale values are :

* 0.000 0.100 0.200 0.300
* 0.400 0.500 0.600 0.700
* 0.800 0.900 1.000 1.100
* 1.200 1.300 1.400 1.500
* Information about 2 dimension:

* dimension name is X_Axis

* number of scale values is 5

* dimension scale data type is int16
* number of dimension attributes is 0
* Scale values are :

* 01234

*/

status = SDdiminfo (dim_id, dim_name, &n_values, &data_type, &n_attrs);
printf ("Information about %d dimension:\n", dim_index+1);
printf ("dimension name is %s\n", dim_name);

printf ("number of scale values is %d\n", n_values);

if( data_type == DFNT_FLOAT64)

printf ("dimension scale data type is float64\n");

if( data_type == DFNT_INT16)

printf ("dimension scale data type is int16\n");

printf ("number of dimension attributes is %d\n", n_attrs);
printf ("\n");

printf ("Scale values are :\n");

switch (dim_index)

{
case 0: status = SDgetdimscale (dim_id, (VOIDP)data_Y_out);
nrow = 4;
for (i=0; i<n_values/nrow; i++)
{

for (j=0; j<nrow; j++)
printf (" %-6.3f", data_Y_out[i*nrow + j]);
printf ("\n");
}
break;
case 1. status = SDgetdimscale (dim_id, (VOIDP)data_X_out);
for (i=0; i<n_values; i++) printf (" %d", data_X_out[i]);
break;
default: break;
}
printf ("\n");
} *for dim_index */

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*
* Terminate access to the SD interface and close the file.

3-78 June 24, 1998



HDF User's Guide

*/
status = SDend (sd_id);
}

FORTRAN:

program dimension_info
implicit none

Parameter declaration.

OO0

character*7 FILE_NAME

character*11 SDS_NAME

character*6 DIM_NAME_X

character*6 DIM_NAME_Y

integer X_LENGTH, Y_LENGTH, RANK
parameter (FILE_NAME ='SDS.hdf,

+ SDS_NAME ='SDStemplate’,
DIM_NAME_X ="X_Axis,
DIM_NAME_Y ='Y_Axis,
X_LENGTH =5,

Y_LENGTH =186,

RANK =2)

integer DFACC_WRITE, DFNT_INT16, DFNT_FLOAT64
parameter (DFACC_WRITE =2,

+ DFNT_INT16 =22,

+ DFNT_FLOAT64 = 6)

+ + + + +

C
C Function declaration.
C
integer sfstart, sfn2index, sfdimid, sfgdinfo
integer sfsdscale, sfgdscale, sfsdmname, sfendacc
integer sfend, sfselect
C
C**** Variable declaration
C

integer sd_id, sds_id, sds_index, status
integer dim_index, dim_id
integer n_values, n_attrs, data_type
integer*2 data_ X(X_LENGTH)
integer*2 data_X_out(X_LENGTH)
real*8 data_Y(Y_LENGTH)
real*8 data_Y_out(Y_LENGTH)
character*6 dim_name
integer i

C

C** End of variable declaration

Initialize dimension scales.

OO0

do10i=1, X_LENGTH
data_X(@)=i-1
10 continue

do20i=1,Y_LENGTH
data_Y()) =0.1*(i- 1)
20 continue
C
C Open the file and initialize SD interface.
C
sd_id = sfstart(FILE_NAME, DFACC_WRITE)

June 24, 1998 3-79



National Center for Supercomputing Applications

OO0

O0O0000 OO0

OO0

OO0

O0O000000000000000000000O0O0

(@]

Get the index of the data set with the name specified in SDS_NAME.

sds_index = sfn2index(sd_id, SDS_NAME)

Select the data set corresponding to the returned index.

sds_id = sfselect(sd_id, sds_index)

For each dimension of the data set,

get its dimension identifier and set dimension name

and dimension scales. Note that data type of dimension scale can

be different between dimensions and can be different from SDS data type.

do 30 dim_index = 0, RANK - 1

Select the dimension at position dim_index.
dim_id = sfdimid(sds_id, dim_index)
Assign name and dimension scale to the dimension.

if (dim_index .eq. 0) then

status = sfsdmname(dim_id, DIM_NAME_X)

n_values = X_LENGTH

status = sfsdscale(dim_id, n_values, DFNT_INT16, data_X)
end if
if (dim_index .eq. 1) then

status = sfsdmname(dim_id, DIM_NAME_Y)

n_values=Y_LENGTH

status = sfsdscale(dim_id, n_values, DFNT_FLOATG64, data_Y)
end if

Get and display information about dimension and its scale values.
The following information is displayed:

Information about 1 dimension :
dimension name is X_Axis
number of scale values is 5
dimension scale data type is int16

number of dimension attributes is 0
Scale values are:
01234

Information about 2 dimension :
dimension name is Y_Axis

number of scale values is 16
dimension scale data type is float64
number of dimension attributes is 0

Scale values are:
0.000 0.100 0.200 0.300
0.400 0.500 0.600 0.700
0.800 0.900 1.000 1.100
1200 1.300 1400 1.500

status = sfgdinfo(dim_id, dim_name, n_values, data_type, n_attrs)

write(*,*) "Information about ", dim_index+1," dimension :"
write(*,*) "dimension name is ", dim_name

write(*,*) "number of scale values is", n_values

if (data_type. eq. 22) then

3-80

June 24, 1998



HDF User's Guide

write(*,*) "dimension scale data type is int16"
endif
if (data_type. eq. 6) then

write(*,*) "dimension scale data type is float64"
endif
write(*,*) "number of dimension attributes is ", n_attrs

write(*,*) "Scale values are:"
if (dim_index .eq. 0) then
status = sfgdscale(dim_id, data_X_out)
write(*,*) (data_X_out(i), i=1, X_LENGTH)
endif
if (dim_index .eq. 1) then
status = sfgdscale(dim_id, data_Y_out)
write(*,100) (data_Y_out(i), i= 1, Y_LENGTH)
100 format(4(1x,f10.3)/)
endif
30 continue

C
C Terminate access to the data set.
C

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

[eNeN¢e]

status = sfend(sd_id)
end

3.8.4.4 Distinguishing SDS Arrays from Dimension Scales: SDiscoordvar

The HDF library stores SDS dimensions as data sets. HDF therefore provides theSDigote

ordvar to determine whether a particular data set contains the data of an SDS or an SDS dimen-
sion with dimension scale or attribute assigned to it. The synt@Ristoordvarthis routine is as
follows:

C: status = SDiscoordvar(sds_id);
FORTRAN: status = sfiscvar(sds_id)

If the data set, identified by the paramedgy id , contains the dimension data, a subsequent call
to SDgetinfowill fill the specified arguments with information about a dimension, rather than a
data set.

SDiscoordvar returnsTRUE(or 1) if the specified data set represents a dimension scalerasd
(or 0), otherwise. This routine is further defined in Table 3R.

TABLE 3R

SDiscoordvar Parameter List

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
SDiscoordvar
[intn] sds_id int32 integer Data set identifier
(sfiscvar)

June 24, 1998 3-81



National Center for Supercomputing Applications

EXAMPLE 13.

Distinguishing a Dimension Scale from a Data Set in a File.

This example illustrates the use of the rout8@iscoordvar/sfiscvarto determine whether the
selected SDS array is a data set or a dimension stored as an SDS array (coordinate variable) (see
discussion in Section 3.8.4) and displays the name of the data set or dimension.

C:

#include "mfhdf.h"
#define FILE_NAME  "SDS.hdf"
main()

{

/ Variable declaration /

int32 sd_id, sds_id, sds_index;

intn status;

int32 rank, data_type, dim_sizes[MAX_VAR_DIMS];
int32 n_datasets, n_file_attr, n_attrs;

char sds_name[MAX_NC_NAME];

[FIxwRk xRk End of variable declaration **skik ik ik ok |

/*

* Open the file and initialize the SD interface.

*/

sd_id = SDstart(FILE_NAME, DFACC_READ);

/*

* Obtain information about the file.

*/

status = SDfileinfo(sd_id, &n_datasets, &n_file_attr);

[* Get information about each SDS in the file.

* Check whether it is a coordinate variable, then display retrieved
* information.

* Output displayed:

*

* SDS array with the name SDStemplate

* Coordinate variable with the name Y_Axis

* Coordinate variable with the name X_Axis

*

*/

for (sds_index=0; sds_index< n_datasets; sds_index++)
{

sds_id = SDselect (sd_id, sds_index);
status = SDgetinfo(sds_id, sds_name, &rank, dim_sizes, &data_type,
&n_attrs);
if (SDiscoordvar(sds_id))
printf(" Coordinate variable with the name %s\n", sds_name);
else
printf(" SDS array with the name %s\n", sds_name);

/*

* Terminate access to the selected data set.
*/

status = SDendaccess(sds_id);

}

/*
* Terminate access to the SD interface and close the file.

3-82

June 24, 1998



HDF User's Guide

*/
status = SDend(sd_id);
}
FORTRAN:
program sds_vrs_coordvar
implicit none
C
C Parameter declaration.
C
character*7 FILE_NAME
parameter (FILE_NAME ='SDS.hdf’)
integer DFACC_READ, DFNT_INT32
parameter (DFACC_READ =1,
+ DFNT_INT32 = 24)
integer MAX_VAR_DIMS
parameter (MAX_VAR_DIMS = 32)
C
C Function declaration.
C
integer sfstart, sfselect, sfiscvar, sffinfo, sfginfo
integer sfendacc, sfend
C
C**** Variable declaration
C
integer sd_id, sds_id, sds_index, status
integer rank, data_type
integer n_datasets, n_file_attrs, n_attrs
integer dim_sizes(MAX_VAR_DIMS)
character*256 sds_name
C
C** End of variable declaration
C
C
C Open the file and initialize the SD interface.
C
sd_id = sfstart(FILE_NAME, DFACC_READ)
C
C Obtain information about the file.
C
status = sffinfo(sd_id, n_datasets, n_file_attrs)
C
C Getinformation about each SDS in the file.
C Check whether it is a coordinate variable, then display retrieved
C information.
C Output displayed:
C
C SDS array with the name SDStemplate
C Coordinate variable with the name X_Axis
C Coordinate variable with the name Y_Axis
C

do 10 sds_index = 0, n_datasets-1
sds_id = sfselect(sd_id, sds_index)
status = sfginfo(sds_id, sds_name, rank, dim_sizes,
+ data_type, n_attrs)
status = sfiscvar(sds_id)
if (status .eq. 1) then
write(*,*) "Coordinate variable with the name ",
+ sds_name(1:6)
else
write(*,*) "SDS array with the name ",
+ sds_name(1:11)

June 24, 1998

3-83



National Center for Supercomputing Applications

endif
C
C Terminate access to the data set.
C
status = sfendacc(sds_id)
10 continue
C
C Terminate access to the SD interface and close the file.
C
status = sfend(sd_id)
end

3.8.5 Related Data Sets

SD data sets with one or more dimensions with the same name and size are considered to be
related. Examples of related data sets are cross-sections from the same simulation, frames in an
animation, or images collected from the same apparatus. HDF attempts to preserve this relation-
ship by unifying their dimension scales and attributes. To understand how related data sets are
handled, it is necessary to understand what dimension records are and how they are created.

In the SD interface, dimension records are only created for dimensions of a unique name and size.
To illustrate this, consider a case where there are three scientific data sets, each representing a
unique variable, in an HDF file. (See Figure 3c.) The first two data sets have two dimensions each
and the third data set has three dimensions. There are a total of five dimensions in the file and the
name mapping between the data sets and the dimensions are shown in the figure. Note that if, for
example, the creation of a second dimension named "Altitude" is attempted and the size of the
dimension is different from the existing dimension named "Altitude", an error condition will be
generated.

As expected, assigning a dimension attribute to dimension 1 of either data set will create the
required dimension scale and assign the appropriate attribute. However, because related data sets
share dimension records, they also share dimension attributes. Therefore, it is impossible to assign
an attribute to a dimension without assigning the same attribute to all dimensions of identical
name and size, either within one data set or related data sets.

FIGURE 3c Dimension Records and Attributes Shared Between Related Data Sets
Data Set A Data Set B Data Set C
[ Latitude] [ Congitudg Longitudg
Latitude Longitude Time Altitude
Dimensions
3-84 June 24, 1998



HDF User's Guide

3.9 User-defined Attributes

User-defined attributesare defined by the calling program and contain auxiliary information
about a file, SDS array, or dimension. This auxiliary information is sometimes cadiediata

because it is data about data. There are two ways to store metadata: as user-defined attributes or as
predefined attributes.

Attributes take the forrabel=value , wherelabel is a character string containitvpX_NC_NAME

(or 256) or fewer characters andlue contains one or more entries of the same data type as
defined at the time the attribute is created. Attributes can be attached to files, data sets, and dimen-
sions. These are referred to, respectivelyfilasattributes data set attributesand dimension
attributes

File attributesdescribe an entire file. They generally contain information pertinent to all
HDF data sets in the file and are sometimes referreddiohal attributes

Data set attributeslescribe individual SDSs. Because their scope is limited to an individual
SDS, data set attributes are sometimes referredltezalsattributes

Dimension attributesprovide information applicable to an individual SDS dimension. It is
possible to assign a unit to one dimension in a data set without assigning a unit to the
remaining dimensions.

For each attribute, aattribute countis maintained that identifies the number of values in the
attribute. Each attribute has a unigugibute index the value of which ranges from 0 to the total
number of attributes minus 1. The attribute index is used to locate an attribute in the object which
the attribute is attached to. Once the attribute is identified, its values and information can be
retrieved.

The data types permitted for attributes are the same as those allowed for SDS arrays. SDS arrays
with general attributes of the same name can have different data types. For example, the attribute
valid_range  specifying the valid range of data values for an array of 16-bit integers might be of
type 16-bit integer, whereas the attribuééid range  for an array of 32-bit floats could be of

type 32-bit floating-point integer.

Attribute names follow the same rules as dimension names. Providing meaningful nhames for
attributes is important, however using standardized names may be necessary if generic applica-
tions and utility programs are to be used. For example, every variable assigned a unit should have
an attribute namediits” associated with it. Furthermore, if an HDF file is to be used with soft-
ware that recognizes "units" attributes, the values of the "units" attributes should be expressed in a
conventional form as a character string that can be interpreted by that software.

The SD interface uses the same functions to access all attributes regardless of the objects they are
assigned to. The difference between accessing a file, array, or dimension attribute lies in the use of
identifiers. File identifiers, SDS identifiers, and dimension identifiers are used to respectively
access file attributes, SDS attributes, and dimension attributes.

3.9.1 Creating or Writing User-defined Attributes: SDsetattr

SDsetattr creates or modifies an attribute for one of the objects: the file, the data set, or the
dimension. If the attribute with the specified name does not &listetattr creates a new one. If

the named attribute already exiSf)setattrresets all the values that are different from those pro-
vided in its argument list. The syntax of this routine is as follows:

C: status = SDsetattr(obj_id, attr_name, data._type, n_values, values);

FORTRAN: status = sfsnatt(obj_id, attr_name, data_type, n_values, values)

June 24, 1998 3-85



National Center for Supercomputing Applications

OR status = sfscatt(obj _id, attr_name, data._type, n_values, values)

The parameteobj_id is the identifier of the HDF data object to which the attribute is assigned
and can be a file identifier, SDS identifier, or dimension identifiabjlid specifies an SD inter-
face identifier ¢d_id ), a global attribute will be created which applies to all objects in the file. If
obj_id specifies a data set identifiexd$é_id ), an attribute will be attached only to the specified
data set. Ibbj_id specifies a dimension identifiedify_id ), an attribute will be attached only to
the specified dimension.

The parametesttr name is an ASCII character string containing the name of the attribute. It rep-
resents the label in thabel = value equation and can be no more thaxx_NC_NAME®Tr 256)
characters. If this is set to the hame of an existing attribute, the value portion of the attribute will
be overwritten. Do not us8Dsetattr to assign a name to a dimension, &@setdimname
instead.

The argumentsdata_type , n_values , andvalues describe the right side of thebel = value

equation. The argumemdlues contains one or more values of the same data type. The argument
data type contains any HDF supported data type (see Table 2E on page 14). The parameter
n_values specifies the total number of values in the attribute.

There are two FORTRAN-77 versions of this routietsnatt and sfscatt The routine sfsnatt
writes numeric attribute data asfscattwrites character attribute data.

SDsetattr returns a value c8UCCEEL§or 0) or FAIL (or-1). The parameters &Dsetattr are fur-
ther described in Table 3S on page 90.

EXAMPLE 14. Setting Attributes.

This example shows how the routir&Bsetattr/sfscatt/sfsnattare used to set the attributes of the
file, data set, and data set dimension created in the Examples 2, 4, and 12.

C:

#include "mfhdf.h"

#define FILE_NAME  "SDS.hdf"
#define FILE_ATTR_NAME "File_contents"
#define SDS_ATTR_NAME "Valid_range"
#define DIM_ATTR_NAME "Dim_metric"

main( )

{

/ Variable declaration /

int32 sd_id, sds_id, sds_index;
intn  status;
int32 dim_id, dim_index;
int32 n_values; /* number of values of the file, SDS or
dimension attribute */
char8 file_values[] = "Storm_track_data";
* values of the file attribute */
float32 sds_values[2] ={2., 10.};
[* values of the SDS attribute */
char8 dim_values[] ="Seconds";
[* values of the dimension attribute */

Jradkkxkiicxiokx End of variable declaration ** koo |

/*
* Open the file and initialize the SD interface.

3-86 June 24, 1998



HDF User's Guide

*
sd_id = SDstart (FILE_NAME, DFACC_WRITE);

/*
* Set an attribute that describes the file contents.
*
/
n_values = 16;
status = SDsetattr (sd_id, FILE_ATTR_NAME, DFNT_CHARS, n_values,
(VOIDP)file_values);

/*

* Select the first data set.

*/

sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*

* Assign attribute to the first SDS. Note that attribute values

* may have different data type than SDS data.

*

/

n_values =2;

status = SDsetattr (sds_id, SDS_ATTR_NAME, DFNT_FLOAT32, n_values,
(VOIDP)sds_values);

/*

* Get the the second dimension identifier of the SDS.
*/

dim_index =1,

dim_id = SDgetdimid (sds_id, dim_index);

/*
* Set an attribute of the dimension that specifies the dimension metric.
*
/
n_values = 7,
status = SDsetattr (dim_id, DIM_ATTR_NAME, DFNT_CHARS, n_values,
(VOIDP)dim_values);

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*

* Terminate access to the SD interface and close the file.
*/

status = SDend (sd_id);

FORTRAN:

OO0

program set_attribs
implicit none

Parameter declaration.

character*7 FILE_NAME
character*13 FILE_ATTR_NAME
character*11 SDS_ATTR_NAME
character*10 DIM_ATTR_NAME
parameter (FILE_NAME ='SDS.hdf,

+ FILE_ATTR_NAME = "File_contents’,
+ SDS_ATTR_NAME ='Valid_range’,
+ DIM_ATTR_NAME ='Dim_metric’)
June 24, 1998 3-87



National Center for Supercomputing Applications

integer DFACC_WRITE, DFNT_CHARS, DFNT_FLOAT32
parameter (DFACC_WRITE =2,
+ DFNT_CHARS8 =4,
+ DFNT_FLOAT32 =5)
C
C  Function declaration.
C
integer sfstart, sfscatt, sfsnatt, sfselect, sfdimid
integer sfendacc, sfend
C
C**** Variable declaration
C

integer sd_id, sds_id, sds_index, status
integer dim_id, dim_index
integer n_values
character*16 file_values
real sds_values(2)
character*7 dim_values
file_values ='Storm_track data’
sds_values(1) = 2.
sds_values(2) = 10.
dim_values ='Seconds’

C

C*+ End of variable declaration

Open the file and initialize the SD interface.

OO0

sd_id = sfstart(FILE_NAME, DFACC_WRITE)

Set an attribute that describes the file contents.

OO0

n_values =16
status = sfscatt(sd_id, FILE_ATTR_NAME, DFNT_CHARS, n_values,
+ file_values)

Select the first data set.

OO0

sds_index=0
sds_id = sfselect(sd_id, sds_index)

Assign attribute to the first SDS. Note that attribute values
may have different data type than SDS data.

OO0

n_values =2
status = sfsnatt(sds_id, SDS_ATTR_NAME, DFNT_FLOAT32, n_values,
+ sds_values)

Get the identifier for the first dimension.

OO0

dim_index =0
dim_id = sfdimid(sds_id, dim_index)

Set an attribute to the dimension that specifies the
dimension metric.

OO0

n_values =7
status = sfscatt(dim_id, DIM_ATTR_NAME, DFNT_CHARS, n_values,
+ dim_values)

Terminate access to the data set.

OO0

status = sfendacc(sds_id)

3-88 June 24, 1998



HDF User's Guide

C
C Terminate access to the SD interface and close the file.
C

status = sfend(sd_id)

end

3.9.2 Querying User-defined Attributes: SDfindattr and SDattrinfo

Given a file, SDS, or dimension identifier and an attribute ne®idindattr returns a valid
attribute index if the corresponding attribute exists. The attribute index can then be used to retrieve
information about the attribute or its values. Given a file, SDS, or dimension identifier and a valid
attribute indexSDattrinfo retrieves the information about the corresponding attribute if it exists.

The syntax foSDfindattr andSDattrinfo are as follows:

C: attr_index = SDfindattr(obj_id, attr_name);
status = SDattrinfo(obj_id, attr_index, attr_name, &data_type,
&n_values);

FORTRAN: attr_index = sffattr(obj_id, attr_name)
status = sfgainfo(obj_id, attr_index, attr_name, data_type,
n_values)

SDfindattr returns the index of the attribute, which belongs to the object identified by the param-
eterobj_id , and whose name is specified by the paranatename

The parameteobj id can be either an SD interface identifiad_(d ), a data set identifier
(sds_id ), or a dimension identifierdin_id ). SDfindattr is case-sensitive in searching for the
name specified by the paramed#r name and does not accept wildcards as part of that name.

SDattrinfo retrieves the attribute’s name, data type, and number of values into the parameters
attr name ,data type , andn_ values , respectively.

The parameteattr_index specifies the relative position of the attribute within the specified
object. An attribute index may also be determined by either keeping track of the number and order
of attributes as they are written or dumping the contents of the file using the HDF dumping utility,
hdp, which is described in Chapter FDF Command-Line Utilities

SDfindattr returns an attribute index or a valuerafL (or-1). SDattrinfo returns a value UC-
CEED(or 0) or FAIL (or-1). The parameters &Dfindattr andSDattrinfo are further described in
Table 3S on page 90.

3.9.3 Reading User-defined Attributes: SDreadattr

Given a file, SDS, or dimension identifier and an attribute in8&¢eadattr reads the values of
an attribute that belongs to either a file, an SDS, or a dimension. The syntax of this routine is as
follows:

C: status = SDreadattr(obj_id, attr_index, values);
FORTRAN: status = sfrattr(obj_id, attr_index, values)

OR status = sfrnatt(obj_id, attr_index, values)

OR status = sfrcatt(obj_id, attr_index, values)

SDreadattr stores the attribute values in the buffelues , which is assumed to be sufficiently
allocated. The size of the buffer must be at Ieasilues*sizeof (data type) bytes long,

June 24, 1998 3-89



National Center for Supercomputing Applications

wheren_values anddata_type are the number of attribute values and their type. The values of
n_values anddata_type can be retrieved usingDattrinfo. Note that the size of the data type
must be determined at the local machine where the application is rusngadattr will also

read attributes and annotations created by the DFSD interface.

The parameteobj id can be either an SD interface identifiad_(d ), a data set identifier
(sds_id ), or a dimension identifiedin_id ).

The parameteattr_index specifies the relative position of the attribute within the specified
object. An attribute index may also be determined by either keeping track of the number and order
of attributes as they are written or dumping the contents of the file using the HDF dumping utility,
hdp, which is described in Chapter FDF Command-Line Utilities

There are three FORTRAN-77 versions of this routsimttr, sfrnatt, andsfrcatt. The routine
sfrattr reads data of all valid data typesftnatt reads numeric attribute data asfcatt reads
character attribute data.

SDreadattr returns a value c8UCCEEL§or 0) or FAIL (or-1). The parameters @&Dreadattr are
further described in Table 3S.

TABLE 3S

SDsetattr, SDfindattr, SDattrinfo, and SDreadattr Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
sd_id, sds_id o int32 integer SD interface, data set, or
dim_id g dimension identifier
SDsetattr attr_name char * character*(*) Name of the attribute
[intn] - - -
(sfsnatt/ data_type int32 integer Data type of the attribute
sfscatt) n_values int32 integer Number of values in the attribute
<vali i > (¥
values VOIDP valid numeric data type>( Buffer containing the data to be written
character*(*)
SDfindattr Sdild., Sd_SJd 0| int32 integer S.D mterfac_e, da_t_a set, or
[int32] dim_id dimension identifier
(sffattr) attr_name char * character*(*) Attribute name
sd_id, sds_id o int32 integer SD interface, data set, or
dim_id g dimension identifier
attr_index int32 integer Index of the attribute to be read
SDattrinfo -
fintn] attr_name char * character*(*) Buffer for the name of the attribute
(sfgainfo) data_type int32 * integer Buf_fer for the data type of the values in the
attribute
. . Buffer for the total number of values in the
n_values int32 * integer .
attribute
sd_id, sds_id o int32 integer SD interface, data set, or dimension idgnti-
SDreadattr dim_id g fier
fintn] attr_index int32 integer Index of the attribute to be read
(sfrattr/
sfrnatt/ <valid data type>(*)/
sfrcatt) values VOIDP <valid numeric data type>(*] Buffer for the attribute values
character*(*)

3-90

June 24, 1998



HDF User's Guide

EXAMPLE 15. Reading Attributes.

This example uses the routinebfindattr/sffattr , SDattrinfo/sfgainfo, andSDreadattr/sfrattr
to find and read attributes of the file, data set, and data set dimension created in the Example 14.
C:
#include "mfhdf.h"

#define FILE_NAME  "SDS.hdf"
#define FILE_ATTR_NAME "File_contents"
#define SDS_ATTR_NAME "Valid_range"
#define DIM_ATTR_NAME "Dim_metric"

main()

{

/ Variable declaration /

int32 sd_id, sds_id, dim_id;

intn  status;

int32 attr_index, data_type, n_values;
char attr_name[MAX_NC_NAME];
int8 *file_data;

int8 *dim_data;

float32 *sds_data;

int i

[RIxwikxsRRikk ok End of variable declaration **ssikkiik ik ik |

/*

* Open the file and initialize SD interface.

*/

sd_id = SDstart (FILE_NAME, DFACC_READ);

/*

* Find the file attribute defined by FILE_ATTR_NAME.
*

attr_index = SDfindattr (sd_id, FILE_ATTR_NAME);

/*

* Get information about the file attribute. Note that the first

* parameter is an SD interface identifier.

*/

status = SDattrinfo (sd_id, attr_index, attr_name, &data_type, &n_values);

/*

* Allocate a buffer to hold the attribute data.

*/

file_data = (int8 *)malloc (n_values * sizeof (data_type));

/*

* Read the file attribute data.

*

status = SDreadattr (sd_id, attr_index, file_data);

/*

* Print out file attribute value.

*

printf ("File attribute value is : %s\n", file_data);

/*
* Select the first data set.
*/

June 24, 1998 3-91



National Center for Supercomputing Applications

sds_id = SDselect (sd_id, 0);

/*

* Find the data set attribute defined by SDS_ATTR_NAME. Note that the
* first parameter is a data set identifier.

*

attr_index = SDfindattr (sds_id, SDS_ATTR_NAME);

/*

* Get information about the data set attribute.

*/

status = SDattrinfo (sds_id, attr_index, attr_name, &data_type, &n_values);

/*

* Allocate a buffer to hold the data set attribute data.

*/

sds_data = (float32 *)malloc (n_values * sizeof (data_type));

/*

* Read the SDS attribute data.

*/

status = SDreadattr (sds_id, attr_index, sds_data);

/*
* Print out SDS attribute data type and values.
*/
if (data_type == DFNT_FLOAT32)
printf ("SDS attribute data type is : float32\n");
printf ("SDS attribute values are : *);
for (i=0; i<n_values; i++) printf (* %f", sds_datali]);
printf ("\n");

/*

* Get the identifier for the second dimension of the SDS.
*/

dim_id = SDgetdimid (sds_id, 1);

/*

* Find dimension attribute defined by DIM_ATTR_NAME.
*

attr_index = SDfindattr (dim_id, DIM_ATTR_NAME);

/*

* Get information about the dimension attribute.

*

status = SDattrinfo (dim_id, attr_index, attr_name, &data_type, &n_values);

/*

* Allocate a buffer to hold the dimension attribute data.

*

dim_data = (int8 *)malloc (n_values * sizeof (data_type));

/*

* Read the dimension attribute data.

*/

status = SDreadattr (dim_id, attr_index, dim_data);

/*

* Print out dimension attribute value.

*

printf ("Dimensional attribute values is : %s\n", dim_data);

/*

3-92 June 24, 1998



HDF User's Guide

* Terminate access to the data set and to the SD interface and
* close the file.

*/

status = SDendaccess (sds_id);

status = SDend (sd_id);

/*

* Free all buffers.
*/

free (dim_data);
free (sds_data);
free (file_data);

/* Output of this program is :

*  File attribute value is : Storm_track_data

*  SDS attribute data type is : float32

*  SDS attribute values are :  2.000000 10.000000
* Dimensional attribute values is : Seconds

}
FORTRAN:

program attr_info
implicit none

C

C Parameter declaration.

C
character*7 FILE_NAME
character*13 FILE_ATTR_NAME
character*11 SDS_ATTR_NAME
character*10 DIM_ATTR_NAME
parameter (FILE_NAME ='SDS.hdf,
+ FILE_ATTR_NAME = 'File_contents’,
+ SDS_ATTR_NAME ='Valid_range’,
+ DIM_ATTR_NAME ='Dim_metric’)
integer DFACC_READ, DFNT_FLOAT32
parameter (DFACC_READ =1,
+ DFNT_FLOAT32 =5)

C

C  Function declaration.

C
integer sfstart, sffattr, sfgainfo, sfrattr, sfselect
integer sfdimid, sfendacc, sfend

C

C**** Variable declaration

C
integer  sd_id, sds_id, dim_id
integer  attr_index, data_type, n_values, status
real sds_data(2)
character*20 attr_name
character*16 file_data
character*7 dim_data
integer i

C

C** End of variable declaration

Open the file and initialize SD interface.

O000

sd_id = sfstart(FILE_NAME, DFACC_READ)

June 24, 1998 3-93



National Center for Supercomputing Applications

OO0 OO0 OO0 OO0 [eNeNe] [eNeN¢e] OO0 OO0

[eNeN¢e]

OO0 OO0 OO0

OO0

Find the file attribute defined by FILE_ATTR_NAME.
Note that the first parameter is an SD interface identifier.

attr_index = sffattr(sd_id, FILE_ATTR_NAME)
Get information about the file attribute.

status = sfgainfo(sd_id, attr_index, attr_name, data_type,
+ n_values)

Read the file attribute data.

status = sfrattr(sd_id, attr_index, file_data)
Print file attribute value.

write(*,*) "File attribute value is : ", file_data
Select the first data set.

sds_id = sfselect(sd_id, 0)

Find the data set attribute defined by SDS_ATTR_NAME.
Note that the first parameter is a data set identifier.

attr_index = sffattr(sds_id, SDS_ATTR_NAME)
Get information about the data set attribute.

status = sfgainfo(sds_id, attr_index, attr_name, data_type,
+ n_values)

Read the SDS attribute data.

status = sfrattr(sds_id, attr_index, sds_data)

Print SDS attribute data type and values.
if (data_type .eq. DFNT_FLOAT32) then

write(*,*) "SDS attribute data type is : float32 "
endif
write(*,*) "SDS attribute values are :"
write(*,¥) (sds_data(i), i=1, n_values)

Get the identifier for the first dimension of the SDS.
dim_id = sfdimid(sds_id, 0)

Find the dimensional attribute defined by DIM_ATTR_NAME.
Note that the first parameter is a dimension identifier.

attr_index = sffattr(dim_id, DIM_ATTR_NAME)
Get information about dimension attribute.

status = sfgainfo(dim_id, attr_index, attr_name, data_type,
+ n_values)

Read the dimension attribute data.

status = sfrattr(dim_id, attr_index, dim_data)

3-94

June 24, 1998



HDF User's Guide

Print dimension attribute value.

OO0

write(*,*) "Dimensional attribute value is : “, dim_data

Terminate access to the data set.

OO0

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

OO0

status = sfend(sd_id)

Output of this program is :

File attribute value is : Storm_track_data
SDS attribute data type is : float32
SDS attribute values are :
2.00000 10.00000
Dimensional attribute value is : Seconds

O0O0000000OO0

end

3.10 Predefined Attributes

Predefined attributesuse reserved names and in some cases predefined data type names. Pre-
defined attributes are categorized as follows:

Labelscan be thought of as variable names. They are often used as keys in searches to find a
particular predefined attribute.

Units are a means of declaring the units pertinent to a specific discipline. A freely-available
library of routines is available to convert between character string and binary forms of unit
specifications and to perform useful operations on the binary forms. This library is used in
some netCDF applications and is recommended for use with HDF applications. For more
information, refer to th@etCDF User's Guide for @vhich can be obtained at
http:/Mww.unidata.ucar.edu/packages/netcdf/guidec/

Formatsdescribe the format in which numeric values will be printed and/or displayed. The
recommended convention is to use standard FORTRAN-77 notation for describing the data
format. For example, "F7.2" means to display seven digits with two digits to the right of the
decimal point.

Coordinate systemsontain information that should be used when interpreting or displaying

the data. For example, the text strings "cartesian”, "polar" and "spherical" are recommended
coordinate system descriptions.

Rangesdefine the maximum and minimum values of a selected valid range. The range may
cover the entire data set, values outside the data set, or a subset of values within a data set.
Because the HDF library does not check or update the range attribute as data is added or
removed from the file, the calling program may assign any values deemed appropriate as
long as they are of the same data type as the SDS array.

Fill value is the value used to fill the areas between non-contiguous writes to SDS arrays.
For more information about fill values, refer to Section 3.10.5 on page 100.

Calibration stores scale and offset values used to create calibrated data in SDS arrays. When
data are calibrated, they are typically reduced from floats, double, or large integers into 8-bit

June 24, 1998 3-95



National Center for Supercomputing Applications

or 16-bit integers and "packed" into an appropriately sized array. After the scale and offset
values are applied, the packed array will return to its original form.

Predefined attributes are useful because they establish conventions that applications can depend
on and because they are understood by the HDF library without users having to define them. Pre-
defined attributes also ensure backward compatibility with earlier versions of the HDF library.
They can be assigned only to data sets and dimensions. Table 3T lists the predefined attributes and

the types of object each attribute can be assigned to.

TABLE 3T

Predefined Attributes List

HDF DTa;tseObject Attribute Category Attribute Name Description
SDS Array Label long_name Name of the array
or Unit units Units used for all dimensions and data
Dimension Format format Format for displaying dim scales and array values
Coordinate System cordsys Coordinate system used to interpret the SDS array
Range valid_range Maximum and minimum values within a selected data range
Fill Value __Fillvalue Value used to fill empty locations in an SDS array
scale_factor Value by which each array value is to be multiplied
SDS Array Only
scale_factor_err Error introduced by scaling SDS array data
Calibration add_offset Value to which each array value is to be added
add_offset_err Error introduced by offsetting the SDS array data
calibrated_nt Data type of the calibrated data

While the following netCDF naming conventions are not predefined in HDF, they are highly rec-
ommended to promote consistency of information-sharing among generic applications. Refer to
thenetCDF User's Guide for €or further information.

missing_value An attribute containing a value used to fill areas of an array not intended to
contain either valid data or a fill value. The scope of this attribute is local to the array. An
example of this would be a region where information is unavailable, as in a geographical
grid containing ocean data. The part of the grid where there is land might not have any data
associated with it and in such a casertizging_value  value could be supplied. The
missing_value  attribute is different from theFilvalue  attribute in that fill values are
intended to indicate data that was expected but did not appear, whereas missing values are
used to indicate data that were never expected.

title: A global file attribute containing a description of the contents of a file.

history. A global file attribute containing the name of a program and the arguments used to
derive the file. Well-behaved generic filters (programs that take HDF or netCDF files as
input and produce HDF or netCDF files as output) would be expected to automatically
append their name and the parameters with which they were invoked to the history attribute
of an input file.

3.10.1 Accessing Predefined Attributes

The SD interface provides two methods for accessing predefined attributes. The first method uses
the general attribute routines for user-defined attributes described in Section 3.9 on page 85; the
second employs routines specifically designed for each attribute and will be discussed in the fol-
lowing sections. Although the general attribute routines work well and are recommended in most
cases, the specialized attribute routines are sometimes easier to use, especially when reading or
writing related predefined attributes. This is true for two reasons. First, because predefined

3-96

June 24, 1998



HDF User's Guide

attributes are guaranteed unique names, the attribute index is unnecessary. Second, attributes with
several components may be read as a group. For example, using the SD routine designed to read
the predefined calibration attribute returns all five components with a single call, rather than five
separate calls.

There is one exception: unlike predefined data set attributes, predefined dimension attributes
should be read or written using the specialized attribute routines only.

The predefined attribute parameters are described in Table 3U. Creating a predefined attribute
with parameters different from these will produce unpredictable results when the attribute is read
using the corresponding predefined-attribute routine.

TABLE 3U

Predefined Attribute Definitions

Category Attribute Name Data Type Number of Values Attribute Description
Label long_name DFNT_CHARS8 String length Pointer to string
Unit units DFNT_CHARS8 String length Pointer to string
Format format DFNT_CHARS8 String length Pointer to string
g;)gtfrate cordsys DFNT_CHARS8 String length Pointer to string
Range valid_range <valid data type> | 2 Pointer to array
Fill Value _Fillvalue <valid data type> | 1 Pointer to fill value
scale_factor DFNT_FLOAT64 1 Pointer to scale
scale_factor_err DFNT_FLOAT64 1 Pointer to scale error
Calibration add_offset DFNT_FLOAT64 1 Pointer to offset
add_offset_err DFNT_FLOAT64 1 Pointer to offset error
calibrated_nt DFNT_INT32 1 Pointer to data type

In addition toSDreadattr, SDfindattr andSDattrinfo are also valid general attribute routines to
use when reading a predefined attrib@Battrinfo is always useful for determining the size of an
attribute whose value contains a string.

3.10.2 SDS String Attributes

This section describes the predefined string attributes of the SDSs and the next section describes
those of the dimensions. Predefined string attributes of an SDS include¢henit, format, and
coordinate system

3.10.2.1 Writing String Attributes of an SDS: SDsetdatastrs

SDsetdatastrsassigns the predefined string attributes label, unit, format, and coordinate system to
an SDS array. The syntax of this routine is as follows:

C: status = SDsetdatastrs(sds _id, label, unit, format, coord_system);
FORTRAN: status = sfsdtstr(sds_id, label, unit, format, coord_system)

If you do not wish to set an attribute, set the corresponding parameterLtin C and an empty
string in FORTRAN-77SDsetdatastrsreturns a value c8UCCEEDjor 0) or FAIL (or-1). Its argu-
ments are further described in Table 3V on page 98.

June 24, 1998 3-97



National Center for Supercomputing Applications

3.10.2.2 Reading String Attributes of an SDS: SDgetdatastrs

SDgetdatastrsreads the predefined string attributes label, unit, format, and coordinate system
from an SDS. These string attributes have previously been set by the ®iDEr&latastrs The
syntax ofSDgetdatastrsis as follows:

C: status = SDgetdatastrs(sds_id, label, unit, format,
coord_system, len);

FORTRAN: status = sfgdtstr(sds_id, label, unit, format, coord_system, len)

SDgetdatastrsstores the predefined attributes into the paramédiest , unit , format , and
coord_system , which are character string buffers. If a particular attribute has not been set by
SDsetdatastrs the first character of the corresponding returned string whiub&for C ando for
FORTRAN-77. Each string buffer is assumed to be at leastcharacters long, including the
space to hold theULL termination character. If you do not wish to get a predefined attribute of this
SDS, set the corresponding parametedbLin C and an empty string in FORTRAN-77.

SDgetdatastrsreturns a value oBUCCEED(or 0) or FAIL (or -1). Its parameters are further
described in Table 3V.

TABLE 3V SDsetdatastrs and SDgetdatastrs Parameter Lists
Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
sds_id int32 integer Data set identifier
* X (*
SDsetdatastrs label char character*(*) | Label for the data
[intn] unit char * character*(*) | Definition of the units
(sfsdtstr) N e S
format char character*(*) | Description of the data format
coord_system char * character*(*)| Description of the coordinate system
sds_id int32 integer Data set identifier
label char * character*(*) | Buffer for the label
SDg[e_tda]tastrs unit char * character*(*) | Buffer for the description of the units
intn
format char * character*(*) | Buffer for the description of the data format
(sfgdtstr)
coord_system char * character*(*)| Buffer for the description of the coordinate system
len intn integer Minimum length of the string buffers

3.10.3 String Attributes of Dimensions

Predefined string attributes of a dimension inclledeel, unit, andformat. They adhere to the
same definitions as those of the label, unit, and format strings for SDS attributes.

3.10.3.1 Writing a String Attribute of a Dimension: SDsetdimstrs

SDsetdimstrsassigns the predefined string attributes label, unit, and format to an SDS dimension
and its scales. The syntax of this routine is as follows:

C: status = SDsetdimstrs(dim_id, label, unit, format);
FORTRAN: status = sfsdmstr(dim_id, label, unit, format)

The argumentiim_id is the dimension identifier, returned I8Dgetdimid, and identifies the
dimension to which the attributes will be assigned. If you do not wish to set an attribute, set the
corresponding parameterkLLin C and an empty string in FORTRAN-77.

3-98

June 24, 1998



HDF User's Guide

SDsetdimstrs returns a value oBUCCEED(or 0) or FAIL (or -1). Its parameters are further
described in Table 3W.

3.10.3.2 Reading a String Attribute of a Dimension: SDgetdimstrs

SDgetdimstrsreads the predefined string attributes label, unit, and format from an SDS dimen-
sion. These string attributes have previously been set by the r&Dsetdimstrs The syntax of
SDgetdimstrsis as follows:

C: status = SDgetdimstrs(dim_id, label, unit, format, len);
FORTRAN: status = sfgdmstr(dim_id, label, unit, format, len)

SDgetdimstrs stores the predefined attributes of the dimension into the argutasts unit
andformat , which are character string buffers. If a particular attribute has not beenSesbi
dimstrs, the first character of the corresponding returned string willuae for C ando for FOR-
TRAN-77. Each string buffer is assumed to be at leasttharacters long, including the space to
hold theNULLtermination character. If you do not wish to get a predefined attribute of this dimen-
sion, set the corresponding parametenuoL in C and an empty string in FORTRAN-77.

SDgetdimstrs returns a value oBUCCEED(or 0) or FALL (or -1). Its parameters are further
described in Table 3W.

TABLE 3W

SDsetdimstrs and SDgetdimstrs Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
dim_id int32 integer Dimension identifier
SDS[?tdiTs"S label char * character*(*) | Label describing the specified dimension
intn
(sfsdmstr) unit char * character*(*) | Units to be used with the specified dimension
format char * character*(*) | Format to use when displaying the scale values
dim_id int32 integer Dimension identifier
* X (k' 1 1
SDgetdimstrs label char character*(*) | Buffer for the dimension label
[intn] unit char * character*(*) | Buffer for the dimension unit
(sfgdmstr) format char * character*(*) | Buffer for the dimension format
len intn integer Maximum length of the string attributes

3.10.4 Range Attributes

The attributerange contains user-defined maximum and minimum values in a selected range.

Since the HDF library does not check or update the range attribute as data is added or removed

from the file, the calling program may assign any values deemed appropriate. Also, because the

maximum and minimum values are supposed to relate to the data set, it is assumed that they are of

the same data type as the data.

3.10.4.1 Writing a Range Attribute: SDsetrange

SDsetrangesets the maximum and minimum range values for the data set identifdsl foy to
the values provided by the paramet@esandmin. The syntax of the routine is as follows:

C: status = SDsetrange(sds_id, max, min);

FORTRAN: status = sfsrange(sds_id, max, min)

June 24, 1998 3-99



National Center for Supercomputing Applications

SDsetrangedoes not compute the maximum and minimum range values, it only stores the values
as given. As a result, the maximum and minimum range values may not always reflect the actual
maximum and minimum range values in the data set data. Recall that the type of max and min is
assumed to be the same as that of the data set data.

SDsetrangereturns a value dSBUCCEEMor 0) or FAIL (or-1). Its parameters are further described
in Table 3X.

3.10.4.2 Reading a Range Attribute: SDgetrange

SDgetrangereads the maximum and minimum valid values of a data set. The syntax of this rou-
tine is as follows:

C: status = SDgetrange(sds_id, &max, &min);
FORTRAN: status = sfgrange(sds_id, max, min)

The maximum and minimum range values are stored in the paramateasdmin, respectively,
and must have previously been setSiysetrange Recall that the type ofiax andmin is assumed
to be the same as that of the data set data.

SDgetrangereturns a value cUCCEEL§or 0) or FAIL (or-1). Its parameters are further described
in Table 3X.

TABLE 3X

SDsetrange and SDgetrange Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
SDsetrange sds_id int32 integer Data set identifier
[intn] max VOIDP <valid data type> Maximum value to be stored
(sfsrange) min VOIDP <valid data type> Minimum value to be stored
SDgetrange sds_id int32 integer Data set identifier
[intn] max VOIDP <valid data type> Buffer for the maximum value
(sfgrange) min VOIDP <valid data type> Buffer for the minimum value

3.10.5 Fill Values and Fill Mode

A fill value is the value used to fill the spaces between non-contiguous writes to SDS arrays; it can
be set withSDsetfillvalue. If a fill value is set before writing data to an SDS, the entire array is
initialized to the specified fill value. By default, any location not subsequently overwritten with
SDS data will contain the fill value.

A fill value must be of the same data type as the array to which it is written. To avoid conversion
errors, use data-specific fill values instead of special architecture-specific values, such as infinity
andNot-a-Numberor NaN.

A fill mode specifies whether the fill value is to be written to all the SDSs in the file; it can be set
with SDsetfillmode

Writing fill values to an SDS can involve more 1/O overhead than is necessary, particularly in situ-
ations where the data set is to be contiguously filled with data before any read operation is made.
In other words, writing fill values is only necessary when there is a possibility that the data set will
be read before all gaps between writes are filled with data, i.e., before all elements in the array
have been assigned values. Thus, for a file that has only data sets containing contiguous data, the

3-100

June 24, 1998



HDF User's Guide

fill mode should be set t&D_NOFILL (or 256). Avoiding unnecessary filling can substantially
increase the application performance.

For a non-contiguous data set, the array elements that have no actual data values must be filled
with a fill value before the data set is read. Thus, for a file that has a non-contiguous data set, the
fill mode should be set t8D FILL (or 0) and a fill value will be written to the all data sets in the

file.

Note that, currentlySDsetfillmode specifies the fill mode of all data sets in the file. Thus, either
all data sets are ®8D_FILL mode or all data sets areSb_NOFILL mode. However, when a spe-
cific SDS needs to be written with a fill value while others in the file do not, the following proce-
dure can be used: set the fill modest FILL , write data to the data set requiring fill values, then
set the fill mode back t6D NOFILL. This procedure will produce one data set with fill values
while the remaining data sets have no fill values.

3.10.5.1 Writing a Fill Value Attribute: SDsetfillvalue

SDsetfillvalue assigns a new value to the fill value attribute for an SDS array. The syntax of this
routine is as follows:

C: status = SDsetffillvalue(sds_id, fill_val);
FORTRAN: status = sfsfill(sds_id, fill_val)
OR status = sfscfill(sds_id, fill_val)

The argumentil_val is the new fill value. It is recommended that you set the fill value before
writing data to an SDS array, as calli8®setfillvalue after data is written to an SDS array only
changes the fill value attribute — it does not update the existing fill values.

There are two FORTRAN-77 versions of this routisfsfill andsfscfill. sfsfill writes numeric fill
value data andfscfill writes character fill value data.

SDsetfillvalue returns a value oBUCCEED(or 0) or FAIL (or -1). Its parameters are further
described in Table 3Y on page 102.

3.10.5.2 Reading a Fill Value Attribute: SDgetfillvalue

SDgetffillvalue reads in the fill value of an SDS array as specified Byaetfillvalue call or its
equivalent. The syntax of this routine is as follows:

C: status = SDgetffillvalue(sds_id, &fill_val);
FORTRAN: status = sfgfill(sds_id, fill_val)
OR status = sfgcfill(sds_id, fill_val)

The fill value is stored in the argumdittval which is previously allocated based on the data
type of the SDS data.

There are two FORTRAN-77 versions of this routisigfill andsfgcfill. Thesfgfill routine reads
numeric fill value data ansfgcfill reads character fill value data.

SDgetffillvalue returns a value (UCCEELor 0) if a fill value is retrieved successfully, BAIL (or
-1) otherwise, including when the fill value has not been set. The parame&igeffillvalue are
further described in Table 3Y.

June 24, 1998 3-101



National Center for Supercomputing Applications

3.10.5.3 Setting the Fill Mode for all SDSs in the Specified File: SDsetfillmode

SDsetfillmode sets the fill mode for all data sets contained in the file identified by the parameter
sd_id . The syntax oSDsetfillmodeis as follows:

C: old_fmode = SDsetfillmode(sd_id, fill_mode);

FORTRAN: old_fmode = sfsfimd(sd_id, fill_mode)

The argumentil_mode is the fill mode to be applied and can be set to ebeFILL (or 0) or
SD_NOFILL (or 256). SD_FILL specifies that fill values will be written to all SDSs in the specified
file by default. If SDsetfillmodeis never called befor8Dsetffillvalue, SD_FILL is the default fill
mode.SD_NOFILL specifies that, by default, fill values will not be written to all SDSs in the speci-
fied file. This can be overridden for a specific SDS by cal$imgetfillmodethen writing data to
this data set before closing the file.

Note that whenever a file has been newly opened, or has been closed and then re-opened, the
defaultsD_FILL fill mode will be in effect until it is changed by a call3®@setfillmode

SDsetfillmodereturns the fill mode value before it is reset or a valuenf (or-1). The parame-
ters of this routine are further described in Table 3Y.

TABLE 3Y

SDsetfillvalue, SDgetfillvalue, and SDsetfilmode Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
SDsetfillvalue sds_id int32 integer Data set identifier
[intn] i .
(sfsfill/ fil_val VOIDP <valid numeric data type>/ .y, 16 to be set
sfscfill) character*(*)
SDgetfillvalue sds_id int32 integer Data set identifier
[intn] ) -
(sfofill fil_val VOIDP <valid numeric data type>/| g o for the fill value
sfgcill) character*(*)
SDsetfillmode sd_id int32 integer SD interface identifier
[intn]
(sfsflmd) fill_mode intn integer Fill mode to be set

3.10.6 Calibration Attributes

The calibration attributesare designed to store calibration information associated with data set
data. When data is calibrated, the values in an array can be represented using a smaller data type
than the original. For instance, an array containing data offibgpe could be stored as an array
containing data of type 8- or 16-bit integer. Note that neither function performs any operation on
the data set.

3.10.6.1 Setting Calibration Information: SDsetcal

SDsetcalstores the scale factor, offset, scale factor error, offset error, and the data type of the
uncalibrated data set for the specified data set. The syntax of this routine is as follows:

C: status = SDsetcal(sds _id, cal, cal_error, offset, off_err,
data_type);

FORTRAN: status = sfscal(sds_id, cal, cal_error, offset, off_err,
data_type)

3-102

June 24, 1998



HDF User's Guide

SDsetcalhas six argumentsds_id , cal , cal_error , offset , off emr , anddata_type . The
argumental represents a single value that when multiplied against every value in the calibrated
data array reproduces the original data array (assuminffsetn of 0). The argumentffset

represents a single value that when subtracted from every value in the calibrated array reproduces
the original data (assumingofiset  of 1). The values of the calibrated data array relate to the
values of the original data array according to the following equation:

orig_value = cal * (cal_value - offset)

In addition tocal andoffset , SDsetcalalso includes the scale and offset errors. The argument
ca_err contains the potential error of the calibrated data due to scafiseg;err contains
the potential error for the calibrated data due to the offset.

SDsetcalreturns a value cBUCCEEor 0) or FAIL (or-1). Its parameters are further described in
Table 3Z.

3.10.6.2 Reading Calibrated Data: SDgetcal

SDgetcalreads calibration attributes for an SDS array as previously writt8Dbgtcal The syn-
tax of this routine is as follows:

C: status = SDgetcal(sds_id, &cal, &cal_error, &offset,
&offset_err, &data_type);

FORTRAN: status = sfgcal(sds_id, cal, cal_eror, offset, offset_err,
data_type)

Because the HDF library does not actually apply calibration information to theSizgatcalcan
be called anytime before or after the data is read. If a calibration record does n@Ryéttal
returnsFAIL . SDgetcaltakes six argumentsds id , cal , cal_error , offset , offset err , and
data type . Refer to Section 3.10.6.1 for the description of these arguments.

SDgetcal returns a value oSUCCEED(or 0) or FAIL (or -1). The parameters ddDgetcal are
described in Table 3Z.

TABLE 3Z

SDsetcal and SDgetcal Parameter Lists

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) C FORTRAN-77
sds_id int32 integer Data set identifier
cal float64 real*8 Calibration factor
S?set]cal cal_error float64 real*8 Calibration error
intn
(sfscal) offset float64 real*8 Uncalibrated offset
offset_err float64 real*8 Uncalibrated offset error
data_type int32 integer Data type of uncalibrated data
sds_id int32 integer Data set identifier
cal float64 * real*8 Calibration factor
S[[_)get]cal cal_error float64 * real*8 Calibration error
intn
(sfgcal) offset float64 * real*8 Uncalibrated offset
offset_err float64 * real*8 Uncalibrated offset error
data_type int32 * integer Data type of uncalibrated data

June 24, 1998 3-103



National Center for Supercomputing Applications

EXAMPLE 16.

Calibrating Data
Suppose the values in the calibrated atedwal are the following integers:
cal_val[6] = {2, 4, 5, 11, 26, 81}

By applying the calibration equatiarig = cal * (cal_val - offset) with cal=050 and
offset =-2000.0 , the calibrated arragal_vall returns to its original floating-point form:

original_val[6] = {1001.0, 1002.0, 1002.5, 1005.5, 1013.0, 1040.5}

3.11 Chunked (or Tiled) Scientific Data Sets

NOTE: Itis strongly encouraged that HDF users who wish to use the SD chunking routines first
read the section on SD chunking in ChapterH&F Performance Issues$n that section the con-

cepts of chunking are explained, as well as their use in relation to HDF. As the ability to work with
chunked data has been added to HDF functionality for the purpose of addressing specific perfor-
mance-related issues, you should first have the necessary background knowledge to correctly
determine how chunking will positively or adversely affect your application.

This section will refer to both "tiled” and "chunked" SDSs as siroplynked SDSsas tiled SDSs
are the two-dimensional case of chunked SDSs.

3.11.1 Making an SDS a Chunked SDS: SDsetchunk

In HDF, an SDS must first be created as a generic SDS througBDibe=ate routine, then
SDsetchunkis called to make that generic SDS a chunked SDS. Note that there are two restric-
tions that apply to chunked SDSs. The maximum number of chunks in a single HDF file is 65,535
and a chunked SDS cannot contain an unlimited dimenSgsetchunksets the chunk size and

the compression method for a data set. The synt&De&tchunkis as follows:

C: status = SDsetchunk(sds_id, c_def, flag);
FORTRAN: status = sfschnk(sds_id, dim_length, comp_type, comp_prm)

The chunking information is provided in the parametedsf andflag in C, and the parameters
comp_type andcomp_prmm in FORTRAN-77.

In C:
The parametes_def has typeHDF CHUNK_DEWhich is defined as follows:

typedef union hdf_chunk_def u{

int32 chunk_lengths]MAX_VAR_DIMS];
struct {

int32 chunk_lengthsi]MAX_VAR_DIMS];
int32 comp_type;

comp_info cinfo;

} comp;

struct {

int32 chunk_lengthsIMAX_VAR_DIMS];
intn start_bit;

intn bit_len;

intn sign_ext;

intn fill_one;

} nbit;

}HDF_CHUNK_DEF

3-104

June 24, 1998



HDF User's Guide

Refer to the reference manual page 8Dsetcompressfor the definition of the structure
comp_info .

The parametetag specifies the type of the data set, i.e., if the data set is chunked or chunked
and compressed with either RLE, Skipping Huffman, GZIP, or NBIT compression methods. Valid
values offlag areHDF_CHUNKor a chunked data seHF CHUNK | HDF_COMpPfor a chunked data

set compressed with RLE, Skipping Huffman, and GZIP compression methodsDENAHUNK |
HDF_NBIT) for a chunked NBIT-compressed data set.

There are three pieces of chunking and compression information which should be specified:
chunking dimensions, compression type, and, if needed, compression parameters.

If the data set is chunked, i.elag value is HDF_CHUNKthen the elements of the array
chunk_lengths  in the unionc_def (c_def.chunk_lengths]] ) have to be initialized to the chunk
dimension sizes.

If the data set is chunked and compressed using RLE, Skipping Huffman, or GZIP methods (i.e.,
flag value is set up taHDF CHUNK | HDF_COMp), then the elements of the arrawynk_lengths

of the structureeomp in the unionc_def (c_def.comp.chunk_lengths[] ) have to be initialized

to the chunk dimension sizes.

If the data set is chunked and NBIT compression is applied fag., values is set up to
(HDF_CHUNK | HDF_NBIT)), then the elements of the arreynk lengths  of the structurabit in
the unionc_def (c_def.nbit.chunk_lengths 1) have to be initialized to the chunk dimension
sizes.

The values oHDF_CHUNKHDF_COMRNdHDF_NBIT are defined in the header fheroto.h

Compression types are passed in the fietop_type of the structureinfo , which is an element
of the structurecomp in the unionc_def (c_def.comp.cinfo.comp_type ). Valid compression
types are: COMP_CODE RLEfor RLE, COMP_CODE SKPHUFFfor Skipping Huffman,

COMP_CODE_DEFLAf&r GZIP compression.

For Skipping Huffman and GZIP compression, parameters are passed in corresponding fields of
the structurecinfo . Specify skipping size for Skipping Huffman compression in the field

c_def.comp.cinfo.skphuff.skp_size . Specify deflate level for GZIP compression in the field
c_def.comp.cinfo.deflate_level . Valid values of deflate levels are integers from 1 to 9 inclu-
sive.

NBIT compression parameters are specified in the fistsbit |, bit len , sign_ext , and
flLone  in the structurebit of the unionc_def .

In FORTRAN-77:
Thedim_length  array specifies the chunk dimensions.
Thecomp_type parameter specifies the compression type. Valid compression types and their val-
ues are defined in the hdf.inc file, and are listed below.
COMP_CODE_NOK& 0) for uncompressed data
COMP_CODE_RI®r 1) for data compressed using the RLE compression algorithm
COMP_CODE_NBIfor 2) for data compressed using the NBIT compression algorithm

COMP_CODE_SKPHUf®t 3) for data compressed using the Skipping Huffman compression
algorithm

COMP_CODE_DEFLATar 4) for data compressed using the GZIP compression algorithm

The parametecomp_pm(1) specifies the skipping size for the Skipping Huffman compression
method and the deflate level for the GZIP compression method.

June 24, 1998 3-105



National Center for Supercomputing Applications

For NBIT compression, the four elements of the amagp_prm correspond to the four NBIT
compression parameters listed in the structbite . The arraycomp_prm should be initialized as
follows:

comp_prm(1) = value ofstart_bit

comp_prm(2) = value ofhit_len

comp_prm(3) =  value ofsign_ext

comp_prm(4) =  value offil_one

Refer to the description of the uni®ibF CHUNK DEBNd of the routineSDsetnbitdatasetfor
NBIT compression parameter definitions.

SDsetchunkreturns either a value 8UCCEEor 0) or FAIL (or-1). Refer to Table 3AA and Table
3AB for the descriptions of the parameters of both versions.

TABLE 3AA

SDsetchunk Parameter List

Routine Name Parameter Type o
Parameter Description
[Return Type] (o

sds_id int32 Data set identifier

SDsetchunk

fintn] c_def HDF_CHUNK_DEF | Union containing information on how the chunks are to be defineq

flag int32 Flag determining the behavior of the routine

TABLE 3AB

sfschnk Parameter List

Routine Name Parameter Type o
Parameter Description
FORTRAN-77

sds_id integer Data set identifier

sfschnk

dim_length

integer(*) Sizes of the chunk dimensions

comp_type

integer

Compression type

comp_prm

integer(*)

Array containing information needed by the compression algorith

3.11.2 Setting the Maximum Number of Chunks in the Cache:
SDsetchunkcache

To maximize the performance of the HDF library routines when working with chunked SDSs, the
library maintains a separate area of memory specifically for cached data cBDseichunk-
cachesets the maximum number of chunks of the specified SDS that are cached into this segment
of memory. The syntax @Dsetchunkcacheés as follows:

C: status = SDsetchunkcache(sds_id, maxcache, flag);
FORTRAN: status = sfscchnk(sds_id, maxcache, flag)

When the chunk cache has been filled, any additional chunks written to cache memory are cached
according to the Least-Recently-Used (LRU) algorithm. This means that the chunk that has
resided in the cache the longest without being reread or rewritten will be written over with the new
chunk.

By default, when a generic SDS is made a chunked SDS, the parametathe is set to the
number of chunks along the fastest changing dimension. If ne8Bsdichunkcachecan then be
called again to reset the size of the chunk cache.

3-106

June 24, 1998



HDF User's Guide

Essentially, the value ofiaxcache cannot be set to a value less than the number of chunks cur-
rently cached. If the chunk cachenist full, then the size of the chunk cache is reset to the new
value ofmaxcache only if it is greater than the current number of chunks cached. If the chunk
cache has been completely filled with cached dafsetchunkcachehas already been called,
and the value of the parametesixcache in the current call t& Dsetchunkcaches larger than the
value ofmaxcache in the last call t&sDsetchunkcachethen the value ahaxcache is reset to the

new value.

Currently the only allowed value of the paramétgy is 0, which designates default operation.
In the near future, the vallbF_CACHEALWill be provided to specify that the entire SDS array is
to be cached.

SDsetchunkcachereturns the maximum number of chunks that can be cached (the value of the
parametemaxcache ) if successful andAIL (or -1) otherwise. The parameters $Dsetchunk-
cacheare further described in Table 3AC.

TABLE 3AC

SDsetchunkcache Parameter List

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
SDsetchunkcache sds_id int32 integer Data set identifier
[intn] maxcache int32 integer Maximum number of chunks to cache
(sfscchnk) flag int32 integer Flag determining the default caching behaviol

3.11.3 Writing Data to Chunked SDSs: SDwritechunk and SDwritedata

Both SDwritedata andSDwritechunk can be used to write to a chunked SDS. Later in this chap-
ter, situations wher8Dwritechunk may be a more appropriate routine tiswritedata will be
discussed, but, for the most part, both routines achieve the same &Bultiedata is discussed

in Section 3.5.1 on page 30. The syntaxsBfwritechunk is as follows:

C: status = SDwritechunk(sds_id, origin, datap);

FORTRAN: status = sfwchnk(sds_id, origin, datap)
OR status = sfwechnk(sds _id, origin, datap)

The location of data in a chunked SDS can be specified in two ways. The first is the standard
method used in the routir@Dwritedata that access both chunked and non-chunked SDSs; this
method refers to the starting location as an offset in elements from the origin of the SDS array
itself. The second method is used by the rouBBevritechunk that only access chunked SDSs;

this method refers to the origin of the chunk as an offset in chunks from the origin of the chunk
array itself. The parameterigin  specifies this offset; it also may be considered as chunk’s coor-
dinates in the chunk array. Figure 3d on page 108 illustrates this method of chunk indexing in a 4-
by-4 element SDS array with 2-by-2 element chunks.

June 24, 1998 3-107



National Center for Supercomputing Applications

FIGURE 3d Chunk Indexing as an Offset in Chunks
3 . T
| |
| |
This chunk is in location (0, 0) 21— '(Ol’l)_ 1 _(1(1)' ]
| |
1 | |
| |
A | |
0 | =00~ —{— —(2.0y — -
| |
Y Dimension | |
L L
0 1 2 3
X Dimension g
SDwritechunk is used when an entire chunk is to be written and requires the chunk offset to be
known. SDwritedata is used when the write operation is to be done regardless of the chunking
scheme used in the SDS. Also, $Bwritechunk is written specifically for chunked SDSs and
does not have the overhead of the additional functionality supported Bpthegtedata routine,
it is much faster thagDwritedata. Note that attempting to u&Dwritechunk for writing to a
non-chunked data set will returrFalL (or-1).
The parametedatap must point to an array containing the entire chunk of data. In other words,
the size of the array must be the same as the chunk size of the SDS to be written to, or an error
condition will result.
There are two FORTRAN-77 versions of this routisfeechnk writes numeric data arsfwcchnk
writes character data.
SDwritechunk returns either a value ®UCCEED(or 0) or FAIL (or -1). The parameters of
SDwritechunk are in Table 3AD. The parametersSfwritedata are listed in Table 3D on page
32.
TABLE 3AD SDwritechunk Parameter List

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) e FORTRAN-77
sds_id int32 integer Data set identifier
Squtechunk . . ) Coordinates of the origin of the chunk t
[intn] origin int32 * integer be written
(sfwehnk/
- - .
sfwcchnk) datap VOIDP <valid numeric data type>( Buffer containing the data to be written
character*(*)

3-108

June 24, 1998



HDF User's Guide

3.11.4 Reading Data from Chunked SDSs: SDreadchunk and SDreaddata

As both SDwritedata and SDwritechunk can be used to write data to a chunked SDS, both
SDreaddata and SDreadchunk can be used to read data from a chunked SIeaddatais
discussed in Section 3.5.1 on page 30. The synt®boéadchunkis as follows:

C: status = SDreadchunk(sds_id, origin, datap);

FORTRAN: status = sfrchnk(sds_id, origin, datap)
OR status = sfrcchnk(sds _id, origin, datap)

SDreadchunk is used when an entire chunk of data is to be 1®Bdeaddatais used when the

read operation is to be done regardless of the chunking scheme used in the SDSD®&lad;

chunk is written specifically for chunked SDSs and does not have the overhead of the additional
functionality supported by th&@Dreaddataroutine. Therefore, it is much faster tdDreaddata

Note thatSDreadchunk will return FAIL (or -1) when an attempt is made to read from a non-
chunked data set.

As with SDwritechunk, the parametesrigin ~ specifies the coordinates of the chunk to be read,

and the parametelatap must point to an array containing enough space for an entire chunk of
data. In other words, the size of the array must be the same as or greater than the chunk size of the
SDS to be read, or an error condition will result.

There are two FORTRAN-77 versions of this routisfechnk reads numeric data amsfftcchnk
reads character data.

SDreadchunkreturns either a value 8£JCCEE@or 0) or FAIL (or-1). The parameters &Dread-
chunk are further described in Table 3AE. The paramete&Dréaddataare listed in Table 3K
on page 56.

TABLE 3AE

SDreadchunk Parameter List

Routine Name Parameter Type
[Return Type] Parameter Description
(FORTRAN-77) Cc FORTRAN-77
sds_id int32 integer Data set identifier
SDre_adchunk origin inta2 * integer(*) Coordinates of the origin of the chunk t
[intn] be read
(sfrchnk/sfrcchnk) h - .
datap VOIDP <valid numeric data type>(") Buffer for the returned chunk data
character*(*)

3.11.5 Obtaining Information about a Chunked SDS: SDgetchunkinfo

SDgetchunkinfois used to determine whether an SDS is chunked and how the chunk is defined.
The syntax of this routine is as follows:

C: status = SDgetchunkinfo(sds_id, c_def, flag);
FORTRAN: status = sfgichnk(sds_id, dim_length, flag)

Currently, only information about chunk dimensions is retrieved into the corresponding structure
elementc_def for each type of compression in C, and into the adiraylength  in Fortran. No
information on compression parameters is available in the structung of the union
HDF_CHUNK_DEIFor specific information on def , refer to Section 3.11.1 on page 104.

The value returned in the parameftay indicates the data set type (i.e., whether the data set is
not chunked, chunked, or chunked and compressed).

June 24, 1998 3-109



National Center for Supercomputing Applications

If the data set is not chunked, the valuéagf will be HDF_NONEgor -1). If the data set is chunked,
the value ofiag will be HDF_CHUNKor 0). If the data set is chunked and compressed with either
RLE, Skipping Huffman, or GZIP compression algorithm, then the valuéagpf will be
HDF_CHUNK |HDF_COMFor 1). If the data set is chunked and compressed with NBIT compression,
then the value ofag will be HDF_CHUNK | HDF_NBIT (or 2).

If the chunk length for each dimension is not needidl] can be passed in as the value of the
parametecr_def in C.

SDgetchunkinforeturns either a value &UCCEEor 0) or FAIL (or -1 ). Refer to Table 3AF and
Table 3AG for the description of the parameters of both versions.

TABLE 3AF SDgetchunkinfo Parameter List
Routine Name Parameter Type "
Parameter Description
[Return Type] ©
sds_id int32 Data set identifier
SDge[tiErt\r:J]nk|nfo c_def HDF_CHUNK_DEF * | Union structure containing information about the chunks in the [SDS
flag int32 * Flag determining the behavior of the routine
TABLE 3AG sfgichnk Parameter List
Routine Name Parameter Type "
Parameter Description
FORTRAN-77
sds_id integer Data set identifier
sfgichnk dim_length integer(*) Sizes of the chunk dimensions
comp_type integer Compression type
EXAMPLE 17. Writing and Reading a Chunked SDS.

This example demonstrates the use of the rouiisetchunk/sfschnk SDwritedata/sfwdata,
SDwritechunk/sfwchnk, SDgetchunkinfo/sfgichnk SDreaddata/sfrdata and SDreadchunk/

sfrchnk to create a chunked data set, write data to it, get information about the data set, and read
the data back. Note that the Fortran example uses transpose data to reflect the difference between
C and Fortran internal storage.

C:
#include "mfhdf.h"

#define FILE_NAME  "SDSchunked.hdf"
#define SDS_NAME  "ChunkedData"
#define RANK 2

main()

{

/ Variable declaration /

int32 sd_id, sds_id, sds_index;

intn status;

int32 flag, maxcache, new_maxcache;

int32 dim_sizes[2], origin[2];

HDF_CHUNK_DEF c_def, c_def_out; /* Chunking definitions */
int32 comp_flag, c_flags;

int16 all_data[9][4];

int32 start[2], edges[2];

3-110 June 24, 1998



HDF User's Guide

intl6 chunk_out[3][2];
intl6 row[2] ={5,5};
int16 column[3]={4,4,4}

intl6 fill_value = 0; /* Fill value */
int ij;
/*
* Declare chunks data type and initialize some of them.
*/
int16 chunk1[3][2] = {1, 1,
1,1,
1,1}
int16 chunk2[3][2] = { 2, 2,
2,2,
2,2}
int16 chunk3[3][2] = {3, 3,
3,3,
3,3%
int16 chunké[3][2] = { 6, 6,
6, 6,
6,6}

/********************* End Of Val’lab|e deC|afatI0n ***********************/
/*
* Define chunk’s dimensions.

* In this example we do not use compression.

* To use chunking with RLE, Skipping Huffman, and GZIP
* compression, initialize

* c_def.comp.chunk_lengths[0] = 3;

* c_def.comp.chunk_lengths[1] = 2

* To use chunking with NBIT, initialize

* ¢_def.nbit.chunk_lengths[0] = 3;

* ¢_def.nbit.chunk_lengths[1] = 2;

*/

c_def.chunk_lengths[0] = 3;
c_def.chunk_lengths[1] = 2;

/*

* Create the file and initialize SD interface.

*/

sd_id = SDstart (FILE_NAME, DFACC_CREATE);

/*

* Create 9x4 SDS.

*/

dim_sizes[0] = 9;

dim_sizes[1] = 4;

sds_id = SDcreate (sd_id, SDS_NAME,DFNT_INT16, RANK, dim_sizes);

/*

* Fill the SDS array with the fill value.

*/

status = SDsetfillvalue (sds_id, (VOIDP)&fill_value);

/*
* Create chunked SDS.

June 24, 1998 3-111



National Center for Supercomputing Applications

* In this example we do not use compression ( third
* parameter of SDsetchunk is set to HDF_CHUNK).

*

* To use RLE compresssion, set compression type and flag

* ¢_def.comp.comp_type = COMP_CODE_RLE;

* comp_flag = HDF_CHUNK | HDF_COMP;

* To use Skipping Huffman compression, set compression type, flag
* and skipping size skp_size

*

* c_def.comp.comp_type = COMP_CODE_SKPHUFF;
* ¢_def.comp.cinfo.skphuff.skp_size = value;
* comp_flag = HDF_CHUNK | HDF_COMP;

*

* To use GZIP compression, set compression type, flag and
* deflate level

*

* c_def.comp.comp_type = COMP_CODE_DEFLATE;
* c_def.comp.cinfo.deflate.level = value;
* comp_flag = HDF_CHUNK | HDF_COMP;

*

* To use NBIT compression, set compression flag and
* compression parameters

* comp_flag = HDF_CHUNK | HDF_NBIT;
* c_def.nbit.start_bit = valuel;

* c_def.nbit.bit_len =value2;

* c_def.nbit.sign_ext =value3;

* c_def.nbit.fill_one =value4;

*/

comp_flag = HDF_CHUNK;
status = SDsetchunk (sds_id, c_def, comp_flag);

/*

* Set chunk cache to hold maximum of 3 chunks.

*/

maxcache = 3;

flag =0;

new_maxcache = SDsetchunkcache (sds_id, maxcache, flag);

/*
* Write chunks using SDwritechunk function.
* Chunks can be written in any order.

*/

/*

* Write the chunk with the coordinates (0,0).

*/

origin[0] = 0;

origin[1] = 0;

status = SDwritechunk (sds_id, origin, (VOIDP) chunkl);
/*

* Write the chunk with the coordinates (1,0).

*/

origin[0] = 1;

origin[1] = 0;

status = SDwritechunk (sds_id, origin, (VOIDP) chunk3);
/*

* Write the chunk with the coordinates (0,1).

*/

3-112 June 24, 1998



HDF User's Guide

origin[0] = 0;
origin[1] = 1;
status = SDwritechunk (sds_id, origin, (VOIDP) chunk2);

/*

* Write chunk with the coordinates (1,2) using

* SDwritedata function.

*/

start[0] = 6;

start[1] = 2;

edges[0] = 3;

edges[1] = 2;

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) chunke6);

/*

* Fill second column in the chunk with the coordinates (1,1)

* using SDwritedata function.

*/

start[0] = 3;

start[1] = 3;

edges[0] = 3;

edges[1] =1;

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) column);

/*

* Fill second row in the chunk with the coordinates (0,2)

* using SDwritedata function.

*/

start[0] = 7;

start[1] = 0;

edges[0] = 1;

edges[1] = 2;

status = SDwritedata (sds_id, start, NULL, edges, (VOIDP) row);

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*
* Terminate access to the SD interface and close the file.
*
/
status = SDend (sd_id);

/*

* Reopen the file and access the first data set.
*/

sd_id = SDstart (FILE_NAME, DFACC_READ);
sds_index = 0;

sds_id = SDselect (sd_id, sds_index);

/*
* Get information about the SDS. Only chunk lengths and compression
* flag can be returned. Compression information is not available if
* NBIT, Skipping Huffman, or GZIP compression is used.
*/
status = SDgetchunkinfo (sds_id, &c_def_out, &c_flags);
if (c_flags == HDF_CHUNK))
printf(" SDS is chunked\nChunk’s dimensions %dx%d\n",
c_def_out.chunk_lengths[0],
c_def_out.chunk_lengths[1]);
else if (c_flags == (HDF_CHUNK | HDF_COMP))
printf("SDS is chunked and compressed\nChunk’s dimensions %dx%d\n",

June 24, 1998 3-113



National Center for Supercomputing Applications

c_def_out.comp.chunk_lengths[0],
c_def_out.comp.chunk_lengths[1]);
else if (c_flags == (HDF_CHUNK | HDF_NBIT))
printf ("SDS is chunked (NBIT)\nChunk’s dimensions %dx%d\n",
c_def_out.nbit.chunk_lengths[0],
c_def_out.nbit.chunk_lengths[1]);

/*

* Read the entire data set using SDreaddata function.

*/

start[0] = 0;

start[1] = 0;

edges[0] =9;

edges[1] = 4;

status = SDreaddata (sds_id, start, NULL, edges, (VOIDP)all_data);

/*

* Print out what we have read.

* The following information should be displayed:
* SDS is chunked

* Chunk’s dimensions 3x2

* 112
* 1122
* 1122
* 3304
* 3304
* 3304
* 0066
* 5566
* 0066
*/
for (j=0; j<9; j++)
{
for (i=0; i<4; i++) printf (" %d", all_datal[j][i]);
printf (“\n");
}
/*
* Read chunk with the coordinates (2,0) and display it.
*/
origin[0] = 2;
origin[1] = 0;

status = SDreadchunk (sds_id, origin, chunk_out);
printf (" Chunk (2,0) \n");
for (j=0; j<3; j++)
{
for (i=0; i<2; i++) printf (" %d", chunk_out[j][i]);
printf ("\n");
}

/*
* Read chunk with the coordinates (1,1) and display it.
*/
origin[0] = 1;
origin[1] = 1;
status = SDreadchunk (sds_id, origin, chunk_out);
printf (" Chunk (1,1) \n");
for (j=0; j<3; j++)
{
for (i=0; i<2; i++) printf (" %d", chunk_out[j][i]);
printf ("\n");
}

3-114 June 24, 1998



HDF User's Guide

/* The following information is displayed:

* Chunk (2,0)
* 00
* 55
* 00
* Chunk (1,1)
* 04
* 04
* 04

/*

* Terminate access to the data set.
*/

status = SDendaccess (sds_id);

/*
* Terminate access to the SD interface and close the file.
*
/
status = SDend (sd_id);

FORTRAN:

program chunk_examples
implicit none

Parameter declaration.

OO0

character*14 FILE_NAME

character*11 SDS_NAME

integer RANK

parameter (FILE_NAME ='SDSchunked.hdf’,
+ SDS_NAME ='ChunkedData’,

+ RANK =2)

integer DFACC_CREATE, DFACC_READ, DFNT_INT16
parameter (DFACC_CREATE =4,

+ DFACC_READ =1,

+ DFNT_INT16 =22)

integer COMP_CODE_NONE

parameter (COMP_CODE_NONE = 0)

This example does not use compression.
To use RLE compression, declare:

integer COMP_CODE_RLE
parameter (COMP_CODE_RLE =1)

To use NBIT compression, declare:

integer COMP_CODE_NBIT
parameter (COMP_CODE_NBIT =2)

To use Skipping Huffman compression, declare:

integer COMP_CODE_SKPHUFF
parameter (COMP_CODE_SKPHUFF = 3)

To use GZIP compression, declare:

O0O00000000000000O0O00O0OO0

June 24, 1998 3-115



National Center for Supercomputing Applications

integer COMP_CODE_DEFLATE
parameter (COMP_CODE_DEFLATE =4)

Function declaration.

integer sfstart, sfcreate, sfendacc, sfend,
+ sfselect, sfsfill, sfschnk, sfwchnk,
+ sfrchnk, sfgichnk, sfwdata, sfrdata,
+ sfscchnk

C

C**** Variable declaration
C

integer sd_id, sds_id, sds_index, status

integer dim_sizes(2), origin(2)

integer fill_value, maxcache, new_maxcache, flag

integer start(2), edges(2), stride(2)

integer*2 all_data(4,9)

integer*2 row(3), column(2)

integer*2 chunk_out(2,3)

integer*2 chunk1(2,3),

+ chunk2(2,3),

+ chunk3(2,3),

+ chunk6(2,3)

integer i, j

Compression flag and parameters.

[eNeN¢e]

integer comp_type, comp_flag, comp_prm(4)

Chunk’s dimensions.

OO0

integer dim_length(2), dim_length_out(2)

Initialize four chunks

OO0

data chunkl /6*1/
data chunk?2 /6*2/
data chunk3 /6*3/
data chunk6 /6*6/

Initialize row and column arrays.

OO0

data row /3*4/
data column /2*5/
C

C*** End of variable declaration

Define chunk’s dimensions.

O000

dim_length(1) =2
dim_length(2) =3

Create the file and initialize SD interface.

OO0

sd_id = sfstart(FILE_NAME, DFACC_CREATE)

Create 4x9 SDS

[eNeN¢e]

dim_sizes(1) =4
dim_sizes(2) =9

3-116 June 24, 1998



HDF User's Guide

sds_id = sfcreate(sd_id, SDS_NAME, DFNT_INT16,
+ RANK, dim_sizes)

Fill SDS array with the fill value.

OO0

fill_value =0
status = sfsfill( sds_id, fill_value)

Create chunked SDS.
In this example we do not use compression.

To use RLE compression, initialize comp_type parameter
before the call to sfschnk function.
comp_type = COMP_CODE_RLE

To use NBIT, Skipping Huffman, or GZIP compression,
initialize comp_prm array and comp type parameter
before call to sfschnk function

NBIT:
comp_prm(1) = value_of(sign_ext)
comp_prm(2) = value_of(fill_one)
comp_prm(3) = value_of(start_bit)
comp_prm(4) = value_of(bit_len)
comp_type = COMP_CODE_NBIT

Skipping Huffman:
comp_prm(1) = value_of(skp_size)
comp_type =COMP_CODE_SKPHUFF

GZIP:
comp_prm(1) = value_of(deflate_level)
comp_type =COMP_CODE_DEFLATE

O0O000000000000000000000000000

comp_type = COMP_CODE_NONE
status = sfschnk(sds_id, dim_length, comp_type, comp_prm)

Set chunk cache to hold maximum 2 chunks.

OO0

flag=0
maxcache = 2
new_maxcache = sfscchnk(sds_id, maxcache, flag)

Write chunks using SDwritechunk function.
Chunks can be written in any order.

Write chunk with the coordinates (1,1).

O0O0000

origin(1) =1
origin(2) =1
status = sfwchnk(sds_id, origin, chunkl)

Write chunk with the coordinates (1,2).

OO0

origin(1) =1
origin(2) = 2
status = sfwchnk(sds_id, origin, chunk3)

Write chunk with the coordinates (2,1).

OO0

origin(1) =2

June 24, 1998 3-117



National Center for Supercomputing Applications

OO0

OO0

OO0

OO0 [eNeN¢e]

OO0

OO0

origin(2) =1
status = sfwchnk(sds_id, origin, chunk2)

Write chunk with the coordinates (2,3).

origin(1) =2
origin(2) =3
status = sfwchnk(sds_id, origin, chunk6)

Fill second row in the chunk with the coordinates (2,2).

start(1) =3

start(2) =3

edges(1l) =1

edges(2) =3

stride(1) =1

stride(2) =1

status = sfwdata(sds_id, start, stride, edges, row)

Fill second column in the chunk with the coordinates (1,3).

start(1) =0

start(2) =7

edges(1) =2

edges(2) =1

stride(1) =1

stride(2) =1

status = sfwdata(sds_id, start, stride, edges, column)

Terminate access to the data set.
status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.
status = sfend(sd_id)

Reopen the file and access the first data set.

sd_id = sfstart(FILE_NAME, DFACC_READ)
sds_index=0
sds_id = sfselect(sd_id, sds_index)

Get information about the SDS.

status = sfgichnk(sds_id, dim_length_out, comp_flag)
if (comp_flag .eq. 0) then

write(*,*) 'SDS is chunked’
endif
if (comp_flag .eq. 1) then

write(*,*) 'SDS is chunked and compressed’
endif
if (comp_flag .eq. 2) then

write(*,*) 'SDS is chunked and NBIT compressed’
endif
write(*,*) 'Chunks dimensions are ’, dim_length_out(1),
+’ X', dim_length_out(2)

C
C Read the whole SDS using sfrdata function and display
C what we have read. The following information will be displayed:
C
C
C SDS is chunked
3-118 June 24, 1998



HDF User's Guide

Chunks dimensions are 2 x 3

NN R
A O WW
A O WW
A O WW
o O OO
o o 01O
[N NeNe]

O0O0O0O0O0O00OO0
NN PR
NN PR

start(1) =0

start(2) =0

edges(1l) =4

edges(2) =9

stride(1) =1

stride(2) =1

status = sfrdata(sds_id, start, stride, edges, all_data)

Display the SDS.

[eNeN¢e]

write(*,*)

do10i=1,4
write(*,*) (all_data(i,j), j=1,9)
continue

Read chunks with the coordinates (2,2) and (1,3) and display.
The following information will be shown:

Chunk (2,2)

000
444

Chunk (1,3)

050
050

O000000000000085

origin(1) =2
origin(2) = 2
status = sfrchnk(sds_id, origin, chunk_out)
write(*,*)
write(*,*) 'Chunk (2,2)’
write(*,*)
do20i=1,2
write(*,*) (chunk_out(i,j), j=1,3)
20 continue

origin(1) =1
origin(2) =3
status = sfrchnk(sds_id, origin, chunk_out)
write(*,*)
write(*,*) 'Chunk (1,3)’
write(*,*)
do30i=1,2
write(*,*) (chunk_out(i,j), j=1,3)
0 continue

w

Terminate access to the data set.

OO0

status = sfendacc(sds_id)

Terminate access to the SD interface and close the file.

[eNeN¢e]

status = sfend(sd_id)
end

June 24, 1998 3-119



National Center for Supercomputing Applications

3.12 Ghost Areas

In cases where the size of the SDS array is not an even multiple of the chunk size, regions of
excess array space beyond the defined dimensions of the SDS will be created. Refer to the follow-
ing illustration.

FIGURE 3e

Array Locations Created Beyond the Defined Dimensions of an SDS

= 1600 ints ——=

In a 1600 by 2000 integer chunked
SDS array with 500 by 500 integer
chunks, a 400 by 2000 integer area
of array locations beyond the
defined dimensions of the SDS

is created (shaded area). These
areas are called "ghost areas".

200
ints

These "ghost areas" can be accessed onyOneadchunk and SDwritechunk; they cannot be
accessed by eith&@Dreaddataor SDwritedata. Therefore, storing data in these areas is not rec-
ommended. Future versions of the HDF library may not include the ability to write to these areas.

If the fill value has been set, the values in these array locations will be initialized to the fill value.
It is highly recommended that users set the fill value before writing to chunked SDSs so that gar-
bage values won't be read from these locations.

3.13 netCDF

HDF supports the netCDF data model and interface developed at the Unidata Program Center
(UPC). Like HDF, netCDF is an interface to a library of data access programs that store and
retrieve data. The file format developed at the UPC to support netCDF uses XDR (eXternal Data
Representation), a non-proprietary external data representation developed by Sun Microsystems
for describing and encoding data. Full documentation on netCDF and the Unidata netCDF inter-
face is available dtttp:/mww.unidata.ucar.edu/packages/netcdf/

The netCDF data model is interchangeable with the SDS data model in so far as it is possible to
use the netCDF calling interface to place an SDS into an HDF file and conversely the SDS inter-
face will read from an XDR-based netCDF file. Because the netCDF interface has not changed
and netCDF files stored in XDR format are readable, existing netCDF programs and data are still
usable, although programs will need to be relinked to the new library. However, there are impor-
tant conceptual differences between the HDF and the netCDF data model that must be understood
to effectively use HDF in working with netCDF data objects and to understand enhancements to
the interface that will be included in the future to make the two APIs much more similar.

3-120

June 24, 1998



HDF User's Guide

In the HDF model, when a multidimensional SDS is create8bgreate HDF data objects are

also created that provide information about the individual dimensions — one for each dimension.

Each SDS contains within its internal structure the array data as well as pointers to these dimen-
sions. Each dimension is stored in a structure that is in the HDF file but separate from the SDS
array.

If more than one SDS have the same dimension sizes, they may share dimensions by pointing to
the same dimensions. This can be done in application programs by &isgdimnameto

assign the same dimension name to all dimensions that are shared by several SDSs. For example,
suppose you make the following sequence of calls for every SDS in a file:

dim_id = SDgetdimid(sds_id, 0);

ret = SDsetdimname(dim_id, "Lat");
dim_id = SDgetdimid(sds _id, 1);

ret = SDsetdimname(dim_id, “Long");

This will create a shared dimension nameat " that is associated with every SDS as the first
dimension and a dimension namedry" as the second dimension.

This same result is obtained differently in netCDF. Note that a netCDF "variable" is roughly the
same as an HDF SDS. The netCDF interface requires application programs to define all dimen-
sions, usingncdimdef , before defining variables. Those defined dimensions are then used to
define variables imcvardef . Each dimension is defined by a name and a size. All variables using
the same dimension will have the same dimension name and dimension size.

Although the HDF SDS interface will read from and writeekisting XDR-based netCDF files,
HDF cannot be used tyeateXDR-based netCDF files.

There is currently no support for mixing HDF data objects that are not SDSs and netCDF data
objects. For example, a raster image can exist in the same HDF file as a netCDF data object, but
you must use one of the HDF raster image APIs to read the image and the HDF SD or netCDF
interface to read the netCDF data object. The other HDF APIs are currently being modified to
allow multifile access. Closer integration with the netCDF interface will probably be delayed until
the end of that project.

3.13.1 HDF Interface vs. netCDF Interface

Existing netCDF applications can be used to read HDF files and existing HDF applications can be
used to read XDR-based netCDF files. To read an HDF file using a netCDF application, the appli-
cation must be recompiled using the HDF library. For example, recompiling the netCDF utility
ncdump with HDF creates a utility that can dump scientific data sets from both HDF and XDR-
based files. To read an XDR-based file using an HDF application, the application must be relinked
to the HDF library.

The current version of HDF contains several APIs that support essentially the same data model:

« The multifile SD interface.

« The netCDF or NC interface.

- The single-file DFSD interface.

« The multifile GR interface.
The first three models can create, read, and write SDSs in HDF files. Both the SD and NC inter-
faces can read from and write to XDR-based netCDF files, but they cannot create them. This

interoperability means that a single program may contain both SD and NC function calls and thus
transparently read and write scientific data sets to HDF or XDR-based files.

June 24, 1998 3-121



National Center for Supercomputing Applications

The SD interface is the only HDF interface capable of accessing the XDR-based netCDF file for-
mat. The DFSD interface cannot access XDR-based files and can only access SDS arrays, dimen-
sion scales, and predefined attributes. A summary of file interoperability among the three
interfaces is provided in the following table.

TABLE 3AH Summary of HDF and XDR File Compatibility for the HDF and netCDF APIs
Files Created by | Files Created by Files Written by
DFSD interface SD interface NC Interface
HDF HDF NCSA HDF Library | UMdata netCDF
Library
Accessed by DFSD Yes Yes Yes No
Accessed by SD Yes Yes Yes Yes
Accessed by NC Yes Yes Yes Yes
A summary of NC function calls and their SD equivalents is presented in the following table.
TABLE 3Al NC Interface Routine Calls and their SD Equivalents

ne

Routine Name SD .
Purpose . Description
c FORTRAN-77 Equivalent
nccreate CCRE SDstart Creates a file
ncopen NCOPN SDstart Opens afile
ncredef NCREDF Not Applicable Sets open file into define mode
ncendef INCENDF Not Applicable Leaves define mode
Operations ncclose CCLOS SDend Closes an open file
ncinquire CINQ §Dfileinfo Inquires about an open file
ncsync NCSNC Not Applicable Synchronizes a file to disk
ncabort NCABOR Not Applicable Backs out of recent definitions
ncsetfill NGSFIL Not Implemented Sets fill mode for writes
ncdimdef NCDDEF SDsetdimname Creates a dimension
) ) ncdimid CDID SDgetdimid Returns a dimension identifier from its nan
Dimensions
ncdiming CDINQ SDdiminfo Inquires about a dimension
ncdimrename NCDREN Not Implemented Renames a dimension
ncvardef CVDEF SDcreate Creates a variable
ncvarid CVID zgzzgcetmindex and Returns a variable identifier from its name
nevaring CVINQ BDgetinfo Returns information about a variable
ncvarputl CVPT1 Not Implemented Writes a single data value
Variables ncvargetl CVGT1 Not Implemented Reads a single data value
nevarput CVPT SDwritedata Writes a hyperslab of values
ncvarget CVGT/NCVGTC SDreaddata Reads a hyperslab of values
ncvarrename CVREN Not Implemented Renames a variable
nctypelen CTLEN DFKNTsize Returns the number of bytes for a data typ

3-122

June 24, 1998



National Center for Supercomputing Applications

Attributes

ncattput CAPT/NCAPTC [SDsetattr Creates an attribute

ncatting CAINQ Dattrinfo Returns information about an attribute
ncattcopy CACPY Not Implemented Copies attribute from one file to another
ncattget CAGT/NCAGTC SDreadattr Returns attributes values

ncattname CANAM SDattrinfo Returns name of attribute from its number
ncattrename CAREN Not Implemented Renames an attribute

ncattdel CADEL Not Implemented Deletes an attribute

3-123

June 24, 1998




National Center for Supercomputing Applications

3-124 June 24, 1998



