
June 23, 1998 2-7

Chapter
2

HDF Fundamentals

2.1 Chapter Overview

This chapter provides necessary information for the creation and manipulation of HDF files. It
includes an overview of the HDF file format, basic operations on HDF files, and programming
language issues pertaining to the use of Fortran and ANSI C in HDF programming.

2.2 HDF File Format

An HDF file contains a file header, at least one data descriptor block, and zero or more data ele-
ments as depicted in Figure 2a.

FIGURE 2a The Physical Layout of an HDF File Containing One Data Object

The file header identifies the file as an HDF file. A data descriptor block contains a number of
data descriptors. A data descriptor and a data element together form a data object, which is the
basic conglomerate structure for encapsulating data in the HDF file. Each of these terms is
described in the following sections.

Data Descriptor Block

Data Element

Data Descriptor

Empty Data Descriptor

Empty Data Descriptor

Empty Data Descriptor

HDF File Header HDF File Header

Data Object

HDF File

. .
 .

2-8 June 23, 1998

National Center for Supercomputing Applications

2.2.1 File Header

The first component of an HDF file is the file header, which takes up the first four bytes of the
HDF file. Specifically, it consists of four one-byte values that are ASCII representations of control
characters: the first is a control-N, the second is a control-C , the third is a control-S and the fourth
is a control-A (^N^C^S^A).

Note that, on some machines, the order of bytes in the file header might be swapped when the
header is written to an HDF file, causing these characters to be written in little-endian order. To
maintain the portability of HDF file header data when developing software for such machines, this
byte swapping must be counteracted by ensuring the characters are read and written in the desired
order.

2.2.2 Data Object

A data object is comprised of a data descriptor and a data element. The data descriptor consists of
information about the type, location, and size of the data element. The data element contains the
actual data. This organization of HDF data makes HDF files self-describing. Figure 2b shows two
examples of data objects.

FIGURE 2b Two Data Objects

2.2.2.1 Data Descriptor

All data descriptors are twelve bytes long and contain four fields, as depicted in Figure 2c. These
fields are: a 16-bit tag, a 16-bit reference number, a 32-bit data offset and a 32-bit data length.

FIGURE 2c The Contents of a Data Descriptor

Tag

A tag is the data descriptor field that identifies the type of data stored in the corresponding data
element. A tag is a 16-bit unsigned integer between 1 and 65,535, and is associated with a mne-
monic name to promote ease to use and the readability of user programs.

data

rank and dimensions 2

63.2,

18.2,

12.1,

.
.

.
54.5,

103.6,

6.9,

.
.

.

12.3,

-7.4,

83.6,

.
.

.

. . .

. . .

. . .

Data Descriptors Data Elements

90 by 100

Tag Reference Offset Length

2 bytes 4 bytes 2 bytes 4 bytes

Number

HDF User’s Guide

June 23, 1998 2-9

If a data descriptor has no corresponding data element, the value of its tag is DFTAG_NULL (or 0).

Tags are assigned by the HDF Group as part of the HDF specification. The following are the
ranges of tag values and their descriptions:

1 to 32,767 - Tags reserved for HDF Group use

32,768 to 64,999 - User-definable tags

65,000 to 65,535 - Tags reserved for expansion of the HDF specification

A list of commonly-used tags and their descriptions is included in Appendix A of this document.

Reference Number

For each occurrence of a tag in an HDF file, a unique reference number is assigned by the library
with the tag in the data descriptor. A reference number is a 16-bit unsigned integer and can not be
changed during the life of the data object that the reference number specifies.

The combination of a tag and a reference number uniquely identifies the corresponding data
object in the file.

Reference numbers are not necessarily assigned consecutively, so it cannot be assumed that the
value of a reference number has any meaning beyond providing a way of distinguishing among
objects with the same tag. While application programmers may find it convenient to impart some
additional meaning to reference numbers in their code, it is emphasized that the HDF library will
not internally recognize any such meaning.

Data Offset and Length

The data offset field points to the location of the data element in the file by storing the number of
bytes from the beginning of the file to the beginning of the data element. The length field contains
the size of the data element in bytes. The data offset and the length are both 32-bit unsigned inte-
gers.

2.2.2.2 Data Elements

The data element is the raw data portion of a data object.

2.2.3 Data Descriptor Block

Data descriptors are physically stored in a linked list of blocks called data descriptor blocks. The
relationship between the data descriptor block to the other components of an HDF file is illus-
trated in Figure 2a on page 7. The individual components of a data descriptor block are depicted
in Figure 2d on page 10. Each data descriptor in a data descriptor block is assumed to be associ-
ated with a data element unless it contains the tag DFTAG_NULL (or 0),which indicates that there is
no associated data element. By default, a data descriptor block contains 16 (defined as DEF_NDDS)
data descriptors. The user may reset this limit when creating the HDF file. Refer to Section 2.3.3
for more details.

In addition to data descriptors, each data descriptor block contains a data descriptor header. The
data descriptor header contains two fields: block size and next block. The block size field is a 16-
bit unsigned integer indicating the number of data descriptors in the data descriptor block. The
next block field is a 32-bit unsigned integer indicating the offset of the next data descriptor block,
if one exists. The last data descriptor header in the list contains a value of 0 in its next block field.

Figure 2d illustrates the layout of a data descriptor block.

2-10 June 23, 1998

National Center for Supercomputing Applications

FIGURE 2d Data Descriptor Block

2.2.4 Grouping Data Objects in an HDF File

Data objects containing related data in HDF files are usually grouped together by the library.
These groups of data objects are called data sets. The HDF user uses the application interface to
manipulate data sets in a file. As an example, an 8-bit raster image data set requires three objects:
a group object identifying the members of the set, an image object containing the image data, and
a dimension object indicating the size of the image.

Data objects are individually accessible even if they are included in a set, therefore data objects
can belong to more than one set and sets can be included in larger groups. For example, a palette
object included in one raster image set may also be a part of another raster image set if its tag and
reference number are included in a data descriptor within that second set.

Additional information about data objects, including the options available for storing them, can be
found in the HDF Specifications Manual and from the HDF WWW home page at http://

hdf.ncsa.uiuc.edu/ .

2.3 Basic Operations on HDF Files Using the Multifile Interfaces

This section describes the basic file operations, some of which are required in working with HDF
files using the multifile interfaces. Except for the SD interface, all applications using other multi-
file interfaces must explicitly use the routines Hopen and Hclose to control accesses to the HDF
files. In an application using the HDF file format, the file is accessed via its identifier, referred to
as file identifier. The following subsections describe the file identifier and the basic file operations
common to most multifile interfaces.

2.3.1 File Identifiers

The HDF programming model specifies that a data file is first explicitly created or opened by an
application, manipulated, then explicitly closed by the application. A file identifier is a unique
number that the HDF library assigns to an HDF file when creating or opening the file. The HDF
library creates the file identifier for an HDF file when given its file name, as represented in the
native file system. Interface routines use only the file identifier to access and manipulate the file.
When all operations on the file are complete, the file identifier must be discarded by explicitly
closing the file before terminating the application.

As every file is assigned its own identifier, the order in which files are accessed is very flexible.
For example, it is valid to open a file and obtain an identifier for it, then open a second file without
closing the first file or disposing of the first file identifier. The only requirement made by HDF is
that all file identifiers be individually discarded before the termination of the calling program.

File identifiers created by the routine of one HDF interface can be used by the routines of any
other interfaces, except SD’s.

block size tagnext block ref offset length tag ref offset length

data descriptor
header data descriptor . . . data descriptor

data descriptor block

 . . .

HDF User’s Guide

June 23, 1998 2-11

2.3.2 Opening HDF Files: Hopen

The routine Hopen creates or opens an HDF data file, depending on the access mode specified,
and returns the file identifier that the HDF library has assigned to the file. The Hopen syntax is as
follows:

C: file_id = Hopen(filename, access_mode, num_dds_block);

FORTRAN: file_id = hopen(filename, access_mode, num_dds_block)

The Hopen parameters are defined in Table 2A and the following discussion.

TABLE 2A Hopen Parameter List

The parameter filename is a character string representing the name of the HDF file to be
accessed.

The parameter access_mode specifies how the file should be accessed. All the access modes are
listed in Table 2B. If the access mode is DFACC_CREATE and the file already exists, the file will be
replaced by the new one. If the access mode is DFACC_READ and the file does not exist, Hopen will
return FAIL (or -1). If the access mode is DFACC_WRITE and the file does not exist, a new file will be
created.

The parameter num_dds_block specifies the number of data descriptors in a block when the
access mode specified is create. If the access mode is not create, the value of num_dds_block is
ignored. The default number of data descriptors in a block is 16 (defined as DEF_NDDS) data
descriptors. The user may specify 0 to keep the default or any non-negative integer to reset this
limit when creating the HDF file.

Note that, in the SD interface, SDstart is used to open files instead of Hopen. (Refer to Chapter 3,
Scientific Data Sets (SD API), of this document for more information on SDstart.)

TABLE 2B File Access Code Flags

2.3.3 Closing HDF Files: Hclose

The Hclose routine closes the file designated by the file identifier specified by the parameter
file_id . The Hclose syntax is as follows:

C: status = Hclose(file_id);

FORTRAN: status = hclose(file_id)

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

Hopen
[int32]
(hopen)

filename char * character*(*) File name

access_mode intn integer File access mode

num_dds_block int16 integer Number of data descriptors in a data descriptor block

File Access Flag Flag Value Description

DFACC_READ 1 Read access

DFACC_WRITE 2 Read and write access

DFACC_CREATE 4 Create with read and write access

2-12 June 23, 1998

National Center for Supercomputing Applications

Hclose returns a value of SUCCEED (or 0) if successful or FAIL (or -1) otherwise. The parameter
name and type are listed in Table 2C. Refer also to the HDF Reference Manual for additional
information regarding Hclose.

Note that Hclose is not used to close files in the SD interface. SDend is used for this purpose.
(Refer to Chapter 3, Scientific Data Sets (SD API), of this document for more information on
SDend.)

TABLE 2C Hclose Parameter List

2.3.4 Getting the HDF Library and File Versions: Hgetlibversion and
Hgetfileversion

Hgetlibversion returns the version of the HDF library currently being used, as well as additional
textual information regarding the library. The parameter names and data types are listed in Table
2D. Refer also to the HDF Reference Manual for additional information regarding Hgetlibver-
sion.

Hgetfileversion returns the version information of the HDF file specified by the parameter
file_id , as well as additional textual information regarding the nature of the file. The parameter
names and data types are listed in Table 2D. Refer also to the HDF Reference Manual for addi-
tional information regarding Hgetfileversion.

The syntax of these routines is as follows:

C: status = Hgetlibversion(&major_v, &minor_v, &release, string);

status = Hgetfileversion(file_id, &major_v, &minor_v,
&release, string);

FORTRAN: status = hglibver(major_v, minor_v, release, string)

status = hgfilver(file_id, major_v, minor_v, release, string)

Both routines return a value of SUCCEED (or 0) if successful or FAIL (or -1) otherwise.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

Hclose
[intn]

(hclose)
file_id int32 integer File identifier

HDF User’s Guide

June 23, 1998 2-13

TABLE 2D Hgetlibversion and Hgetfileversion Parameter Lists

2.4 Programming Issues

This section introduces information relevant to the process of developing programs that use the
HDF library, such as the names of necessary header files, lists of common definitions and issues
concerning FORTRAN-77 and C programming.

2.4.1 Header File Information

The header file “hdf.h” must be included in every HDF application program written in C, except
for programs that call routines in the SD interface. The header file “mfhdf.h” must be included in
all programs that call SD interface routines.

Fortran programmers who use compilers that allow file inclusion can include the files “hdf.inc”
and “dffunc.inc”. If a Fortran compiler that does not support file inclusion is used, HDF library
definitions must be explicitly defined in the Fortran program as they are included in the header
files of the HDF library.

2.4.2 HDF Definitions

The HDF library provides several sets of definitions which can be used easily in the user applica-
tions. These sets include the definitions of the data types, the data type flags, and the limits that set
various maximum values. The definitions of the data types supported by HDF are located in the
“hdf.h” header file, and the data type flags are located in the “hntdefs.h” header file. Both are also
included in Table 2E on page 14, Table 2F on page 14, and Table 2G on page 15. HDF data types
are used for portability in the declaration of variables, and data type flags are used as parameters
in various HDF interface routines.

2.4.2.1 Standard HDF Data Types

The definitions of the fundamental data types are in Table 2E on page 14. Although DFNT_FLOAT

(or 5), DFNT_UCHAR (or 3), and DFNT_CHAR (or 4) have not been added to this table, they are also sup-
ported by the HDF library for backward compatibility.

If the machine used is big-endian, using these data types will result in no byte-order conversion
being performed. If the machine used is little-endian, the library will convert the byte-order of the
variables to big-endian.

Routine Name
[Return Type]

(FORTRAN-77)
Parameter

Parameter Type
Description

C FORTRAN-77

Hgetlibversion
[intn]

(hglibver)

major_v uint32* integer Major version number

minor_v uint32* integer Minor version number

release uint32* integer Complete library version number

string char* character*(*) Additional information about the library version

Hgetfileversion
[intn]

(hgfilver)

file_id int32 integer File identifier

major_v uint32* integer Major version number

minor_v uint32* integer Minor version number

release uint32* integer Complete library version number

string char* character*(*) Additional information about the library version

2-14 June 23, 1998

National Center for Supercomputing Applications

TABLE 2E Standard HDF Data Types and Flags

Fortran programmers should refer to Section 2.4.3 on page 16 for a discussion of the Fortran data
types.

2.4.2.2 Native Format Data Types

When a native format data type is specified, the corresponding numbers are stored in the HDF file
exactly as they appear in memory, without conversion. For example, on a Cray Y-MP, 8 bytes of
memory, or one Cray word, is used to store most integers. Therefore, an 8-bit signed integer, rep-
resented by the DFNT_INT32 flag, on a Cray Y-MP uses 8 bytes of memory. Consequently, when
the data type DFNT_NATIVE | DFNT_INT32 (DFNT_NATIVE bytewise-ORed with DFNT_INT32) is used
on a Cray Y-MP to specify the data type of an HDF SDS or vdata, each integer stored in the HDF
file is 8 bytes.

The method for constructing the data type flag for each native data type described in the previous
paragraph is used for any of the native data types: the DFNT_NATIVE flag is bitwise-ORed with the
flag of the corresponding standard data type.

If the user is on a big-endian machine, using native data types will result in no conversion. If the
user is on a little-endian machine, the HDF library will perform little-to-big-endian conversion.

The definitions of the native format data types and the corresponding data type flags appear in
Table 2F.

TABLE 2F Native Format Data Type Definitions

HDF Data Type Data Type Flag and Value Description

char8 DFNT_CHAR8 (4) 8-bit character type

uchar8 DFNT_UCHAR8 (3) 8-bit unsigned character type

int8 DFNT_INT8 (20) 8-bit integer type

uint8 DFNT_UINT8 (21) 8-bit unsigned integer type

int16 DFNT_INT16 (22) 16-bit integer type

uint16 DFNT_UINT16 (23) 16-bit unsigned integer type

int32 DFNT_INT32 (24) 32-bit integer type

uint32 DFNT_UINT32 (25) 32-bit unsigned integer type

float32 DFNT_FLOAT32 (5) 32-bit floating-point type

float64 DFNT_FLOAT64 (6) 64-bit floating-point type

HDF Data Type HDF Data Type Flag and Value Description

int8 DFNT_NINT8 (4116) 8-bit native integer type

uint8 DFNT_NUINT8 (4117) 8-bit native unsigned integer type

int16 DFNT_NINT16 (4118) 16-bit native integer type

uint16 DFNT_NUINT16 (4119) 16-bit native unsigned integer type

int32 DFNT_NINT32 (4120) 32-bit native integer type

uint32 DFNT_NUINT32 (4121) 32-bit native unsigned integer type

float32 DFNT_NFLOAT32 (4101) 32-bit native floating-point type

float64 DFNT_NFLOAT64 (4102) 64-bit native floating-point type

HDF User’s Guide

June 23, 1998 2-15

2.4.2.3 Little-Endian Data Types

HDF also provides a “little-endian” option to suppress any rearranging of byte ordering from lit-
tle- to big-endian. This is primarily for users of Intel-based machines who do not want to incur the
cost of reordering data when writing to an HDF file. Note that direct conversions are supported
between little-endian and all other byte-order formats supported by HDF.

The method for constructing the data type flag for each little-endian data type is similar to the
method for constructing native format data type flags: the DFNT_LITEND flag is bitwise-ORed with
the flag of the corresponding standard data type.

If the user is on a little-endian machine, using these data types will result in no conversion. If the
user is on a big-endian machine, the HDF library will perform big-to-little-endian conversion.

The definitions of the little-endian data types and the corresponding data type flags appear in
Table 2G.

TABLE 2G Little-Endian Format Data Type Definitions

2.4.2.4 Tag Definitions

These definitions identify the object tags defined and used by the HDF interface library. The con-
cept of object tags is introduced in Section 2.2.2.1 on page 8, and a list of tags can be found in
Appendix A of this manual. Note that tags can also identify properties of data objects.

2.4.2.5 Limit Definitions

These definitions declare the maximum size of specific data object parameters, such as the maxi-
mum length of a vdata field or the maximum number of objects in a vgroup. They are located in
the header file “hlimits.h”. A selection of the most-commonly-used limit definitions appears in
Table 2H.

TABLE 2H Limit Definitions

HDF Data Type HDF Data Type Flag and Value Description

int8 DFNT_LINT8 (16404) 8-bit little-endian integer type

uint8 DFNT_LUINT8 (16405) 8-bit little-endian unsigned integer type

int16 DFNT_LINT16 (16406) 16-bit little-endian integer type

uint16 DFNT_LUINT16 (16407) 16-bit little-endian unsigned integer type

int32 DFNT_LINT32 (16408) 32-bit little-endian integer type

uint32 DFNT_LUINT32 (16409) 32-bit little-endian unsigned integer type

float32 DFNT_LFLOAT32 (16389) 32-bit little-endian floating-point type

float64 DFNT_LFLOAT64 (16390) 64-bit little-endian floating-point type

Definition Name Definition Value Description

FIELDNAMELENMAX 128 Maximum length of a vdata field in bits - 16 characters

VSNAMELENMAX 64 Maximum length of a vdata name in bytes - 64 characters

VGNAMELENMAX 64 Maximum length of a vgroup name in bytes - 64 characters

VSFIELDMAX 256 Maximum number of fields per vdata (64 for Macintosh)

VDEFAULTBLKSIZE 4096 Default block size in a vdata

VDEFAULTNBLKS 32 Default number of blocks in a vdata

MAXNVELT 64 Maximum number of objects in a vgroup

MAX_ORDER 65535 Maximum order of a vdata field

2-16 June 23, 1998

National Center for Supercomputing Applications

2.4.3 FORTRAN-77 and C Language Issues

HDF provides both FORTRAN-77 and C versions of most of its interface routines. In order to
make the FORTRAN-77 and C versions of each routine as similar as possible, some compromises
have been made in the process of simplifying the interface for both programming languages.

FORTRAN-77-to-C Translation

Nearly all of the HDF library code is written in C. A FORTRAN-77 HDF interface routine trans-
lates all parameter data types to C data types, then calls the C routine that performs the functional-
ity of the interface routine. For example, d8aimg is the FORTRAN-77 equivalent for
DFR8addimage. Calls to either routine execute the same C code that adds an 8-bit raster image to
an HDF file. See Figure 2e.

FIGURE 2e Use of a Function Call Converter to Route FORTRAN-77 HDF Calls to the C Library

Case Sensitivity

FORTRAN-77 identifiers generally are not case sensitive, whereas C identifiers are. Although all
of the FORTRAN-77 routines shown in this manual are written in lower case, FORTRAN-77 pro-
grams can generally call them using either upper- or lower-case letters without loss of meaning.

Name Length

Because some FORTRAN-77 compilers only interpret identifier names with seven or fewer char-
acters, the first seven characters of the FORTRAN-77 HDF routine names are unique.

MAX_FIELD_SIZE 65535 Maximum length of a field

MAX_NC_DIMS 5000 Maximum number of dimensions per file

MAX_NC_ATTRS 3000 Maximum number of file or variable attributes

MAX_NC_VARS 5000 Maximum number of file attributes

MAX_NC_DIMS 32 Maximum number of variable attributes

MAX_NC_NAME 256 Maximum length of a name - NC interface

MAX_PATH_LEN 1024 Maximum length of an external file name

MAX_FILE 32 Maximum number of open files

MAX_GROUPS 8 Maximum number of groups

MAX_GR_NAME 256 Maximum length of a name - GR interface

MAX_VAR_DIMS 32 Maximum number of dimensions per variable

MAX_REF 65535 The largest number that will fit into a 16-bit word reference variable

MAX_BLOCK_SIZE 65536 Maximum size of blocks in linked blocks

Your
C

Program

DFR8addimage

Your
FORTRAN-77

Program

d8aimg

FORTRAN-77 to C

HDF Library d8aimg to DFR8addimage

HDF User’s Guide

June 23, 1998 2-17

Header Files

The inclusion of header files is not generally permitted by FORTRAN-77 compilers. However, it
is sometimes available as an option. On UNIX systems, for example, the macro processors m4 and
cpp let the compiler include and preprocess header files. If this capability is not available, the user
may have to copy the declarations, definitions, or values needed from the files “dffunc.inc” and
“hdf.inc” into the user application. If the capability is available, the files can be included in the
Fortran code. These two files reside in the include directory after the library is installed on the
user’s system.

Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data type
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a 16-bit
quantity. In addition, the differences between FORTRAN-77 and C lead to difficulties in describ-
ing the data types found in the argument lists of HDF routines. To maintain portability, the HDF
library expects assigned names for all data types used in HDF routines. See Table 2I.

TABLE 2I Correspondence Between Fortran and HDF C Data Types

When using a FORTRAN-77 data type that is not supported, the general practice is to use another
data type of the same size. For example, an 8-bit signed integer can be used to store an 8-bit
unsigned integer variable.

String and Array Specifications

The following conventions are followed in the specification of arrays in this manual:

• character*(*) defines a string of an indefinite number of characters. It is the responsibility
of the calling program to allocate enough space to hold the data to be stored in the string.

• real x(*) means that x refers to an array of reals of indefinite size and of indefinite rank. It
is the responsibility of the calling program to allocate an actual array with the correct num-
ber of dimensions and dimension sizes.

• <valid numeric data type> x means that x may have one of the numeric data types
listed in the Description column of Table 2I above.

• <valid data type> x means that x may have any of the data types listed in the Descrip-
tion column of Table 2I above.

Data Type FORTRAN C

8-bit signed integer character*1 ** int8

8-bit unsigned integer character*1 uint8

16-bit signed integer integer*2 int16

16-bit unsigned integer Not supported uint16

32-bit signed integer integer*4 ** int32

32-bit unsigned integer Not supported uint32

32-bit floating point number real*4 ** float32

64-bit floating point number real*8 ** float64

Native signed integer integer intn

Native unsigned integer Not supported uintn

** if the compiler supports this data type

2-18 June 23, 1998

National Center for Supercomputing Applications

FORTRAN-77 and ANSI C

As much as possible, we have ensured that the HDF interface routines conform to the implementa-
tions of Fortran and C that are in most common use today, namely FORTRAN-77 and ANSI C.

As Fortran-90 is a superset of FORTRAN-77, HDF programs should compile and run correctly
when using a Fortran-90 compiler. However, an HDF library interface that makes full use of For-
tran-90 enhancements is being considered.

