Net wor k Wor ki ng G oup David D. dark

Request for Conments: 984 Mark L. Lanbert
M |. T. Laboratory for Conputer Science
May 1986

PCVMAIL: A Distributed Mail System for Personal Conputers

1. Status of this Docunent

This docunent is a prelimnary discussion of the design of a

per sonal - conput er - based distributed mail system It is published for
di scussi on and conment, and does not constitute a standard. As the
proposal may change, inplenentation of this docunment is not advised.
Distribution of this meno is unlimted.

2. Introduction

Pcmail is a distributed mail systemthat provides mail service to an
arbitrary nunber of users, each of which owns one or nobre persona
computers (PCs). The systemis divided into two halves. The first
consists of a single entity called the "repository". The repository
is a storage center for inconming nail. Ml for a Pcrmail user can
arrive externally fromthe Internet or internally from other
repository users. The repository also maintains a stable copy of
each user’s nail state (this will hereafter be referred to as the
user’'s "global nail state"). The repository is therefore typically a
computer with a large anmount of disk storage

The second half of Pcmail consists of one or nore "clients". Each
Pcmail| user may have an arbitrary nunber of clients, which are
typically PCs. The clients provide a user with a friendly neans of
accessing the user’'s global nmail state over a network. In order to
make the interaction between the repository and a user’s clients nore
efficient, each client maintains a |ocal copy of its user’s globa
mail state, called the "local nmail state". Since clients are PCs,
they may not al ways have access to a network (and therefore to the
global mail state in the repository). This neans that the | ocal and
global nail states may not be identical all the tinme, naking
synchroni zati on between | ocal and gl obal nail states necessary.

Cients communicate with the repository via the Distributed Mail
System Protocol (DVSP); the specification for this protocol appears
in appendi x A. The repository is therefore a DVSP server in addition
to a mail end-site and storage facility. DMSP provides a conplete
set of nmmil nanipul ati on operations ("send a nessage", "delete a
nmessage", "print a nessage", etc.). DMSP also provides special
operations to allow easy synchroni zati on between a user’s global mail
state and his clients’ local mail states. Particular attention has
been paid to the way in which DVSP operations act on a user’s nai
state. Al DMSP operations are atomic (that is, they are guaranteed

O ark & Lambert [Page 1]

RFC 984 May 1986
PCMVAI L

either to succeed conpletely, or fail conpletely). A client can be
abruptly di sconnected fromthe repository w thout |eaving
i nconsi stent or danaged nmil states.

Pcmail is a mail systemfor PCs. |Its design has therefore been
heavily influenced by several characteristics unique to PCs. First,
PCs are relatively inexpensive. This nmeans that people nmay own nore
than one PC, perhaps putting one in an office and one at hone.

Second, PCs are portable. Mst PCs can be packed up and noved in the
back seat of an autonobile, and a few are truly portabl e--about the
size of a briefcase--and battery-powered. Finally, PCs are
resource-poor. A typical PC has a small amount (typically less than
one negabyte) of main nenory and little in the way of mass storage
(fl oppy-di sk drives that can access perhaps 360 kil obytes of data).

Because PCs are relatively inexpensive and people nay own nore than
one, Pcmail has been designed to allow users nultiple access points
to their mail state. Each Pcnail user can have several client PCs,
each of which can access the user’s mail by conmunicating with the
repository over a network. The client PCs all maintain |ocal copies
of the user’s global nmail state, and synchronize the |ocal and gl oba
states using DVSP

It is possible, even likely, that many PCs will only infrequently be
connected to a network (and thus be able to conmunicate with the
repository). The Pcnail design therefore allows two nodes of

conmuni cati on between repository and client. "Interactive node" is
used when the client PCis always connected to the network. Any
changes to the client’s local nmail state are imediately al so nade to
the repository’s global mail state, and any inconming mail is

i Mmediately transmitted fromrepository to client. "Batch node" is
used by clients that have infrequent access to the repository. Users
mani pul ate the client’s local mail state, queueing the changes as
"actions". Wen next connected to the repository, the actions are
transmitted, and the client’s local mail state is synchronized with
the repository’s global mail state.

Finally, the Pcmail design mnimzes the effect of using a
resource-poor PC as a client. Miil nessages are split into two
parts: a "descriptor"” and a "body". The descriptor is a capsule
message sunmary whose length (typically about 100 bytes) is

i ndependent of the actual nessage |length. The body is the actua
message text, including an RFC-822 standard nessage header. Wiile the
client may not have enough storage to hold a conplete set of

nmessages, it can always hold a conplete set of descriptors, thus

O ark & Lambert [Page 2]

RFC 984 May 1986
PCMVAI L

providing the user with at least a summary of his mail state.
Message bodies can be pulled over fromthe repository as client
storage becones avail abl e.

The remai nder of this docunment is broken up into the follow ng
sections: first, there is a detailed description of the repository
architecture. This is followed by a description of DVBP, its
operations, and notivation for its design. A third section describes
client architecture. Another section describes a typical DWVSP
session between the repository and a client. The final section

di scusses the current Pcrail inplenentation

3. Repository Architecture

A nmachine running repository code is typically a nediumto-I|arge size
conmputer with a large anmount of disk storage. It nust also be a
permanent network site, since client PCs comunicate with the
repository over a network, and rely on the repository’ s being

avail abl e at any tine.

The repository nust performseveral tasks. First, and nost
importantly, the repository nust efficiently manage a potentially

| arge nunber of users and their mail states. Ml nust be reliably
stored in a manner that makes it easy for multiple clients to access
the global nmail state and synchronize their local mail states with
the gl obal state. Second, the repository nust be able to comunicate
efficiently with its clients. The protocol used to conmunicate

bet ween repository and client nust be reliable and nust provide
operations that (1) allow typical mail manipulation, and (2) support
Pcrmail’s distributed nature by allowi ng efficient synchronization

bet ween | ocal and global mail states. Third, the repository nmust be
able to process mail from sources outside the repository’s own user
community (a primary outside source is the Internet). Internet nai
will arrive with a NIC RFC-822 standard nessage header; the recipient
nanes in the nmessage nmust be properly translated fromthe RFC 822
nanespace into the repository’ s namespace

3. 1. Managenent of user nail state

Pcrmai| divides the world into a conmunity of users. Each user is
referred to by a user object. A user object consists of a unique
name, a password (which the user’s clients use to authenticate
thenselves to the repository before mani pul ating a gl obal nail
state), a list of "client objects" describing those clients

bel onging to the user, and a list of "mail box objects"

A client object consists of a unique name and a status. A user

O ark & Lambert [Page 3]

RFC 984 May 1986
PCMVAI L

has one client object for every client he owns; a client cannot
communi cate with the repository unless it has a correspondi ng
client object in a user’'s client list. dient objects therefore
serve as a neans of identifying valid clients to the repository.
Cient objects also allow the repository to manage | ocal and

gl obal mail state synchronization; the repository associates with
every global state change a list of client objects correspondi ng
to those clients which have not recorded the gl obal change

| ocal ly.

Aclient’s status is either "active" or "inactive". The
repository defines inactive clients as those clients which have
not connected to the repository within a set time period (one week

in the current Pcrmail inplenentation). Wen an inactive client
does connect to the repository, the repository notifies the client
that it has been "reset". The repository resets a client by

marki ng all nessages in the user’s nail state as having changed
since the client last logged in. Wen the client next
synchroni zes with the repository, it will receive a conplete copy
of the repository’s global mail state. A forced reset is
perforned on the assunption that enough gl obal state changes occur
in a week that the client would spend too nuch tine perform ng an
ordinary | ocal state-global state synchronization

Messages are stored in mail boxes. Users can have an arbitrary
nunber of mail boxes, which serve both to store and to categorize
nmessages. Since there can be any nunber of nail boxes, nessages
can be categorized to an arbitrarily fine degree. A nail box

obj ect both nanes a nail box and describes its contents. Mil boxes
are identified by a unique nane; their contents are described by
three nuneric values. The first is the total nunber of nessages
in the mail box, the second is the total number of unseen nessages
(messages t hat have never been seen by the user via any client) in
the mail box, and the third is the next avail abl e nessage uni que
identifier (UD). This information is stored in the mail box
object to allowclients to get a summary of a nail box’s contents
wi thout having to read all the nessages within the mail box.

Associ ated with each mail box are an arbitrary nunber of nessage
obj ects. Each nmessage is broken into two parts--a "descriptor”
whi ch contains a sunmary of useful infornation about the nessage,
and a "body", which is the nessage text itself, including NIC
RFC- 822 nessage header. Each nessage is assigned a nonotonically
i ncreasing U D based on the owning mail box’s next avail able U D
Each mail box has its own set of U Ds which, together with the
mai | box nane and user nane, uniquely identify the nmessage within
the repository.

O ark & Lambert [Page 4]

RFC 984 May 1986
PCMVAI L

A descriptor holds the following information: the nessage U D, the
message size in bytes and lines, four "useful"” nessage header
fields (the "date:", "to:", "from", and "subject:" fields), and
two groups of eight flags each. The first group of flags is
system defi ned. These flags mark whet her the nessage has never
been seen, whether it has been deleted, whether it is a forwarded
nmessage, and whet her the nessage has been expunged. The remai ni ng
four flags are reserved for future use. The second group of flags
is user defined. The repository never exanines these flags
internally; instead they can be used by application prograns
running on the clients. Descriptors serve as an efficient neans
for clients to get nessage information wi thout having to waste
time retrieving the message fromthe repository.

3.2. Repository-to-RFC 822 nane translation

"Address objects" provide the repository with a neans for
translating the RFC- 822-style mail addresses in |Internet nessages
into repository nanes. The repository provides its own namespace
for message identification. Any message is uniquely identified by
the triple (user-nane, nmil box-nanme, nessage-U D). Any nailbox is
uniquely identified by the pair (user-nanme, nail box-nane). Thus
to send a nessage between two repository users, a user would
address the nmessage to (user-nane, nmail box-nane). The repository
woul d deliver the nessage to the named user and mail box, and
assign it a U D based on the requested nail box’ s next avail abl e

ul D.

In order to translate between RFC-822-style nmail addresses and
repository names, the repository maintains a |list of address
objects. Each address object is an association between an

RFC- 822-styl e address and a (user-nane, mail box-nanme) pair. Wen
mail arrives fromthe Internet, the repository can use the address
object list to translate the recipients into (user-nane,

mai | box-nane) pairs and route the nessage correctly.

4. Communi cation Between Repository and Client: DMSP

The Distributed Mail System Protocol (DVMBP) is a block-stream
protocol that defines and nani pul ates the objects nmentioned in the
previous section. |t has been designed to work with Pcrmail’s
single-repository/nultiple-client nodel of the world. 1In addition to
providing typical mail manipulation functions, DMSP provides
functions that all ow easy synchroni zati on of gl obal and | ocal mai
states.

DVSP is inplenented on top of the Unified Stream Protocol (USP)

O ark & Lambert [Page 5]

RFC 984 May 1986
PCMVAI L

specified in MT-LCS Techni cal Meno 255. USP provides a reliable
virtual circuit bl ock-stream connection between two machi nes. USP
defines a basic set of data types ("strings", "integers", "bool eans”
etc.). Instances of these data types are grouped in an
application-defined order to form USP bl ocks. Each USP bl ock is
defined by a nunmeric "block type"; a USP application can thus
interpret a block’s contents based on know edge of the block’s type.
DMSP consists of a set of operations, each of which is conprised of
one or nore different USP bl ocks that are sent between repository and
client.

A DMVBP session proceeds as follows: a client begins the session with
the repository by opening a USP connection to the repository’s

machi ne. The client then authenticates both itself and its user to
the repository with a "login" operation. |If the authentication is
successful, the user perforns an arbitrary nunber of DVSP operations
before ending the session with a "logout" operation (at which tine
the connection is closed by the repository).

Because DMSP can mani pul ate a pair of nmail states (local and gl obal)
at once, it is extrenely inportant that all DMSP operations are
atomic. Failure of any DVSP operation nust |eave both states in a
consi stent, known state. For this reason, a DMSP operation is
defined to have failed unless an explicit acknow edgenent is received
by the operation initiator. This acknow edgenent can take one of two
basic forms, based on two broad categories that all DMSP operations
fall into. First, an operation can be a request to perform sone nai
state nodification, in which case the repository will acknow edge the
request with either an "ok" or a "failure" (in which case the reason
for the failure is also returned). Second, an operation can be a
request for information, in which case the request is acknow edged by
the repository’s providing the information to the client. Operations
such as "delete a nessage" fall into the first category; operations
like "send a list of mailboxes" fall into the second category.

Following are a |ist of DMSP operations by object type, their block
types and argunents, and their expected acknow edgenent bl ock types.
Each DMSP bl ock has a different nunber; the first digit of each bl ock
type defines the object being nmanipul ated: Operations nunbered 5xx
are general, operations nunbered 6xx are user operations, operations
nunbered 7xx are client operations, operations nunbered 8xx are
mai | box and address operations, and operations nunbered 11xx are
nessage operations.

Bl ocks marked "=>" flow fromclient to repository; blocks marked "<="

flow fromrepository to client. |If nore than one block can be sent,
the choices are delinmted by "or" ("|") characters.

O ark & Lambert [Page 6]

RFC 984 May 1986
PCMVAI L

For clarity, each block type is put in a human-

under standabl e form The bl ock nunber is followed by an operation
nane; this name is never transmtted as part of a USP bl ock. Bl ock
argunents are identified by nane and type, and encl osed in square
brackets. "Record" data types are described by a |ist of
"field-name:field-type" pairs contained in square brackets. "Choice"
data types are described by a list of "tag:tag-name" pairs contained
in square brackets. USP data types are abbreviated as foll ows:

Prinmtive data types

string: str

cardi nal : card

| ong-cardinal : Lcard

i nteger: int
- long-integer: Lint

bool ean: boo

Compound data types:

- sequence: SEQ

- array: AR
- record: REC
- choice: CH

4.1. Ceneral operations

The first group of DMSP operations performgeneral functions that
operate on no one particular class of object. DVMSP has six
general operations, which provide the follow ng services:

If either a client or the repository thinks the other is

mal functi oni ng, they can send an "abort-request”. An
abort-request is never acknow edged; after the request is sent,
the sender imredi ately cl oses the USP connection and returns
control to its application.

=> 503 (abort-request) [why:str]

O ark & Lambert [Page 7]

RFC 984 May 1986
PCMVAI L

DVSP provides a limted renote debugging facility via the
"start-debug" and "end-debug" operations. Wien a client sends a
"start-debug" request, the repository enables its idea of

r enot e- debuggi ng. The exact definition of renote debugging is

i mpl enent ati on dependent; the current repository inplenentation
simply writes debugging information to a special file. The
"end- debug" request disables renpte debuggi ng.

=> 504 (start-debug) []

<= 500 (ok) [] |
501 (failure) [why:str]

or
=> 505 (end-debug) []
<= 500 (ok) []

In order to prevent protocol version skew between clients and the
repository, DVSP provides a "send-version" operation. The client
supplies its DMBP version nunber as an argunent; the operation
succeeds if the supplied version nunber matches the repository’'s
DVMSP version nunber. It fails if the two version nunbers do not
mat ch.

=> 506 (send-version) [version-nunber: card]

<= 500 (ok) [] |
501 (failure) [why:str]

DVMSP al so provides clients with the ability to send an arbitrary
text message to the repository. The "l og-nessage" operation takes
as an argument a string of arbitrary length; the repository
accepts the string; what is done with the string is

i mpl emrent ati on- dependent .

=> 507 | og- message[nessage: str]

<= 500 (ok) [] |
501 (failure) [why:str]

Finally, users can send mail to other users via the "send-nessage"
operation. The nmessage nust have an Internet-style header as
defined by NIC RFC-822. The repository takes the nessage and
distributes it to the nail boxes specified on the "to:", "cc:", and
"bece:" fields of the nessage header. |If one or nore of the

O ark & Lambert [Page 8]

RFC 984 May 1986
PCMVAI L

mai | boxes exi sts outside the repository’s user conmunity, the
repository is responsible for handing the nmessage to a | ocal SMIP
server.

An OK block is sent fromthe repository only if the entire nessage
was successfully transmitted. |f the nmessage was destined for the
Internet, the send-nessage operation is successful if the nessage
was successfully transmtted to the | ocal SMIP server

=> 508 (send-nessage) [nessage: SEQ str]]

<= 500 (ok) [] |
501 (failure) [why:str]

4. 2. User operations

The next series of DMSP operations mani pul ates user objects. The
nost conmon of these operations are "login" and "logout". A
client nmust performa |ogin operation before being able to access
a user’s mail state. A DVSP login block contains five itens: (1)
the user’s nane, (2) the user’s password, (3) the nanme of the
client perfornming the login, (4) a flag telling the repository to
create a client object for the client if one does not exist, and
(5) a flag set to TRUE if the client wishes to operate in "batch
nmode" and FALSE if the client wishes to operate in "interactive"
nmode. The flag value allows the repository to tune interna
paraneters for either node of operation

The repository can return either an OK bl ock (indicating
successful authentication), a FAI LURE block (indicating failed

aut hentication), or a FORCE-RESET block. This last is sent if the
client logging in has been marked as "inactive" by the repository
(clients are marked inactive if they have not connected to the
repository in over a week). The FORCE- RESET bl ock indicates that
the client should erase its local mail state and pull over a

conpl ete version of the repository’s mail state. This is done on
the assunption that so many mail state changes have been nade in a
week that it would be inefficient to performa norma
synchroni zati on.

=> 600 (login) [user:str, password:str, client:str,
create-client-object?: bool
bat ch- node-f | ag: bool]

<= 500 (ok) [] |

501 (failure) [why:str] |
705 (force-client-reset) []

O ark & Lambert [Page 9]

RFC 984 May 1986
PCMVAI L

When a client is finished interacting with the repository, it
perforns a | ogout operation. This allows the repository to
perform any necessary cleanup before closing the USP connection

=> 601 (logout) []
<= 500 (ok) []

DVSP al so provides "add-user" and "renove-user" operations, which
all ow systemadm nistrators to renotely add new users to, and
renove users from the repository. These operations are
privileged; the repository authenticates the user requesting the
operation before perform ng an add-user or renove-user operation
Bot h operations require the name of the user to be added or
renoved; the add-user operation also requires a default password
to assign the new user.

=> 602 (add-user) [user:str, password:str]

<= 500 (ok) [] |
501 (failure) [why:str]

=> 603 (renpve-user) [user:str]

<= 500 (ok) [] |
501 (failure) [why:str]

A user can change his password via the "set-password" operation
The operation works nmuch the sane as the UN X change- password
operation, taking as argunents the user’s current password and a
desired new password. |If the current password gi ven matches the
user’s current password, the user’s current password is changed to
t he new password gi ven

=> 604 (set-password) [ol d-password: str,
new password: str]

<= 500 (ok) [] |
501 (failure) [why:str]

O ark & Lambert [Page 10]

RFC 984 May 1986
PCMVAI L

4.3. dient operations

DVSP provi des four operations to mani pulate client objects. The
first, "list-clients", tells the repository to send the user’s
client list to the requesting client. The list takes the form of
a series of (name, status pairs).

=> 700 (list-clients) []

<= 701 (client-list) [client-list:SEQ
REC[] name: str, status:card]]]

The "add-client" operation allows a user to add a client object to
his list of client objects. Although the | ogin operation
duplicates this functionality via the "create-this-client?" flag,
the add-client operation is a useful neans of creating a nunber of
new client objects while logged into the repository via an
existing client. The add-client operation requires the name of
the client to add.

\%

702 (add-client) [client:str]

<

500 (ok) [] |
501 (failure) [why:str]

The nmost conmon failure node for this operation is an attenpt to
add a client that already exists.

The "renove-client" operation renpbves an existing client object
froma user’s client list. The client being removed can be the
client requesting the operation. The renove-client operation
requires the nane of the client to renove

=> 703 (renmpve-client) [client:str]

<= 500 (ok) [] |
501 (failure) [why:str]

The nost common failure node here is an attenpt to renove a
non-existent client. This is a typical failure node for any DMSP
operation which operates on a naned object.

The last client operation, "reset-client", causes the repository
to mark all messages in the user’s mail state as havi ng changed
since the client last logged in. Wen a client next synchronizes
with the repository, it will end up receiving a conplete copy of
the repository’s global nail state. This is useful for two

O ark & Lambert [Page 11]

RFC 98
PCMVAI L

4.4

Cark

4 May 1986

reasons. First, a client’s local mail state could easily becone

| ost or damaged, especially if it is stored on a floppy disk
Second, if a client has been narked as inactive by the repository,
the reset-client operation provides a fast way of resynchronizing
with the repository, assum ng that so many differences exi st

bet ween the |l ocal and global mail states that a norma
synchroni zati on woul d take far too nuch tine.

=> 704 (reset-client) [client:str]

<= 500 (ok) [] |
501 (failure) [why:str]

. Mai |l box operations

DVSP supports five operations that mani pul ate nail box objects.
First, "list-mail boxes" has the repository send to the requesting
client information on each mailbox. This information consists of
the mail box nane, total nessage count, unseen nmessage count, and
"next available U D'. This operation is useful in synchronizing

| ocal and global mail states, since it allows a client to conpare
the user’s global mailbox list with a client’s local nailbox |ist.
The list of mmil boxes al so provides a quick sunmmary of each
mai | box’ s contents without having the contents present.

=> 800 (list-mailboxes) []

<= 801 (rmil box-list) [nailbox-list:SEQ
REC] mai | box: str,
next- U D: Lcar d,
num nsgs: card,
num unseen-nsgs: card]]]

The "add- nail box" has the repository create a new nail box and
attach it to the user’s list of nmailboxes. An address object

bi ndi ng the (user-nane, nmil box-name) pair to an RFC 822-style
address is automatically created and placed in the repository’s
list of address objects. This allows mail coming fromthe
Internet to be correctly routed to the new nmil box.

=> 802 (add-nail box) [mail box:str]

<= 500 (ok) [] |
501 (failure) [why:str]

"Renove- nai | box" renoves a mail box fromthe user’s |list of
mai | boxes. All nmessages within the mail box are also deleted and

& Lanbert [Page 12]

RFC 984 May 1986
PCMVAI L

permanently renoved fromthe system Any address objects binding
the mail box nanme to RFC-822-style mail box addresses are al so
renoved fromthe system

=> 803 (renpve-nmail box) [nail box:str]

<= 500 (ok) [] |
501 (failure) [why:str]

DVMSP al so has an "expunge-nai |l box" operation. Any nessage can be
del eted and "undel eted" at will. Deletions are nade pernanent by
perform ng an expunge-mail box operation. The expunge operation
causes the repository to ook through a named mail box, renoving
fromthe system any nessages narked "del et ed”

=> 808 expunge- nmai | box[mai | box: str]

<= 500 (ok) [] |
501 (failure) [why:str]

Finally, "reset-nail box" causes the repository to mark all the
messages in a nanmed nail box as havi ng changed since the current
client last logged in. When the client next synchronizes with the
repository, it will receive a conplete copy of the named nail box’s
mail state. This operation is nerely a nore specific version of
the reset-client operation (which allows the client to pull over a

conpl ete copy of the user’s global nmail state). Its prinary use
is for nmail boxes whose contents have accidentally been destroyed
| ocal ly.

=> 809 (reset-nmailbox) [mail box:str]

<= 500 (ok) [] |
501 (failure) [why:str]

4.5. Address operations
DVSP provides three operations that allow users to mani pul ate
address objects. First, the "list-address" operation returns a
list of address objects associated with a particular (user-nang,
mai | box- nane) pair.

=> 804 (list-addresses) [mail box:str]

<= 501 (failure) [why:str] |
805 (address-list) [address-list:SEQ str]]

O ark & Lambert [Page 13]

RFC 984 May 1986
PCMVAI L

The "add- address"” operation adds a new address object that
associ ates a (user-nane, mail box-nane) pair with a given
RFC- 822-styl e nmi | box address.

=> 806 (add-address) [nuail box:str,
RFC- 822- nai | - addr ess: str]

<= 500 (ok) [] |
501 (failure) [why:str]

Finally, the "renove-address" operation destroys the address
obj ect binding the given RFC- 822-style nmail address and the given
(user-name, mail box-nane) pair.

=> 807 (renove-address) [nail box:str,
RFC- 822- nai | - addr ess: str]

<= 500 (ok) [] |
501 (failure) [why:str]

4.6. Message operations

The nost conmonl y- mani pul ated Pcnail objects are nessages; DMVSP
t heref ore provides special nessage operations to allow efficient
synchroni zation, as well as a set of operations to perform
standard nessage-mani pul ation functions. |In the follow ng

par agraphs, the terns "nessage" and "descriptor” will be used

i nt erchangeably.

A client can request a particular nessage’'s flag values with the
"get-descriptor-flags" operation. The repository sends over an
array of bool ean val ues, eight of which are system defined, and
ei ght of which are user defined and i gnored by the repository.

=> 1100 (get-descriptor-flags) [nmail box:str,
ui d: Lcar d]

<= 1101 (descriptor-flags) [flags: SEQ bool]]
501 (failure) [why:str]

A user may request a series of descriptors with the
"get-descriptors" operation. The series is identified by a pair
of message Ul Ds, representing the | ower and upper bounds of the
list. Since UDs are defined to be nonotonically increasing
nunbers, a pair of UDs is sufficient to conpletely identify the
series of descriptors. The repository returns a sequence of
"choices". Elenents of the sequence can either be descriptors, in

O ark & Lambert [Page 14]

RFC 984 May 1986
PCMVAI L

whi ch case the choice is tagged as a descriptor, or they can be
notification that the requested nessage has been expunged
subsequent to the client’s |ast connection to the repository.

=> 1102 (get-descriptors) [mailbox:str,
| ow Ul D: Lcard,
hi gh- Ul D: Lcar d]

<= 501 (failure) [why:str] |
1103 (descriptor-list) [descriptor-list:SEQ CH

expunged[ui d: Lcar d]

descriptor[REC] U D: Lcard,
fl ags: SEQ bool],
fromfield:str,
to-field:str,
date-field:str,
subject-field:str,
num byt es: Lcard,
num | i nes: Lcard]

111]

The "get-changed-descriptors” operation is intended for use during
state synchronization. Wenever a descriptor changes state (is
del eted, for exanple), the repository notes those clients which
have not yet recorded the change |ocally. Get-changed-descriptors
has the repository send to the client a given nunber of
descriptors which have changed since the client’s |ast

synchroni zation. The list sent begins with the earliest-changed
descriptor.

=> 1105 (get-changed-descriptors) [mail box:str,
max-t o- send: car d]

<= 501 (failure) why:str] |
1103 (descriptor-list) [descriptor-list:SEQ
CH

expunged[ui d: Lcar d]

descriptor[RECI U D: Lcard,
fl ags: SEQ bool],
fromfield:str,
to-field:str,
date-field:str,
subject-field:str,
num byt es: Lcard,
nunmt | i nes: Lcard]

111]

O ark & Lambert [Page 15]

RFC 984 May 1986
PCMVAI L

Once the changed descriptors have been | ooked at, a user will want
to informthe repository that the current client has recorded the
change locally. The "reset-changed-descriptors” causes the
repository to mark as "seen by current client" a given nunber of
changed descriptors, starting with the changed descriptor with

| owest Ul D.

=> 1106 (reset-changed-descriptors) [
mai | box: str,
nunber-to-reset: card]

<= 500 (ok) [] |
501 (failure) [why:str]

Message bodies are transnmitted fromrepository to user with the
"get-nessage-text" operation. The separation of "get-descriptors"”
and "get-nessage-text" operations allows clients with small
amounts of disk storage to obtain a small nessage summary (via
"get-descriptors" or "get-changed-descriptors”) w thout having to
pul | over the entire nmessage.

=> 1107 (get-nessage-text)[mail box:str,
ui d: Lcard]

<= 501 (failure) [why:str] |
1110 (nessage) [message: SEQ str]]

Frequently, a nessage nay be too large for sone clients to store
locally. Users can still look at the message contents via the
"print-nmessage" operation. This operation has the repository send
a copy of the nessage to a nanmed printer. The printer name need
only have nmeaning to the particular repository inplenentation

DVSP transnmits the nane only as a neans of identification

=> 1108 (print-nmessage) [nail box:str,
ui d: Lcard,
printer-nane:str]

<= 500 (ok) [] |
501 (failure) [why:str]

The user can set and clear any of the 16 descriptor flags with the

"set-flag" operation. The desired flag is set or cleared
according to the operation arguments.

O ark & Lambert [Page 16]

RFC 984 May 1986
PCMVAI L

=> 1109 (set-flag) [mail box:str,
ui d: Lcard,
fl ag- nunber: card,
flag-setting: bool]

<= 500 (ok) [] |
501 (failure) [why:str]

Copyi ng of one nessage into another mail box is acconplished via
the "copy-nessage" operation

=> 1111 (copy-nessage) [source-mail box:str,
target - mai | box: str,
sour ce- ui d: Lcar d]

<= 500 (ok) [] |
501 (failure) [why:str]

5. dient Architecture

Cients are typically PCs; Pcnmil’s architecture nust therefore take
into account several characteristics common to PCs. First, PCs are
cheap, therefore a user may well have nore than one. Second, they
are portable, therefore they are not expected to be constantly tied
into a network. Finally, they are resource-poor, so they are not
expected to be able to store a significant amount of state
information locally. The foll owi ng subsections describe the
particular parts of Pcmail’s client architecture that address these
three characteristics.

5.1. Miultiple clients

The fact that Pcmail users nay own nore than one PC forns the
rationalization for the nmultiple client nodel that Pcrnail uses. A
Pcmail user may have a PC client at honme, a PC at an office, and
maybe even a third portable PC. Each client maintains a separate
copy of the user’s mail state, hence Pcmail’s distributed nature.
The notion of separate clients allows Pcmail users to access nai
state fromseveral different |ocations.

O ark & Lambert [Page 17]

RFC 984 May 1986
PCMVAI L

5.2. Synchroni zation

Since PCs are fairly portable, the likelihood of a PC s being

al ways connected to a network is relatively small. This is

anot her reason for each client’s naintaining a |local copy of a
user’s nail state. The user can then manipul ate the |ocal nai
state while not connected to the network (and the repository).
This inmedi ately brings up the problem of synchronization between
| ocal and global mail states. The repository is continually in a
position to receive global mail state updates, either in the form

of inconming mail, or in the formof changes fromother clients. A
client that is not always connected to the net cannot imediately
recei ve the global changes. 1In addition, the client’s user can

make his own changes on the local mail state.

Pcrmail s architecture pernits efficient synchroni zati on between
client local nmail states and the repository’s global mail state.
Each client is identified in the repository by a client object
attached to the user. This object forns the basis for
synchroni zati on between | ocal and global mil states. Some of the
| ess comon state changes include the adding and del eti ng of user
mai | boxes and the addi ng and del eti ng of address objects.
Synchroni zati on of these changes is perforned via DVSP |i st
operations, which allow clients to conpare their |ocal versions of
mai | box and address object lists with the repository’s gl oba
versi on and make any appropriate changes. The majority of
possi bl e changes to a user’s namil state are in the form of changed
descriptors. Since nost users will have a | arge nunber of
messages, and nessage states will change relatively often, special
attention needs to be paid to nessage synchroni zation.

An existing descriptor can be changed in one of two ways: first,
one of its sixteen flags values can be changed (this enconpasses
readi ng an unseen nessage, deleting a nessage, and expunging a
message). The second way to change a descriptor is via the
arrival of incomng nmail or the copying of a message from one
mai | box to another. Both result in a new nmessage being added to a
mai | box.

In both the above cases, synchronization is required between the
repository and every client that has not previously noted a
change. To keep track of which clients have noticed a gl obal nai
state change and changed their |ocal states accordingly, each
descriptor has associated with it a (potentially enpty) "update
list" of client objects. The list identifies those clients which
have not yet recorded a change to that descriptor’s state.

O ark & Lambert [Page 18]

RFC 984 May 1986
PCMVAI L

When a client connects to the repository, it executes a DMSP

"get - changed-descriptors” operation. This causes the repository
toreturn a list of all descriptor objects that have the
requesting client on their update list. As the client receives

t he changed descriptors, it can store themlocally, thus updating
the local mail state. After a changed descriptor has been
recorded, the client uses the DVBP "reset-descriptors" operation
to renove itself fromthe descriptor’s update list. That
descriptor will now not be sent to the client unless (1) it is
explicitly requested, or (2) it changes again.

In this manner, a client can run through its user’s nail boxes,
getting all changed descriptors, incorporating theminto the |oca
mai | state, and marking the change as recorded.

5.3. Batch operation versus interactive operation

Because of the portable nature of nobst PCs, they may not al ways be
connected to the repository. Since each client maintains a | oca
mai | state, Pcrmail users can mani pulate the | ocal state while not
connected to the repository. This is known as "batch" operation
since all changes are recorded by the client and nade to the
repository’'s global state in a batch, when the client next
connects to the repository. Interactive operation occurs when a
client is always connected to the repository. |In interactive
node, changes nmade to the local mail state are i mediately
propagated to the gl obal state via DVSP operations.

In batch node, interaction between client and repository takes the
following form the client connects to the repository and sends
over all the changes nmade by the user to the local mail state.

The repository changes its global mail state accordingly. \Wen all
changes have been processed, the client begins synchronization, to
i ncorporate newy-arrived nail, as well as mail state changes by
other clients, into the local state.

In interactive node, since |ocal changes are i mediately
propagated to the repository, the first part of batch-type
operation is elimnated. The synchronization process al so
changes; interactive clients can periodically poll the repository
for a list of changes, synchronizing a small anpbunt at a tinme.

O ark & Lambert [Page 19]

RFC 984 May 1986
PCMVAI L

5.4. Message sunmari es

Since PCs are assuned to have little in the way of disk storage, a
given client nmay never have enough roomfor a conplete |ocal copy
of a user’s global mail state. This nmeans that Pcrmail’s client
architecture nust allow user’s to obtain a clear picture of their
mai | state w thout having all their nessages present.

Descriptors provide nmessage information without taking up large
anounts of storage. Each descriptor contains a sumary of
information on a nmessage. This information includes the nmessage
UD its length in bytes and lines, its status (encoded in the

ei ght systemdefined and ei ght user-defined flags), and portions
of its RFC 822 header (the "to:", "from", "subject:" and "date:"
fields). Al of this infornmation can be encoded in a snal
(around 100 bytes) data structure whose length is independent of
the size of the nessage it descri bes.

Any client should be able to store a conplete list of nmessage
descriptors with little problem This allows a user to get a
conplete picture of his mail state without having all his nessages
present locally. Short nessages can reside on the client, along
with the descriptors, and | ong nessages can either be printed via
the DVBP print-nmessage operation, or specially pulled over via the
fetch- nessage-text operation.

6. Typical Cient-Repository Interaction

The foll owi ng exanpl e describes a typical comunication session
between the repository and a client. The client is one of three
bel onging to user "Fred". |Its nane is "office-client”, and since
Fred uses the client regularly to access his mail, the client is
marked as "active". Fred has two nmil boxes: "main" is where all of
his current mail is stored; "archive" is where nessages of |asting
i mportance are kept. The exanmple will run through a sinple
synchroni zati on operation followed by a series of typical mail state
mani pul ations. Typically, the synchronization will be performed by
an application programthat connects to the repository, logs in,
synchroni zes, and | ogs out.

For the exanple, all DVSP operations will be shown in a user-readable
format. In reality, the operations would be sent as a stream of USP
bl ocks consisting of a bl ock-type nunber foll owed by a stream of
bytes representing the bl ock’s argunents. Both the block nane and its
nunmber are included for convenience.

O ark & Lambert [Page 20]

RFC 984 May 1986
PCMVAI L

In order to access his global nmail state, the client software nust
aut henticate Fred to the repository; this is done via the DVSP | ogin
operation:

600 (login) ["fred", "ajyr63ywg", "office-client"”,
FALSE, FALSE]

This tells the repository that Fred is logging in via
"office-client", and that "office-client" is identified by an
existing client object attached to Fred s user object. The second

I ogin block argunent in an encrypted version of Fred' s password. The
final argunment tells the repository that Fred’ s client is not
operating in batch node but rather in interactive node.

Fred' s authentication checks out, so the repository logs himin,
acknow edgi ng the login request with an OK bl ock.

Now that Fred is logged in, he wants to bring
"office-client"'s local mail state up to date. To do this, the
client program asks for an up-to-date list of mail boxes:

800 (list-nmailboxes) []
The repository replies with:

801 (mmilbox-list) [["main", 10, 1, 253],
["archive", 100, 0, 101]]

This tells the client that there are two nmil boxes, "nmain" and
"archive". "Min" has 10 nessages, one of which is unseen. The next

i ncom ng message will be assigned a U D of 253. "Archive", on the

ot her hand, has 100 nessage, none of which are unseen. The next
message sent to "archive" will be assigned the UD 101. There are no
new nai | boxes in the list (if there were, the client programwould
create them On the other hand, if sone nailboxes in the client’s

local list were not in the repository’s list, the program woul d
assune them del eted by another client and delete themlocally as
wel).

To synchronize the client need only | ook at each mail box's contents
to see if (1) any new mail has arrived, or (2) if Fred changed any
nmessages on one of his other two clients subsequent to
"office-client"’ s last connection to the repository.

The client asks for any changed descriptors via the

"get - changed-descriptors" operation. It requests at nobst ten changed
descriptors since storage is very tight on "office-client".

O ark & Lambert [Page 21]

RFC 984 May 1986
PCMVAI L

1105 (get-changed-descriptors) ["main", 10]
The repository responds with:
1103 (descriptor-list) [[descriptor]
6

[TTFFFFFFFFFFFFFF,
"Fred@or ax",

"Joe@ ab",

"Wed, 23 Jan 86 11:11 EST"
"tonmorrow s neeting",

621,

10]]

[descriptor]

[FTFFFFFFFFFFFFFF,
"Fred",

"Freds-secretary",

"Fri, 25 Jan 86 11:11 EST"
"Monthly progress report”,

13211,

350]]

]

The first descriptor in the list is one which Fred del eted on anot her

client yesterday. "Ofice-client” marks the |ocal version of the
nmessage as del eted. The second descriptor in the list is a new one.
"Office-client" adds the descriptor to its local list. Since both

changes have now been recorded locally, the descriptors can be reset:
1106 (reset-descriptors) ["main", 2]
The repository clears each descriptor’s update vector bit
corresponding to "office-client"'s client object. "Main" has now
been synchroni zed. The client now turns to Fred' s "archive" nail box
and asks for the first ten changed descriptors.
1105 (get-changed-descriptors) ["archive", 10]
The repository responds with
1103 (descriptor-list) []
The zero-length list tells "office-client” that no descriptors have

been changed in "archive" since its last synchronization. No new
synchroni zati on needs to be perforned.

O ark & Lambert [Page 22]

RFC 984 May 1986
PCMVAI L

Fred's client is nowready to pull over the new nmessage so Fred can
read it. The nessage is 320 lines long; there mght not be
sufficient storage on "office-client” to hold the new nessage. The
client tries anyway:

1107 (fetch-nessage-text) ["main", 10]
The repository begins transnmitting the nessage:

1110 (nessage) ["From Fred s-secretary",
"To: Fred",
"Subject: Monthly progress report",
"Date: Fri, 25 Jan 86 11:11 EST"
"Dear Fred,",
"Here is this nonth's progress report",

=

Hal fway through the nessage transm ssion, "office-client” runs out of
di sk space. Because all DVSP operations are defined to be atonic
the portion of the nessage already transnitted is destroyed locally
and the operation fails. "Ofice-client" informs Fred that the
message cannot be pulled over because of a |lack of disk space. The
synchroni zati on process is now finished and Fred' s client |ogs out.

601 (logout) []

The repository does any housecleaning it needs to do, acknow edges
the I ogout request, and cl oses the USP connection

7. A Current Pcmail |nplenentation

The followi ng section briefly describes a current inplenentation of
Pcmail| that services a snmall community of users. The Pcnail
repository runs under UNI X on a DEC VAX-750 connected to the
Internet. The clients are IBM PCs, XTs, and ATs. The network
software that communicates with the repository allows only
"bat ch- node" operation. Users nake | ocal state changes, which are
queued until the client connects to the repository. At that tineg,
the changes are perforned and the local and gl obal states
synchroni zed. The client then disconnects fromthe repository.

Users access and nodify their local mail state via a user interface

program The program uses w ndows and a full-screen node of
operation. Users are given a rich variety of conmmands to operate on

O ark & Lambert [Page 23]

RFC 984 May 1986
PCMVAI L

i ndi vi dual nmessages as well as mail boxes. The interface allows use
of any text editor to conpose nessages, and adds features of its own
to make RFC-822-style header conposition easier

Synchroni zati on and the processi ng of queued changes is perfornmed by
a separate program which the user runs whenever he w shes. The
program t akes any actions queued while operating the user interface,
and converts theminto DVSP operations. All queued changes are nade
bef ore any synchroni zation is perforned.

The linmtation of client operation to batch node was nade for the
followi ng reasons: first, the inplementation is slanted toward use of
portable conputers as clients. These conputers are rarely connected
to the network, naking interactive node unnecessary. Those clients
that are constantly connected to the network run slightly |ess
efficiently than they could (since users nust nake changes l|ocally
and then run the action-processing/synchroni zati on program rather
than sinply maki ng changes interactively).

Anot her inportant reason for limting operation to batch node is that
it allows a very sinple |ocking schene to prevent problens raised by
concurrent state updates. A user nmay have several clients; it is
therefore likely that the repository could get into a variety of

i nconsistent states as different clients try to change the
repository’s global mail state at the sanme tinme. To prevent these

i nconsistencies, a user’'s mail state is |ocked as soon as a client
connects to the repository. The lock is released when the client

di sconnects fromthe repository. This locking schenme is sinple to

i mpl enment, but nakes interactive-node operation very cunbersone: if a
user renmains constantly connected to the network (i.e. in interactive
node), the repository would be unavailable to any of the user’s other
clients for an unacceptable I ength of tine.

8. Concl usi ons

Pcmail is now used by a small community of people at the MT
Laboratory for Conputer Science. The repository design works well,
providing a fairly efficient means of storing and nai ntaining nmai
state for several users. Menbers of another research group at LCS
are currently working on a replicated, scal eable version of the
repository designed to support a very large community of users with
high availability. This repository also uses DVSP and has
successful ly comuni cated with clients that use the current
repository inplementation. DMSP therefore seens to be useable over
several flavors of repository design. The clients, being PCs, are
unfortunately very limted in the way of resources, naking |local nail
state manipulation difficult at tines. Synchronization is also

O ark & Lambert [Page 24]

RFC 984 May 1986
PCMVAI L

relatively time consum ng due to the | ow performance of the PCs. The
"bat ch-node" of client operation is very useful for portable
conputers that spend a | arge percentage of their tinme unplugged and
away froma network. It is somewhat | ess useful for the najority of
the clients, which are always connected to the network and coul d nmake
good use of an "interactive-node" state mani pul ation

O ark & Lambert [Page 25]

RFC 984 May 1986
PCMVAI L

| . DMSP Protocol Specification

Following is a list of DVSP bl ock types and DVSP operations by object
type. Again, "=>" narks blocks flowing fromclient to repository;
"<=" marks bl ocks flowing fromrepository to client.

Ceneral operations:

=> or <= 503 (abort-request) [why:str]
(no acknow edgenent)

=> 504 (start-debug) []
<= 500 (ok) [] |
501 (failure) [why:str]

=> 505 (end-debug) []
<= 500 (ok) []

=> 506 (send-version) [version:card]
<= 500 (ok) [] |
501 (failure) [why:str]

=> 507 (I og-nessage) [nessage:str]
<= 500 (ok) [] |
501 (failure) [why:str]

=> 508 (send-nessage) [nessage: seq[str]]
<= 500 (ok) [] |
501 (failure) [why:str]

User operations:

=> 600 (login) [name:str, password:str,
client:str, create-client-object?:boo
bat ch- nmode- f | ag: bool]
<= 500 (ok) [] |
501 (failure) [why:str] |
705 (force-client-reset) []

=> 601 (logout) []
<= 500 (ok) []

=> 602 (add-user) [nane:str, password:str]

<= 500 (ok) [] |
501 (failure) [why:str]

O ark & Lambert [Page 26]

RFC 984
PCMVAI L

=>
<=

=>

a

=>
<=

=>
<=

=>
<=

=>

5

=>
<=

=>
<=

=>
<=

=>
<=

603
500
501

604
500
501

700
701

702
500
501

703
500
501

704
500
501

800
801

802
500
501

803
500
501

808
500
501

Clark & Lanbert

(remove-user) [user:str]

(ok) [] |
(failure) [why:str]

(set-password) [old:str, new str]

(ok) [1 |
(failure) [why:str]

ent operations:

(list-clients) []
(client-list) [client-list:seq]
rec[nanme:str], status:card]]

(add-client) [client:str]

(ok) [] |
(failure) [why:str]

(remove-client) [client:str]

(ok) [] |
(failure) [why:str]

(reset-client) [client:str]

(ok) [1 |
(failure) [why:str]

i | box operations:

(l'ist-nmail boxes) []
(mai | box-1ist) [mailbox-1ist:seq]
rec[mai | box: str,
next - ui d: | card,
num nsgs: card,
num unseen-nsgs: card]]]

(add- mai | box) [mail box: str]

(ok) [1 |
(failure) [why:str]

(renove-mai | box) [nail box: str]

(ok) [] |
(failure) [why:str]

(expunge-mai | box) [rail box: str]

(ok) [T |
(failure) [why:str]

May 1986

[Page 27]

RFC 984
PCMVAI L

=> 809 (reset-nmailbox) [mail box:str]
<= 500 (ok) [] |

501

(failure) [why:str]

Addr ess operati ons:

=>
<=

=>
<=

=>
<=

804
501
805

806
500
501

807
500
501

(list-addresses) [mail box:str]
(failure) [why:str] |
(address-list) [address-list:seq[str]]

(add- address) [nail box:str, address:str]

(ok) [1 |
(failure) [why:str]

(renove- address) [nail box:str, address:str]

(ok) [1 |
(failure) [why:str]

Message operati ons:

=>
<=

1100 (get-descriptor-flags) [mailbox:str, uid:|card]
1101 (descriptor-flags) [flags: seq[bool]]

501

(failure) [why:str]

1102 (get-descriptors) [mail box:str,

501

| owui d: | card,
hi gh-ui d: | card]
(failure) [why:str] |

1103 (descriptor-list) [descriptor-list:seq]

Clark & Lanbert

ch[

expunged[ui d: | card],

descriptor[rec[uid:|card,
fl ags: seq[bool],
fromfield:str,
to-field:str,
date-field:str,
subject-field:str,
nun- bytes: | card,
num | i nes: | card]

111]

May 1986

[Page 28]

RFC 984 May 1986
PCMVAI L

=> 1105 (get-changed-descriptors) [mail box:str,
max-t o- send: car d]
<= 501 (failure) [why:str] |
1103 (descriptor-list) [descriptor-list:seq]
ch[
expunged[ui d: | card],
descriptor[rec[uid:|card,
fl ags: seq[bool],
fromfield:str,
to-field:str,
date-field:str,
subject-field:str,
num bytes: | card,
num | ines: | card]

111]

=> 1106 (reset-changed-descriptors) [
mai | box: str,
start-uid:lcard,
end- ui d: | card]
<= 500 (ok) [] |
501 (failure) [why:str]

=> 1107 (get-nmessage-text) [mail box:str,
ui d: | card]
<= 501 (failure) [why:str] |
1110 (nessage) [nessage: seq[str]]

=> 1108 (print-nmessage) [nail box:str,
uid:lcard,
printer-nane:str]
<= 500 (ok) [] |
501 (failure) [why:str]

=> 1109 (set-flag) [nmil box:str,
ui d: I card,
fl ag- nunber: card
flag-setting: bool]
<= 500 (ok) [] |
501 (failure) [why:str]

=> 1111 copy- nmessage[sour ce-nai | box: str,
target - mai | box: str,
sour ce-ui d: | card]
<= 500 (ok) [] |
501 (failure) [why:str]

O ark & Lambert [Page 29]

RFC 984
PCMVAI L

DVSP bl ock types by numnber

CGeneral block types

ok 500
failure 501
abort - request 503
start-debug 504
end- debug 505
send- ver si on 506
| og- nessage 507
send- nessage 508

User operation block types

l ogin 600
| ogout 601
add- user 602
r enmove- user 603
set - passwor d 604
dient operation block types
list-clients 700
client-list 701
add-cl i en 702
renove-client 703
reset-client 704
force-client-reset 705
Mai | box operation bl ock types
i st-mail boxes 800
mai | box-1i st 801
add- mai | box 802
renove- nai | box 803
expunge- mai | box 808
reset - mai | box 809

Clark & Lanbert

May 1986

[Page 30]

RFC 984
PCMVAI L

Addr ess operation bl ock

| i st-addresses
address-1|i st
add- addr ess

r enove- addr ess

Message operation bl ock

get -descriptor-fl ags
descriptor-flags

get -descriptors
descriptor-1list

types

804
805
806
807

types

1100
1101
1102
1103

get - changed- descri ptors 1105
r eset - changed-descriptors 1106

get - message-t ext
print-nmessage
set-flag
nessage

copy- nessage

Clark & Lanbert

1107
1108
1109
1110
1111

May 1986

[Page 31]

