
Network Working Group David D. Clark
Request for Comments: 984 Mark L. Lambert
 M. I. T. Laboratory for Computer Science
 May 1986

 PCMAIL: A Distributed Mail System for Personal Computers

1. Status of this Document

 This document is a preliminary discussion of the design of a
 personal-computer-based distributed mail system. It is published for
 discussion and comment, and does not constitute a standard. As the
 proposal may change, implementation of this document is not advised.
 Distribution of this memo is unlimited.

2. Introduction

 Pcmail is a distributed mail system that provides mail service to an
 arbitrary number of users, each of which owns one or more personal
 computers (PCs). The system is divided into two halves. The first
 consists of a single entity called the "repository". The repository
 is a storage center for incoming mail. Mail for a Pcmail user can
 arrive externally from the Internet or internally from other
 repository users. The repository also maintains a stable copy of
 each user’s mail state (this will hereafter be referred to as the
 user’s "global mail state"). The repository is therefore typically a
 computer with a large amount of disk storage.

 The second half of Pcmail consists of one or more "clients". Each
 Pcmail user may have an arbitrary number of clients, which are
 typically PCs. The clients provide a user with a friendly means of
 accessing the user’s global mail state over a network. In order to
 make the interaction between the repository and a user’s clients more
 efficient, each client maintains a local copy of its user’s global
 mail state, called the "local mail state". Since clients are PCs,
 they may not always have access to a network (and therefore to the
 global mail state in the repository). This means that the local and
 global mail states may not be identical all the time, making
 synchronization between local and global mail states necessary.

 Clients communicate with the repository via the Distributed Mail
 System Protocol (DMSP); the specification for this protocol appears
 in appendix A. The repository is therefore a DMSP server in addition
 to a mail end-site and storage facility. DMSP provides a complete
 set of mail manipulation operations ("send a message", "delete a
 message", "print a message", etc.). DMSP also provides special
 operations to allow easy synchronization between a user’s global mail
 state and his clients’ local mail states. Particular attention has
 been paid to the way in which DMSP operations act on a user’s mail
 state. All DMSP operations are atomic (that is, they are guaranteed

Clark & Lambert [Page 1]

RFC 984 May 1986
PCMAIL

 either to succeed completely, or fail completely). A client can be
 abruptly disconnected from the repository without leaving
 inconsistent or damaged mail states.

 Pcmail is a mail system for PCs. Its design has therefore been
 heavily influenced by several characteristics unique to PCs. First,
 PCs are relatively inexpensive. This means that people may own more
 than one PC, perhaps putting one in an office and one at home.
 Second, PCs are portable. Most PCs can be packed up and moved in the
 back seat of an automobile, and a few are truly portable--about the
 size of a briefcase--and battery-powered. Finally, PCs are
 resource-poor. A typical PC has a small amount (typically less than
 one megabyte) of main memory and little in the way of mass storage
 (floppy-disk drives that can access perhaps 360 kilobytes of data).

 Because PCs are relatively inexpensive and people may own more than
 one, Pcmail has been designed to allow users multiple access points
 to their mail state. Each Pcmail user can have several client PCs,
 each of which can access the user’s mail by communicating with the
 repository over a network. The client PCs all maintain local copies
 of the user’s global mail state, and synchronize the local and global
 states using DMSP.

 It is possible, even likely, that many PCs will only infrequently be
 connected to a network (and thus be able to communicate with the
 repository). The Pcmail design therefore allows two modes of
 communication between repository and client. "Interactive mode" is
 used when the client PC is always connected to the network. Any
 changes to the client’s local mail state are immediately also made to
 the repository’s global mail state, and any incoming mail is
 immediately transmitted from repository to client. "Batch mode" is
 used by clients that have infrequent access to the repository. Users
 manipulate the client’s local mail state, queueing the changes as
 "actions". When next connected to the repository, the actions are
 transmitted, and the client’s local mail state is synchronized with
 the repository’s global mail state.

 Finally, the Pcmail design minimizes the effect of using a
 resource-poor PC as a client. Mail messages are split into two
 parts: a "descriptor" and a "body". The descriptor is a capsule
 message summary whose length (typically about 100 bytes) is
 independent of the actual message length. The body is the actual
 message text, including an RFC-822 standard message header. While the
 client may not have enough storage to hold a complete set of
 messages, it can always hold a complete set of descriptors, thus

Clark & Lambert [Page 2]

RFC 984 May 1986
PCMAIL

 providing the user with at least a summary of his mail state.
 Message bodies can be pulled over from the repository as client
 storage becomes available.

 The remainder of this document is broken up into the following
 sections: first, there is a detailed description of the repository
 architecture. This is followed by a description of DMSP, its
 operations, and motivation for its design. A third section describes
 client architecture. Another section describes a typical DMSP
 session between the repository and a client. The final section
 discusses the current Pcmail implementation.

3. Repository Architecture

 A machine running repository code is typically a medium-to-large size
 computer with a large amount of disk storage. It must also be a
 permanent network site, since client PCs communicate with the
 repository over a network, and rely on the repository’s being
 available at any time.

 The repository must perform several tasks. First, and most
 importantly, the repository must efficiently manage a potentially
 large number of users and their mail states. Mail must be reliably
 stored in a manner that makes it easy for multiple clients to access
 the global mail state and synchronize their local mail states with
 the global state. Second, the repository must be able to communicate
 efficiently with its clients. The protocol used to communicate
 between repository and client must be reliable and must provide
 operations that (1) allow typical mail manipulation, and (2) support
 Pcmail’s distributed nature by allowing efficient synchronization
 between local and global mail states. Third, the repository must be
 able to process mail from sources outside the repository’s own user
 community (a primary outside source is the Internet). Internet mail
 will arrive with a NIC RFC-822 standard message header; the recipient
 names in the message must be properly translated from the RFC-822
 namespace into the repository’s namespace.

 3.1. Management of user mail state

 Pcmail divides the world into a community of users. Each user is
 referred to by a user object. A user object consists of a unique
 name, a password (which the user’s clients use to authenticate
 themselves to the repository before manipulating a global mail
 state), a list of "client objects" describing those clients
 belonging to the user, and a list of "mailbox objects".

 A client object consists of a unique name and a status. A user

Clark & Lambert [Page 3]

RFC 984 May 1986
PCMAIL

 has one client object for every client he owns; a client cannot
 communicate with the repository unless it has a corresponding
 client object in a user’s client list. Client objects therefore
 serve as a means of identifying valid clients to the repository.
 Client objects also allow the repository to manage local and
 global mail state synchronization; the repository associates with
 every global state change a list of client objects corresponding
 to those clients which have not recorded the global change
 locally.

 A client’s status is either "active" or "inactive". The
 repository defines inactive clients as those clients which have
 not connected to the repository within a set time period (one week
 in the current Pcmail implementation). When an inactive client
 does connect to the repository, the repository notifies the client
 that it has been "reset". The repository resets a client by
 marking all messages in the user’s mail state as having changed
 since the client last logged in. When the client next
 synchronizes with the repository, it will receive a complete copy
 of the repository’s global mail state. A forced reset is
 performed on the assumption that enough global state changes occur
 in a week that the client would spend too much time performing an
 ordinary local state-global state synchronization.

 Messages are stored in mailboxes. Users can have an arbitrary
 number of mailboxes, which serve both to store and to categorize
 messages. Since there can be any number of mailboxes, messages
 can be categorized to an arbitrarily fine degree. A mailbox
 object both names a mailbox and describes its contents. Mailboxes
 are identified by a unique name; their contents are described by
 three numeric values. The first is the total number of messages
 in the mailbox, the second is the total number of unseen messages
 (messages that have never been seen by the user via any client) in
 the mailbox, and the third is the next available message unique
 identifier (UID). This information is stored in the mailbox
 object to allow clients to get a summary of a mailbox’s contents
 without having to read all the messages within the mailbox.

 Associated with each mailbox are an arbitrary number of message
 objects. Each message is broken into two parts--a "descriptor",
 which contains a summary of useful information about the message,
 and a "body", which is the message text itself, including NIC
 RFC-822 message header. Each message is assigned a monotonically
 increasing UID based on the owning mailbox’s next available UID.
 Each mailbox has its own set of UIDs which, together with the
 mailbox name and user name, uniquely identify the message within
 the repository.

Clark & Lambert [Page 4]

RFC 984 May 1986
PCMAIL

 A descriptor holds the following information: the message UID, the
 message size in bytes and lines, four "useful" message header
 fields (the "date:", "to:", "from:", and "subject:" fields), and
 two groups of eight flags each. The first group of flags is
 system defined. These flags mark whether the message has never
 been seen, whether it has been deleted, whether it is a forwarded
 message, and whether the message has been expunged. The remaining
 four flags are reserved for future use. The second group of flags
 is user defined. The repository never examines these flags
 internally; instead they can be used by application programs
 running on the clients. Descriptors serve as an efficient means
 for clients to get message information without having to waste
 time retrieving the message from the repository.

 3.2. Repository-to-RFC-822 name translation

 "Address objects" provide the repository with a means for
 translating the RFC-822-style mail addresses in Internet messages
 into repository names. The repository provides its own namespace
 for message identification. Any message is uniquely identified by
 the triple (user-name, mailbox-name, message-UID). Any mailbox is
 uniquely identified by the pair (user-name, mailbox-name). Thus
 to send a message between two repository users, a user would
 address the message to (user-name, mailbox-name). The repository
 would deliver the message to the named user and mailbox, and
 assign it a UID based on the requested mailbox’s next available
 UID.

 In order to translate between RFC-822-style mail addresses and
 repository names, the repository maintains a list of address
 objects. Each address object is an association between an
 RFC-822-style address and a (user-name, mailbox-name) pair. When
 mail arrives from the Internet, the repository can use the address
 object list to translate the recipients into (user-name,
 mailbox-name) pairs and route the message correctly.

4. Communication Between Repository and Client: DMSP

 The Distributed Mail System Protocol (DMSP) is a block-stream
 protocol that defines and manipulates the objects mentioned in the
 previous section. It has been designed to work with Pcmail’s
 single-repository/multiple-client model of the world. In addition to
 providing typical mail manipulation functions, DMSP provides
 functions that allow easy synchronization of global and local mail
 states.

 DMSP is implemented on top of the Unified Stream Protocol (USP),

Clark & Lambert [Page 5]

RFC 984 May 1986
PCMAIL

 specified in MIT-LCS Technical Memo 255. USP provides a reliable
 virtual circuit block-stream connection between two machines. USP
 defines a basic set of data types ("strings", "integers", "booleans",
 etc.). Instances of these data types are grouped in an
 application-defined order to form USP blocks. Each USP block is
 defined by a numeric "block type"; a USP application can thus
 interpret a block’s contents based on knowledge of the block’s type.
 DMSP consists of a set of operations, each of which is comprised of
 one or more different USP blocks that are sent between repository and
 client.

 A DMSP session proceeds as follows: a client begins the session with
 the repository by opening a USP connection to the repository’s
 machine. The client then authenticates both itself and its user to
 the repository with a "login" operation. If the authentication is
 successful, the user performs an arbitrary number of DMSP operations
 before ending the session with a "logout" operation (at which time
 the connection is closed by the repository).

 Because DMSP can manipulate a pair of mail states (local and global)
 at once, it is extremely important that all DMSP operations are
 atomic. Failure of any DMSP operation must leave both states in a
 consistent, known state. For this reason, a DMSP operation is
 defined to have failed unless an explicit acknowledgement is received
 by the operation initiator. This acknowledgement can take one of two
 basic forms, based on two broad categories that all DMSP operations
 fall into. First, an operation can be a request to perform some mail
 state modification, in which case the repository will acknowledge the
 request with either an "ok" or a "failure" (in which case the reason
 for the failure is also returned). Second, an operation can be a
 request for information, in which case the request is acknowledged by
 the repository’s providing the information to the client. Operations
 such as "delete a message" fall into the first category; operations
 like "send a list of mailboxes" fall into the second category.

 Following are a list of DMSP operations by object type, their block
 types and arguments, and their expected acknowledgement block types.
 Each DMSP block has a different number; the first digit of each block
 type defines the object being manipulated: Operations numbered 5xx
 are general, operations numbered 6xx are user operations, operations
 numbered 7xx are client operations, operations numbered 8xx are
 mailbox and address operations, and operations numbered 11xx are
 message operations.

 Blocks marked "=>" flow from client to repository; blocks marked "<="
 flow from repository to client. If more than one block can be sent,
 the choices are delimited by "or" ("|") characters.

Clark & Lambert [Page 6]

RFC 984 May 1986
PCMAIL

 For clarity, each block type is put in a human-
 understandable form. The block number is followed by an operation
 name; this name is never transmitted as part of a USP block. Block
 arguments are identified by name and type, and enclosed in square
 brackets. "Record" data types are described by a list of
 "field-name:field-type" pairs contained in square brackets. "Choice"
 data types are described by a list of "tag:tag-name" pairs contained
 in square brackets. USP data types are abbreviated as follows:

 Primitive data types:

 - string: str

 - cardinal: card

 - long-cardinal: Lcard

 - integer: int

 - long-integer: Lint

 - boolean: bool

 Compound data types:

 - sequence: SEQ

 - array: AR

 - record: REC

 - choice: CH

 4.1. General operations

 The first group of DMSP operations perform general functions that
 operate on no one particular class of object. DMSP has six
 general operations, which provide the following services:

 If either a client or the repository thinks the other is
 malfunctioning, they can send an "abort-request". An
 abort-request is never acknowledged; after the request is sent,
 the sender immediately closes the USP connection and returns
 control to its application.

 => 503 (abort-request) [why:str]

Clark & Lambert [Page 7]

RFC 984 May 1986
PCMAIL

 DMSP provides a limited remote debugging facility via the
 "start-debug" and "end-debug" operations. When a client sends a
 "start-debug" request, the repository enables its idea of
 remote-debugging. The exact definition of remote debugging is
 implementation dependent; the current repository implementation
 simply writes debugging information to a special file. The
 "end-debug" request disables remote debugging.

 => 504 (start-debug) []

 <= 500 (ok) [] |
 501 (failure) [why:str]

 or

 => 505 (end-debug) []

 <= 500 (ok) []

 In order to prevent protocol version skew between clients and the
 repository, DMSP provides a "send-version" operation. The client
 supplies its DMSP version number as an argument; the operation
 succeeds if the supplied version number matches the repository’s
 DMSP version number. It fails if the two version numbers do not
 match.

 => 506 (send-version) [version-number:card]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 DMSP also provides clients with the ability to send an arbitrary
 text message to the repository. The "log-message" operation takes
 as an argument a string of arbitrary length; the repository
 accepts the string; what is done with the string is
 implementation-dependent.

 => 507 log-message[message:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 Finally, users can send mail to other users via the "send-message"
 operation. The message must have an Internet-style header as
 defined by NIC RFC-822. The repository takes the message and
 distributes it to the mailboxes specified on the "to:", "cc:", and
 "bcc:" fields of the message header. If one or more of the

Clark & Lambert [Page 8]

RFC 984 May 1986
PCMAIL

 mailboxes exists outside the repository’s user community, the
 repository is responsible for handing the message to a local SMTP
 server.

 An OK block is sent from the repository only if the entire message
 was successfully transmitted. If the message was destined for the
 Internet, the send-message operation is successful if the message
 was successfully transmitted to the local SMTP server.

 => 508 (send-message) [message:SEQ[str]]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 4.2. User operations

 The next series of DMSP operations manipulates user objects. The
 most common of these operations are "login" and "logout". A
 client must perform a login operation before being able to access
 a user’s mail state. A DMSP login block contains five items: (1)
 the user’s name, (2) the user’s password, (3) the name of the
 client performing the login, (4) a flag telling the repository to
 create a client object for the client if one does not exist, and
 (5) a flag set to TRUE if the client wishes to operate in "batch
 mode" and FALSE if the client wishes to operate in "interactive"
 mode. The flag value allows the repository to tune internal
 parameters for either mode of operation.

 The repository can return either an OK block (indicating
 successful authentication), a FAILURE block (indicating failed
 authentication), or a FORCE-RESET block. This last is sent if the
 client logging in has been marked as "inactive" by the repository
 (clients are marked inactive if they have not connected to the
 repository in over a week). The FORCE-RESET block indicates that
 the client should erase its local mail state and pull over a
 complete version of the repository’s mail state. This is done on
 the assumption that so many mail state changes have been made in a
 week that it would be inefficient to perform a normal
 synchronization.

 => 600 (login) [user:str, password:str, client:str,
 create-client-object?:bool,
 batch-mode-flag:bool]

 <= 500 (ok) [] |
 501 (failure) [why:str] |
 705 (force-client-reset) []

Clark & Lambert [Page 9]

RFC 984 May 1986
PCMAIL

 When a client is finished interacting with the repository, it
 performs a logout operation. This allows the repository to
 perform any necessary cleanup before closing the USP connection.

 => 601 (logout) []

 <= 500 (ok) []

 DMSP also provides "add-user" and "remove-user" operations, which
 allow system administrators to remotely add new users to, and
 remove users from, the repository. These operations are
 privileged; the repository authenticates the user requesting the
 operation before performing an add-user or remove-user operation.
 Both operations require the name of the user to be added or
 removed; the add-user operation also requires a default password
 to assign the new user.

 => 602 (add-user) [user:str, password:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 603 (remove-user) [user:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 A user can change his password via the "set-password" operation.
 The operation works much the same as the UNIX change-password
 operation, taking as arguments the user’s current password and a
 desired new password. If the current password given matches the
 user’s current password, the user’s current password is changed to
 the new password given.

 => 604 (set-password) [old-password:str,
 new-password:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

Clark & Lambert [Page 10]

RFC 984 May 1986
PCMAIL

 4.3. Client operations

 DMSP provides four operations to manipulate client objects. The
 first, "list-clients", tells the repository to send the user’s
 client list to the requesting client. The list takes the form of
 a series of (name, status pairs).

 => 700 (list-clients) []

 <= 701 (client-list) [client-list:SEQ[
 REC[name:str, status:card]]]

 The "add-client" operation allows a user to add a client object to
 his list of client objects. Although the login operation
 duplicates this functionality via the "create-this-client?" flag,
 the add-client operation is a useful means of creating a number of
 new client objects while logged into the repository via an
 existing client. The add-client operation requires the name of
 the client to add.

 => 702 (add-client) [client:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 The most common failure mode for this operation is an attempt to
 add a client that already exists.

 The "remove-client" operation removes an existing client object
 from a user’s client list. The client being removed can be the
 client requesting the operation. The remove-client operation
 requires the name of the client to remove.

 => 703 (remove-client) [client:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 The most common failure mode here is an attempt to remove a
 non-existent client. This is a typical failure mode for any DMSP
 operation which operates on a named object.

 The last client operation, "reset-client", causes the repository
 to mark all messages in the user’s mail state as having changed
 since the client last logged in. When a client next synchronizes
 with the repository, it will end up receiving a complete copy of
 the repository’s global mail state. This is useful for two

Clark & Lambert [Page 11]

RFC 984 May 1986
PCMAIL

 reasons. First, a client’s local mail state could easily become
 lost or damaged, especially if it is stored on a floppy disk.
 Second, if a client has been marked as inactive by the repository,
 the reset-client operation provides a fast way of resynchronizing
 with the repository, assuming that so many differences exist
 between the local and global mail states that a normal
 synchronization would take far too much time.

 => 704 (reset-client) [client:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 4.4. Mailbox operations

 DMSP supports five operations that manipulate mailbox objects.
 First, "list-mailboxes" has the repository send to the requesting
 client information on each mailbox. This information consists of
 the mailbox name, total message count, unseen message count, and
 "next available UID". This operation is useful in synchronizing
 local and global mail states, since it allows a client to compare
 the user’s global mailbox list with a client’s local mailbox list.
 The list of mailboxes also provides a quick summary of each
 mailbox’s contents without having the contents present.

 => 800 (list-mailboxes) []

 <= 801 (mailbox-list) [mailbox-list:SEQ[
 REC[mailbox:str,
 next-UID:Lcard,
 num-msgs:card,
 num-unseen-msgs:card]]]

 The "add-mailbox" has the repository create a new mailbox and
 attach it to the user’s list of mailboxes. An address object
 binding the (user-name, mailbox-name) pair to an RFC-822-style
 address is automatically created and placed in the repository’s
 list of address objects. This allows mail coming from the
 Internet to be correctly routed to the new mailbox.

 => 802 (add-mailbox) [mailbox:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 "Remove-mailbox" removes a mailbox from the user’s list of
 mailboxes. All messages within the mailbox are also deleted and

Clark & Lambert [Page 12]

RFC 984 May 1986
PCMAIL

 permanently removed from the system. Any address objects binding
 the mailbox name to RFC-822-style mailbox addresses are also
 removed from the system.

 => 803 (remove-mailbox) [mailbox:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 DMSP also has an "expunge-mailbox" operation. Any message can be
 deleted and "undeleted" at will. Deletions are made permanent by
 performing an expunge-mailbox operation. The expunge operation
 causes the repository to look through a named mailbox, removing
 from the system any messages marked "deleted".

 => 808 expunge-mailbox[mailbox:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 Finally, "reset-mailbox" causes the repository to mark all the
 messages in a named mailbox as having changed since the current
 client last logged in. When the client next synchronizes with the
 repository, it will receive a complete copy of the named mailbox’s
 mail state. This operation is merely a more specific version of
 the reset-client operation (which allows the client to pull over a
 complete copy of the user’s global mail state). Its primary use
 is for mailboxes whose contents have accidentally been destroyed
 locally.

 => 809 (reset-mailbox) [mailbox:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 4.5. Address operations

 DMSP provides three operations that allow users to manipulate
 address objects. First, the "list-address" operation returns a
 list of address objects associated with a particular (user-name,
 mailbox-name) pair.

 => 804 (list-addresses) [mailbox:str]

 <= 501 (failure) [why:str] |
 805 (address-list) [address-list:SEQ[str]]

Clark & Lambert [Page 13]

RFC 984 May 1986
PCMAIL

 The "add-address" operation adds a new address object that
 associates a (user-name, mailbox-name) pair with a given
 RFC-822-style mailbox address.

 => 806 (add-address) [mailbox:str,
 RFC-822-mail-address:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 Finally, the "remove-address" operation destroys the address
 object binding the given RFC-822-style mail address and the given
 (user-name, mailbox-name) pair.

 => 807 (remove-address) [mailbox:str,
 RFC-822-mail-address:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 4.6. Message operations

 The most commonly-manipulated Pcmail objects are messages; DMSP
 therefore provides special message operations to allow efficient
 synchronization, as well as a set of operations to perform
 standard message-manipulation functions. In the following
 paragraphs, the terms "message" and "descriptor" will be used
 interchangeably.

 A client can request a particular message’s flag values with the
 "get-descriptor-flags" operation. The repository sends over an
 array of boolean values, eight of which are system defined, and
 eight of which are user defined and ignored by the repository.

 => 1100 (get-descriptor-flags) [mailbox:str,
 uid:Lcard]

 <= 1101 (descriptor-flags) [flags:SEQ[bool]] |
 501 (failure) [why:str]

 A user may request a series of descriptors with the
 "get-descriptors" operation. The series is identified by a pair
 of message UIDs, representing the lower and upper bounds of the
 list. Since UIDs are defined to be monotonically increasing
 numbers, a pair of UIDs is sufficient to completely identify the
 series of descriptors. The repository returns a sequence of
 "choices". Elements of the sequence can either be descriptors, in

Clark & Lambert [Page 14]

RFC 984 May 1986
PCMAIL

 which case the choice is tagged as a descriptor, or they can be
 notification that the requested message has been expunged
 subsequent to the client’s last connection to the repository.

 => 1102 (get-descriptors) [mailbox:str,
 low-UID:Lcard,
 high-UID:Lcard]

 <= 501 (failure) [why:str] |
 1103 (descriptor-list) [descriptor-list:SEQ[CH[
 expunged[uid:Lcard]
 descriptor[REC[UID:Lcard,
 flags:SEQ[bool],
 from-field:str,
 to-field:str,
 date-field:str,
 subject-field:str,
 num-bytes:Lcard,
 num-lines:Lcard]
]]]]

 The "get-changed-descriptors" operation is intended for use during
 state synchronization. Whenever a descriptor changes state (is
 deleted, for example), the repository notes those clients which
 have not yet recorded the change locally. Get-changed-descriptors
 has the repository send to the client a given number of
 descriptors which have changed since the client’s last
 synchronization. The list sent begins with the earliest-changed
 descriptor.

 => 1105 (get-changed-descriptors) [mailbox:str,
 max-to-send:card]

 <= 501 (failure) why:str] |
 1103 (descriptor-list) [descriptor-list:SEQ[
 CH[
 expunged[uid:Lcard]
 descriptor[REC[UID:Lcard,
 flags:SEQ[bool],
 from-field:str,
 to-field:str,
 date-field:str,
 subject-field:str,
 num-bytes:Lcard,
 num-lines:Lcard]
]]]]

Clark & Lambert [Page 15]

RFC 984 May 1986
PCMAIL

 Once the changed descriptors have been looked at, a user will want
 to inform the repository that the current client has recorded the
 change locally. The "reset-changed-descriptors" causes the
 repository to mark as "seen by current client" a given number of
 changed descriptors, starting with the changed descriptor with
 lowest UID.

 => 1106 (reset-changed-descriptors) [
 mailbox:str,
 number-to-reset:card]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 Message bodies are transmitted from repository to user with the
 "get-message-text" operation. The separation of "get-descriptors"
 and "get-message-text" operations allows clients with small
 amounts of disk storage to obtain a small message summary (via
 "get-descriptors" or "get-changed-descriptors") without having to
 pull over the entire message.

 => 1107 (get-message-text)[mailbox:str,
 uid:Lcard]

 <= 501 (failure) [why:str] |
 1110 (message) [message:SEQ[str]]

 Frequently, a message may be too large for some clients to store
 locally. Users can still look at the message contents via the
 "print-message" operation. This operation has the repository send
 a copy of the message to a named printer. The printer name need
 only have meaning to the particular repository implementation;
 DMSP transmits the name only as a means of identification.

 => 1108 (print-message) [mailbox:str,
 uid:Lcard,
 printer-name:str]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 The user can set and clear any of the 16 descriptor flags with the
 "set-flag" operation. The desired flag is set or cleared
 according to the operation arguments.

Clark & Lambert [Page 16]

RFC 984 May 1986
PCMAIL

 => 1109 (set-flag) [mailbox:str,
 uid:Lcard,
 flag-number:card,
 flag-setting:bool]

 <= 500 (ok) [] |
 501 (failure) [why:str]

 Copying of one message into another mailbox is accomplished via
 the "copy-message" operation.

 => 1111 (copy-message) [source-mailbox:str,
 target-mailbox:str,
 source-uid:Lcard]

 <= 500 (ok) [] |
 501 (failure) [why:str]

5. Client Architecture

 Clients are typically PCs; Pcmail’s architecture must therefore take
 into account several characteristics common to PCs. First, PCs are
 cheap, therefore a user may well have more than one. Second, they
 are portable, therefore they are not expected to be constantly tied
 into a network. Finally, they are resource-poor, so they are not
 expected to be able to store a significant amount of state
 information locally. The following subsections describe the
 particular parts of Pcmail’s client architecture that address these
 three characteristics.

 5.1. Multiple clients

 The fact that Pcmail users may own more than one PC forms the
 rationalization for the multiple client model that Pcmail uses. A
 Pcmail user may have a PC client at home, a PC at an office, and
 maybe even a third portable PC. Each client maintains a separate
 copy of the user’s mail state, hence Pcmail’s distributed nature.
 The notion of separate clients allows Pcmail users to access mail
 state from several different locations.

Clark & Lambert [Page 17]

RFC 984 May 1986
PCMAIL

 5.2. Synchronization

 Since PCs are fairly portable, the likelihood of a PC’s being
 always connected to a network is relatively small. This is
 another reason for each client’s maintaining a local copy of a
 user’s mail state. The user can then manipulate the local mail
 state while not connected to the network (and the repository).
 This immediately brings up the problem of synchronization between
 local and global mail states. The repository is continually in a
 position to receive global mail state updates, either in the form
 of incoming mail, or in the form of changes from other clients. A
 client that is not always connected to the net cannot immediately
 receive the global changes. In addition, the client’s user can
 make his own changes on the local mail state.

 Pcmail’s architecture permits efficient synchronization between
 client local mail states and the repository’s global mail state.
 Each client is identified in the repository by a client object
 attached to the user. This object forms the basis for
 synchronization between local and global mail states. Some of the
 less common state changes include the adding and deleting of user
 mailboxes and the adding and deleting of address objects.
 Synchronization of these changes is performed via DMSP list
 operations, which allow clients to compare their local versions of
 mailbox and address object lists with the repository’s global
 version and make any appropriate changes. The majority of
 possible changes to a user’s mail state are in the form of changed
 descriptors. Since most users will have a large number of
 messages, and message states will change relatively often, special
 attention needs to be paid to message synchronization.

 An existing descriptor can be changed in one of two ways: first,
 one of its sixteen flags values can be changed (this encompasses
 reading an unseen message, deleting a message, and expunging a
 message). The second way to change a descriptor is via the
 arrival of incoming mail or the copying of a message from one
 mailbox to another. Both result in a new message being added to a
 mailbox.

 In both the above cases, synchronization is required between the
 repository and every client that has not previously noted a
 change. To keep track of which clients have noticed a global mail
 state change and changed their local states accordingly, each
 descriptor has associated with it a (potentially empty) "update
 list" of client objects. The list identifies those clients which
 have not yet recorded a change to that descriptor’s state.

Clark & Lambert [Page 18]

RFC 984 May 1986
PCMAIL

 When a client connects to the repository, it executes a DMSP
 "get-changed-descriptors" operation. This causes the repository
 to return a list of all descriptor objects that have the
 requesting client on their update list. As the client receives
 the changed descriptors, it can store them locally, thus updating
 the local mail state. After a changed descriptor has been
 recorded, the client uses the DMSP "reset-descriptors" operation
 to remove itself from the descriptor’s update list. That
 descriptor will now not be sent to the client unless (1) it is
 explicitly requested, or (2) it changes again.

 In this manner, a client can run through its user’s mailboxes,
 getting all changed descriptors, incorporating them into the local
 mail state, and marking the change as recorded.

 5.3. Batch operation versus interactive operation

 Because of the portable nature of most PCs, they may not always be
 connected to the repository. Since each client maintains a local
 mail state, Pcmail users can manipulate the local state while not
 connected to the repository. This is known as "batch" operation,
 since all changes are recorded by the client and made to the
 repository’s global state in a batch, when the client next
 connects to the repository. Interactive operation occurs when a
 client is always connected to the repository. In interactive
 mode, changes made to the local mail state are immediately
 propagated to the global state via DMSP operations.

 In batch mode, interaction between client and repository takes the
 following form: the client connects to the repository and sends
 over all the changes made by the user to the local mail state.
 The repository changes its global mail state accordingly. When all
 changes have been processed, the client begins synchronization, to
 incorporate newly-arrived mail, as well as mail state changes by
 other clients, into the local state.

 In interactive mode, since local changes are immediately
 propagated to the repository, the first part of batch-type
 operation is eliminated. The synchronization process also
 changes; interactive clients can periodically poll the repository
 for a list of changes, synchronizing a small amount at a time.

Clark & Lambert [Page 19]

RFC 984 May 1986
PCMAIL

 5.4. Message summaries

 Since PCs are assumed to have little in the way of disk storage, a
 given client may never have enough room for a complete local copy
 of a user’s global mail state. This means that Pcmail’s client
 architecture must allow user’s to obtain a clear picture of their
 mail state without having all their messages present.

 Descriptors provide message information without taking up large
 amounts of storage. Each descriptor contains a summary of
 information on a message. This information includes the message
 UID, its length in bytes and lines, its status (encoded in the
 eight system-defined and eight user-defined flags), and portions
 of its RFC-822 header (the "to:", "from:", "subject:" and "date:"
 fields). All of this information can be encoded in a small
 (around 100 bytes) data structure whose length is independent of
 the size of the message it describes.

 Any client should be able to store a complete list of message
 descriptors with little problem. This allows a user to get a
 complete picture of his mail state without having all his messages
 present locally. Short messages can reside on the client, along
 with the descriptors, and long messages can either be printed via
 the DMSP print-message operation, or specially pulled over via the
 fetch-message-text operation.

6. Typical Client-Repository Interaction

 The following example describes a typical communication session
 between the repository and a client. The client is one of three
 belonging to user "Fred". Its name is "office-client", and since
 Fred uses the client regularly to access his mail, the client is
 marked as "active". Fred has two mailboxes: "main" is where all of
 his current mail is stored; "archive" is where messages of lasting
 importance are kept. The example will run through a simple
 synchronization operation followed by a series of typical mail state
 manipulations. Typically, the synchronization will be performed by
 an application program that connects to the repository, logs in,
 synchronizes, and logs out.

 For the example, all DMSP operations will be shown in a user-readable
 format. In reality, the operations would be sent as a stream of USP
 blocks consisting of a block-type number followed by a stream of
 bytes representing the block’s arguments. Both the block name and its
 number are included for convenience.

Clark & Lambert [Page 20]

RFC 984 May 1986
PCMAIL

 In order to access his global mail state, the client software must
 authenticate Fred to the repository; this is done via the DMSP login
 operation:

 600 (login) ["fred", "ajyr63ywg", "office-client",
 FALSE, FALSE]

 This tells the repository that Fred is logging in via
 "office-client", and that "office-client" is identified by an
 existing client object attached to Fred’s user object. The second
 login block argument in an encrypted version of Fred’s password. The
 final argument tells the repository that Fred’s client is not
 operating in batch mode but rather in interactive mode.

 Fred’s authentication checks out, so the repository logs him in,
 acknowledging the login request with an OK block.

 Now that Fred is logged in, he wants to bring
 "office-client"’s local mail state up to date. To do this, the
 client program asks for an up-to-date list of mailboxes:

 800 (list-mailboxes) []

 The repository replies with:

 801 (mailbox-list) [["main", 10, 1, 253],
 ["archive", 100, 0, 101]]

 This tells the client that there are two mailboxes, "main" and
 "archive". "Main" has 10 messages, one of which is unseen. The next
 incoming message will be assigned a UID of 253. "Archive", on the
 other hand, has 100 message, none of which are unseen. The next
 message sent to "archive" will be assigned the UID 101. There are no
 new mailboxes in the list (if there were, the client program would
 create them. On the other hand, if some mailboxes in the client’s
 local list were not in the repository’s list, the program would
 assume them deleted by another client and delete them locally as
 well).

 To synchronize the client need only look at each mailbox’s contents
 to see if (1) any new mail has arrived, or (2) if Fred changed any
 messages on one of his other two clients subsequent to
 "office-client"’s last connection to the repository.

 The client asks for any changed descriptors via the
 "get-changed-descriptors" operation. It requests at most ten changed
 descriptors since storage is very tight on "office-client".

Clark & Lambert [Page 21]

RFC 984 May 1986
PCMAIL

 1105 (get-changed-descriptors) ["main", 10]

 The repository responds with:

 1103 (descriptor-list) [[descriptor[
 6,
 [T T F F F F F F F F F F F F F F],
 "Fred@borax",
 "Joe@fab",
 "Wed, 23 Jan 86 11:11 EST",
 "tomorrow’s meeting",
 621,
 10]]
 [descriptor[
 10,
 [F T F F F F F F F F F F F F F F],
 "Fred",
 "Freds-secretary",
 "Fri, 25 Jan 86 11:11 EST",
 "Monthly progress report",
 13211,
 350]]
]

 The first descriptor in the list is one which Fred deleted on another
 client yesterday. "Office-client" marks the local version of the
 message as deleted. The second descriptor in the list is a new one.
 "Office-client" adds the descriptor to its local list. Since both
 changes have now been recorded locally, the descriptors can be reset:

 1106 (reset-descriptors) ["main", 2]

 The repository clears each descriptor’s update vector bit
 corresponding to "office-client"’s client object. "Main" has now
 been synchronized. The client now turns to Fred’s "archive" mailbox
 and asks for the first ten changed descriptors.

 1105 (get-changed-descriptors) ["archive", 10]

 The repository responds with

 1103 (descriptor-list) []

 The zero-length list tells "office-client" that no descriptors have
 been changed in "archive" since its last synchronization. No new
 synchronization needs to be performed.

Clark & Lambert [Page 22]

RFC 984 May 1986
PCMAIL

 Fred’s client is now ready to pull over the new message so Fred can
 read it. The message is 320 lines long; there might not be
 sufficient storage on "office-client" to hold the new message. The
 client tries anyway:

 1107 (fetch-message-text) ["main", 10]

 The repository begins transmitting the message:

 1110 (message) ["From: Fred’s-secretary",
 "To: Fred",
 "Subject: Monthly progress report",
 "Date: Fri, 25 Jan 86 11:11 EST",
 "",
 "Dear Fred,",
 "Here is this month’s progress report",
 ...
]

 Halfway through the message transmission, "office-client" runs out of
 disk space. Because all DMSP operations are defined to be atomic,
 the portion of the message already transmitted is destroyed locally
 and the operation fails. "Office-client" informs Fred that the
 message cannot be pulled over because of a lack of disk space. The
 synchronization process is now finished and Fred’s client logs out.

 601 (logout) []

 The repository does any housecleaning it needs to do, acknowledges
 the logout request, and closes the USP connection.

7. A Current Pcmail Implementation

 The following section briefly describes a current implementation of
 Pcmail that services a small community of users. The Pcmail
 repository runs under UNIX on a DEC VAX-750 connected to the
 Internet. The clients are IBM PCs, XTs, and ATs. The network
 software that communicates with the repository allows only
 "batch-mode" operation. Users make local state changes, which are
 queued until the client connects to the repository. At that time,
 the changes are performed and the local and global states
 synchronized. The client then disconnects from the repository.

 Users access and modify their local mail state via a user interface
 program. The program uses windows and a full-screen mode of
 operation. Users are given a rich variety of commands to operate on

Clark & Lambert [Page 23]

RFC 984 May 1986
PCMAIL

 individual messages as well as mailboxes. The interface allows use
 of any text editor to compose messages, and adds features of its own
 to make RFC-822-style header composition easier.

 Synchronization and the processing of queued changes is performed by
 a separate program, which the user runs whenever he wishes. The
 program takes any actions queued while operating the user interface,
 and converts them into DMSP operations. All queued changes are made
 before any synchronization is performed.

 The limitation of client operation to batch mode was made for the
 following reasons: first, the implementation is slanted toward use of
 portable computers as clients. These computers are rarely connected
 to the network, making interactive mode unnecessary. Those clients
 that are constantly connected to the network run slightly less
 efficiently than they could (since users must make changes locally
 and then run the action-processing/synchronization program, rather
 than simply making changes interactively).

 Another important reason for limiting operation to batch mode is that
 it allows a very simple locking scheme to prevent problems raised by
 concurrent state updates. A user may have several clients; it is
 therefore likely that the repository could get into a variety of
 inconsistent states as different clients try to change the
 repository’s global mail state at the same time. To prevent these
 inconsistencies, a user’s mail state is locked as soon as a client
 connects to the repository. The lock is released when the client
 disconnects from the repository. This locking scheme is simple to
 implement, but makes interactive-mode operation very cumbersome: if a
 user remains constantly connected to the network (i.e. in interactive
 mode), the repository would be unavailable to any of the user’s other
 clients for an unacceptable length of time.

8. Conclusions

 Pcmail is now used by a small community of people at the MIT
 Laboratory for Computer Science. The repository design works well,
 providing a fairly efficient means of storing and maintaining mail
 state for several users. Members of another research group at LCS
 are currently working on a replicated, scaleable version of the
 repository designed to support a very large community of users with
 high availability. This repository also uses DMSP and has
 successfully communicated with clients that use the current
 repository implementation. DMSP therefore seems to be useable over
 several flavors of repository design. The clients, being PCs, are
 unfortunately very limited in the way of resources, making local mail
 state manipulation difficult at times. Synchronization is also

Clark & Lambert [Page 24]

RFC 984 May 1986
PCMAIL

 relatively time consuming due to the low performance of the PCs. The
 "batch-mode" of client operation is very useful for portable
 computers that spend a large percentage of their time unplugged and
 away from a network. It is somewhat less useful for the majority of
 the clients, which are always connected to the network and could make
 good use of an "interactive-mode" state manipulation.

Clark & Lambert [Page 25]

RFC 984 May 1986
PCMAIL

I. DMSP Protocol Specification

 Following is a list of DMSP block types and DMSP operations by object
 type. Again, "=>" marks blocks flowing from client to repository;
 "<=" marks blocks flowing from repository to client.

 General operations:

 => or <= 503 (abort-request) [why:str]
 (no acknowledgement)

 => 504 (start-debug) []
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 505 (end-debug) []
 <= 500 (ok) []

 => 506 (send-version) [version:card]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 507 (log-message) [message:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 508 (send-message) [message:seq[str]]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 User operations:

 => 600 (login) [name:str, password:str,
 client:str, create-client-object?:bool
 batch-mode-flag:bool]
 <= 500 (ok) [] |
 501 (failure) [why:str] |
 705 (force-client-reset) []

 => 601 (logout) []
 <= 500 (ok) []

 => 602 (add-user) [name:str, password:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

Clark & Lambert [Page 26]

RFC 984 May 1986
PCMAIL

 => 603 (remove-user) [user:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 604 (set-password) [old:str, new:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 Client operations:

 => 700 (list-clients) []
 <= 701 (client-list) [client-list:seq[
 rec[name:str], status:card]]

 => 702 (add-client) [client:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 703 (remove-client) [client:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 704 (reset-client) [client:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 Mailbox operations:

 => 800 (list-mailboxes) []
 <= 801 (mailbox-list) [mailbox-list:seq[
 rec[mailbox:str,
 next-uid:lcard,
 num-msgs:card,
 num-unseen-msgs:card]]]

 => 802 (add-mailbox) [mailbox:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 803 (remove-mailbox) [mailbox:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 808 (expunge-mailbox) [mailbox:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

Clark & Lambert [Page 27]

RFC 984 May 1986
PCMAIL

 => 809 (reset-mailbox) [mailbox:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 Address operations:

 => 804 (list-addresses) [mailbox:str]
 <= 501 (failure) [why:str] |
 805 (address-list) [address-list:seq[str]]

 => 806 (add-address) [mailbox:str, address:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 807 (remove-address) [mailbox:str, address:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 Message operations:

 => 1100 (get-descriptor-flags) [mailbox:str, uid:lcard]
 <= 1101 (descriptor-flags) [flags:seq[bool]] |
 501 (failure) [why:str]

 => 1102 (get-descriptors) [mailbox:str,
 low-uid:lcard,
 high-uid:lcard]
 <= 501 (failure) [why:str] |
 1103 (descriptor-list) [descriptor-list:seq[
 ch[
 expunged[uid:lcard],
 descriptor[rec[uid:lcard,
 flags:seq[bool],
 from-field:str,
 to-field:str,
 date-field:str,
 subject-field:str,
 nun-bytes:lcard,
 num-lines:lcard]
]]]]

Clark & Lambert [Page 28]

RFC 984 May 1986
PCMAIL

 => 1105 (get-changed-descriptors) [mailbox:str,
 max-to-send:card]
 <= 501 (failure) [why:str] |
 1103 (descriptor-list) [descriptor-list:seq[
 ch[
 expunged[uid:lcard],
 descriptor[rec[uid:lcard,
 flags:seq[bool],
 from-field:str,
 to-field:str,
 date-field:str,
 subject-field:str,
 num-bytes:lcard,
 num-lines:lcard]
]]]]

 => 1106 (reset-changed-descriptors) [
 mailbox:str,
 start-uid:lcard,
 end-uid:lcard]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 1107 (get-message-text) [mailbox:str,
 uid:lcard]
 <= 501 (failure) [why:str] |
 1110 (message) [message:seq[str]]

 => 1108 (print-message) [mailbox:str,
 uid:lcard,
 printer-name:str]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 1109 (set-flag) [mailbox:str,
 uid:lcard,
 flag-number:card,
 flag-setting:bool]
 <= 500 (ok) [] |
 501 (failure) [why:str]

 => 1111 copy-message[source-mailbox:str,
 target-mailbox:str,
 source-uid:lcard]
 <= 500 (ok) [] |
 501 (failure) [why:str]

Clark & Lambert [Page 29]

RFC 984 May 1986
PCMAIL

 DMSP block types by number

 General block types

 ok 500
 failure 501
 abort-request 503
 start-debug 504
 end-debug 505
 send-version 506
 log-message 507
 send-message 508

 User operation block types

 login 600
 logout 601
 add-user 602
 remove-user 603
 set-password 604

 Client operation block types

 list-clients 700
 client-list 701
 add-clien 702
 remove-client 703
 reset-client 704
 force-client-reset 705

 Mailbox operation block types

 list-mailboxes 800
 mailbox-list 801
 add-mailbox 802
 remove-mailbox 803
 expunge-mailbox 808
 reset-mailbox 809

Clark & Lambert [Page 30]

RFC 984 May 1986
PCMAIL

 Address operation block types

 list-addresses 804
 address-list 805
 add-address 806
 remove-address 807

 Message operation block types

 get-descriptor-flags 1100
 descriptor-flags 1101
 get-descriptors 1102
 descriptor-list 1103
 get-changed-descriptors 1105
 reset-changed-descriptors 1106
 get-message-text 1107
 print-message 1108
 set-flag 1109
 message 1110
 copy-message 1111

Clark & Lambert [Page 31]

