Net wor k Wor ki ng G oup G Finn
Request for Conmments: 916 | Sl
Cct ober 1984

RELI ABLE ASYNCHRONOUS TRANSFER PROTOCOL (RATP)

Status of This Meno

This RFC suggests a proposed protocol for the ARPA-Internet
community, and requests discussion and suggestions for inprovenents.
Distribution of this nenp is unlinited.

Thi s paper proposes and specifies a protocol which allows two
prograns to reliably conmuni cate over a communication link. |t
ensures that the data entering one end of the Iink if received
arrives at the other end intact and unaltered. The protocol, naned
RATP, is designed to operate over a full duplex point-to-point
connection. It contains sone features which tailor it to the RS-232
links now in comon use.

I nt roducti on

We are w tnessing today an explosive growth in the small or persona
comput er market. Such inexpensive conputers are not normally
connected to a conputer network. They are nost |ikely stand-al one
devices. But virtually all of them have an RS-232 interface. They
al so usually have a nodem This allows themto comunicate over the
tel ephone with any other similarly equi pped conputer

The tel ephone systemis a pervasive network, but one of the
characteristics of the tel ephone systemis the unpredictable quality
of the circuit. The standard tel ephone circuit is designed for voice
conmuni cation and not data comuni cation. Voice conmuni cation
tolerates a much hi gher degree of 'noise’ than does a data circuit,
SO a voice circuit is tolerant of a much higher |evel of noise than
is a data circuit. Thus it is not unconmon for a byte of data
transferred over a tel ephone circuit to have noise inserted. For the
same reason it is also not uncommon to have spurious data bytes added
to the data stream

The need for a nethod of reliably transferring data over an RS-232
poi nt-to-point |ink has becone severe. As the nunber of powerful
personal conputers grows, the need for themto conmunicate with one
another grows as well. The new markets and new services that these
computers will eventually allow their users to access will rely
heavily upon the tel ephone system Services like electronic mail,
el ectroni ¢ banki ng, ordering merchandi se fromhone with a persona
conmputer, etc. As the information revolution proceeds data itself
will becone a commodity. All require accuracy of the data sent or
received.

Fi nn [Page 1]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

1. Phil osopy of Design

Many tradeoffs were made in designing this protocol. Decisions were
made by above all ensuring reliability and then by favoring
sinplicity of inplementation. It is hoped that this protocol is

si mpl e enough to be inplenented not only by small conmputers but al so
by stand al one devices incorporating mcroconputers which accept
commands over RS-232 lines. Sophisticated but unnecessary features
such as dynani ¢ wi ndow managenent [TCP 81] were |left out for
simplicity’'s sake. Having several packets outstanding at a tinme was
elimnated for the sane reason, and data queued to send when a
connection is closed remptely is discarded. This elimnates two
states fromthe protocol inplenentation

The reader nmay ask why define this protocol at all, there are after
all already RS-232 transport protocols in use. This is true but some
| ack one or nore features vitally inportant or are too conplex. See
Appendix Il for a brief survey.

- A protocol which can only transfer data in one direction is
unable to use a single RS-232 link for a full-duplex connection
As such it cannot act as a bridge between nost conputer
networks. Also it is not capable of supporting any applications
requi ring the two-way exchange of data. |In particular it is not
a platformsuitable for the creation of nost higher |eve
applications. Unidirectional flow of data is sufficient for a
weak inplenentation of file transfer but insufficient for renote
term nal service, transaction oriented processing, etc.

- Sone of the existing RS-232 transport protocols allow the use of
only fixed size packets or do not allow the receiver to place a
limt on the sender’s packets. Were that block size is too
|arge for the receiving end concentrator, that concentrator is
likely to imediately invoke flow control. This results in nany
dropped and damaged packets. The receiver nust be able to
informthe sender at connection initiation what is the nmaxi num
packet size it is prepared to receive

- Sone protocols have a nunber of features which may or may not be
i npl enented at each site. Exanples are, several checksumi ng
algorithms, differing data transmi ssion restrictions, sometinmes
8-bit data, sonetines restricted ASCI| subsets, etc. The
resulting requirenment that all sites inplement all the various
features is rarely net.

Finally, the size of this docunent nmay be inposing. The docunent
attenpts to fully specify the behavior of the protocol. A careful

Fi nn [Page 2]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

exposition of the protocol’s behavior under all circunmstances is
necessary to answer any questions an inplenmentor night have, to nake
it possible to verify the protocol, etc. This size of this
specification should not be taken as an indication of the difficulty

of

i mplementing it.

1.1. The Host Environnent

This protocol is designed to operate on any point-to-point

communi cation |link capable of transmitting and receiving data. It
is not necessary that the Iink be asynchronous. Because neither
end of a connection has control over when the other decides to
transmit, the link should be full duplex. It is expected that in
the vast majority of circunmstances an asynchronous full-duplex
RS-232 link will be used.

In practice this protocol could reside anywhere fromthe RS-232
driver software on a microconputer in a concentrator all the way
to the user software level. |Ideally it properly resides inside
the host operating systemor concentrator. It should be an option
associated with communication |ink which is selectable by the user
program |If reliable data transni ssion were of great inportance
then the software woul d choose the option. Once the option were
chosen the initial connection handshaki ng woul d begi n.

There are many cases where this protocol will not reside in a host
operating system (initially this will always be so). In addition
there are many pi eces of stand-al one equi pnent whi ch accept
commands over an RS-232 link. A plotter is such an exanple. To
have a several hour plot ruined by noise on an unreliable data
line is an all too often occurrence. The sending and receiving
sides of the protocol should be as sinple as possible allow ng
applications software and stand al one devices to utilize the
protocol with little penalty of time or space

1.2. Relation to O her Protocols

Fi nn

The "l ayering" concept has becone the accepted way of designing
conmuni cati ons protocols. Because this protocol will operate in a
poi nt-to-point environment it conprises both the datagram and
reliable connection layers. No nulti-network capability is
inmplied. Where a link using this protocol bridges differing
networks it is expected that other protocols like TCP will have
their packets fragmented and encapsul ated inside the packets of
this protocol

[Page 3]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

2. Packet Specification

RATP transnmits data over a full-duplex comunication |ink. Data may
be transnmitted in both directions over the link. A streamof data is
communi cated by being broken up into 8-bit pieces called octets.
These octets are serially accunulated to forma packet. The packet
is the unit of data communi cated over the Iink. The protoco
virtual ly guarantees that the data transmtted at one end, if
received, arrives unaltered and intact at the other end.

Wthin an octet all eight bits contain data. Al eight bits nust be
preserved by the link interface and associ ated device driver. In
many operating systens this is ensured by placing the connection into
RAW or BI NARY data node. During nornmal operation packets are
transmitted and acknowl edged one at a tine over the link in each
direction. Each packet is conposed of a HEADER fol |l owed by a DATA
portion. The DATA portion nmay be enpty.

NOTE: There are sone ol der operating systens and devi ces which do
not permt 8-bit comunication over an RS-232 |ink. Mst of these
allow restricted 7-bit conmunication. RATP can autonmatically
detect this situation during connection initiation and utilizes a
speci al packing strategy when full 8-bit conmunication is not
possible. This is entirely transparent to any client software.
See Appendix | for a discussion of this case.

Fi nn [Page 4]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

2. 1. Header For nat

Byt e No.

e e eme e eeeeeiieeaaciieaeaaan +
I I

1 | Synch Leader | Hex 01
I I
o e e m e e e e e e e e e e oo oo - +
| S| Al F| R S| A| E| S|

2 | Y] C] I | S| N|] N|] O] O] Contro
| NI K| N T] | | R] |
Fom e m e e e e e e e e e e e +
I

3 | Data | ength (0-255)
I I
e +
I I

4 | Header Checksum |
I I
o e e m e e e e e e e e e e oo oo - +

Header Portion of a Packet
2.1.1. Synch Leader

RS- 232 provides a sel f-cl ocking conmuni cati ons nedium The

wi res over which data flows are often placed in ’'noisy’

envi ronnents where the noise can appear as added unwant ed dat a.
For this reason the beginning of a packet is denoted by a one
octet SYNCH pattern. This allows the receiver to discard noise
whi ch appears on the connection prior to the reception of a
packet. The SYNCH pattern is defined to be the one octet hex
01, the ASCI| Start O Header character <SOH>

The SYNCH pattern should ideally be unlikely to occur as the
result of noise. Differing nodens, etc. have differing
responses to noise so this is hard to achieve. The pattern
chosen is thought to be a good conproni se since nany nodens
mani f est noi se by setting the high order bits. Situations will
occur in which receiver is scanning for the beginning of a
packet and a spurious SYNCH pattern is seen. To detect
situations of this type a header checksumis provided (see

bel ow) .

Fi nn [Page 5]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

2.1.2. Control Bits

The first octet following the SYNCH pattern contains a 5-hbit
field of control flags and two 1-bit sequence nunber fields.
The last bit is reserved and nust be zero.

2.1.2.1. SYN - Synchroni ze Fl ag

Synchroni ze the connection. No data may be sent in a packet
whi ch has the SYN fl ag set.

2.1.2.2. ACK - Acknow edge Fl ag

Acknowl edge nunber is significant. Data nmay acconpany a
packet which has this flag set as | ong as neither of SYN
RST, nor FIN are also set. Once a connection has been
established this is always set.

2.1.2.3. RST - Reset Flag

Reset the connection. This is a method by which one end of

a connection can reset the other when an anonmal ous condition
is detected. No data may be sent in a packet which has the

RST fl ag set.

2.1.2.4. FIN - Finishing Flag
This indicates that no nore data will be sent to the other
end of the connection. It also indicates that no nore data
will be accepted. No data may be sent in a packet which has
the FIN flag set.

2.1.2.5. SN - Sequence Nunber
The Sequence Nunber associated with this packet.

2.1.2.6. AN - Acknow edge Nunber

If the ACK control flag is set this is the next Sequence
Nunmber the sender of the packet is expecting to receive.

2.1.2.7. EOR - End of Record
This bit is provided as an aid for higher |evel protocols
which may need to fragnent their packets. The Internet

protocol for exanple often uses packets as |large as 576
octets. A packet of such size would require fragmentation

Fi nn [Page 6]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

when transported using this protocol. The ECR bit if set
provides information to the higher level that a record is
termnated in this packet. It is for information only and
is the responsibility of the higher level to set/clear it
when buil di ng packets to send. The interface to the
protocol rmnust provide a nethod of reading/setting/clearing
this bit.

2.1.2.8. SO- Single Cctet

One application thought to be of special inmportance is
singl e character transmi ssion --- a user conmunicates from
t he keyboard of a personal conputer to another conputer over
an unreliable link. Since rapid interactive response is
desirable it is expected that nany of the characters typed
will be transmitted individually. To mnimze the overhead
of this special case the SO control flag is provided.

The SO flag has no neaning if either the SYN, RST, or FIN
flags are set. Assume none of those flags are set, then if
the SOflag is set it indicates that a single octet of data
is contained in this packet. Since the anount of data is
known to be one octet the LENGIH field is superfluous and
itself contains the data octet. The data portion of the
packet is not transmitted.

The SO flag renoves the need to transnmit the data portion of
the packet in this special case. Wthout the SO flag seven
octets would be required of the packet, with it only four
are needed and so transm ssion efficiency is inproved by 40
percent. The header checksum protects the single octet of
dat a.

2.1.3. Length

The second octet follow ng the SYNCH pattern holds |ength
information. |If the SYN bit is present this contains the
maxi mum nunber of data octets the receiver is allowed to
transmit in any single packet to the sender. This quantity is
called the MDL. A sender nmay indicate his unwillingness to
accept any data octets by specifying an MOL of zero. 1In this
case presumably all the data would be noving fromthe sender to
the receiver. Obviously if data is to be transmtted both

si des of a connection cannot have an MDL of zero.

If neither the SYN, RST, nor FIN flags are set this is an 8-bhit
field called LENGTH. In this case if the SOflag bit is set

Fi nn [Page 7]

RFC 916

Cct ober 1984

Rel i abl e Asynchronous Transfer Protoco

then LENGTH contains a single octet of data. Oherwise it
contains the count of data octets in this packet. From zero
(0) to MDL octets of data nmay appear in a single packet. MDL
islimted to a maxi mrum of 255.

2.1.4. Header Checksum

The header checksum algorithmis the 8-bit equival ent of the
16-bit data checksumdetailed below. It is built and processed
in an simlar manner but is eight bits w de instead of sixteen
Wien sending the header checksumoctet is initially cleared.

An 8-bit sum of the control, |ength, and header checksum octets
is formed enpl oyi ng end-around carry. That sumis then

conpl enented and stored in the header checksumoctet. Upon
receipt the 8-bit end-around carry sumis fornmed of the same

three octets. |If the sumis octal 377 the header is presuned
to be valid. 1In all other cases the header is assuned to be
i nval i d.

The reasons for providing this separate protection to the
header are discussed in the chapter dealing with error
handl i ng. The header checksum covers the control and data
length octets. It does not include the SYNCH pattern

2.2. Data Format

The data portion of a packet inmrediately follows the header if the
SO flag is not set and LENGTH > 0. It consists of LENGIH data
octets immediately followed by two data checksum octets. |If
present the data portion contains LENGTH+2 octets.

Fi nn

[Page 8]

RFC 916

Cct ober 1984

Rel i abl e Asynchronous Transfer Protoco

Dat a Byte No.

o e e m e e e e e e e e e e oo oo - +
1 | | Hi gh order \
$- - --+ > Word
2 | | Low order [/
+- - -+
| Dat a | High order \
oo -+ > Wird
| | Low order /
+- - -+
LENGTH | | Hi gh order \
e + > Wrd
| | magi nary paddi ng octet O | Low order /
o e e m e e e e e e e e e e oo oo - +
LENGTH+1 | | Hi gh order \
+-- Dat a Checksum --+ > Word
LENGTH+2 | | Low order /
Fom e m e e e e e e e e e e e +

Data Portion of a Packet

2.2.1. Data Checksum

Fi nn

The last two octets of the data portion of a packet are a data
checksum A 16-bit checksumis used by this protocol to detect
incorrectly transmtted data. This has shown itself to be a
reliable nmethod for detecting nost categories of bit drop out
and bit insertion. Wile it does not guarantee the detection
of all such errors the probability of such an error going
undetected is on the order of 2**(-16).

The checksum octets follow the data to enable the sender of a
packet to conpute the checksumwhile transmtting a packet and
the receiver to conpute the checksum while receiving the
packet. Thus neither nmust store the packet and then process
the data for checksumming in a separate pass.

Order of Transmn ssion

The order in which the 8-bit octets are assenbled into
16-bit words, which is the |ow order octet and which is the
hi gh, rmust be rigidly specified for the purpose of conputing
16-bit checksuns. W specify the big endian ordering in the
di agr am above [Cohen 81].

[Page 9]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Checksum Al gorit hm

The checksum al gorithm chosen is simlar to that used by

| P/ TCP protocols [IP 81] [TCP 81]. This algorithmhas shown
itself to be both reliable and relatively easy to conpute.
The interested reader may refer to [TCP Checksum 78] for a
nmor e t horough discussion of its properties.

The checksumalgorithmis:
SENDER

The unsigned sum of the 16-bit words of the data portion
of the packet is formed. Any overflow is added into the
| owest order bit. This sumdoes not include the header
portion of the packet. For the purpose of building a
packet for transmi ssion the two octet checksumfield is
zero. The sumformed is then bit conpl enented and
inserted into the checksum field before transm ssion

If the total nunmber of data octets is odd then the |ast
octet is padded to the right (low order) with zeros to
forma 16-bit word for checksum purposes. This pad octet
is not transmitted as part of the packet.

RECEI VER
The sumis conputed as above but including the val ues
received in the checksumfield. |If the 16-bit sumis
octal 177777 then the data is presuned to be valid. In

all other cases the data is presuned to be invalid.

This unsigned 16-bit sum adds 16-bit quantities with any
overflow bit added into the |owest order bit of the sum This
is called 'end around carry’. End around carry addition

provi des several properties: 1) It provides full comutivity of
addition (sunming in any order is equivalent), and 2) If you
apply a given rotation to each quantity before addition and
when the final total is fornmed apply the inverse rotation, then
the result will be equivalent to any other rotation chosen

The latter property gives little endian nachines |like a PDP-11
the go ahead to pick up 16-bit quantities and add themin byte
swapped order.

Fi nn [Page 10]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

The PDP-11 code to cal culate the checksumi s:

CLR RO ; RO will get the checksum

; R2 contains LENGTH count

LOOP: ADD (R1)+, RO ; Add the next 16-bit byte
ADC RO ; Make any carry be end around

SOB R2, LOCOP Loop over entire packet
COM RO ; Bit conplenment result

2. 3. Sequence Numbers

Fi nn

Sequence nunbers work with acknow edge nunbers to informthe
sender that his |ast data packet was received, and to informthe
recei ver of the sequence nunber of the next data packet it expects
to see. Wen the ACK flag is set in a packet the AN field
contai ns the sequence nunber of the next data packet it expects
fromthe sender. The sender |ooks at the AN field and by

i mplication knows that the packet he just sent should have had a
sequence nunber of:

<AN recei ved-1 nodul o 2>

If it did have that nunber that packet is considered to have been
acknow edged.

Simlarly, the receiver expects the next data packet it sees to
have an SN field value equal to the AN field of the Iast

acknow edge nessage it sent. If this is not the case then the
recei ver assunes that it is receiving a duplicate of a data packet
it earlier acknow edged. This inplies that the packet containing
t he acknowl edgnent did not arrive and therefor the packet that
cont ai ned the acknow edgnment should be retransnmtted. The
duplicate data packet is discarded.

The only packets which require acknow edgnent are packets
containing status flags (SYN, RST, FIN, or SO or data. A packet
whi ch contains only an acknow edgnent, i.e. <AN=n><CTL=ACK>, does
not require a response (it contains no status flags or data).

Both the AN and SN fields are a single bit wide. Since at nost
one packet is in the process of being sent/acknow edged in a
particular direction at any one time a single bit is sufficient to
provide a nethod of duplicate packet detection and renoval of a
packet fromthe retransm ssion queue. The arithnmetic to advance
these nunbers is nodulo 2. Thus when a data packet has been
acknow edged the sender’s next sequence nunber will be the current
one, plus one nodul o 2:

[Page 11]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

<SN = SN + 1 nodulo 2>

The i ndividual acknow edgnent of each packet containing data can
m sl ead one into thinking that side A of a connection cannot send
data to side B until it receives a packet fromB. That only then
can it acknowl edge B's packet and place in the acknow edgi ng
packet some data of its own. This is not the case

As long as its |last packet sent requiring a response has been
acknow edged each side of a connection is free to send a data
packet whenever it wishes. Naturally, if one side is sending a
data packet and it also nmust acknow edge recei pt of a data packet
fromthe other side, it is nobst efficient to conbine both
functions in a single packet.

2. 4. Maxi mum Packet Size

Fi nn

The maxi mum packet size is:
SYNCH + HEADER + Dat a Checksum + 255 = 261 octets

There is therefor no need to allocate nore than that anount of
storage for any received packets.

[Page 12]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

3. The Openi ng and d osing of a Connection

3.1. Opening a Connection

Fi nn

A "three-way handshake" is the procedure used to establish a
connection. It is normally initiated by one end of the connection
and responded to by the other. It will still work if both sides
simul taneously initiate the procedure. Experience has shown that
this strategy of opening a connection reduces the probability of
fal se connections to an acceptably | ow | evel

The sinplest formof the three-way handshake is illustrated in the
diagrambelow. The tine order is line by line fromtop to bottom
with certain |ines nunbered for reference. User events are placed
in brackets as in [OPENJ. An arrow (-->) represents the direction
of flow of a packet and an ellipsis (...) indicates a packet in
transit. Side A and side B are the two ends of the connection

An "XXX" indicates a packet which is lost or rejected. The
contents of the packet are shown on the center of each line. The
state of both connections is that caused by the departure or
arrival of the packet represented on the Iine. The contents of
the data portion of a packet are left out for clarity.

Side A Side B
1. CLOSED LI STEN

2. [OPEN request]
SYN- SENT - > <SN=0><CTL=SYN><MDL=n>

3. --> SYN- RECEI VED
<SN=0><AN=1><CTL=SYN, ACK><MDL=nP <- -

4. ESTABLI SHED <- -
--> <SN=1><AN=1><CTL=ACK><DATA>

5. --> ESTABLI SHED

In line 2 above the user at side A has requested that a connection
be opened. Side A then attenpts to open a connection by sending a
SYN packet to side B which is in the LISTEN state. It specifies
its initial sequence nunber, here zero. It places in the LENGIH
field of the header the | argest number of data octets it can
consume in any one packet (MDL). The MDL is nornmally positive.
The action of sending this packet places A in the SYN -SENT state.

In line 3 side B has just received the SYN packet fromA. This

[Page 13]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

pl aces B in the SYN-RECEI VED state. B now sends a SYN packet to A
whi ch acknowl edges the SYN it just received fromA. Note that the
AN field indicates B is now expecting to hear SN=1, thus

acknow edgi ng the SYN packet from A which used SN=0. B al so
specifies in the LENGTH field the |argest nunber of data octets it
is prepared to consune

Side A receives the SYN packet from B which acknow edges A s
original SYN packet in line 4. This places A in the ESTABLI SHED
state. Side A can now be confident that B expects to receive nore
packets from A

Ais now free to send B the first DATA packet. 1In line 5 upon
recei pt of this packet side Bis placed into the ESTABLI SHED
state. DATA cannot be sent until the sender is in the ESTABLI SHED
state. This is because the LENGIH field is used to specify the
MDL when openi ng the connection

3.2. Recovering froma Sinultaneous Active OPEN

Fi nn

It is of course possible that both ends of a connection nmay choose
to performan active OPEN sinultaneously. |In this case neither
end of the connection is in the LISTEN state, both send SYN
packets. A reliable bidirectional protocol nust recover fromthis
situation. It should recover in such a manner that the connection
is successfully initiated.

[Page 14]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Side A Side B

1. CLCSED CLOSED

2. [OPEN request]
SYN- SENT --> <SN=0><CTL=SYN><MDL=n>

3. C. [OPEN request]
<SN=0><CTL=SYN><MDL=n® <-- SYN SENT
4. --> SYN RECEI VED

<SN=0><AN=1><CTL=SYN, ACK><MDL=nP> <--

5. (packet finally arrives)
SYN- RECEI VED <-- <SN=0><CTL=SYN><MDL=nP

--> <SN=0><AN=1><CTL=SYN, ACK><MDL=n> --> ESTABLI| SHED
.. <SN=1><AN=1><CTL=ACK> <--

6. (packet finally arrives)
ESTABLI SHED <-- <SN=0><AN=1><CTL=SYN, ACK><MDL=np
--> <SN=1><ANF1><CTL=ACK>

During sinul taneous connection both sides of the connection
cycle from the CLOSED state through SYN-SENT to SYN RECEI VED,
and finally to ESTABLI SHED.

3.3. Detecting a Hal f-Open Connection
Any conputer may crash after a connection has been established.
After recovering fromthe crash it may attenpt to open a new

connection. The other end nust be able to detect this condition
and treat it as an error.

Fi nn [Page 15]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Side A Si de
1. ESTABLI SHED ESTABLI| SHED
--> <SN=0><AN=1><CTL=ACK><DATA> .
-->
(crashes)
2. XXX <SN=1><AN=1><CTL=ACK><DATA> <--
3. (attenpts to open new connection)
--> <SN=0><CTL=SYN><MDL=n -->
<SNE0><AN=1><CTL=RST, ACK> <-- (abort)
CLOSED
4. <--
(connecti on refused)
CLOSED

3.4. dosing a Connection

Fi nn

Ei ther side may choose to cl ose an established connection. This

i s acconplished by sending a packet with the FIN control bit set.
No data may appear in a FIN packet. The other end of the
connection responds by shutting down its end of the connection and
sending a FIN, ACK in response.

Side A Side B
1. ESTABLI SHED ESTABLI SHED
2. [CLCSE request from user]
FINVAIT --> <SN=0><AN=1><CTL=FI N>
3. --> LAST- ACK

<SN=1><AN=1><CTL=FI N, ACK> <--

4. TIME-WAIT <--
--> <SN=1><AN=0><CTL=ACK>

5. --> CLOSED

6. (after 2*SRTT tine passes)
CLOSED

In line 2 the user on side A of the fully opened connection has
decided to close it down by issuing a CLOSE call. No nore data

[Page 16]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Fi nn

will be accepted for sending. |If data remains unsent a nmessage
"Warni ng: Unsent data remains."” is comunicated to the user. No
nore data will be received. A packet containing a FIN but no data
is constructed and sent. Side A goes into the FINWAIT state.

Side B sees the FIN sent and i nmediately builds a FIN, ACK packet
in response. It then goes into the LAST-ACK state. The FIN, ACK
packet is received by side A and an answering ACK is inmediately

sent. Side A then goes to the TIME-WAIT state. In line 5 side B
receives the final acknow edgnent of its FIN, ACK packet and goes
to the CLOSED state. In line 6 after waiting to be sure its |ast
acknow edgnment was received side A goes to the CLOSED state (SRTT
is the Smoothed Round Trip Tinme and is defined in section 6.3.1).

[Page 17]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

4. Packet Reception

The act of receiving a packet is relatively straightforward. There
are a few points which deserve sone di scussion. This chapter wll
di scuss packet reception stage by stage in tinme order

Synch Detection

The first stage in the reception of a packet is the discovery of a
SYNCH pattern. Cctets are read continuously and di scarded unti
the SYNCH pattern is seen. Once SYNCH has been observed proceed
to the Header Reception stage.

Header Reception

The renai nder of the header is three octets in length. No further
processing can continue until the conplete header has been read.
Once read the header checksumtest is perfornmed. |If this test
fails it is assuned that the current SYNCH pattern was the result
of a data error. Since the correct SYNCH nmay appear inmmedi ately
after the current one, go back to the Synch Detection stage but
treat the three octets of the header followi ng the bad SYNCH as
new i nput.

If the header checksumtest succeeds then proceed to the Data
Recepti on stage.

Dat a Reception

A determination of the remaining |l ength of the packet is nade. |If
either of the SYN, RST, SO or FINflags are set then legally the
entire packet has already been read and it is considered to have
"arrived’. No data portion of a packet is present when one of
those flags is set. Qherwise the LENGIH field specifies the
remai ni ng anount of data to read. In this case if the LENGTH
field is zero then the packet contains no data portion and it is
consi dered to have arrived

We now assune that a data portion is present and LENGTH was
non-zero. Counting the data checksum LENGTH+2 octets nust now be

read. Once read the data checksumtest is perforned. |If this
test fails the entire packet is discarded, return to the Synch
Detection stage. |If the test succeeds then the packet is

consi dered to have arrived

Fi nn [Page 18]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Once arrived the packet is released to the upper |evel protoco
software. In a nultiprocess inplenmentation packet reception would
now begin again at the Synch Detection stage.

Fi nn [Page 19]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

5. Functional Specification

A conveni ent nodel for the discussion and i nplenentation of protocols
is that of a state nmachine. A connection can be thought of as
passing through a variety of states, with possible error conditions,
fromits inception until it is closed. In such a nodel each state
represents a known point in the history of a connection. The
connection passes fromstate to state in response to events. These
events are caused by user calls to the protocol interface (a request
to open or close a connection, data to send, etc.), incom ng packets,
and tineouts.

I nf ormati on about a connection nust be naintained at both ends of
that connection. Follow ng the term nology of [TCP 81] the

i nformati on necessary to the successful operation of a connection is
called the Transm ssion Control Block or TCB. The user requests to
the protocol interface are OPEN, SEND, RECElVE, ABORT, STATUS, and
CLCSE

This chapter is broken up into three parts. First a brief
description of each protocol state will be presented. Following this
is aslightly nore detailed | ook at the allowed transitions which

occur between states. Finally a detailed discussion of the behavior
of each state is given

5.1. Protocol States
The states used to describe this protocol are:
LI STEN

This state represents waiting for a connection fromthe
other end of the Iink

SYN- SENT

This represents waiting for a matching connection request
after having sent a connection request.

SYN RECEI VED
This represents waiting for a confirmng connection request

acknow edgnment after having both received and sent a
connection request.

Fi nn [Page 20]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

ESTABLI SHED

This state represents a connection fully opened at both
ends. This is the nornmal state for data transfer

FI' N-VAI T

In this state one is waiting for a connection termination
request fromthe other end of the connection and an
acknow edgnent of a term nation request previously sent.

LAST- ACK

This end of the connection has seen and acknow edged a
term nation request fromthe other end. This end has
responded with a termnation request of its own and is now
expecting an acknow edgnent of that request.

CLOSI NG

This represents waiting for an acknow edgnent of a
connection term nation request.

TIME-VWAI T

This represents waiting for enough tine to pass to be sure
that the other end of the connection received the
acknow edgnent of its ternination request.

CLCSED
A fictional state which represents a conpletely term nated

connection. If either end of a connectionis in this state
it will neither send nor receive data or control packets.

Fi nn [Page 21]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

5.2. State Transitions

Fi nn

This section describes events which cause the protocol to depart
fromits current state. A brief nention of each state is
acconpanied by a list of departure events and to which state the
protocol goes as a result of those events. Departures due to the
presence of a RST flag are not shown.

5.2.1. LISTEN

This is a request to listen for any connection fromthe other
end of the link. 1In this state, no packets are sent. The
connection may be thought of as hal f-open. A STATUS request
will return to the caller this information.

Arrived at fromthe CLOSED state in response to a passive OPEN
In a passive OPEN no packets are sent, the interface is waiting
for the initiation of a connection fromthe other end of the
link. Also this state can be reached in certain cases in
response to an RST connection reset request.

Departures

- A CLOSE request is nmade by the user. Delete the half-open
TCB and go to the CLOSED state.

- A packet arrives with the SYN flag set. Retrieve the
sender’s MDL he placed into the LENGTH field. Set ANto
be received SN+1 nodulo 2. Build a response packet with
SYN, ACK set. Choose your MDL and place it into the
LENGTH octet. Choose your initial SN, place in AN. Send
this packet and go to the SYN RECEI VED st at e.

5.2.2. SYN SENT

Arrived at fromthe CLOSED state in response to a user’s active
OPEN r equest .

Departures

- A CLOCSE request is made by the user. Delete the TCB and
go to the CLOSED state.

- A packet arrives with the SYN flag set. Retrieve the
sender’s MDL he placed into the LENGTH field. Set ANto

[Page 22]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

be received SN+1 nodul o 2. Build a response packet with
ACK set, place in AN. Send this packet and go to the
SYN- RECEI VED st at e.

- A packet arrives with the SYN, ACK flags set. Retrieve
the sender’s MDL he placed into the LENGTH field. Set AN
to be received SN#1 nmodulo 2. Build a response packet
with ACK set. Set SN to be SN+1 nodulo 2, place SN and AN
into the header. Renenbering the other end’s MDL, build
data portion of packet. Send this packet and go to the
ESTABLI SHED st at e.

5.2. 3. SYN RECEI VED

Arrived at fromthe LI STEN and SYN-SENT states in response to
an arriving SYN packet.

Departures

- A CLOCSE request is nmade by the user. Create a packet with
FINset. Send it and go to the FINNWAIT state.

- A packet arrives with the ACK flag set. This packet
acknow edges a previ ous SYN packet. Go to the ESTABLI SHED
state. The TCB should now note the connection is fully
opened.

- A packet arrives with the FIN flag set. The other end has
decided to close the connection. Create a packet with
FIN, ACK set. Send it and go to the LAST-ACK state.

5.2.4. ESTABLI| SHED

This state is the nornmal state for a connection. Data packets
may be exchanged in both directions (MDL allowing). It is
arrived at fromthe SYN RECElI VED and SYN-SENT states in
response to the conpletion of connection initiation

Departures
- In response to a CLOSE request fromthe user. Set ANto
be nost recently received SNt1 nodulo 2. Build a packet
with FIN set. Set SNto be SN+1 nodulo 2, place SN and AN
into the header and send the packet. Go to the FINNWAIT
state.

- A packet containing a FINis received. Set AN to be

Fi nn [Page 23]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protocol

recei ved SN+1 nodulo 2. Build a response packet with both
FIN and ACK set. Set SN to be SN+1 nodul o 2, place SN and
AN into the header. No data portion is built. Send this
packet and go to the LAST-ACK state.

5.2.5. FINWAIT
Arrived at fromeither the SYN-RECEI VED state or fromthe
ESTABLI SHED state. |In both cases the user had requested a
CLCSE of the connection and a packet with a FIN was sent.
Departures

- A FIN, ACK packet is received which acknow edges the FIN
just sent. Go to the TIME-WAIT state.

- A FIN packet is received which indicates the other end of
the connection has sinultaneously decided to close. Set
AN=r ecei ved SN+1 nmodul o 2, and SN=SN+1 nmodulo 2. Send a
response packet with the ACK set. Go to the CLOSI NG
st at e.
5.2.6. LAST- ACK
Arrived at fromthe ESTABLI SHED and SYN- RECEIl VED st at es.
Departures

- An ACK is received for the |last packet sent which was a
FIN. Delete the TCB and go to the CLOSED state.

5.2.7. CLOSI NG
Arrived at fromthe FIN-WAI T state.
Departures

- An ACK is received for the |last packet sent which was a
FIN. Go to the TIME-WAIT state.

5.2.8. TIME-EWAIT

Arrived at fromthe FINWAIT and CLCSI NG st at es.

Fi nn [Page 24]

RFC 916

Cct ober 1984

Rel i abl e Asynchronous Transfer Protoco

Departures

- This states waits until 2*SRTT tine has passed. It then
del etes the TCB associated with the connection and goes to
the CLOSED state.

5.2.9. CLCSED

Fi nn

This state can be arrived at for a nunber of reasons: 1) while
in the LISTEN state the user requests a CLOSE, 2) while in the
SYN- SENT state the user requests a CLOSE, 3) while in the
TIME-VWAIT state the 2*SRTT tine period has el apsed, and 4)
while in the LAST-ACK state an arriving packet has an ACK of
the previously sent FIN packet.

In this state no data is read or sent over the link. To |eave
this state requires an outside request to open a new
connecti on.

Departures

- User requests an active OPEN. Create a packet with SYN
set. Choose your MDL and place it into the LENGITH octet.
Choose your initial SNN ANis immterial. Send this
packet and go to the SYN-SENT state. The TCB for this
connection is created. The connection may be thought of
as hal f-open. A STATUS request will return to the caller
this information.

- User requests a passive OPEN. The TCB for this connection
is created. The connection nmay be thought of as
hal f-open. A STATUS request will return to the caller
this information. Go to the LISTEN state.

[Page 25]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

5.3. State Behavi or

Fi nn

This section discusses in detail the behavior of each state in
response to the arrival of a packet. In what follows a packet is
not considered to have arrived until it has passed a nunber of
tests (see the chapter entitled: Packet Reception).

The met hod chosen to describe state behavior is tabular. Each
state is |listed opposite a sequence of named procedures to execute
whenever a packet has arrived.

STATE BEHAVI OR

LI STEN r A

SYN- SENT | B

SNFEE VD] & bl E R
CeAml gD | @ e E Rt it
AnwT | @ 2 E o
ek e mE R wm
g Tl e mE R
TMEWT | % E R
aosmn e T

For exanple, in the ESTABLI SHED state the arrival of a packet
causes procedure C2 to be executed, then D2, then E, F2, H2, and
finally 11, Any procedure may terninate the processing which
occurs or cause a state change. Note that these procedures are
executed in sequence, first C2, then D2, etc. The tine ordering
cannot be m xed.

The particular actions associated with each procedure are now
descri bed.

[Page 26]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

This procedure details the behavior of the LISTEN state. First
check the packet for the RST flag. |If it is set then packet is
di scarded and ignored, return and continue the processing
associated with this state.

We assunme now that the RST flag was not set. Check the packet
for the ACK flag. If it is set we have an illegal condition
since no connection has yet been opened. Send a RST packet
with the correct response SN val ue:

<SN=r ecei ved AN><CTL=RST>
Return to the current state without any further processing.

We assume now that neither the RST nor the ACK flags were set.
Check the packet for a SYNflag. |If it is set then an attenpt
is being made to open a connection. Create a TCB for this
connection. The sender has placed its MDL in the LENGTH fi el d,
al so specified is the sender’s initial SN value. Retrieve and
place theminto the TCB. Note that the presence of the SO flag
is ignored since it has no neaning when either of the SYN, RST,
or FIN flags are set.

Send a SYN packet which acknow edges the SYN received. Choose
the initial SN value and the MDL for this end of the
connecti on:

<SN=0><AN=r ecei ved SN+1 mpdul o 2><CTL=SYN, ACK><LENGTH=MDL>

and go to the SYN-RECElI VED state wi thout any further
processi ng.

Any packet not satisfying the above tests is discarded and

ignored. Return to the current state w thout any further
processi ng.

Fi nn [Page 27]

RFC 916

Cct ober 1984

Rel i abl e Asynchronous Transfer Protoco

Fi nn

This procedure represents the behavior of the SYN-SENT state
and is entered when this end of the connection decides to
execute an active OPEN

First, check the packet for the ACK flag. |If the ACK flag is
set then check to see if the AN value was as expected. |If it
was continue below. Oherwise the AN value was unexpected. |f
the RST flag was set then discard the packet and return to the
current state without any further processing, else send a
reset:

<SN=r ecei ved AN><CTL=RST>

Di scard the packet and return to the current state w thout any
further processing.

At this point either the ACK flag was set and the AN val ue was
as expected or ACK was not set. Second, check the RST fl ag.
If the RST flag is set there are two cases:

1. If the ACK flag is set then discard the packet, flush the
retransm ssion queue, informthe user "Error: Connection
refused", delete the TCB, and go to the CLOSED state wi thout
any further processing.

2. If the ACK flag was not set then discard the packet and
return to this state without any further processing.

At this point we assune the packet contained an ACK whi ch was
Kk, or there was no ACK, and there was no RST. Now check the
packet for the SYN flag. |If the ACK flag was set then our SYN
has been acknow edged. Store MDL received in the TCB. At this
point we are technically in the ESTABLI SHED state. Send an
acknow edgnent packet and any initial data which is queued to
send:

<SN=r ecei ved AN><AN=r ecei ved SN+1 nodul o 2><CTL=ACK><DATA>
Go to the ESTABLI SHED state w thout any further processing.
If the SYN flag was set but the ACK was not set then the other
end of the connection has executed an active open al so.

Acknowl edge the SYN, choose your MDL, and send:

<SN=0><AN=r ecei ved SN+1 nodul o 2><CTL=SYN, ACK><LENGTH=MDL>

[Page 28]

RFC 916
Rel i abl e Asynchronous Transfer Protoco

Fi nn

C1

Cct ober 1984

Go to the SYN-RECEI VED state without any further processing.

Any packet not satisfying the above tests is discarded and
ignored. Return to the current state wi thout any further
processi ng.

Exami ne the received SN field value. |f the SN val ue was
expected then return and continue the processing associ at ed
with this state.

We now assune the SN val ue was not what was expect ed.

If either RST or FIN were set discard the packet and return to
the current state without any further processing.

If neither RST nor FIN flags were set it is assuned that this
packet is a duplicate of one already received. Send an ACK
back:

<SN=r ecei ved AN><AN=r ecei ved SN+1 nodul o 2><CTL=ACK>

Di scard the duplicate packet and return to the current state
wi t hout any further processing.

Exanine the received SN field value. |f the SN val ue was
expected then return and continue the processing associ ated
with this state.

We now assune the SN val ue was not what was expect ed.

If either RST or FIN were set discard the packet and return to
the current state wi thout any further processing.

If SYN was set we assume that the other end crashed and has
attenpted to open a new connection. W respond by sending a
| egal reset:

<SN=r ecei ved AN><AN=r ecei ved SN+1 nodul o 2><CTL=RST, ACK>
This will cause the other end, currently in the SYN SENT state,
to close. Flush the retransm ssion queue, informthe user

"Error: Connection reset", discard the packet, delete the TCB
and go to the CLOSED state wi thout any further processing

[Page 29]

RFC 916
Rel i abl e Asynchronous Transfer Protoco

Fi nn

D1

D2

Cct ober 1984

If neither RST, FIN, nor SYN flags were set it is assuned that
this packet is a duplicate of one already received. Send an
ACK back:

<SN=r ecei ved AN><AN=r ecei ved SN+1 nodul o 2><CTL=ACK>

Di scard the duplicate packet and return to the current state
wi t hout any further processing.

The packet is examined for a RST flag. If RST is not set then
return and continue the processing associated with this state.

RST is now assunmed to have been set. |f the connection was
originally initiated fromthe LISTEN state (it was passively
opened) then flush the retransni ssion queue, discard the
packet, and go to the LI STEN state w thout any further
processi ng.

If instead the connection was initiated actively (cane fromthe
SYN- SENT state) then flush the retransni ssion queue, informthe
user "Error: Connection refused", discard the packet, delete
the TCB, and go to the CLOSED state w thout any further
processi ng.

The packet is examined for a RST flag. If RST is not set then
return and continue the processing associated with this state.

RST is now assuned to have been set. Any data remaining to be
sent is flushed. The retransm ssion queue is flushed, the user
is informed "Error: Connection reset.", discard the packet,
delete the TCB, and go to the CLOSED state wi thout any further
processi ng.

The packet is exam ned for a RST flag. |If RST is not set then
return and continue the processing associated with this state.

RST is now assuned to have been set. Discard the packet,

delete the TCB, and go to the CLOSED state wi thout any further
processi ng.

[Page 30]

RFC 916
Rel i abl e Asynchronous Transfer Protoco

Fi nn

F1

Cct ober 1984

Check the presence of the SYNflag. |If the SYNflag is not set
then return and continue the processing associated with this
state.

We now assune that the SYN flag was set. The presence of a SYN
here is an error. Flush the retransm ssion queue, send a | ega
RST packet.

If the ACK flag was set then send:
<SN=r ecei ved AN><CTL=RST>

If the ACK flag was not set then send:
<SN=0><CTL=RST>

The user should receive the nmessage "Error: Connection reset."
then delete the TCB and go to the CLOSED state without any
further processing.

Check the presence of the ACK flag. If ACK is not set then
di scard the packet and return without any further processing.

We now assune that the ACK flag was set. |f the AN field val ue
was as expected then return and conti nue the processing
associated with this state.

We now assune that the ACK flag was set and that the AN field
val ue was unexpected. |f the connection was originally
initiated fromthe LISTEN state (it was passively opened) then
flush the retransm ssion queue, discard the packet, and send a
| egal RST packet:

<SN=r ecei ved AN><CTL=RST>

Then delete the TCB and go to the LISTEN state wi thout any
further processing.

O herwi se the connection was initiated actively (came fromthe
SYN-SENT state) then informthe user "Error: Connection
refused", flush the retransm ssion queue, discard the packet,
and send a | egal RST packet:

[Page 31]

RFC 916
Rel i abl e Asynchronous Transfer Protoco

Fi nn

F2

F3

Cct ober 1984

<SN=r ecei ved AN><CTL=RST>

Then delete the TCB and go to the CLOSED state without any
further processing.

Check the presence of the ACK flag. If ACKis not set then
di scard the packet and return wi thout any further processing.

We now assune that the ACK flag was set. |f the AN field val ue
was as expected then flush the retransni ssion queue and inform
the user with an "Ok" if a buffer has been entirely

acknow edged. Anot her packet containing data may now be sent.
Return and continue the processing associated with this state.

We now assune that the ACK flag was set and that the AN field
val ue was unexpected. This is assuned to indicate a duplicate
acknow edgnment. It is ignored, return and continue the
processing associated with this state.

Check the presence of the ACK flag. If ACKis not set then
di scard the packet and return without any further processing.

We now assune that the ACK flag was set. [|f the AN field val ue
was as expected then continue the processing associated with
this state.

We now assune that the ACK flag was set and that the AN field
val ue was unexpected. This is ignored, return and continue
with the processing associated with this state.

This procedure represents the behavior of the CLOSED state of a
connection. Al incom ng packets are discarded. |If the packet
had the RST flag set take no action. Qherwise it is necessary
to build a RST packet. Since this end is closed the other end
of the connection has incorrect data about the state of the
connection and should be so inforned.

If the ACK flag was set then send:

<SN=r ecei ved AN><CTL=RST>

[Page 32]

RFC 916
Rel i abl e

H1

Fi nn

Cct ober 1984
Asynchronous Transfer Protoco

If the ACK flag was not set then send:
<SN=0><AN-=r ecei ved SN+1 nodul o 2><CTL=RST, ACK>

After sending the reset packet return to the current state
wi t hout any further processing.

Qur SYN has been acknowl edged. At this point we are
technically in the ESTABLI SHED state. Send any initial data
which is queued to send:

<SN=r ecei ved AN><AN=r ecei ved SN+1 nodul o 2><CTL=ACK><DATA>

Go to the ESTABLI SHED state and execute procedure |1 to process
any data which might be in this packet.

Any packet not satisfying the above tests is discarded and
ignored. Return to the current state w thout any further
processi ng.

Check the presence of the FINflag. If FINis not set then
continue the processing associated with this state.

We now assune that the FIN flag was set. This neans the other
end has decided to close the connection. Flush the

retransm ssion queue. |If any data remains to be sent then
informthe user "Warning: Data left unsent." The user nust

al so be informed "Connection closing.” An acknow edgnment for
the FIN nust be sent which also indicates this end is closing:

<SN=r ecei ved AN><AN=r ecei ved SN + 1 nodul o 2><CTL=FI N, ACK>

Go to the LAST-ACK state without any further processing.

[Page 33]

RFC 916

Cct ober 1984

Rel i abl e Asynchronous Transfer Protoco

Fi nn

This state represents the final behavior of the FINNWAIT state.

I f the packet did not contain a FIN we assunme this packet is a
duplicate and that the other end of the connection has not seen
the FIN packet we sent earlier. Rely upon retransm ssion of
our earlier FIN packet to informthe other end of our desire to
close. Discard the packet and return wi thout any further
processi ng.

At this point we have a packet which should contain a FIN. By
the rules of this protocol an ACK of a FINrequires a FIN, ACK
in response and no data. |If the packet contains data we have
detected an illegal condition. Send a reset:

<SNer ecei ved AN><AN=r ecei ved SN+1 nodul o 2><CTL=RST, ACK>

Di scard the packet, flush the retransnission queue, informthe
user "Error: Connection reset.", delete the TCB, and go to the
CLOSED state w thout any further processing.

We now assune that the FIN flag was set and no data was
contained in the packet. |If the AN field value was expected
then this packet acknow edges a previously sent FIN packet.
The ot her end of the connection is then also assunmed to be

cl osing and expects an acknow edgnent. Send an acknow edgnent
of the FIN

<SN=r ecei ved AN><AN=r ecei ved SN+1 nodul o 2><CTL=ACK>
Start the 2*SRTT tinmer associated with the TIME-WAIT state,
di scard the packet, and go to the TIME-WAIT state wi thout any
further processing.
O herwi se the AN field val ue was unexpected. This indicates a
si mul t aneous cl osing by both sides of the connection. Send an
acknow edgnment of the FIN

<SNer ecei ved AN><AN=r ecei ved SN+1 nodul o 2><CTL=ACK>

Di scard the packet, and go to the CLOSI NG state w t hout any
further processing.

[Page 34]

RFC 916

Cct ober 1984

Rel i abl e Asynchronous Transfer Protoco

Fi nn

This state represents the final behavior of the LAST-ACK state.

If the AN field value is expected then this ACKis in response
to the FIN, ACK packet recently sent. This is the fina

acknow edgi ng nessage indicating both side’s agreenment to cl ose
the connection. Discard the packet, flush all queues, delete
the TCB, and go to the CLOSED state w thout any further
processi ng.

O herwi se the AN field val ue was unexpected. Discard the
packet and remain in the current state w thout any further
processi ng.

This state represents the final behavior of the CLOSING state.

If the AN field value was expected then this packet

acknow edges the FIN packet recently sent. This is the fina
acknow edgi ng nessage indicating both side's agreenent to cl ose
the connection. Start the 2*SRTT tinmer associated with the
TIME-WAIT state, discard the packet, and go to the TIME-WAIT
state without any further processing.

O herwi se the AN field val ue was unexpected. Discard the
packet and remain in the current state w thout any further
processi ng.

This state represents the behavior of the TIME-WAIT state.
Check the presence of the ACK flag. If ACK is not set then
di scard the packet and return wi thout any further processing.

Check the presence of the FINflag. If FINis not set then
di scard the packet and return without any further processing.

We now assune that the FIN flag was set. This situation

i ndi cates that the |last acknow edgnment of the FIN packet sent
by the other end of the connection did not arrive. Resend the
acknow edgment :

<SN=r ecei ved AN><AN=r ecei ved SN+1 nodul o 2><CTL=ACK>

[Page 35]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Restart the 2*SRTT tiner, discard the packet, and remain in the
current state without any further processing.

This represents that stage of processing in the ESTABLI SHED
state in which all the flag bits have been processed and only
data may remain. The packet is examned to see if it contains
data. |If not the packet is now discarded, return to the
current state without any further processing.

We assume the packet contained data, that either the SO fl ag
was set or LENGIH is positive. That data is placed into the
user’s receive buffers. As these becone full the user should
be i nformed "Receive buffer full."” An acknow edgnent is sent:

<SN=r ecei ved AN><AN=r ecei ved SN+1 nodul o 2><CTL=ACK>

If data is queued to send then it is nost efficient to
'’ pi ggyback’ this acknow edgnent on that data packet.

The packet is now discarded, return to the ESTABLI SHED state
wi t hout any further processing.

5.4. Tinmers

Fi nn

There are three tinmers associated with this protocol. Their
purpose will now be briefly discussed as will the actions taken
when a tiner expires. The particular nature these tineouts take
and the methods by which they are set is the responsibility of the
prot ocol inplenentation.

5.4.1. User Tineout

For practical inplementation reasons it is desirable to have a
user controllable tinmout associated with the successfu

openi ng of a connection, successful acknow edgnent of data, and
successful closing of a connection. Consider the situations in
whi ch a connection is so noisy that no data gets through, or a
connection is physically cut. Wthout an overriding tinmeout
these situations would result in unbounded retransni ssions.

When this timeout expires the user is infornmed "Error:

Connection aborted due to user tinmeout.", all queues are
flushed, the TCB is deleted, and the CLOSED state is entered

[Page 36]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

5.4.2. Retransm ssion Ti neout
This tinmer ensures that any packet sent for which the SNis

significant is acknow edged. Wen such a packet is sent it is
placed in a retransni ssion queue and the retransmi ssion timer

is begun. If an acknow edgnent has not arrived within the
timer’'s period then the packet is retransnmitted and the tiner
is restarted. |If the acknow edgnent does arrive in tine then

the tiner is stopped and the packet is renoved fromthe
retransm ssi on queue. The next packet with a significant SN
may now be sent.

This timeout is expected to operate in conjunction with a
counter which keeps track of the nunber of tines a packet has
been retransmtted. Nornally an upper linmt is set on
retransmissions. |If that linmt is exceeded then the connection
is aborted. This event is simlar to the user tineout. The
user is informed "Error: Connection aborted due to

retransm ssion failure", all queues are flushed, the TCB is

del eted, and the CLOSED state is entered.

5.4.3. TIME-WAIT Ti meout

This timeout is used to catch any FIN packets which m ght be
retransmtted fromthe other end of a connection in response to
a dropped acknow edgnent packet. The tineout period should be
at least as long as 2*SRTT. After this tinmeout expires the

ot her end of the connection is assuned to be closed, the TCB is
deleted, and this end enters the CLOSED state al so

Fi nn [Page 37]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

6. Data Error Handling

This chapter discusses in detail the types of data errors an
est abl i shed connection may encounter. These are distinct from
protocol errors discussed above. |n order of discussion these are:

Fi nn

.1

- Framing Errors

- M ssing SYNCH pattern

- Unacknow edged packets

- Bad packets

- Duplicate packets

- Qutside flow control

- Packets that are too large
- Packets that are too smal
Framing Errors

The RS-232 specification provides fram ng only for an individua
octet. Link level protocols for conputer networking normally
provide fram ng for each packet. The SYNCH pattern provides a
boundary for the beginning of a packet. No similar pattern was
chosen to mark the end and conpletely frame the packet.

Any bit pattern can appear in the data portion of a packet. For
any particular pattern to reliably mark the end of a packet that
termnating pattern cannot be allowed to appear in the data. This
is usually acconplished by the sender altering any occurrence of
the ternminating pattern in the data so that it is both no | onger
recogni zabl e as that pattern and al so restorabl e upon receipt.
Both the sender and the receiver are required by this technique to
examine all the data. 1In the absence of a protocol chip to
performthis function, it is a source of sone overhead.

6.1.1. Synthetic Franing

In the absence of frami ng, the end of the packet must be
synthetically determ ned. The start of a packet is indicated
by the SYNCH pattern. The expected end of a packet can now
only be deternined by exani ning the LENGITH octet of the header
It is inmportant to know whether or not the LENGITH data can be

[Page 38]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

trusted. This is acconplished by enpl oying a one octet header
checksumto cover the first two octets follow ng the SYNCH
pattern. |If the header passes the checksumtest and neither
the SYN, FIN, RST, nor SO flag bits were set then LENGTH is
trusted and the nunmber of octets expected beyond the header is
LENGTH+2. (For those packets in which any of the above flag
bits are set the packet length is fixed and includes only a
header portion.)

I f the header fails the checksumtest we are in sone
difficulty. The length is incorrect so it may be too small or
too large. To recover fromthis error do the follow ng

Begi nning i medi ately after the SYNCH pattern rescan | ooki ng
for the next SYNCH pattern. Throw away all octets until a
SYNCH i s seen and then attenpt to reinterpret it as a packet.
The sender’s retransni ssion tinmeout guarantees that a new copy
of the packet will be transmitted. This ensures that in

di scarding the initial SYNCH pattern, the SYNCH pattern from
the beginning of the retransnmitted packet will eventually be
seen.

6.1.2. Costs of Synthetic Fran ng

This fram ng strategy causes no overhead unless data errors
occur in the packet. This is presuned to be a |low probability
occurrence. |In addition it renoves the overhead of both sender
and receiver passing over the data to process any term nation
pattern which mght appear in the data.

The worst case behavior would require a packet header to fai

its checksum a new SYNCH pattern to appear in the next few
octets, that header failing its checksum etc., until the SYNCH
pattern of the retransmtted packet were finally seen

Consi stently bad behavior of this type indicates an extrenely
noi sy conmmuni cations |ink

6.2. Mssing SYNCH Pattern

Fi nn

Any valid packet nmust begin with the SYNCH pattern. Any receiver
must discard all input octets until the SYNCH pattern is seen

The data which immediately follows a SYNCH pattern is interpreted
as a packet. The header checksumtest is applied, then LENGIH+2

octets are read, the data checksumtest is applied, etc.

[Page 39]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

6. 3. Unacknow edged Packets

Fi nn

If an ACK for a packet is not obtained within the retransm ssion
timeout interval that packet is retransmitted. Because
significant variability in response can be expected from either
end of a connection it is best to dynanically calculate the
retransm ssion tineout interval. An exanple of such a calculation
is provided below. The protocol will operate successfully,

al though not with as high an effective transnmission rate, if a
realistic upper bound tine is used instead.

A realistic upper bound tinme depends upon the packet size and line
speed. |If the baud rate of the connection is 300 or above let B
be the baud rate (for clarity assunme it is the sane in both
directions), let L be the MDL of the receiver, let P be the packet
processing time of the receiver. Then an Upper Bound for the
Reception Tine (UBRT) is:

UBRT = L/ (B/10) seconds + P seconds
and a realistic upper bound tine is 2*UBRT seconds.
6.3.1. Calculation of Retransm ssion Tineout Interva

For the purpose of detecting retransm ssion tinme out the
protocol must have access to a clock which provides at |east
single second resolution. One technique for calculating the
round trip time is:

Measure the el apsed tinme between sending a packet with a
particul ar SN and receiving an ACK with an AN whi ch covers
that SN. The neasured el apsed tinme is the Round Trip Tinme
(RTT). Next a Snpothed Round Trip Tine (SRTT) is cal cul ated
as:

SRTT = (ALPHA * SRTT) + ((1- ALPHA) * RITT)

and based upon this you conmpute the Retransm ssion Tinme Qut
(RTO as:

RTO = mi n[UBOUND, max[LBOUND, (BETA * SRTT)]]
where UBOUND i s an upper bound on the timeout (e.g., 1
m nute), LBOUND is a | ower bound on the timeout (e.g., 1

second), ALPHA is a snoothing factor (e.g., .8 to .9), and
BETA is a delay variance factor (e.g., 1.3 to 2.0).

[Page 40]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

6. 4. Bad Packets

A bad packet is received when it fails either the header or data
checksum tests. Wen this happens the sender will retransmt the
packet after the retransnission tinmeout interval

6.5. Duplicate Packets

Fi nn

A duplicate packet is a packet which passes the checksumtests but
for which the SN received is significant but not the expected
value. This is normally caused when the sender did not get the
ACK | ast sent by the receiver. This situation is diagramed

bel ow.

Side A Side B
ESTABLI SHED ESTABLI SHED
1. - -> <SN=1><AN=0><CTL=ACK><DATA> .

-->
2. XXX <SN=0><AN=0><CTL=ACK><OTHER- DATA> <- -

3. (after SRTT)
- - > <SN=1><AN=0><CTL=ACK><DATA>

4, -->
<SNF0><AN=0><CTL=ACK><OTHER- DATA> <- -

5. <- -

Inline 2, B's packet was lost in transit, it may have failed its
checksumtests when it reached A or its initial SYNCH pattern was
smashed, etc.. Inline 3 side A cones to the decision that its
packet fromline 1 was not received after SRTT time passes and
retransmts that packet.

Inline 4 side B receives the packet. It detects a duplicate
because it already sent a packet acknow edging A's SN=1 (although
that packet was lost). B now discards the duplicate and
imMmediately retransnmits its |ast packet to A. Side A finally
receives the retransnitted packet in line 5.

[Page 41]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

6. 6. CQutside Flow Control

Fi nn

There are many | arge conputer systens which make use of flow
control to regulate their input side of an RS-232 link. Flow
control based upon two special characters such as <Crl-S> (ASCl
DC3) and <Ctrl-Q (ASCII DCl) is alnost universally in use today.
So it becomes inportant for the protocol to be able to either:

(1) Recogni ze and obey the flow control of the host
conputer(s), or

(2) lgnore the flow control but still guarantee reliable data
reception.

It is the latter approach which this protocol takes. This
deci si on was nade because the nunmber of differing flow contro
characters in use would nmake it difficult to obey themall

There is a particular type of flow control with which this
protocol will not operate. The ENQU RE, ACKNOALEDGE net hod of
flow control requires that the receiver of an inquiry respond
with an acknow edge before any nore data will be sent to it.
This type of flow control also usually prohibits unrestricted
8-bit data transni ssion because the inquiry character is

forbi dden as a data byte.

For the other class of flow control nmethods a proof is required
that data may still be reliably transmtted and received if flow
control is ignored. For the purposes of this discussion assune
<Ctrl-S> is sent when the receiving end of the connection w shes
the sender to stop transmtting. A <Crl-Q is sent when the
recei ver wi shes the sender to resune. The choice of these
particular two characters is arbitrary. |If the sender does not

i medi ately cease transni ssion upon receipt of the <Ctrl -S>,
characters may be discarded. Since this protocol chooses to
ignore the flow control characters any part of a packet may be
di scar ded

More precisely stated consider X to be the receiver and Y to be
the sender. The packet sent is represented by the string abc
where a, b, and c are data segnments of unspecified size. X may
recei ve one of:

1. abc
2. ab
3. ac
4. bc

[Page 42]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

For case [1] the correct data is received and no special action
need be taken

For cases [2], [3], and [4] we have a situation identical to data
dropped during transm ssion. This is handled by the sane
checksum tine-out and retransm ssion strategy al ready descri bed.

Assume Y is not now in the act of receiving a packet, then Y sees
the two characters <Ctrl-S> and <Ctrl-Q@ appear as input in that
order. Y is waiting for a nessage to appear and so expects to see
a SYNCH pattern. |If the two characters "<Ctrl-S><Ctrl-Q@" are not
part of a SYNCH pattern then they will be inmediately discarded.

If Yis receiving a packet then the <Ctrl-S> and <Ctrl-Q@ are seen
to be added noi se characters and woul d be detected by the checksum
tests. The packet being received would require retransm ssion

The question of which character to pick for the SYNCH pattern is
slightly nmuddi ed by the above observation. To the author’s
know edge <SOH> is rarely if ever picked for flow control. This
is part of the notivation in using it as the SYNCH pattern

How does one guarantee that any data will actually arrive
successfully? The initial choice of maxi mum data counts during
connection establishnment is very inportant. Sonme know edge of
one’s own operating systemnust be assunmed. If it is known for
exanpl e, that streans of data in excess of a certain length wll
often trigger flow control at the connection baud rate, then the
maxi mum dat a count should be chosen sufficiently |ower that flow
control rarely will be enployed. An intelligent choice of the
maxi mrum data count will guarantee that sonme packets will arrive
wi t hout encountering flow control

6.7. Packets that are too Large

Assume a packet arrives which passes its header checksumtest but
whose LENGTH is larger than the MDL of the receiver. In such a
case the sender has violated the protocol or a packet has a data
error in the LENGIH octet and has passed the header checksumtest.
The latter is unlikely so that we assune the fornmer. The receiver
will abort his connection. The sender nmust informthe user

"Error: Connection aborted due to MDL error", and go to the CLOSED
state.

When the MDL is exceeded the receiver will transmt a |legal reset:

<SN=r ecei ved AN><CTL=RST>

Fi nn [Page 43]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

6. 8. Packets that are too Small

Fi nn

Assunme that a packet has passed its header checksumtest but sone
of the data octets have been dropped by the link. In such a case
the receiver’s routine which reads data and buil ds packets is
expecting octets which do not arrive. After SRTT the sender will
retransmt this packet to the receiver. The receiver will now
have enough data to conplete the packet. Al nobst certainly however
it will fail the data checksumtest. As with any bad packet the
receiver will rescan fromthe octet imediately follow ng the
SYNCH pattern for the next SYNCH pattern. |In this manner the
receiver will eventually see the SYNCH pattern of the
retransmtted packet.

[Page 44]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Inability to Transmit/ Receive 8-bit Data

There are sone ol der operating systens and devi ces which do not

pernmit 8-bit conmunication over an RS-232 link. Mst of these allow
restricted 7-bit conmmunication. Were this is an unavoi dable probl em
both ends of the connection nust have a protocol |ayer beneath this
protocol. This lower layer will unpack packets it sends over the
RS-232 link. It will also repack packets it receives over the RS-232
link. RATP will automatically deternine whether or not full 8-bit or
restricted 7-bit comunication is being used (see bel ow).

The strategy chosen for restricted 7-bit communication is called 4/8
packing. That is, each octet to be sent will be broken up into two
4-bit nibbles. The order of transmission is the high order four bits
followed by the |ow order bits. Each octet to be received will be
repacked by the inverse function. The high order nibble will be
received first then the | ow order nibble. These two nibbles will be
reassenbled into an octet.

I.1. Encoding for Transm ssion

For those systens which are incapable of 8-bit data transm ssion
over RS-232 links, there are operating systens which in addition
pl ace special restrictions on the non-printable ASCI| characters.
The encoding for 4/8 packing should restrict itself to
transmitting data only in the printable 7-bit ASCI | range.

|.2. Framing an Cctet

The seventh and hi ghest order bit of a transmitted 7-bit ASCl
byte is a flag used to indicate whether the high or |ow order

ni bbl e of an octet is contained in this character. This flag bit
if set inplies that a new octet is being received and that this
printable ASCI| character contains the high order nibble of an

octet inits four low order bits. 1In addition it inplies the next
ASCI | character received should not have its highest order bit
set.

This high order flag bit is set by adding the ASCII character "@
(octal 100) to a data byte. Thus the first nibble of an octet is
always transnmitted with "@ added to its value. The high order
nibble will be transforned into the characters "@ through letter
Q.

The | ower order nibble of an octet is transmtted with zero "0"
added to its value. The |ow order nibble will be transforned into

Fi nn [Page 45]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Fi nn

characters "0" through "?". \Wen receiving 4/8 packed data, any
characters not within the range "0" through letter "O' are
di scar ded

The octet whose octal value is 45 will be transmitted as two 7-bit
printable ASCI| characters:

B S +

High order |1/0/0/0]1/0/0| First transmtted ("@ + data) = D
T +

Low order |0]1]1]0]1]0]1 Second transmtted ("0" + data) =5
B +

Since data bytes nay be dropped or added at any tine it is

i mportant to know al ways which portion of an octet is expected and
to deliver only conplete octets to the higher protocol level. |If
a single 7-bit character were conpletely dropped w thout being
noticed the data streamdelivered to the higher level could be

shifted by an odd multiple of four bits. |In the worst case this
condition could remain indefinitely and the higher |evel would
never receive an octet correctly. In such a case no packets would

be correctly received, |eading to an unusabl e connection

To avoid this problemoctets are assenbl ed using a state machi ne
driven by the presence of the high order flag bit. The presence
of that bit in the 7-bit printable character indicates the

begi nning of a new octet. The two state nachi ne which assenbl es
octets is described below. A byte received with the high order
flag bit set is called "H GH', the byte without "LOW.

State O

[Start state] Read a byte fromthe legal restricted set.
This is determined by seeing if the byte is in the | ega
range "@ to the letter "O'. |If it was not discard the byte
and return to this state.

A H GH byte was read. Place the four |ow order bits of the
byte into the four high order bits of the assenbl ed octet
and go to state 1. Oherwise discard the byte and return to
this state.

[Page 46]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

State 1

Read a byte fromthe legal restricted set. This is
determned by seeing if the byte is in the | egal range zero
"0" to the letter "O'. If it was not discard the byte and
return to this state.

If a LOWbyte was read subtract zero "0" fromthe byte
placing the four low order bits of the result into the four

| ow order bits of the assenbled octet. A full octet has now
been assenbl ed. Pass the octet to the higher |evel and go
to state O.

O herwi se a HHGH byte was read. Place the four |ow order
bits of the byte into the four high order bits of the
assenbl ed octet and return to this state.

Utilizing this state machine to receive 4/8 packed data ensures
that the data stream delivered to the higher level will not
permanently remain shifted an odd multiple of four bits. The
restriction placed upon bytes read renoves obviously bad data and
in sone cases woul d handl e uncontrol | ed paddi ng or bl ocki ng

i nsertion.

I.3. Automatic Detection of 8-bit or 4/8 Packed Data
It is an unavoi dabl e problemthat sone nachi nes cannot handl e
unrestricted 8-bit data. Since this is given, it is desirable to
be able to autonmatically detect whether unrestricted 8-bit or
restricted 4/8 packing is being used to transnit data on a
connection. For the purposes of this discussion those machines
capabl e of transmitting and receiving both unrestricted 8-bit and
4/ 8 packed data are called smart. Machines are called dunb if
they can only transnit and receive 4/8 packed data.

Wien initiating a connection there are four possible nachine
configurations and they are:

1. A (snmart) opens a connection to B (smart).
2. A (dunb) opens a connection to B (snart).
3. A (dunb) opens a connection to B (dumnb).

4. A (snmart) opens a connection to B (dunb).

Fi nn [Page 47]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Fi nn

Each case is exanm ned and extensions to the behavior for the
LI STEN and SYN- SENT states are provided which allow both types of
machines to initiate or receive a connecti on.

Cases 1 and 2: LI STEN Behavior for a Smart WMachi ne

In these cases machine A initiates a connection to B who is
assuned to be in the LISTEN state. B nust be able to passively
det ect whether 8-bit or 4/8 packing is being used and respond
accordingly. The nethod B uses relies upon the detection of a
valid first packet. In the LISTEN state B attenpts to

simul taneously treat the incoming data as if it were both
unrestricted 8-bit and 4/8 packed.

The incoming data is in effect fed to two different receiving
algorithms. The detection of a valid header will occur to one
of these algorithns before the other. |If the first valid
header was read assunming unrestricted 8-bit data then any
resulting connection is assuned to use unrestricted 8-bit data

for the life of the connection. |If the first valid header
assuned 4/ 8 packing then the resulting connection is assuned to
use 4/ 8 packing for the life of the connection. |In the case of
the detection of illegal condition in the LI STEN state the

protocol will reply with a RST packet in kind.
Case 3: LI STEN Behavior for a Dunb Machi ne

In this case nmachine Bis the recipient of a connection request
and is capable of handling only 4/8 packed data. The LI STEN
behavi or for machine B assunes that all connections are 4/8
packed. It never deals with unrestricted 8-bit data. As a
result it will refuse to open a connection request froma smart
machi ne (see case 4 bel ow).

Case 4: SYN SENT Behavior for a Smart Machine
In this case nachine A attenpts to open a connection to machine

B. However, A has no know edge of B's capabilities. A wll
send its connection request assuming B is smart using

unrestricted 8-bit transnmission. It will await a reply
assunming the response will be unrestricted 8-bit also. If Bis
in fact dumb it will not return a SYN-ACK because of the
restriction inposed by case 3 above. |If no connection is nmade

with B using 8-bit data the entire connection initiation is
restarted assuming B is dunb, 4/8 packing is used and the
response is assuned to be 4/8 packed as well.

[Page 48]

RFC 916

Cct ober 1984

Rel i abl e Asynchronous Transfer Protoco

Fi nn

The cost of this approach is a longer tine to deterni ne whether
or not it is possible to open a connection to B. It is twice as
Il ong. The advantages of being able to automatically adjust to
either unrestricted 8-bit or 4/8 packed data out weigh this

di sadvantage. RATP will not exhibit the schizophrenic behavior
of many other asynchronous protocols when dealing with both

cl asses of machi nes.

[Page 49]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Il. A Brief Survey of Some Asynchronous Link Protocols
I1.1. DDCWP

DDCWP, Copyright (c) 1978 Digital Equi pment Corporation [DDCVP
78], is areliable point-to-point and nulti-point transm ssion
protocol is used by many of that manufacturer’s computers. DDCWP
does provide reliable asynchronous two way data transm ssion

Sonme of the decisions taken in the design of DDCWP reflect its
orientation toward nulti-point data links. This |eads to headers
whi ch are substantially | onger than needed for two way

poi nt -t o- poi nt comuni cati ons.

DDCWP al | ows as nmany as 255 outstandi ng unacknow edged nessages.
DDCWVP does specifically nmention that a particular end of a
connection may choose to limt the send queue to one outstandi ng
unacknow edged nessage. It also allows sending a stream of

out st andi ng unacknow edged packets. Unless all RS-232

i npl enment ati ons of DDCMP were limted to a single outstanding
packet, the collision with existing flow control restrictions
could lead to very low thruput. (DDCMP is assuned to have contro
over the link driver. Dealing with various differing flow contro
nmechani sns i s not a consideration.)

DDCVP uses a CRC pol ynomi al for data protection which is difficult
to calculate for many nmachi nes wi thout special hardware [TCP
Checksum 78] . Many Digital Equi pnrent conputers have such

har dwar e

DDCVP does not provide the receiver with the ability to restrict
i ncom ng packet size. It is true that all the higher |eve
protocols built on top of DDCMP coul d separately negotiate packet
size. But this burden would then be noved away fromthe |ink

| evel where it properly resides.

Cenerally, a full inplementation of DDCMP is too conplex for
consideration. |If one were to inplement ’'part’ of the protoco
then issues of conpatibility with already existing inplenentations
on ot her conputers are raised

Fi nn [Page 50]

RFC 916

Cct ober 1984

Rel i abl e Asynchronous Transfer Protocol

Fi nn

MODEM Pr ot ocol

This is a protocol in comon use anpngst mnicroconputers. The
description here cones from

MODEM XMODEM Pr ot ocol Expl ai ned by Kelly Smith, CP/ M Net
"SYSOP" January 8, 1980

Data is sent in 128-byte sequentially nunbered bl ocks,
with a single checksum byte appended to the end of each bl ock.
As the receiving conputer acquires the incomng data, it
performs its own checksum and upon each conpl etion of a bl ock,
it conpares its checksumresult with that of the sending
computers. |If the receiving conmputer matches the checksum of
the sending conputer, it transmts an ACK (ASCI| code protocol
character for ACKNOALEDGE (06 Hex, Control-F)) back to the
sendi ng conputer. The ACK therefore nmeans "all’s well on this
end, send sone nore...".

The sending conputer will transmit an "initial NAK' (ASClI
protocol character for NEGATI VE ACKNOALEDGE (15 Hex,
Control-U))...or, "that wasn’'t quite right, please send again".
Due to the asynchronous nature of the initial "hook-up" between
the two conputers, the receiving conputer will "tine-out"

| ooking for data, and send the NAK as the "cue" for the sending
conmputer to begin transm ssion. The sending conmputer knows
that the receiving conputer will "tinme-out", and uses this fact
to "get in sync"... The sending conputer responds to the
"initial NAK" with a SOH (ASCI| code protocol character for
START OF HEADI NG (01 Hex, Control-A)), sends the first block
nunber, sends the 1's conpl enent of the bl ock nunmber, sends 128
bytes of 8 bit data, and finally a checksum where the checksum
is calculated by sunm ng the SOH, the bl ock nunber, the block
nunber 1's conpl enent, and the 128 bytes of data.

Recei vi ng Conputer:

Sendi ng Conputer:

- - -/ SOH/ BLK#/ BLK#/ DATA/ CSUM - - - | SCH/ BLK#/ BLK#/ DATA/ et c.
01H O1H FEH 8bit 8bit 01H 02H FDH 8bit

[Page 51]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Fi nn

This process continues, with the next 128 bytes. |If the block
was ACK ed by the receiving conmputer, and then the next
sequential block nunber and its 1's conpl enent, etc.

As can be seen fromthis partial description the MODEM protocol is
unidirectional, data can only pass fromthe sender to the receiver
in a stream |In order for data to flow simultaneously in the

ot her direction another connection over another RS-232 |ine would
be required.

In addition this protocol is restricted to a fixed 128 octet
packet size. Many front-end concentrators are unable to service
such large incom ng packets. It has been observed nany tines that
the concentrator of a busy DECsystem 20 can invoke flow control on
i nput at 1200 baud for packets as small as 64 characters.

.3. KERMT System

The KERM T system Copyright (c) 1981 Col unbia University, is a
file transfer environment devel oped recently. It has

i mpl enent ati ons which run on DECsystem 20, |BM 370 VM CMS, 8080
CP/ M based systens, and the |IBM PC anong ot hers.

KERM T conbi nes both the reliable transfer and file transfer into
a single package. Extension to other applications and hi gher

| evel protocols would be possible but the boundary between the
reliable transfer and application layers is very indistinct. It
violates the layering design strategy the Internet enploys.

There is a limtation of transmi ssion to the restricted printable
ASCI| set for certain conputers but not for others. This leads to
confusion. KERMT allows both restricted ASCI1 and 8-bit
transm ssi on.

The KERM T protocol does have a nethod of setting MDL at
connection initiation. It is limted to a smaller naxi mum packet
size, 96 as opposed to 261 octets. Kernit originally used a
checksunming algorithmlinmted to six bits. This is considered to
provide too low a level of error detection capability for data
packets. Kermit now allows two other checksunming algorithns in
addition to the original. There nmust be a negotiation between
sender and receiver regarding which algorithmto use

The KERM T protocol does not appear to make provision for both
sides of a connection attenpting an active open sinmultaneously.
One side nust be an initial "sending Kermt" and the other a
"receiving Kermt". The code published as a KERM T i npl enentation

[Page 52]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Fi nn

gui de cannot recover from simnultaneous active opens, it
i medi ately ABORTs. This reflects a bias towards unidirectiona
data fl ow

The KERM T packet type (similar to RATP control flags) specifies
whet her an ACK/NAK is contained in the packet, or data, etc.
These are nutual |l y exclusive and pi ggybacki ng an ACK on a data

packet is not possible. This can be a source of overhead. 1In
addition KERM T restricts the sender to a single outstanding
unacknow edged packet as does RATP. It allocates an entire byte

to the sequence nunber which is unnecessary.

On the subject of error recovery, the size of a packet is
contained in the second byte of the packet and is not protected by
a header checksum If the length field was in error due to noise
on the link, it could be longer than the correct packet size. The
code published as the KERM T inpl enentati on guide relies upon the
detection of the <SOH> character anywhere in a packet to indicate
t he begi nning of a packet header. 1t re-SYNCHs using this
technique. This is only possible if binary data in a packet is

quoted. If full eight bit data is transmitted it does not appear
that the KERM T protocol rescans for a new MARK (SYNCH) character
within the bad packet data just consuned. It will under these

circunmstances throw away the retransnitted packet or portions
thereof. Re-SYNCH ng under such conditions is problematical

[Page 53]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protocol
REFERENCES

[Cohen 81]

Cohen, D. On Holy Wars and a Plea for Peace. |EEE Conputer,
Cct ober, 1981.

[DDCVP 78]

DDCVP AA- D599A- TC edition, Digital Equi pment Corporation, 1978.
Version 4.0.

[1P 81]

Postel, J. DOD Standard Internet Protocol [RFC 791] Defense
Advanced Research Projects Agency, 1981.

[TCP 81]

Postel, J. Transmission Control Protocol [RFC 793] Defense
Advanced Research Projects Agency, 1981.

[TCP Checksum 78]

Plummer, W W TCP Checksum Function Design. Technical Report,
Bolt Beranek and Newman, Inc., 1978.

EDI TORS NOTES
This neno was prepared in essentially this formin June 1983, and set
aside. Distribution at this time is pronpted by the the "Thinw re"
proposal described in RFC 914.

--jon postel

Fi nn [Page 54]

