
Network Working Group George H. Mealy
Request for Comments: 91 Harvard University
 December 27, 1970

 A PROPOSED USER-USER PROTOCOL

INTRODUCTION:

 There are many good reasons, and maybe one or two bad ones, for
 making it appear that communication over the Network is only a
 special case of input/output -- at least as far as user programming
 is concerned. Thus, for instance, the Harvard approach toward
 implementing the HOST-HOST protocol and Network Control Program
 treats each link as a "logical device" in PDP-10 terminology.
 Setting up a connection is similar to local device assignment, and
 communication over a link will make use of the standard system
 input/output UUO’s. This makes it possible to use existing programs
 in conjunction with the Network without modification -- at least if
 other PDP-10’s are being dealt with.

 This takes us only so far, however. The notion of a "logical device"
 does not exist on the PDP-10; it does on the IBM 360 (I am speaking
 here at the level of the operating system -- user program interface).
 Furthermore, in the absence of a Network standard requiring fixed
 representations for integers, reals, etc. (which I would oppose), any
 pair of user processes must arrive at a local agreement, and one or
 both must assume the burden of data conversion where necessary. Any
 standard protocol should allow such agreements to be given expression
 and should accommodate at least the minimum of control information
 that will allow such agreements to function in practice. Finally, we
 must note that the IMP-IMP and HOST-HOST protocols do not provide for
 a check that an action requested by a user process is actually
 accomplished by the other processes; this type of issue has always
 been regarded as subject to treatment at the USER-USER protocol
 level.

 This proposal is intended to face the above three types of issue only
 to a certain extent. I can best explain that extent by stating the
 criteria I would use to judge any USER-USER protocol proposal:

Mealy [Page 1]

RFC 91 A Proposed User-User Protocol December 1970

 1. The notion of a (logical) _record_ should be present, and the
 notion of a _message_ should be suppressed. (To a FORTRAN pro-
 grammer, that which is written using one WRITE statement with no
 accompanying FORMAT is a record; to an OS/360 machine language
 programmer, PUT writes a record).

 2. It should be possible to so implement the protocol in HOST sys-
 tems and/or library routines that now existing user programs can
 access files anywhere in the Network without program modifica-
 tion. (Initially, at least, this ability must be restricted to
 HOST systems of the same type).

 3. The protocol should be implementable (not necessarily imple-
 mented) in any HOST system at the SVC or UUO level. Specific
 knowledge of the characteristics of the other HOST involved
 should be unnecessary.

 It should be noted that the above imply that some user programs must
 be aware of the nature of the other HOST -- at least in each case
 where the second criterion fails. As we make progress in (or give up
 on) the cases where the failure now occurs, the burden of accommodat-
 ing system differences will shift toward implementation in protocols
 (i.e., the HOST systems) or, by default, in user programs.

 Quite clearly, any proposal initiated today should be suspect as to
 the extent to which it "solves" ultimate problems. How ambitious to
 be is strictly a matter of taste. At this stage, I prefer to try
 something which I believe can be used by all of us (and, hence, is
 worth doing), goes a reasonable distance towards solving our short-
 range problems, is easy to do, and offers hope of viability in the
 long range view. In the following, I intend to describe the proposal
 itself with, I hope, proper motivational arguments for its pieces. I
 will then sketch the specific implementation we at Harvard are making
 for the PDP-10 and describe how we intend to apply it in the specific
 case of storage of files on other PDP-10’s in the Network.

USER-USER PROTOCOL (PROPOSAL)

 The following protocol is intended to apply to the data bits in mes-
 sages between the end of the marking bits and the beginning of the
 padding bits. _The present IMP-IMP and HOST-HOST protocols are unaf-
 fected by this proposal_.

 The general principle is that each segment (this is not a technical
 term) of data is preceded by control information specifying its
 nature and extent. The basic scheme has been evolved from that used
 in the SOS buffering system (see the papers in JACM, April 1959 and
 especially that by O.R. Mock).

Mealy [Page 2]

RFC 91 A Proposed User-User Protocol December 1970

 Our point of view is that a link is a carrier of information. Infor-
 mation is carried in segments of a fixed maximum length called _mes-
 sages_ [1]. That this is so is an accident, from the user’s point of
 view; when he wishes to transmit a contiguous stream of data, he will
 in general, segment it in a different (from the IMP-IMP or HOST-HOST
 protocol view) manner -- we will call his segment a _record_. It
 should be clear that this is entirely analogous between the notion of
 (physical) _block_ and (logical) record. On the side, file storage
 systems also make use of control and status information; we will
 also.

 At the USER-USER protocol level, all information transmitted over the
 link is a sequence of flags followed by (possibly null) data blocks.

 The general format will be:

 OPERATION COUNT DATA

 The OPERATION field is always present and is four bits long. The
 COUNT field, when present, gives the number of data bytes following
 in the data block. The byte size is set by the last preceding SIZE
 flag (in most cases). The byte may be between zero and 255 bits long
 (Yes, Virginia, zero is zero even when you have a System/360). The
 OPERATION field and the COUNT field (when present) are called the
 flag and the data bytes (when present) the data block. Flags fol-
 lowed by data blocks (even when null due to a zero count) are called
 block flags, and other flags are called whyte [2] flags.

 It is to be noted that, since the SIZE flag sets the byte size for
 the following blocks, byte size may be set at that "natural" for the
 sending or for the receiving HOST, depending on local agreement
 between the sending and receiving processes. It is specifically
 required that a SIZE flag appear in each message prior to any block
 flag (except the ASCII flag); the SIZE flag may be introduced on a
 default basis by the routine(s) implementing the protocol and is
 intended partially as a means of detecting certain classes of error.

 The COUNT field is 8 bits in length (except in the EOM flag, where it
 is 16 bits long). The flags are as follows:

 Whyte Flags:

 0 - NUL No operation (consider next flag)
 1 - RS Record Separator (end of record)
 2 - GS Group Separator (end of group)
 3 - FS File Separator (end of file)
 4 - ESC Escape to local convention for flags
 5 - (reserved for later assignment)

Mealy [Page 3]

RFC 91 A Proposed User-User Protocol December 1970

 6 - EOM N End of Message (N is total bit count)
 7 - SIZE N Byte size is N bits
 8 - IGNORE N Ignore following data bits

 Block Flags:
 9 - SYS N N bytes of data for receiving HOST system
 10 - CONTROL N N bytes of control data follow
 11 - STATUS N N bytes of status data follow
 12 - LABEL N N bytes of identification data follow
 13 - KEY N N bytes of key data follow
 14 - ASCII N N (8-bit) bytes of ASCII data follow
 15 - BLOCK N N bytes of data follow

 I have already mentioned the requirement for SIZE. Absence of the
 SIZE flag in any message containing block flags (except ASCII) is a
 definite error. EOM is partially another error-checking device and
 partially a device for bypassing the padding conundrum. A user pro-
 gram should never see EOM on input; the user may write an EOM to
 force transmission. EOM delimits the end of the useful information
 in the message and restates the total number of bits in the message,
 starting with the first bit following the marking and ending with the
 last bit of the EOM count field, to check possible loss of informa-
 tion. This is a check against errors in the IMP-HOST electrical
 interface and in the HOST mushyware. EOM must appear at the end of
 each messager, unless ESC has apeared.

 ESC is intended as a (hopefully) unused escape hatch, for nonuse by
 those installations and/or applications wishing to avoid using more
 than four bits of the USER-USER protocol on any link. For instance,
 it may be desired to use a link as a bit stream, ignoring even mes-
 sage boundaries. If and when anarchists can achieve local agreement,
 more power to them!

 NUL and IGNORE are intended to be space fillers, in case it is help-
 ful to make the first bit of the subsequent data block occur on a
 convenient address boundary. (An especially helpful HOST interrupt
 routine might even paste a combination of NUL and IGNORE over the
 marking bits when receiving a message -- in which case, their bit
 count should be transmitted on to the GET routines to correct the EOM
 bit count check). The separator operations introduce the notions of
 logical record, group, and file. Specifically, there is no require-
 ment that a record be contained entirely within a message or that
 only a single record be contained in a message! In addition, there
 is no requirement that only one file be transmitted during a connec-
 tion. For instance, a user might wish to use a link to transmit a
 collection of rountines, and then do something else with the link.

Mealy [Page 4]

RFC 91 A Proposed User-User Protocol December 1970

 By local agreement, then, a single routine might consist of a number
 of records forming a group, the whole collection might form a file,
 and the link might remain connected after the FS flag is received.

 The interpretation of the various block flags is similarly open to
 local agreement. The two flags intended to convey pure data are
 ASCII and BLOCK; the difference between them is only (as far as the
 protocol is concerned) that the byte size is implicit for ASCII (8
 bits) and explicit for BLOCK (the count field of the next preceding
 SIZE flag). Beyond this, however, the semantic content of the block
 following ASCII is governed by the current standards for ASCII;
 EBCDIC information may not be transmitted in an ASCII block!!

 CONTROL and STATUS are intended for communication of control informa-
 tion between user processes, and the interpretation of their accom-
 panying data blocks is open to local agreement. Generically, CONTROL
 means "try to do the following" and STATUS means "but I feel this
 way, doctor." A CONTROL flag will prompt a returned STATUS flag,
 sooner or later, or never. LABEL is intended for use in identifying
 the following unit(s) of data, at the file or group level. Again,
 the specific interpretation is a matter of local agreement. KEY is
 intended to mimic the notion of address or key -- this is at the
 record, data item, or even physical storage block level. For the
 familiar with PDP-10 system and/or OS/360, the following parallels
 are offered for guidance:

 USER-USER protocol OS/360 PDP-10
 __________________ ______ ______

 CONTROL OPEN OPEN

 CLOSE CLOSE

 LABEL DSCB File retrieval information

 KEY KEY USETI/USETO argument

 CONTROL READ IN/INPUT

 WRITE OUT/OUTPUT

 ALLOCATE ? ENTER

 OPEN ? LOOKUP

 STATUS ? GETSTS

Mealy [Page 5]

RFC 91 A Proposed User-User Protocol December 1970

 The "?" notations above indicate lack of a very direct parallel. It
 is worth noting that the OS/360 GET and PUT have direct parallels in
 any implementation of the USER-USER protocol that embodies the notion
 of record; our implementation of the protocol will lead to introduc-
 tion of this notion for all PDP-10 input/output involving disc and
 tape storage, as well as IMP communication.

 If I knew the MULTICS terminology, I could extend the set of paral-
 lels above with more precision. Although my terminology has been
 drawn from systems with explicit input/output imperatives, I wish to
 emphasize that this setup in intended to handle control and data com-
 munication in general; MULTICS is a system in which the classical
 distinction between external and internal storage is blurred (from
 the user’s point of view) in a manner I wish it blurred in the USER-
 USER protocol. I offer SYS with only slight trepidation. The gen-
 eral notion is that one should be able to communicate directly with a
 foreign HOST rather than via a foreign user process as its intermedi-
 ary. SYS is like a UUO or SVC, but for the foreign HOST’s consump-
 tion rather than my HOST’s. From the HOST’s point of view, the prob-
 lem in implementation is in establishing a process context record
 unconnected with any local user process. This, however, is strongly
 associated with our current LOGON conundrum. On the PDP-10, for
 instance, users are more or less identified with local teletype
 lines, and any link is not one of those! Hence, subterfuge is neces-
 sary to let a foreign user log on. OS/360 is as (actually, more)
 perverse in its own way.

 The process of logging a foreign process onto my local system is not
 (except possibly for MULTICS) a simple matter of having a special
 (!!) user job present which is responsible for doing it. When and
 if anything else is possible, the HOST must provide a system instruc-
 tion (UUO or SVC or whatever) that gives the requisite information
 establishing a process independent in all senses of the process that
 made the request. Otherwise, self-protection mechanisms which are
 reasonable for any system will make us all much more interdependent
 that we wish. To do this, there must exist in every system a UUO/SVC
 that does the right thing (ATTACH, but forget me). If this is true,
 then the LOGON process over the Network is tantamount to issuance of
 a foreign UUO/SVC by another node in the Network. I see no reason-
 able way around this. If that is the case, then SYS N is the kind of
 flag to use to convey the requisite data. If that is so, then it is
 only reasonable to let SYS convey a request for any OS instruction at
 the user program-operating system interface level!

 The practical questions of implementation are something else! In the
 case of the PDP-10, I can pretty well see how to turn a SYS into
 either a LOGON request to execute a monitor command or UUO (would
 that they were the same) as the case might be. OS/360 is more

Mealy [Page 6]

RFC 91 A Proposed User-User Protocol December 1970

 sophisticated, unfortunately. MULTICS might make it. Naytheless, I
 hope that is clear that what we want to do, which is what the proto-
 col should reflect, is quite a different question from that of how it
 is to be done in the context of a specific HOST system. What we want
 to do is, in general, rather independent of the system we are dealing
 with as far as the protocol is concerned, and we should not fail to
 introduce general notions into the protocol just because we are unc-
 ertain as to how they may have to be translated into particular
 implementation practice.

 A PDP-10 IMPLEMENTATION

 Although the following can be implemented as either a set of user
 routines or imbedded in the monitor as UUO’s (our first implementa-
 tion will be the former), the latter version will be used for
 descriptive purposes. The UUO’s would be:

 PUTF CH, E Put flag

 PUTD CH, E Put data

 PUT CH, E Put record

 GETFD CH, E Get flag or data

 GET CH, E Get record

 In the above, "CH" is the logical channel number. The customary OPEN
 or INIT UUO is used to open the channel. Standard format user
 buffers are assigned. However, the ring and buffer headers will be
 used in a nonstandard way, so that data mode 12 is assigned for use
 with Network buffering and file status bit 31 must be on for input.
 (Any of the devices DSK, DTA, MTA, or IMP can be used in this mode.)

 In the Harvard NCP and HOST-HOST protocol implementation, user
 buffers do not correspond directly to messages. On output, each user
 buffer will be formatted into a message; on input, a message may
 become one or two user buffer loads (128 word buffers are used in
 order to make maximum use of the facilities of the disk service rou-
 tines).

Mealy [Page 7]

RFC 91 A Proposed User-User Protocol December 1970

 PUTF UUO:

 This UUO places a flag into the output buffer. The effective
 address is the location of a word:

 XWD operation, count

 In the case of block flags, the count is ignored, since it will be
 computed from the number of bytes actually placed in the buffer
 before the next use of PUTF. PUTF and PUTD will insert EOM flags
 automatically as each buffer becomes full; if data bytes are
 currently being placed in the buffer by PUTD, it will also insert
 an EOM flag after computing the count for the previous block flag
 in the buffer and place a new block flag of the same type at the
 beginning of the next buffer, after inserting a SIZE flag stating
 the then current byte size.

 PUTD UUO:

 This UUO places data into the output buffer. The effective
 address is the location of the data byte (if the byte size is less
 than 36) or of the next 36 bit word of data to be placed in the
 buffer. In the first case, the byte is assumed to be in the low
 order part of the word addresses. In the second case, the data
 word containing the final bits of the byte contains them in the
 high order part of the word, and the next data byte starts a new
 word in PDP-10 storage. Thus, for a byte size of 64, two entries
 to PUTD would be used per byte transmitted, the first containing
 36 bits and the second containing 28 bits, left-justified. This
 strategy allows maximum use of the PDP-10 byte handling instruc-
 tions.

 PUT UUO:

 This UUO places a whole logical record in the output buffer(s).
 The effective address is that of a word:

 IOWD count, location

 A PUTF UUO must have been used to output the proper SIZE flag.
 Thereafter, each use of PUT will output a BLOCK flag, [3] simulate
 a number of calls to PUTD using the IOWD to discover the location
 and size of the user data area, and then output a RS flag to indi-
 cate end of record.

Mealy [Page 8]

RFC 91 A Proposed User-User Protocol December 1970

 In the case of byte size of less than 36 bits, PUT will use the
 ILDB instruction to pick up bytes to be output by PUTD. Hence,
 the standard PDP-10 byte handling format is used, and the count
 part of the IOWD is the total byte count, not word count.

 The above UUO’S have both an error return and a normal return.

 GETFD UUO:

 The calling sequence for this UUO is:

 GETFD CH, E
 error return
 whyte flag return
 block flag return
 data return

 The effective address is the location at which the flag or data
 will be returned. The flag is returned in the same format as for
 PUTF and the data in the same format as for PUTD. Certain flags
 (NUL, IGNORE, and EOM) will be handled entirely within the UUO and
 will not be reported to the user. SYS should eventually be han-
 dled this way, but initially will be handled by the user.

 GET UUO:

 The calling sequence for this UUO is:

 GET CH, E
 error return
 end of file return
 end of group return
 normal return

 GET transmits the next logical record to the user, using GETFD
 together with an IOWD in the same format as for PUT. If the IOWD
 count runs out before end of record, the remainder of the record
 will be skipped. In any case, the updated IOWD will be returned
 at the effective address of the UUO in order to inform the user
 how much data was transmitted or skipped.

PDP-10 FILE TRANSMISSION:

 Assume that I have a link connected to another PDP-10 and a user
 process there that is listening. In order to get that process to
 send me a file, the sequence of flags that might be transmitted can

Mealy [Page 9]

RFC 91 A Proposed User-User Protocol December 1970

 be represented as follows, where the UUO’S executed by me are in the
 left margin, the flags are indented, and the commentary opposite them
 indicates the nature of the data block transmitted:

 PUT F
 CONTROL Data with OPEN parameters, requesting OPEN
 LABEL File identification data for LOOKUP
 EOM Forces message to be transmitted

 GETFD
 STATUS Status returned by OPEN
 SIZE Byte size to be used
 LABEL File retrieval information

 PUTF
 CONTROL Data requesting INPUT from file
 EOM Forces request to be transmitted

 GETFD
 STATUS Status bits returned by INPUT

 GET Logical record (one file buffer load)
 (loop back to second PUTF, above, for other records)

 Finally, the status information returned by the second GETF indicates
 end of file, and I wind up with the sequence:

 PUTF
 CONTROL Data requesting a CLOSE
 EOM Forces transmission

 GETFD
 STATUS Status bits returned by CLOSE

 In the case I am getting a file, the main loop looks like:

 PUTF
 CONTROL Data requesting OUTPUT

 PUT Logical record (one file buffer load)

 PUTF
 EOM Forces transmission

 GETFD
 STATUS Status bits returned by OUTPUT

Mealy [Page 10]

RFC 91 A Proposed User-User Protocol December 1970

 The use of both the record and the flag transmission UUO’s is worth
 noting, as well as the use of the EOM flag to force transmission of a
 message when switching between input and output over the link. PUT
 and GET UUO’s are clearly required above for transmission of the CON-
 TROL and LABEL data; I suppressed them for the sake of clarity.

 For this application, the handshaking nature of the transmission of
 CONTROL and STATUS flags are mandatory. While the protocol would
 permit transmission of a complete file without the handshaking, it
 would be an all or nothing proposition - a single error would neces-
 sitate doing it all over again, presuming that the receiving process
 did not end up in a complete tangle.

 BRIEF DISCUSSION:

 The PDP-10 space required to implement the above protocol is about
 400 instructions, divided equally between the input and the output
 side. Enough experimental coding has been done to confirm the feasi-
 bility of this basic strategy, taken together with experience with
 implementation and use of the SOS buffering system.

 The above does not touch the question of LOGON protocol, except
 indirectly. My belief is that it can be accommodated in the frame-
 work of this proposal, but I have not tested this theory as yet. As
 indicated further above, I would be tempted to handle the matter with
 the SYS flag, given that SYS data is interpreted directly by the sys-
 tem (in our system, we would use the RUN UUO to run the LOGON CUSP,
 which would, in turn handshake using ASCII data over the link). In
 this way, I think we might be able to dispense with the notion of
 dedicated sockets and the reconnection morass.

 One other point that needs thought is the question of how to handle
 the interrupt on link facility. Should it have any direct relation
 to the GET/PUT UUO’s, or be handled on the side? I am inclined to
 think that it should be treated _qua_ interrupt of the user process,
 quite independently of the matter of data transmission over the link.
 Some of our current work on the PDP-10 monitor would lend itself
 rather easily to implementation as a true interrupt.

 ENDNOTES*

 1. A message is that string of bits between any two HOST-HOST
 headers.

 2. In memory of an attractive, but nonspelling, SDC secretary who
 could not distinguish between black and white, at least during 1957
 and in manuscript form.

Mealy [Page 11]

RFC 91 A Proposed User-User Protocol December 1970

 3. PUTF may be used to ouput the block flag, if a different from
 BLOCK is required.

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Colin Barrett 9/97]

Mealy [Page 12]

