RFC 789

Vul nerabilities of Network Control Protocols: An Exanple

Eric C. Rosen

Bolt Beranek and Newmran | nc.

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

Thi s paper has appeared in the January 1981 edition of the
SI GSOFT Software Engineering Notes, and will soon appear in the
SI GCOMM Conput er Communi cations Review. It is being circulated
as an RFC because it is thought that it may be of interest to a
wi der audi ence, particularly to the internet conmunity. It is a
case study of a particular kind of problemthat can arise in
| arge distributed systens, and of the approach used in the

ARPANET to deal with one such problem

On Cctober 27, 1980, there was an unusual occurrence on the
ARPANET. For a period of several hours, the network appeared to
be unusable, due to what was |ater diagnosed as a high priority
software process runni ng out of control . Net wor k- wi de
di sturbances are extrenmely wunusual in the ARPANET (none has
occurred in several years), and as a result, nmany people have
expressed interest in |learning nore about the etiology of this
particular incident. The purpose of this note is to explain what
the synptons of the problem were, what the wunderlying causes
were, and what |essons can be drawn. As we shall see, the
i medi ate cause of the problemwas a rather freakish hardware
mal function (which is not likely to recur) which caused a faulty
sequence of network control packets to be generated. This faulty
sequence of control packets in turn affected the apportionnent of
software resources in the | MPs, causing one of the I MP processes
to use an excessive anount of resources, to the detrinent of

other | MP processes. Restoring the network to operationa

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

condition was a relatively straightforward task. There was no
damage other than the outage itself, and no residual problens
once the network was restored. Nevertheless, it is quite
interesting to see the way in which wunusual (indeed, unique)
circunmstances can bring out vulnerabilities in network contro

protocol s, and that shall be the focus of this paper

The probl em began suddenly when we discovered that, wth
very few exceptions, no | MP was able to communicate reliably with
any other IMP. Attenpts to go froma TIP to a host on sone other
IMP only brought forth the "net trouble" error nessage,
i ndi cating that no physical path existed between the pair of
| MPs. Connections which already existed were sumarily broken
A flood of phone calls to the Network Control Center (NCC) from
all around the country indicated that the problem was not

| ocal i zed, but rather seened to be affecting virtually every | MP

As a first step towards trying to find out what the state of
the network actually was, we dialed up a nunber of TIPs around
the country. Wat we generally found was that the TIPs were up
but that their lines were down. That is, the TIPs were
communi cating properly wth the user over the dial-up line, but

no connections to other | MPs were possible.

We tried manually restarting a nunber of IMPs which are in
our own building (after taking dunps, of course). This procedure

initializes all of the IMPs' dynanic data structures, and will

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

often clear up problens which arise when, as sonetines happens in
nost conpl ex software systenms, the IMPs’ software gets into a
"funny" state. The 1 MPs which were restarted worked well unti

they were connected to the rest of the net, after which they
exhi bited the sane conplex of synptons as the | MPs which had not

been restarted.

Fromthe facts so far presented, we were able to draw a
nunber of concl usions. Any problem which affects all |Ms
t hroughout the network is usually a routing problem Restarting
an |IMP re-initializes the routing data structures, so the fact
that restarting an I|MP did not alleviate the problemin that | M
suggested that the problemwas due to one or nore "bad" routing
updates circulating in the network. IMPs which were restarted
woul d just receive the bad updates fromthose of their neighbors
whi ch were not restarted. The fact that | MPs seened wunable to
keep their lines up was also a significant clue as to the nature
of the problem Each pair of neighboring IMPs runs a |line
up/ down protocol to determ ne whether the |line connecting themis
of sufficient quality to be put into operation. This protoco
i nvol ves the sending of HELLO and |- HEARD- YOU nessages. W have
noted in the past that under conditions of extrenely heavy CPU
utilization, so many buffers can pile up waiting to be served by
the bottleneck CPU process, that the IMPs are unable to acquire
the buffers needed for receiving the HELLO or |-HEARD YQU

messages. |If a condition Iike this lasts for any I ength of tine,

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

the IMPs nmay not be able to run the line up/down protocol, and
lines will be declared down by the IMPs’ software. On the basis
of all these facts, our tentative conclusion was that sone
mal f or mred update was causing the routing process inthe IMPSs to
use an excessive anount of CPU tinme, possibly even to be running
inan infinite loop. (This would be quite a surprise though
since we tried very hard to protect ourselves against nal forned
updat es when we designed the routing process.) As we shall see,
this tentative conclusion, although on the right track, was not
quite correct, and the actual situation turned out to be nuch

nore conpl ex.

When we exam ned core dunps fromseveral |MPs, we noted that
nost, in some cases all, of the IMPs’ buffers contained routing
updates waiting to be processed. Bef ore descri bi ng this
situation further, it is necessary to explain sone of the details
of the routing algorithnmis wupdating schene. (The fol I owi ng
explanation will of course be very brief and inconplete. Readers
with a greater level of interest are urged to consult the
references.) Every so often, each | MP generates a routing update
indicating which other IMPs are its imredi ate nei ghbors over
operational lines, and the average per - packet del ay (in
mlliseconds) over that line. Every IMP is required to generate
such an update at |east once per mnute, and no IMP is pernitted
to generate nore than a dozen such updates over the course of a

m nute. Each update has a 6-bit sequence nunber which is

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

advanced by 1 (nodulo 64) for each successive update generated by
a particular IMP. |If two updates generated by the sanme | MP have
sequence nunbers n and m update n is considered to be LATER
(i.e., nore recently generated) than update mif and only if one

of the following two conditions hold:

(a) n>m and n - m<= 32

(b) n<m and m- n > 32

(where the conparisons and subtractions treat n and m as unsi gned
6-bit nunmbers, with no nodulus). Wien an | MP generates an
update, it sends a copy of the update to each nei ghbor. Wen an
| MP A receives an update ul which was generated by a different
IMP B, it first conpares the sequence nunber of ul with the
sequence number of the |ast update, u2, that it accepted from B

If this conparison indicates that wu2 is LATER than ul, ul is
sinply discarded. |If, on the other hand, ul appears to be the
LATER wupdate, IMP Awll send ul to all its neighbors (including
the one fromwhich it was received). The sequence nunber of ul
will be retained in A's tables as the LATEST received update from
B. O course, ul is always accepted if A has seen no previous
update fromB. Note that this procedure is designed to ensure
that an wupdate generated by a particular |IMP is received,
unchanged, by all other IMPs in the network, |IN THE PROPER
SEQUENCE. Each routing update is broadcast (or flooded) to al

| MPs, not just to inmedi ate nei ghbors of the I MP which generated

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

the update (as in sonme other routing algorithns). The purpose of
the sequence nunmbers is to ensure that all IMPs will agree as to
whi ch update froma given IMP is the nost recently generated

update fromthat | M

For reliability, there is a protocol for retransmtting
updates over individual links. Let X and Y be nei ghboring | MPs,
and let Abe athird IMP. Suppose X receives an update which was
generated by A and transnmits it to Y. Nowif in the next 100 ns
or so, X does not receive fromY an update which originated at A
and whose sequence nunber is at |least as recent as that of the
update X sent to Y, X concludes that its transm ssion of the
update did not get through to Y, and that a retransnmission is
required. (This conclusion is warranted, since an update which
is received and adjudged to be the nost recent from its
originating IMP is sent to all neighbors, including the one from
which it was received.) The IMPs do not keep the original update
packets buffered pending retransm ssion. Rat her, al | t he
information in the wupdate packet is kept in tables, and the
packet is re-created from the tables if necessary for a

retransm ssi on.

This transmission protocol ("flooding") distributes the
routing updates in a very rapid and reliable nanner. Once
generated by an | MP, an update wi |l al nost always reach all other
IMPs in a tinme period on the order of 100 ns. Since an |IMP can
generate no nore than a dozen updates per minute, and there are

-6 -

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

64 possi bl e sequence nunbers, sequence nunber w ap-around is not
a problem There is only one exception to this. Suppose two
IMPs A and B are out of comunication for a period of tine
because there is no physical path between them (This may be due
either to a network partition, or to a nore nmundane occurrence,
such as one of the |IMPs being down.) Wen conmunication is
re-established, A and B have no way of know ng how | ong they have
been out of communication, or how many tinmes the other’s sequence
nunbers may have w apped around. Conparing the sequence nunber
of a newy received update with the sequence nunber of an update
recei ved before the outage may give an incorrect result. To dea

with this problem the followi ng schenme is adopted. Let tO0 be
the tine at which | MP A receives update nunber n generated by | MP
B. Let t1 be tO plus 1 nminute. |If by tl1l, A receives no update
generated by B with a LATER sequence nunber than n, A will accept
any update fromB as being nore recent than n. So if tw |[|Ms
are out of communication for a period of time which is |long
enough for the sequence nunmbers to have wapped around, this
procedure ensures that proper resynchronization of sequence

nunbers is effected when communi cation is re-established.

There is just one nore facet of the updating process which
needs to be discussed. Because of the way the Iine up/down
protocol works, a line cannot be brought up until 60 seconds
after its perfornmance becones good enough to warrant operationa

use. (Roughly speaking, this is the tine it takes to deternine

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

that the line's performance is good enough.) During this
60-second period, no data is sent over the line, but routing
updates are transmtted. Renenber that every node is required to
generate a routing update at | east once per ninute. Therefore,
this procedure ensures that if two I MPs are out of communication
because of the failure of sone line, each has the nost recent
update from the ot her by t he tinme conmuni cati on is

re- est abl i shed.

This very short introduction to the routing algorithnis
updati ng protocol should provide enough background to enable the
reader to understand the particular problem under discussion

further justification and detail can be found in the references.

Let wus return now to the discussion of the network outage.
| have already nentioned that the core dunps showed alnost al
buffers holding routing updates which were waiting to be
processed. C ose inspection showed that all the updates were
from a single IMP, IMP 50. By a strange "coincidence," | M 50
had been nalfunctioning just before the network-w de outage
occurred, and was off the net during the period of the outage.
Hence it was not generating any updates during the period of the
out age. In addition, |[|M 29, an inmedi ate nei ghbor of | M 50,
was al so suffering hardware nal functions (in particular, dropping
bits), but was up (though sonewhat flakey) while the network was
in bad shape. Furthernore, the malfunction in IMP 50 had to do
with its ability to communicate properly with the neighboring | MP

- 8 -

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

29. Although we did not yet understand how it was possible for
so nmany updates fromone | MP to be extant simultaneously, we did
under st and enough to be able to get the network to recover. All
that was necessary was to patch the | MPs to disregard any updates
from IMP 50, which after all was down anyway. Wen the network
is operating normally, broadcasting a patch to all I1MPs can be
done in a matter of mnutes. Wth the network operating as it
was during the period of the outage, this can take as nuch as 3
or 4 hours. (Renenber that the | MPs are generally unmanned, and
that the only way of controlling themfromthe NCC is via the
network itself. This is perfectly satisfactory when an outage
affects only a small group of IMPs, but is an obvious problem
when the outage has network-wi de effects.) This procedure was

fully successful in bringing the network back up

When we | ooked closely at the dunps, we saw that not only
were all the updates on the queue fromI|MP 50, but they all had
one of three sequence nunbers (either 8, 40, or 44), and were
ordered in t he queue as fol | ows:
8, 40, 44, 8, 40, 44, 8, 40, 44, ... Note that by the definition
of LATER, 44 is LATER than 40 (44 > 40 and 44 - 40 <= 32), 40 is
LATER than 8 (40 > 8 and 40 - 8 <= 32), and 8 is LATER than 44
(8 <44 and 44 - 8 > 32). Gven the presence of three wupdates
fromthe sane IMP with these three sequence nunbers, this is what
woul d be expected. Since each update is LATER than one of the

others, a cycle is forned which keeps the three updates floating

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

around the network indefinitely. Thus the | MPs spend nost of
their CPU tinme and buffer space in processing these updates. The

problem was to figure out how these three updates could possibly

have existed at the sane tine. After all, getting fromupdate 8
to update 40 should require 2 or 3 full mnutes, plus 31
i ntervening sequence nunbers. So how could 8 still be around

when 40 was generated, especially since no updat es with

i nterveni ng sequence nunbers were present?

Qur first thought was that nmaybe the real-time clock in I M
50 was running one or two orders of magnitude faster than nornal,
i nval i dating our assunptions about the maxi mum nunber of updates
which could be generated in a given tine. An alternative
hypot hesi s suggested itself however when we | ooked at the binary

representations of the three sequence nunbers:

8 - 001000
40 - 101000
44 - 101100

Note that 44 has only one nore bit than 40, which has only one
nmore bit than 8. Furthernore, the three different wupdates were
conpletely identical, except for their sequence nunbers. This
suggests that there was really only one update, 44, whose
sequence number was tw ce corrupted by dropped bits. (O course,
it’s also possible that the "real" wupdate was 8, and was

corrupted by added bits. However, bit-dropping has proven itself

- 10 -

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

to be a nuch nore comon sort of hardware nalfunction than
bit-adding, although spontaneously dropped bits may sonetines

come back on spontaneously.)

Surely, the reader will object, there nmust be protection
agai nst dropped bits. Yes there is protection, but apparently
not enough. The update packets thensel ves are checksunmed, so a
dropped bit in an update packet is readily detected. Renenber
though that if an wupdate needs to be retransmitted, it is
recreated fromtabled information. For maxinmal reliability, the
tables nmust be checksumed also, and the checksum nust be
reconputed every tinme the table is accessed. However, this would
require either a large nunber of CPU cycles (for frequent
checksunming of a large area of nmenory) or a large anount of
menory (to store the checksunms for a lot of small areas). Since
CPU cycles and nenory are both potentially scarce resources, this
did not seemto us to be a cost-effective way to deal wth
problens that arise, say, once per year (this is the first such
probl em encountered in a year and a half of running this routing
al gorithm. Time and space can be saved by reconputing the
checksumat a somewhat slower frequency, but this is less
reliable, in that it allows a certain nunber of dropped bits to
"fall between the cracks." It seens likely then that one of the
mal functioning IMPs had to retransmt update 44 at |east tw ce,
(recreating it each tinme fromtabled information), retransmtting

it at least once with the corrupted sequence nunber 40, and at

- 11 -

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

least once with the corrupted sequence nunber 8. This would
cause those three sequence nunbers to be extant in the network
si mul t aneously, even though protocol is supposed to ensure that

this is inpossible.

Actual ly, the detection of dropped bits is nost properly a

hardware function. The next generation of |MP hardware (the "C30

IMP") wll be able to detect and correct all single-bit errors,
and will detect all other bit errors. Uncorrectable bit errors
will cause the IMP to go into its "loader/dunper.” (An IMP in

its | oader/dunper is not usable for transferring data, and is
officially in the "down" state. However, an IMP in its
| oader/dunper is easily controllable fromthe NCC, and can be
restarted or reloaded wthout on-site intervention.) Current
har dwar e does have parity checking (which should detect single
dropped bits), but this feature has had to be turned off since
(a) there are too nmany spurious parity "errors," i.e., nost of
the tinme when the nachines conplain of parity errors there don’t
really seemto be any, and (b) parity errors cause the nachines
to sinply halt, rather than go into their |oader/dunpers, which

means that on-site intervention is required to restart them

Pendi ng the introduction of inproved hardware, what can be
done to prevent problems like this fromrecurring in the future?
It is easy to think of many ways of avoiding this particular
problem especially if one does not consider the problens that
may arise fromthe "fixes." For exanple, we mnmight be able to

- 12 -

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

avoid this sort of problemby spending a |ot nore CPU cycles on
checksunmi ng, but this may be too expensive because of the side
effects it would introduce. (Al'so, it is not clear that any
menory checksummi ng strategy can be totally free of "cracks.") A
very sinple and conservative fix to prevent this particular
problemfromrecurring is to nmodify clause (a) of the definition
of LATER so that the "<=" s replaced by "<" (strictly |less
than). We will inplenent this fix, but it cannot be guaranteed

that no related problens will ever arise

Wat is really needed is not sone particular fix to the
routing algorithm but a nore general fix. In some sense, the
problem we saw was not really a routing problem The routing
code was working correctly, and the routes that were generated
were correct and consistent. The real problemis that a freakish
hardware nal function caused a high priority process to run wld,
devouring resources needed by other processes, thereby nmaeking the
networ k unusable. The fact that the wild process was the routing
process is incidental. In designing the routing process, we
carefully considered the anount of resource utilization it would
require. By strictly controlling and linmting the rate at which
updates can be generated, we tried to prevent any situation in
whi ch the routing process would make excessive demands on the
system As we have seen though, even our carefully designed
mechani sns were unabl e to protect against every possible sort of

hardware failure. W need a better neans of detecting that some

- 13 -

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

high priority process in the IMP, despite all the safeguards we

have built in, is still consum ng too many resources. Once this
is detected, the IMP can be automatically placed in its
| oader/dunper. In the case under discussion, we would have |iked

to have all the IMPs go into their |oader/dunpers when the
probl em arose. This would have enabled us to re-initialize and
restart all the |IMPs nuch nore quickly. (Al though restarting
individual IMPs did little good, restarting all the | MPs
si mul t aneously woul d have cl eared up the probleminstantly, since
all routing tables in all |IMPs would have been initialized
sinul taneously.) It took us no nore than an hour to figure out
how to restore the network; several additional hours were
required because it took so long for us to gain control of the
m sbehaving IMPs and get them back to normal. Abuilt-in
software al arm system (assumi ng, of course, that it was not
subject to false alarnms) might have enabled us to restore the
network nore quickly, significantly reducing the duration of the
out age. This is not to say that a better alarmand contro
system coul d ever be a replacenent for careful study and design
whi ch attenpts to properly distribute the wutilization of
i nportant resources, but only that it is a necessary adjunct, to
handle the cases that will inevitably fall between the cracks of

even the nost careful design

RFC 789 Bolt Beranek and Newmran | nc.
Eric C. Rosen

REFERENCES

"The New Routing Algorithmfor the ARPANET," | EEE TRANSACTI ONS ON

COMMUNI CATI ONS, May 1980, J.M MQillan, |I. Richer, E.C. Rosen.

"The Updating Protocol of ARPANET's New Routing Algorithm?"

COVPUTER NETWORKS, February 1980, E.C. Rosen.

