
Internet Engineering Task Force (IETF) T. Mizrahi
Request for Comments: 7758 Y. Moses
Category: Experimental Technion
ISSN: 2070-1721 February 2016

 Time Capability in NETCONF

Abstract

 This document defines a capability-based extension to the Network
 Configuration Protocol (NETCONF) that allows time-triggered
 configuration and management operations. This extension allows
 NETCONF clients to invoke configuration updates according to
 scheduled times and allows NETCONF servers to attach timestamps to
 the data they send to NETCONF clients.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7758.

Mizrahi & Moses Experimental [Page 1]

RFC 7758 Time Capability in NETCONF February 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Mizrahi & Moses Experimental [Page 2]

RFC 7758 Time Capability in NETCONF February 2016

Table of Contents

 1. Introduction ..4
 2. Conventions Used in This Document4
 2.1. Key Words ..4
 2.2. Abbreviations ..5
 2.3. Terminology ..5
 3. Using Time in NETCONF ...5
 3.1. The Time Capability in a Nutshell5
 3.2. Notifications and Cancellation Messages7
 3.3. Synchronization Aspects9
 3.4. Scheduled Time Format10
 3.5. Scheduling Tolerance10
 3.6. Scheduling the Near vs. Far Future11
 3.7. Time-Interval Format13
 4. Time Capability ..14
 4.1. Overview ..14
 4.2. Dependencies ..14
 4.3. Capability Identifier14
 4.4. New Operations ..14
 4.5. Modifications to Existing Operations15
 4.5.1. Affected Operations15
 4.5.2. Processing Scheduled Operations16
 4.6. Interactions with Other Capabilities16
 5. Examples ...17
 5.1. <scheduled-time> Example17
 5.2. <get-time> Example ..18
 5.3. Error Example ...19
 6. Security Considerations ..19
 6.1. General Security Considerations19
 6.2. YANG Module Security Considerations20
 7. IANA Considerations ..21
 8. References ...22
 8.1. Normative References22
 8.2. Informative References22
 Appendix A. YANG Module for the Time Capability24
 Acknowledgments ...32
 Authors’ Addresses ..32

Mizrahi & Moses Experimental [Page 3]

RFC 7758 Time Capability in NETCONF February 2016

1. Introduction

 The Network Configuration Protocol (NETCONF), defined in [RFC6241],
 provides mechanisms to install, manipulate, and delete the
 configuration of network devices. NETCONF allows clients to
 configure and monitor NETCONF servers using remote procedure calls
 (RPCs).

 NETCONF is asynchronous; when a client invokes an RPC, it has no
 control over the time at which the RPC is executed, nor does it have
 any feedback from the server about the execution time.

 Time-based configuration ([OneClock] [Time4]) can be a useful tool
 that enables an entire class of coordinated and scheduled
 configuration procedures. Time-triggered configuration allows
 coordinated network updates in multiple devices; a client can invoke
 a coordinated configuration change by sending RPCs to multiple
 servers with the same scheduled execution time. A client can also
 invoke a time-based sequence of updates by sending n RPCs with n
 different update times, T1, T2, ..., Tn, determining the order in
 which the RPCs are executed.

 This memo defines the :time capability in NETCONF. This extension
 allows clients to determine the scheduled execution time of RPCs they
 send. It also allows a server that receives an RPC to report its
 actual execution time to the client.

 The NETCONF time capability is intended for scheduling RPCs that
 should be performed in the near future, allowing the coordination of
 simultaneous configuration changes or specification of an order of
 configuration updates. Time-of-day-based policies and far-future
 scheduling, e.g., [Cond], are outside the scope of this memo.

 This memo is defined for experimental purposes and will allow the
 community to experiment with the NETCONF time capability. Based on
 the lessons learned from this experience, it is expected that the
 NETCONF working group will be able to consider whether to adopt the
 time capability.

2. Conventions Used in This Document

2.1. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Mizrahi & Moses Experimental [Page 4]

RFC 7758 Time Capability in NETCONF February 2016

2.2. Abbreviations

 NETCONF Network Configuration Protocol

 RPC Remote Procedure Call

2.3. Terminology

 o Capability [RFC6241]: A functionality that supplements the base
 NETCONF specification.

 o Client [RFC6241]: Invokes protocol operations on a server. In
 addition, a client can subscribe to receive notifications from a
 server.

 o Execution time: The execution time of an RPC is defined as the
 time at which a server completes the execution of an RPC, before
 it sends the <rpc-reply> message.

 o Scheduled RPC: an RPC that is scheduled to be performed at a
 predetermined time, which is included in the <rpc> message.

 o Scheduled time: The scheduled time of an RPC is the time at which
 the RPC should be started, as determined by the client. It is the
 server’s role to enforce the execution of the scheduled time.

 o Server [RFC6241]: Executes protocol operations invoked by a
 client. In addition, a server can send notifications to a client.

3. Using Time in NETCONF

3.1. The Time Capability in a Nutshell

 The :time capability provides two main functions:

 o Scheduling:

 When a client sends an RPC to a server, the <rpc> message MAY
 include the scheduled-time element, denoted by Ts in Figure 1.
 The server then executes the RPC at the scheduled time Ts; once
 completed, the server can respond with an RPC reply message.

Mizrahi & Moses Experimental [Page 5]

RFC 7758 Time Capability in NETCONF February 2016

 o Reporting:

 When a client sends an RPC to a server, the <rpc> message MAY
 include a get-time element (see Figure 2), requesting the server
 to return the execution time of the RPC. In this case, after the
 server performs the RPC, it responds with an RPC reply that
 includes the execution time, Te.

 RPC _________
 executed \
 \/
 Ts
 server ---------------+------------- ----> time
 /\ \
 rpc / \ rpc-reply
 (Ts)/ \
 / \/
 client -----------------------------

 Figure 1: Scheduled RPC

 RPC _________
 executed \
 \/
 Te
 server ------------+---------------- ----> time
 /\ \
 rpc / \ rpc-reply
 (get-time)/ \ (Te)
 / \/
 client -----------------------------

 Figure 2: Reporting the Execution Time of an RPC

 Example 1. A client needs to trigger a commit at n servers, so that
 the n servers perform the commit as close as possible to
 simultaneously. Without the time capability, the client sends a
 sequence of n commit messages; thus, each server performs the commit
 at a different time. By using the time capability, the client can
 send commit messages that are scheduled to take place at a chosen
 time Ts, for example, 5 seconds in the future, causing the servers to
 invoke the commit as close as possible to time Ts.

 Example 2. In many applications, it is desirable to monitor events
 or collect statistics regarding a common time reference. A client
 can send a set of get-config messages that is scheduled to be
 executed at multiple servers at the same time, providing a

Mizrahi & Moses Experimental [Page 6]

RFC 7758 Time Capability in NETCONF February 2016

 simultaneous system-wide view of the state of the servers. Moreover,
 a client can use the get-time element in its get-config messages,
 providing a time reference to the sampled element.

 The scenarios of Figures 1 and 2 imply that a third scenario can also
 be supported (Figure 3), where the client invokes an RPC that
 includes a scheduled time, Ts, as well as the get-time element. This
 allows the client to receive feedback about the actual execution
 time, Te. Ideally, Ts=Te. However, the server may execute the RPC
 at a slightly different time than Ts, for example, if the server is
 tied up with other tasks at Ts.

 RPC _________
 executed \
 \/
 Ts Te
 server -------------+-+------------- ----> time
 /\ \
 rpc / \ rpc-reply
 (Ts + get-time)/ \ (Te)
 / \/
 client -----------------------------

 Figure 3: Scheduling and Reporting

3.2. Notifications and Cancellation Messages

 Notifications

 As illustrated in Figure 1, after a scheduled RPC is executed, the
 server sends an <rpc-reply>. The <rpc-reply> may arrive a long
 period of time after the RPC was sent by the client, leaving the
 client without a clear indication of whether the RPC was received.

 This document defines a new notification, the netconf-scheduled-
 message notification, which provides an immediate acknowledgement
 of the scheduled RPC.

 The <netconf-scheduled-message> notification is sent to the client
 if it is subscribed to the NETCONF notifications [RFC6470]; as
 illustrated in Figure 4, when the server receives a scheduled RPC,
 it sends a notification to the client.

Mizrahi & Moses Experimental [Page 7]

RFC 7758 Time Capability in NETCONF February 2016

 The <netconf-scheduled-message> notification includes a <schedule-
 id> element. The <schedule-id> is a unique identifier that the
 server assigns to every scheduled RPC it receives. Thus, a client
 can keep track of all the pending scheduled RPCs; a client can
 uniquely identify a scheduled RPC by the tuple {server, schedule-
 id}.

 RPC ____________
 executed \
 \/
 Ts
 server -------------------+--------- ----> time
 /\ \ \
 rpc / \notifi- \ rpc-reply
 (Ts)/ \cation \
 / \/ \/
 client -----------------------------

 Figure 4: Scheduled RPC with Notification

 Cancellation Messages

 A client can cancel a scheduled RPC by sending a <cancel-schedule>
 RPC. The <cancel-schedule> RPC includes the <schedule-id> of the
 scheduled RPC that needs to be cancelled.

 The <cancel-schedule> RPC, defined in this document, can be used
 to perform a coordinated all-or-none procedure, where either all
 the servers perform the operation on schedule or the operation is
 aborted.

 Example 3. A client sends scheduled <rpc> messages to server 1
 and server 2, both scheduled to be performed at time Ts. Server 1
 sends a notification indicating that it has successfully scheduled
 the RPC, while server 2 replies with an unknown-element error
 [RFC6241] that indicates that it does not support the time
 capability. The client sends a <cancel-schedule> RPC to server 1
 and receives an <rpc-reply>. The message exchange between the
 client and server 1 in this example is illustrated in Figure 5.

Mizrahi & Moses Experimental [Page 8]

RFC 7758 Time Capability in NETCONF February 2016

 RPC not __________
 executed \
 \/
 Ts
 server --------------------------------+--- ----> time
 /\ \ /\ \
 rpc / \notifi- /cancel- \ rpc-reply
 (Ts)/ \cation /schedule \
 / \/ / \/
 client ------------------------------------

 Figure 5: Cancellation Message

 A <cancel-schedule> RPC MUST NOT include the scheduled-time
 parameter. A server that receives a <cancel-schedule> RPC should try
 to cancel the schedule as soon as possible. If the server is unable
 to cancel the scheduled RPC, for example, because it has already been
 executed, it should respond with an <rpc-error> [RFC6241], in which
 the error-type is ’protocol’, and the error-tag is ’operation-
 failed’.

3.3. Synchronization Aspects

 The time capability defined in this document requires clients and
 servers to maintain clocks. It is assumed that clocks are
 synchronized by a method that is outside the scope of this document,
 e.g., [RFC5905] or [IEEE1588].

 This document does not define any requirements pertaining to the
 degree of accuracy of performing scheduled RPCs. Note that two
 factors affect how accurately the server can perform a scheduled RPC:
 one factor is the accuracy of the clock synchronization method used
 to synchronize the clients and servers and the second factor is the
 server’s ability to execute real-time configuration changes, which
 greatly depends on how it is implemented. Typical networking devices
 are implemented by a combination of hardware and software. While the
 execution time of a hardware module can typically be predicted with a
 high level of accuracy, the execution time of a software module may
 be variable and hard to predict. A configuration update would
 typically require the server’s software to be involved, thus
 affecting how accurately the RPC can be scheduled.

 Another important aspect of synchronization is monitoring; a client
 should be able to check whether a server is synchronized to a
 reference time source. Typical synchronization protocols, such as
 the Network Time Protocol [RFC5905], provide the means ([RFC5907],
 [RFC7317]) to verify that a clock is synchronized to a time reference
 by querying its Management Information Base (MIB). The get-time

Mizrahi & Moses Experimental [Page 9]

RFC 7758 Time Capability in NETCONF February 2016

 feature defined in this document (see Figure 2) allows a client to
 obtain a rough estimate of the time offset between the client’s clock
 and the server’s clock.

 Since servers do not perform configuration changes instantaneously,
 the processing time of an RPC should not be overlooked. The
 scheduled time always refers to the start time of the RPC, and the
 execution time always refers to its completion time.

3.4. Scheduled Time Format

 The scheduled time and execution time fields in <rpc> messages use a
 common time format field.

 The time format used in this document is the date-and-time format,
 defined in Section 5.6 of [RFC3339] and Section 3 of [RFC6991].

 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

3.5. Scheduling Tolerance

 When a client sends an RPC that is scheduled to Ts, the server MUST
 verify that the value Ts is not too far in the past or in the future.
 As illustrated in Figure 6, the server verifies that Ts is within the
 scheduling-tolerance range.

Mizrahi & Moses Experimental [Page 10]

RFC 7758 Time Capability in NETCONF February 2016

 RPC _________
 received \
 \/
 Ts
 -----+--------------+-----+------------+-------> time

 <------------> <---------------->
 sched-max-past sched-max-future

 <------------------------------->
 scheduling tolerance

 Figure 6: Scheduling Tolerance

 The scheduling tolerance is determined by two parameters: sched-max-
 future and sched-max-past. These two parameters use the time-
 interval format (Section 3.7.), and their default value is 15
 seconds.

 If the scheduled time, Ts, is within the scheduling-tolerance range,
 the scheduled RPC is performed; if Ts occurs in the past and within
 the scheduling tolerance, the server performs the RPC as soon as
 possible; whereas if Ts is a future time, the server performs the RPC
 at Ts.

 If Ts is not within the scheduling-tolerance range, the scheduled RPC
 is discarded, and the server responds with an error message [RFC6241]
 including a bad-element error-tag. An example is provided in Section
 5.3.

3.6. Scheduling the Near vs. Far Future

 The scheduling bound defined by sched-max-future guarantees that
 every scheduled RPC is restricted to a scheduling time in the near
 future.

 The scheduling mechanism defined in this document is intended for
 near-future scheduling, on the order of seconds. Far-future
 scheduling is outside the scope of this document.

 Example 1 is a typical example of using near-future scheduling; the
 goal in the example is to perform the RPC at multiple servers at the
 same time; therefore, it is best to schedule the RPC to be performed
 a few seconds in the future.

Mizrahi & Moses Experimental [Page 11]

RFC 7758 Time Capability in NETCONF February 2016

 The Challenges of Far-Future Scheduling

 When an RPC is scheduled to be performed at a far-future time,
 during the long period between the time at which the RPC is sent
 and the time at which it is scheduled to be executed, the
 following erroneous events may occur:

 o The server may restart.

 o The client’s authorization level may be changed.

 o The client may restart and send a conflicting RPC.

 o A different client may send a conflicting RPC.

 In these cases, if the server performs the scheduled operation, it
 may perform an action that is inconsistent with the current
 network policy or inconsistent with the currently active clients.

 Near-future scheduling guarantees that external events, such as
 the examples above, have a low probability of occurring during the
 sched-max-future period, and even when they do, the period of
 inconsistency is limited to sched-max-future, which is a short
 period of time.

 The Trade-off in Setting the sched-max-future Value

 The sched-max-future parameter should be configured to a value
 that is high enough to allow the client to:

 1. Send the scheduled RPC, potentially to multiple servers.

 2. Receive notifications or <rpc-error> messages from the
 server(s) or wait for a timeout and decide that if no response
 has arrived then something is wrong.

 3. If necessary, send a cancellation message, potentially to
 multiple servers.

 On the other hand, sched-max-future should be configured to a
 value that is low enough to allow a low probability of the
 erroneous events above, typically on the order of a few seconds.
 Note that, even if sched-max-future is configured to a low value,
 it is still possible (with a low probability) that an erroneous
 event will occur. However, this short, potentially hazardous
 period is not significantly worse than in conventional
 (unscheduled) RPCs, as even a conventional RPC may in some cases
 be executed a few seconds after it was sent by the client.

Mizrahi & Moses Experimental [Page 12]

RFC 7758 Time Capability in NETCONF February 2016

 The Default Value of sched-max-future

 The default value of sched-max-future is defined to be 15 seconds.
 This duration is long enough to allow the scheduled RPC to be sent
 by the client, potentially to multiple servers, and in some cases
 to send a cancellation message, as described in Section 3.2. On
 the other hand, the 15-second duration yields a very low
 probability of a reboot or a permission change.

3.7. Time-Interval Format

 The time-interval format is used for representing the length of a
 time interval and is based on the date-and-time format. It is used
 for representing the scheduling tolerance parameters, as described in
 the previous section.

 While the date-and-time type uniquely represents a specific point in
 time, the time-interval type defined below can be used to represent
 the length of a time interval without specifying a specific date.

 The time-interval type is defined as follows:

 typedef time-interval {
 type string {
 pattern ’\d{2}:\d{2}:\d{2}(\.\d+)?’;
 }
 description
 "Defines a time interval, up to 24 hours.
 The format is specified as HH:mm:ss.f,
 consisting of two digits for hours,
 two digits for minutes, two digits
 for seconds, and zero or more digits
 representing second fractions.";
 }

 Example

 The sched-max-future parameter is defined (Appendix A) as a time-
 interval, as follows:

 leaf sched-max-future {
 type time-interval;
 default 00:00:15.0;
 }

 The default value specified for sched-max-future is 0 hours, 0
 minutes, and 15 seconds.

Mizrahi & Moses Experimental [Page 13]

RFC 7758 Time Capability in NETCONF February 2016

4. Time Capability

 The structure of this section is as defined in Appendix D of
 [RFC6241].

4.1. Overview

 A server that supports the time capability can perform time-triggered
 operations as defined in this document.

 A server implementing the :time capability:

 o MUST support the ability to receive <rpc> messages that include a
 time element and perform a time-triggered operation accordingly.

 o MUST support the ability to include a time element in the <rpc-
 reply> messages that it transmits.

4.2. Dependencies

 With-defaults Capability

 The time-capability YANG module (Appendix A) uses default values;
 thus, it is assumed that the with-defaults capability [RFC6243] is
 supported.

4.3. Capability Identifier

 The :time capability is identified by the following capability
 string:

 urn:ietf:params:netconf:capability:time:1.0

4.4. New Operations

 <cancel-schedule>

 The <cancel-schedule> RPC is used for cancelling an RPC that was
 previously scheduled.

 A <cancel-schedule> RPC MUST include the <cancelled-message-id>
 element, which specifies the message ID of the scheduled RPC that
 needs to be cancelled.

 A <cancel-schedule> RPC MAY include the <get-time> element. In
 this case, the <rpc-reply> includes the <execution-time> element,
 specifying the time at which the scheduled RPC was cancelled.

Mizrahi & Moses Experimental [Page 14]

RFC 7758 Time Capability in NETCONF February 2016

4.5. Modifications to Existing Operations

4.5.1. Affected Operations

 The :time capability defined in this memo can be applied to any of
 the following operations:

 o get-config

 o get

 o copy-config

 o edit-config

 o delete-config

 o lock

 o unlock

 o commit

 Three new elements are added to each of these operations:

 o <scheduled-time> This element is added to the input of each
 operation, indicating the time at which the server is scheduled to
 invoke the operation. Every <rpc> message MAY include the
 <scheduled-time> element. A server that supports the :time
 capability and receives an <rpc> message with a <scheduled-time>
 element MUST perform the operation as close as possible to the
 scheduled time.

 The <scheduled-time> element uses the date-and-time format
 (Section 3.4.).

 o <get-time> This element is added to the input of each operation.
 An <rpc> message MAY include a <get-time> element, indicating that
 the server MUST include an <execution-time> element in its
 corresponding <rpc-reply>.

 o <execution-time> This element is added to the output of each
 operation, indicating the time at which the server completed the
 operation. An <rpc-reply> MAY include the <execution-time>
 element. A server that supports the :time capability and receives
 an operation with the <get-time> element MUST include the
 execution time in its response.

Mizrahi & Moses Experimental [Page 15]

RFC 7758 Time Capability in NETCONF February 2016

 The <execution-time> element uses the date-and-time format
 (Section 3.4.).

4.5.2. Processing Scheduled Operations

 A server that receives a scheduled RPC MUST start executing the RPC
 as close as possible to its scheduled execution time.

 If a session between a client and a server is terminated, the server
 MUST cancel all pending scheduled RPCs that were received in this
 session.

 Scheduled RPCs are processed serially, in an order that is defined by
 their scheduled times. Thus, the server sends <rpc-reply> messages
 to scheduled RPCs according to the order of their corresponding
 schedules. Note that this is a modification to the behavior defined
 in [RFC6241], which states that replies are sent in the order the
 requests were received. Interoperability with [RFC6241] is
 guaranteed by the NETCONF capability exchange; a server that does not
 support the :time capability responds to RPCs in the order the
 requests were received. A server that supports the :time capability
 replies to conventional (non-scheduled) RPCs in the order they were
 received and replies to scheduled RPCs in the order of their
 scheduled times.

 If a server receives two or more RPCs that are scheduled to be
 performed at the same time, the server executes the RPCs serially in
 an arbitrary order.

4.6. Interactions with Other Capabilities

 Confirmed Commit Capability

 The confirmed commit capability is defined in Section 8.4 of
 [RFC6241]. According to that document, a confirmed <commit>
 operation MUST be reverted if a confirming commit is not issued
 within the timeout period (which is 600 seconds by default).

 When the time capability is supported, and a confirmed <commit>
 operation is used with the <scheduled-time> element, the
 confirmation timeout MUST be counted from the scheduled time,
 i.e., the client begins the timeout measurement starting at the
 scheduled time.

Mizrahi & Moses Experimental [Page 16]

RFC 7758 Time Capability in NETCONF February 2016

5. Examples

5.1. <scheduled-time> Example

 The following example extends the example presented in Section 7.2 of
 [RFC6241] by adding the time capability. In this example, the
 <scheduled-time> element is used to specify the scheduled execution
 time of the configuration update (as shown in Figure 1).

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <scheduled-time
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
 2015-10-21T04:29:00.235Z
 </scheduled-time>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

Mizrahi & Moses Experimental [Page 17]

RFC 7758 Time Capability in NETCONF February 2016

5.2. <get-time> Example

 The following example is similar to the one presented in Section 5.1,
 except that, in this example, the client includes a <get-time>
 element in its RPC and the server consequently responds with an
 <execution-time> element (as shown in Figure 2).

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <get-time
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
 </get-time>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 <execution-time>
 2015-10-21T04:29:00.235Z
 </execution-time>
 </rpc-reply>

Mizrahi & Moses Experimental [Page 18]

RFC 7758 Time Capability in NETCONF February 2016

5.3. Error Example

 The following example presents a scenario in which the scheduled-time
 is not within the scheduling tolerance, i.e., it is too far in the
 past; therefore, an <rpc-error> is returned.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <scheduled-time
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
 2010-10-21T04:29:00.235Z
 </scheduled-time>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>bad-element</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <bad-element>scheduled-time</bad-element>
 </error-info>
 </rpc-error>
 </rpc-reply>

6. Security Considerations

6.1. General Security Considerations

 The security considerations of the NETCONF protocol in general are
 discussed in [RFC6241].

Mizrahi & Moses Experimental [Page 19]

RFC 7758 Time Capability in NETCONF February 2016

 The usage of the time capability defined in this document can assist
 an attacker in gathering information about the system, such as the
 exact time of future configuration changes. Moreover, the time
 elements can potentially allow an attacker to learn information about
 the system’s performance. Furthermore, an attacker that sends
 malicious <rpc> messages can use the time capability to amplify her
 attack; for example, by sending multiple <rpc> messages with the same
 scheduled time. It is important to note that the security measures
 described in [RFC6241] can prevent these vulnerabilities.

 The time capability relies on an underlying time synchronization
 protocol. Thus, by attacking the time protocol, an attack can
 potentially compromise NETCONF when using the time capability. A
 detailed discussion about the threats against time protocols and how
 to mitigate them is presented in [RFC7384].

 The time capability can allow an attacker to attack a NETCONF server
 by sending malicious RPCs that are scheduled to take place in the
 future. For example, an attacker can send multiple scheduled RPCs
 that are scheduled to be performed at the same time. Another
 possible attack is to send a large number of scheduled RPCs to a
 NETCONF server, potentially causing the server’s buffers to overflow.
 These attacks can be mitigated by a carefully designed NETCONF
 server; when a server receives a scheduled RPC that exceeds its
 currently available resources, it should reply with an <rpc-error>
 and discard the scheduled RPC.

 Note that if an attacker has been detected and revoked, its future
 scheduled RPCs are not executed; as defined in Section 4.5.2, once
 the session with the attacker has been terminated, the corresponding
 scheduled RPCs are discarded.

6.2. YANG Module Security Considerations

 This memo defines a new YANG module, as specified in Appendix A.

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol [RFC6241]. The lowest NETCONF layer is the
 secure transport layer and the mandatory-to-implement secure
 transport is Secure SHell (SSH) [RFC6242]. The NETCONF access
 control model [RFC6536] provides the means to restrict access for
 particular NETCONF users to a preconfigured subset of all available
 NETCONF protocol operations and content.

 This YANG module defines <sched-max-future> and <sched-max-past>,
 which are writable/creatable/deletable. These data nodes may be
 considered sensitive or vulnerable in some network environments. An
 attacker may attempt to maliciously configure these parameters to a

Mizrahi & Moses Experimental [Page 20]

RFC 7758 Time Capability in NETCONF February 2016

 low value, thereby causing all scheduled RPCs to be discarded. For
 instance, if a client expects <sched-max-future> to be 15 seconds,
 but in practice it is maliciously configured to 1 second, then a
 legitimate scheduled RPC that is scheduled to be performed 5 seconds
 in the future will be discarded by the server.

 This YANG module defines the <cancel-schedule> RPC. This RPC may be
 considered sensitive or vulnerable in some network environments.
 Since the value of the <schedule-id> is known to all the clients that
 are subscribed to notifications from the server, the <cancel-
 schedule> RPC may be used maliciously to attack servers by cancelling
 their pending RPCs. This attack is addressed in two layers: (i)
 security at the transport layer, limiting the attack only to clients
 that have successfully initiated a secure session with the server,
 and (ii) the authorization level required to cancel an RPC should be
 the same as the level required to schedule it, limiting the attack
 only to attackers with an authorization level that is equal to or
 higher than that of the client that initiated the scheduled RPC.

7. IANA Considerations

 The following capability identifier URN has been registered in the
 "Network Configuration Protocol (NETCONF) Capability URNs" registry:

 urn:ietf:params:netconf:capability:time:1.0

 The following XML namespace URN has been registered in the "IETF XML
 Registry", following the format defined in [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-time

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 The following module name has been registered in the "YANG Module
 Names" registry, defined in [RFC6020].

 name: ietf-netconf-time

 prefix: nct

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-time

 RFC: 7758

Mizrahi & Moses Experimental [Page 21]

RFC 7758 Time Capability in NETCONF February 2016

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81,
 RFC 3688, DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,
 Ed., and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
 February 2012,
 <http://www.rfc-editor.org/info/rfc6470>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <http://www.rfc-editor.org/info/rfc6991>.

8.2. Informative References

 [Cond] Watsen, K., "Conditional Enablement of Configuration
 Nodes", draft-kwatsen-conditional-enablement-00, Work in
 Progress, February 2013.

 [IEEE1588] IEEE, "IEEE Standard for a Precision Clock
 Synchronization Protocol for Networked Measurement and
 Control Systems Version 2", IEEE Standard 1588.

 [OneClock] Mizrahi, T. and Y. Moses, "OneClock to Rule Them All:
 Using Time in Networked Applications", IEEE/IFIP Network
 Operations and Management Symposium (NOMS), 2016.

Mizrahi & Moses Experimental [Page 22]

RFC 7758 Time Capability in NETCONF February 2016

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905,
 DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

 [RFC5907] Gerstung, H., Elliott, C., and B. Haberman, Ed.,
 "Definitions of Managed Objects for Network Time Protocol
 Version 4 (NTPv4)", RFC 5907,
 DOI 10.17487/RFC5907, June 2010,
 <http://www.rfc-editor.org/info/rfc5907>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)",
 RFC 6020, DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC6243] Bierman, A. and B. Lengyel, "With-defaults Capability for
 NETCONF", RFC 6243, DOI 10.17487/RFC6243, June 2011,
 <http://www.rfc-editor.org/info/rfc6243>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536, DOI
 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317,
 August 2014, <http://www.rfc-editor.org/info/rfc7317>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384,
 DOI 10.17487/RFC7384, October 2014,
 <http://www.rfc-editor.org/info/rfc7384>.

 [Time4] Mizrahi, T. and Y. Moses, "Software Defined Networks:
 It’s About Time", IEEE INFOCOM, 2016.

Mizrahi & Moses Experimental [Page 23]

RFC 7758 Time Capability in NETCONF February 2016

Appendix A. YANG Module for the Time Capability

 This section is normative.

<CODE BEGINS> file "ietf-netconf-time@2016-01-26.yang"

module ietf-netconf-time {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-time";

 prefix nct;
 import ietf-netconf { prefix nc; }

 import ietf-yang-types { prefix yang; }

 import ietf-netconf-monitoring { prefix ncm; }

 organization
 "IETF";

 contact
 "Editor: Tal Mizrahi
 <dew@tx.technion.ac.il>
 Editor: Yoram Moses
 <moses@ee.technion.ac.il>";

 description
 "This module defines a capability-based extension to the
 Network Configuration Protocol (NETCONF) that allows
 time-triggered configuration and management operations.
 This extension allows NETCONF clients to invoke configuration
 updates according to scheduled times and allows NETCONF
 servers to attach timestamps to the data they send to NETCONF
 clients.

 Copyright (c) 2016 IETF Trust and the persons identified as
 the authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).";

 revision 2016-01-26 {
 description
 "Initial version.";

Mizrahi & Moses Experimental [Page 24]

RFC 7758 Time Capability in NETCONF February 2016

 reference
 "RFC 7758:
 Time Capability in NETCONF";
 }

 typedef time-interval {
 type string {
 pattern ’\d{2}:\d{2}:\d{2}(\.\d+)?’;
 }
 description
 "Defines a time interval, up to 24 hours.
 The format is specified as HH:mm:ss.f,
 consisting of two digits for hours,
 two digits for minutes, two digits
 for seconds, and zero or more digits
 representing second fractions.";
 }

 grouping scheduling-tolerance-parameters {
 leaf sched-max-future {
 type time-interval;
 default 00:00:15.0;
 description
 "When the scheduled time is in the future, i.e., greater
 than the present time, this leaf defines the maximal
 difference between the scheduled time
 and the present time that the server is willing to
 accept. If the difference exceeds this number, the
 server responds with an error.";
 }

 leaf sched-max-past {
 type time-interval;
 default 00:00:15.0;
 description
 "When the scheduled time is in the past, i.e., less
 than the present time, this leaf defines the maximal
 difference between the present time
 and the scheduled time that the server is willing to
 accept. If the difference exceeds this number, the
 server responds with an error.";
 }

 description
 "Contains the parameters of the scheduling tolerance.";
 }
 // extending the get-config operation
 augment /nc:get-config/nc:input {

Mizrahi & Moses Experimental [Page 25]

RFC 7758 Time Capability in NETCONF February 2016

 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <get-config>.";
 }

 augment /nc:get-config/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <get-config>.";
 }

 augment /nc:get/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <get>.";
 }

 augment /nc:get/nc:output {
 leaf execution-time {

Mizrahi & Moses Experimental [Page 26]

RFC 7758 Time Capability in NETCONF February 2016

 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <get>.";
 }

 augment /nc:copy-config/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <copy-config>.";
 }

 augment /nc:copy-config/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <copy-config>.";
 }

 augment /nc:edit-config/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description

Mizrahi & Moses Experimental [Page 27]

RFC 7758 Time Capability in NETCONF February 2016

 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <edit-config>.";
 }

 augment /nc:edit-config/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <edit-config>.";
 }

 augment /nc:delete-config/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <delete-config>.";
 }

 augment /nc:delete-config/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }
 description
 "Adds the time element to <delete-config>.";
 }

 augment /nc:lock/nc:input {

Mizrahi & Moses Experimental [Page 28]

RFC 7758 Time Capability in NETCONF February 2016

 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <lock>.";
 }
 augment /nc:lock/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <lock>.";
 }

 augment /nc:unlock/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <unlock>.";
 }

 augment /nc:unlock/nc:output {
 leaf execution-time {
 type yang:date-and-time;

Mizrahi & Moses Experimental [Page 29]

RFC 7758 Time Capability in NETCONF February 2016

 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <unlock>.";
 }
 augment /nc:commit/nc:input {
 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }

 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include the
 execution-time.";
 }

 description
 "Adds the time element to <commit>.";
 }

 augment /nc:commit/nc:output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }

 description
 "Adds the time element to <commit>.";
 }

 augment /ncm:netconf-state {
 container scheduling-tolerance {
 uses scheduling-tolerance-parameters;
 description
 "The scheduling tolerance when the time capability
 is enabled.";
 }
 description
 "The scheduling tolerance of the server.";
 }

 rpc cancel-schedule {

Mizrahi & Moses Experimental [Page 30]

RFC 7758 Time Capability in NETCONF February 2016

 description
 "Cancels a scheduled message.";
 reference
 "RFC 7758:
 Time Capability in NETCONF";

 input {
 leaf cancelled-message-id {
 type string;
 description
 "The ID of the message to be cancelled.";
 }
 leaf get-time {
 type empty;
 description
 "Indicates that the rpc-reply should include
 the execution-time.";
 }
 }
 output {
 leaf execution-time {
 type yang:date-and-time;
 description
 "The time at which the RPC was executed.";
 }
 }
 }

 notification netconf-scheduled-message {
 leaf schedule-id {
 type string;
 description
 "The ID of the scheduled message.";
 }

 leaf scheduled-time {
 type yang:date-and-time;
 description
 "The time at which the RPC is scheduled to be performed.";
 }
 description
 "Indicates that a scheduled message was received.";
 reference
 "RFC 7758:
 Time Capability in NETCONF";
 }

}

Mizrahi & Moses Experimental [Page 31]

RFC 7758 Time Capability in NETCONF February 2016

<CODE ENDS>

Acknowledgments

 The authors gratefully acknowledge Joe Marcus Clarke, Andy Bierman,
 Balazs Lengyel, Jonathan Hansford, John Heasley, Robert Sparks, Al
 Morton, Olafur Gudmundsson, Juergen Schoenwaelder, Joel Jaeggli, Alon
 Schneider, and Eylon Egozi for their insightful comments.

 This work was supported in part by Israel Science Foundation grant
 ISF 1520/11.

Authors’ Addresses

 Tal Mizrahi
 Department of Electrical Engineering
 Technion - Israel Institute of Technology
 Technion City, Haifa, 32000
 Israel

 Email: dew@tx.technion.ac.il

 Yoram Moses
 Department of Electrical Engineering
 Technion - Israel Institute of Technology
 Technion City, Haifa, 32000
 Israel

 Email: moses@ee.technion.ac.il

Mizrahi & Moses Experimental [Page 32]

