I nternet Research Task Force (IRTF) D. Harkins, Ed.
Request for Comments: 7664 Aruba Networ ks
Cat egory: | nformational Novenber 2015
| SSN: 2070-1721

Dragonfly Key Exchange
Abst r act

This docunent specifies a key exchange using discrete |logarithm
cryptography that is authenticated using a password or passphrase.
It is resistant to active attack, passive attack, and offline
dictionary attack. This docunment is a product of the Crypto Forum
Research Group (CFRG.

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
published for informational purposes.

This docunent is a product of the Internet Research Task Force
(IRTF). The I RTF publishes the results of Internet-related research
and devel opnent activities. These results mght not be suitable for
depl oynent. This RFC represents the individual opinion(s) of one or
nmore nenbers of the Crypto Forum Research G oup of the Internet
Research Task Force (I RTF). Docunents approved for publication by
the IRSG are not a candidate for any |level of Internet Standard; see
Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc7664.

Copyright Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document.

Har ki ns I nf or mat i onal [Page 1]

RFC 7664 Dragonfly

Tabl e of Contents

1. Introduction .
1.1. Requirenents Language .
1.2. Definitions . .
1.2.1. Notations . .
1.2.2. Resistance to D|ct|onary Attack .
2. Discrete Logarithm Cryptography .
2.1 Elliptic Curve Cryptography .
2.2. Finite Field Cryptography .
3. The Dragonfly Key Exchange

3.1. Assunptions . .

3.2. Derivation of the Passvvord EI enent .o
3.2.1. Hunting and Pecking with ECC Goups .
3.2.2. Hunting and Pecki ng with MODP Groups

3.3 The Conmit Exchange . .

3.4. The Confirm Exchange

4, Security Considerations .
5. References .
5.1. Nor mat i ve Ref er ences
5.2. Infornmative References
Acknowl edgenent s
Aut hor’ s Address

1. Introduction

Novenmber 2015

O~NOURRDRWWWNN

PRRRRRRRRERE
VOO UTAWNO

Passwor ds and passphrases are the predoni nant way of doing

aut hentication in the Internet today. Many protocols that use
passwords and passphrases for authentication exchange password-
derived data as a proof-of-knowl edge of the password (for exanple,
[RFC7296] and [RFC5433]). This opens the exchange up to an offline
dictionary attack where the attacker gl eans enough know edge from
either an active or passive attack on the protocol to run through a

pool of potential passwords and conpute verifiers until
mat ch the password-derived data.

it is able to

This protocol enploys discrete logarithmcryptography to performan
efficient exchange in a way that perforns nutual authentication using
a password that is provably resistant to an offline dictionary
attack. Consensus of the CFRG for this docunment was rough.

1.1. Requirenents Language

The key words "MJST", "MJST NOT", "REQU RED', "SHALL",

"SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

Har ki ns I nf or mat i onal

[Page 2]

RFC 7664 Dragonfly Novenber 2015

1.2. Definitions
1.2.1. Notations
The follow ng notations are used in this meno.

password
A shared, secret, and potentially |owentropy word, phrase, code,
or key used as a credential to mutually authenticate the peers.
It is not restricted to characters in a human | anguage.

al b
denotes concatenation of bit string "a" with bit string "b".

l en(a)
indicates the length in bits of the bit string "a"

| sb(a)
returns the least-significant bit of the bit string "a"

l'gr(a,b)
takes "a" and a prine, "b", and returns the Legendre synbol (a/b).

m n(a, b)
returns the | exicographical mninmmof strings "a" and "b", or
zero (0) if "a" equals "b".

max(a, b)
returns the | exicographical nmaxi numof strings "a" and "b", or
zero (0) if "a" equals "b".

The convention for this neno is to represent an elenment in a finite
cyclic group with an uppercase letter or acronym while a scalar is
indicated with a lowercase letter or acronym An el ement that
represents a point on an elliptic curve has an inplied conposite
nature -- i.e., it has both an x- and y-coordi nate.

1.2.2. Resistance to Dictionary Attack

Resi stance to dictionary attack nmeans that any advantage an adversary
can gain nust be directly related to the nunber of interactions she
makes with an honest protocol participant and not through
conputation. The adversary will not be able to obtain any

i nformati on about the password except whether a single guess froma
protocol run is correct or incorrect.

Har ki ns I nf or mat i onal [Page 3]

RFC 7664 Dragonfly Novenber 2015

2.

2.

1

Di screte Logarithm Cryptography

Dragonfly uses discrete logarithm cryptography to achi eve

aut henti cation and key agreenent (see [SP800-56A]). Each party to

t he exchange derives ephenmeral keys with respect to a particul ar set
of donmmin paraneters (referred to here as a "group"). A group can be
based on Finite Field Cryptography (FFC) or Elliptic Curve

Crypt ography (ECC).

Three operations are defined for both types of groups:

0 "scalar operation" -- takes a scalar and an elenent in the group
to produce another elenment -- Z = scalar-op(x, Y)
o0 "elenment operation" -- takes two elenments in the group to produce

athird -- Z =element-op(X, Y)

o "inverse operation" -- takes an el enent and returns another
el ement such that the el enent operation on the two produces the
identity element of the group -- Y = inverse(X)

Elliptic Curve Cryptography
Domai n paraneters for the ECC groups used by Dragonfly are:

o Aprime, p, determining a prinme field GF(p). The cryptographic
group will be a subgroup of the full elliptic curve group that
consists of points on an elliptic curve -- elenents from G-(p)
that satisfy the curve’'s equation -- together with the "point at
infinity" that serves as the identity elenent. The group
operation for ECC groups is addition of points on the elliptic
curve.

o Elenents a and b from G-(p) that define the curve's equation. The
point (x, y) in GF(p) x GF(p) is on the elliptic curve if and only
if (y*2 - x*3 - a*x - b) nod p equals zero (0).

o Apoint, G on the elliptic curve, which serves as a generator for
the ECC group. G is chosen such that its order, with respect to
elliptic curve addition, is a sufficiently large prine.

o Awprine, g, whichis the order of G and thus is also the size of
the cryptographi c subgroup that is generated by G

An (x,y) pair is a valid ECC elenment if: 1) the x- and y-coordinates
are both greater than zero (0) and |l ess than the prime defining the
underlying field; and, 2) the x- and y-coordinates satisfy the
equation for the curve and produce a valid point on the curve that is

Har ki ns I nf or mat i onal [Page 4]

RFC 7664 Dragonfly Novenber 2015
not the point at infinity. |If either one of those conditions do not
hold, the (x,y) pair is not a valid el enent.

The scal ar operation is addition of a point on the curve with itself
a nunber of tines. The point Yis nultiplied x times to produce
anot her point Z:

Z = scalar-op(x, Y) = x*Y

The el ement operation is addition of two points on the curve. Points
X and Y are sunmed to produce another point Z:

Z = elenment-op(X, Y) = X+Y

The inverse function is defined such that the sumof an elenent and
its inverse is "0", the point at infinity of an elliptic curve group

R + inverse(R) = "0"
Elliptic curve groups require a mapping function, q = F(Q, to
convert a group element to an integer. The mapping function used in

this meno returns the x-coordinate of the point it is passed.

scal ar-op(x, Y) can be viewed as x iterations of elenent-op() by
defini ng:

Y = scalar-op(1, V)

Y

scal ar-op(x, Y) = elenent-op(Y, scalar-op(x-1, Y)), for x > 1

A definition of howto add two points on an elliptic curve (i.e.
el ement-op(X, Y)) can be found in [RFC6090].

Note: There is another elliptic curve domain paraneter, a cofactor,
h, that is defined by the requirenent that the size of the ful
elliptic curve group (including "0") be the product of h and q.
Elliptic curve groups used with Dragonfly authentication MJST have a
cof actor of one (1).

2.2. Finite Field Cryptography
Domai n paraneters for the FFC groups used in Dragonfly are
o Aprime, p, deternmining a prinme field G-(p), the integers nodul o
p. The FFC group will be a subgroup of GF(p)*, the nultiplicative

group of non-zero elenents in G-(p). The group operation for FFC
groups is multiplication nodulo p

Har ki ns I nf or mat i onal [Page 5]

RFC 7664 Dragonfly Novenber 2015

0 An elenent, G in GF(p)* which serves as a generator for the FFC
group. G is chosen such that its nultiplicative order is a
sufficiently large prine divisor of ((p-1)/2).

o Aprinme, g, which is the nultiplicative order of G and thus al so
the size of the cryptographic subgroup of G-(p)* that is generated
by G

A nunber is a valid element in an FFC group if: 1) it is between one
(1) and one (1) less than the prine, p, exclusive (i.e., 1 < elenent
< p-1); and, 2) if nodul ar exponentiation of the elenment by the group
order, g, equals one (1). |If either one of those conditions do not
hol d, the nunber is not a valid el enent.

The scal ar operation is exponentiation of a generator nodulo a prine.
An elenent Y is taken to the x-th power nodul o the prinme returning
anot her el enent, Z:

Z = scalar-op(x, Y) = Y*Xx nod p

The el ement operation is nmodular multiplication. Two elenents, X and
Y, are nmultiplied nmodulo the prime returning another elenent, Z

Z =element-op(X, Y) = (X*Y) nodp

The inverse function for a MODP group is defined such that the
product of an element and its inverse nodulo the group prinme equals
one (1). In other words,

(R* inverse(R)) nmod p =1
3. The Dragonfly Key Exchange

There are two parties to the Dragonfly exchange naned, for

conveni ence and by convention, Alice and Bob. The two parties have a
shared password that was established in an out-of-band nmechani sm and
they both agree to use a particular donmin paraneter set (either ECC
or FFC). In the Dragonfly exchange, both Alice and Bob share an

i dentical view of the shared password -- i.e., it is not "augnmented"
where one side holds a password and the other side holds a non-
invertible verifier. This allows Dragonfly to be used in traditiona
client-server protocols and also in peer-to-peer applications in
which there are not fixed roles and either party may initiate the
exchange (and both parties may inplenment it simnultaneously).

Prior to beginning the Dragonfly exchange, the two peers MJST derive

a secret elenent in the chosen domain paraneter set. Two "hunting-
and- pecki ng" techniques to determ ne a secret el enent, one for ECC

Har ki ns I nf or mat i onal [Page 6]

RFC 7664 Dragonfly Novenber 2015

and one for FFC, are described in Section 3.2, but any secure,
deterministic nethod that is agreed upon can be used. For instance,
the techni que described in [hash2ec] can be used for ECC groups.

The Dragonfly exchange consists of two nessage exchanges, a "Comnit
Exchange" in which both sides commit to a single guess of the
password, and a "Confirm Exchange" in which both sides confirm
know edge of the password. A side effect of running the Dragonfly
exchange is an authenticated, shared, and secret key whose
cryptographic strength is set by the agreed-upon group

Dragonfly uses a random function, H(), a mapping function, F(), and a
key derivation function, KDF().

3.1. Assunptions

In order to avoid attacks on the Dragonfly protocol, sone basic
assunptions are nade

1. Function His a "randomoracle" (see [RANDOR]) that maps a binary
string of indeterminate length onto a fixed binary string that is
X bits in length.

H {0, 1}"* --> {0, 1}"x
2. Function F is a mapping function that takes an elenent in a group
and returns an integer. For ECC groups, function F() returns the
x-coordi nate of the elenment (which is a point on the elliptic
curve); for FFC groups, function F() is the identity function

(since all elenents in an FFC group are already integers |ess
than the prine).

ECC: x = F(P), where P=(x,y)
FFC. x = F(x)
3. Function KDF is a key derivation function (see, for instance,
[SP800-108]) that takes a key to stretch, k, a label to bind to
the key, label, and an indication of the desired output, n

stretch = KDF-n(k, |abel)

so that len(stretch) equals n

Har ki ns I nf or mat i onal [Page 7]

RFC 7664 Dragonfly Novenber 2015

4. The discrete | ogarithm problemfor the chosen group is hard.
That is, given G P, and Y = G'x nod p, it is conmputationally
infeasible to deternmine x. Simlarly, for an ECC group given the
curve definition, a generator G and Y =x * G it is
conmputationally infeasible to determ ne x.

5. There exists a pool of passwords fromwhich the password shared
by the two peers is drawn. This pool can consist of words froma
dictionary, for exanple. Each password in this pool has an equa
probability of being the shared password. All potential
attackers have access to this pool of passwords.

6. The peers have the ability to produce quality random nunbers.
3.2. Derivation of the Password El enment

Prior to beginning the exchange of information, the peers MJST derive
a secret elenent, called the Password El enent (PE), in the group
defined by the chosen domain paraneter set. Fromthe point of view
of an attacker who does not know t he password, the PE will be a
random el enent in the negotiated group. Two exanples are described
here for conpl eteness, but any nethod of deterministically mapping a
secret string into an elenent in a selected group can be used -- for

i nstance, the technique in [hash2ec] for ECC groups. |If a different
techni que than the ones described here is used, the secret string
SHOULD include the identities of the peers.

To fix the PE, both peers MJST have a conmon view of the password.

If there is any password processing necessary (for exanple, to
support internationalization), the processed password is then used as
the shared credential. |If either side wants to store a hashed
version of the password (hashing the password with random data call ed
a "salt"), it will be necessary to convey the salt to the other side
prior to commenci ng the exchange, and the hashed password is then
used as the shared credenti al

Note: Only one party would be able to naintain a salted password, and
this would require that the Dragonfly key exchange be used in a
protocol that has strict roles for client (that always initiates) and
server (that always responds). Due to the symetric nature of
Dragonfly, salting passwords does not prevent an inpersonation attack
after conpronise of a database of salted passwords

The deternministic process to select the PE begins with choosing a

secret seed and then perforning a group-specific hunting-and-pecking
techni que -- one for FFC groups and anot her for ECC groups.

Har ki ns I nf or mat i onal [Page 8]

RFC 7664 Dragonfly Novenber 2015

To thwart side-channel attacks that attenpt to determ ne the nunber
of iterations of the hunting-and-pecking |oop used to find the PE for
a given password, a security paranmeter, k, is used that ensures that
at least k iterations are always perfornmed. The probability that one
requires nmore than n iterations of the hunting-and-pecking loop to
find an ECC PE is roughly (g/2p)®n and to find an FFC PE i s roughly
(a/p)”~n, both of which rapidly approach zero (0) as n increases. The
security paranmeter, k, SHOULD be set sufficiently large such that the
probability that finding the PE woul d take nore than k iterations is
sufficiently small (see Section 4).

First, an 8-bit counter is set to one (1), and a secret base is
conput ed using the negotiated one-way function with the identities of
the two participants, Alice and Bob, the secret password, and the
counter:

base = H(max(Alice,Bob) | m n(Alice, Bob) | password | counter)

The identities are passed to the max() and nmin() functions to provide
the necessary ordering of the inputs to H() while still allow ng for
a peer-to-peer exchange where both Alice and Bob each view t hensel ves
as the "initiator" of the exchange.

The base is then stretched using the technique from Section B.5.1 of
[FI PS186-4]. The key derivation function, KDF, is used to produce a
bi t stream whose length is equal to the length of the prime fromthe
group’ s dommi n paraneter set plus the constant sixty-four (64) to
derive a tenporary value, and the tenmporary value is nodularly
reduced to produce a seed:

n =1len(p) + 64

tenp = KDF-n(base, "Dragonfly Hunting and Pecki ng")

seed (temp nod (p - 1)) + 1

The string bound to the derived tenporary value is for illustrative
purposes only. Inplementations of the Dragonfly key exchange SHOULD
use a usage-specific |l abel with the KDF

Not e: The base is stretched to 64 nbre bits than are needed so that
the bias fromthe nodul ar reduction is not so apparent.

The seed is then passed to the group-specific hunting-and-pecking
t echni que.

Har ki ns I nf or mat i onal [Page 9]

RFC 7664 Dragonfly Novenber 2015

If the protocol perforning the Dragonfly exchange has the ability to
exchange random nonces, those SHOULD be added to the conputation of
the base to ensure that each run of the protocol produces a different
PE.

3.2.1. Hunting and Pecking with ECC G oups
The ECC-specific hunting-and-pecking technique entails |ooping unti

a valid point on the elliptic curve has been found. The seed is used
as an x-coordinate with the equation of the curve to check whet her

x"3 + a*x + b is a quadratic residue nodulo p. If it is not, then
the counter is increnented, a new base and new seed are generated
and the hunting and pecking continues. |If it is a quadratic residue

nmodul o p, then the x-coordinate is assigned the value of seed and the
current base is stored. Wen the hunting-and-pecking | oop

term nates, the x-coordinate is used with the equation of the curve
to solve for a y-coordinate. An anbiguity exists since two val ues
for the y-coordinate would be valid, and the |oworder bit of the
stored base is used to unanbi guously deternine the correct
y-coordinate. The resulting (x,y) pair becones the Password El enent,
PE.

Har ki ns I nf or mat i onal [Page 10]

RFC 7664 Dragonfly Novenber 2015

Algorithmically, the process |ooks like this:

found = 0
counter =1
n =1len(p) + 64

do {
base = H(max(Alice,Bob) | mn(Alice, Bob) | password | counter)
tenp = KDF-n(base, "Dragonfly Hunting And Pecki ng")
seed = (temp nod (p - 1)) + 1

if ((seed”3 + a*seed + b) is a quadratic residue nod p)
t hen
if (found == 0)
t hen
X = seed
save = base
found = 1
fi
fi
counter = counter + 1
} while ((found == 0) || (counter <= Kk))
y = sqrt(x”"3 + ax + b)

if (Isb(y) == Isb(save))
t hen
PE = (x,Y)
el se
PE = (X, p-y)

fi
Figure 1: Fixing PE for ECC G oups

Checki ng whether a value is a quadratic residue nodulo a prine can

| eak information about that value in a side-channel attack
Therefore, it is RECOWENDED that the technique used to deternmine if
the value is a quadratic residue nmodulo p blind the value with a
random nunmber so that the blinded value can take on all nunbers
between 1 and p-1 with equal probability while not changing its
quadratic residuosity. Determining the quadratic residue in a
fashion that resists | eakage of information is handled by flipping a
coin and multiplying the blinded val ue by either a random quadratic
resi due or a random quadrati c nonresi due and checki ng whet her the
multiplied value is a quadratic residue (qr) or a quadratic

nonresi due (qnr) nodul o p, respectively. The random residue and
nonr esi due can be cal cul ated prior to hunting and pecki ng by
calculating the Legendre synbol on random values until they are
found:

Har ki ns I nf or mat i onal [Page 11]

RFC 7664 Dragonfly Novenber 2015

do {
gr = random() nod p
} while (Igr(gr, p) !'=1)

do {
gnr = random() nod p
} while (Igr(gnr, p) !'=-1)

Al gorithmically, the nasking technique to find out whether or not a
value is a quadratic residue |ooks like this:

is_quadratic_residue (val, p) {
r = (randon() nmod (p - 1)) + 1
num= (val * r * r) nod p
if (Isb(r) ==1)
num = (num* qr) nod p
if (lgr(num p) == 1)
t hen
return TRUE
f

el se
num = (num* qgnr) nod p
if (lgr(num p) == -1)
t hen

return TRUE
f
f
return FALSE

3.2.2. Hunting and Pecking with MODP G oups

The MODP-speci fic hunting-and-pecking technique entails finding a
random el enent whi ch, when used as a generator, will create a group
with the same order as the group created by the generator fromthe
domai n paraneter set. The secret generator is found by
exponentiating the seed to the value ((p-1)/q), where p is the prine
and g is the order fromthe donmain paraneter set. |If that value is
greater than one (1), it beconmes the PE, otherw se, the counter is

i ncrenment ed, a new base and seed are generated, and the hunting and
pecki ng conti nues.

Har ki ns I nf or mat i onal [Page 12]

RFC 7664 Dragonfly

Algorithmically, the process |ooks like this:

found = 0
counter =1
n =1len(p) + 64

Novenmber 2015

counter)

do {
base = H(max(Alice,Bob) | mn(Alice, Bob) | password |
tenp = KDF-n(seed, "Dragonfly Hunting And Pecking")
seed = (temp nod (p - 1)) + 1
tenp = seed ® ((p-1)/q) nod p
if (tenp > 1)
t hen
i f (not found)
PE = tenp
found = 1
fi
fi
counter = counter + 1

} while ((found == 0) || (counter <= k))

Figure 2: Fixing PE for

3.3. The Commit Exchange
In the Conmit Exchange
password
with each other, and process the other’s scalar and
generate a comon and shared secret.

First, each peer generates two random nunbers,

MODP Gr oups

both sides commit to a single guess of the
The peers generate a scalar and an el enent,

exchange t hem
el ement to

private and mask that

are each greater than one (1) and less than the order fromthe

sel ected domai n paraneter set:

1 < private < g
1 < msk < ¢

These two secrets and the Password El enent are then
the scal ar and el enent:

scalar = (private + mask) nodulo q
El ement = inverse(scal ar-op(mask, PE))

If the scalar is less than two (2), the private and
thrown away and new val ues generated. Once a valid
El ement are generated, the mask is no | onger needed
irretrievably destroyed.

Har ki ns I nf or mat i ona

used to construct

mask MUST be
scal ar and
and MJST be

[Page 13]

RFC 7664 Dragonfly Novenber 2015

The peers exchange their scalar and El ement and check the peer’s
scal ar and El enent, deened peer-scalar and Peer-Elenent. |If the peer
has sent an identical scalar and Elenent -- i.e., if scalar equals
peer-scal ar and El enment equals Peer-Elenent -- it is sign of a
reflection attack, and the exchange MJST be aborted. |If the values
differ, peer-scalar and Peer-El enent nust be validated. For the
peer-scalar to be valid, it MJUST be between 1 and g excl usive.

Val i dati on of the Peer-El enent depends on the type of cryptosystem --
validation of an (x,y) pair as an ECC elenment is specified in
Section 2.1, and validation of a nunber as an FFC elenent is

specified in Section 2.2. If either the peer-scal ar or Peer-El enent
fail validation, then the exchange MJST be terninated and
authentication fails. |If both the peer-scalar and Peer-El enent are

valid, they are used with the Password El enent to derive a shared
secret, ss:

ss = F(scal ar-op(private,
el ement - op(peer - El enent
scal ar-op(peer-scalar, PE))))

To enforce key separation and cryptographi c hygi ene, the shared
secret is stretched into two subkeys -- a key confirmation key, kck,
and a nmaster key, nk. Each of the subkeys SHOULD be at | east the

Il ength of the prinme used in the selected group

kck | nmk = KDF-n(ss, "Dragonfly Key Derivation")
where n = len(p)*2
3.4. The Confirm Exchange

In the Confirm Exchange, both sides confirmthat they derived the
sane secret, and therefore, are in possession of the sanme password.

The Conmit Exchange consi sts of an exchange of data that is the

out put of the random function, H(), the key confirmation key, and the
two scalars and two el enents exchanged in the Conmit Exchange. The
order of the scalars and elenments are: scalars before el enments, and
sender’s val ue before recipient’s value. So fromeach peer’s
perspective, it would generate:

confirm= H(kck | scalar | peer-scalar
El enrent | Peer-El enent | <sender-id>)

Where <sender-id> is the identity of the sender of the confirm

message. This identity SHALL be that contributed by the sender of
the confirm message in generation of the base in Section 3. 2.

Har ki ns I nf or mat i onal [Page 14]

RFC 7664 Dragonfly Novenber 2015

The two peers exchange these confirmati ons and verify the correctness
of the other peer’s confirmation that they receive. |f the other
peer’s confirmation is valid, authentication succeeds; if the other
peer’s confirmation is not valid, authentication fails.

If authentication fails, all epheneral state created as part of the
particular run of the Dragonfly exchange MJST be irretrievably
destroyed. |f authentication does not fail, nk can be exported as an
aut henti cated and secret key that can be used by another protocol

for instance | Psec, to protect other data.

4. Security Considerations

The Dragonfly exchange requires both participants to have an

i dentical representation of the password. Salting of the password
merely generates a new credential -- the salted password -- that nust
be identically represented on both sides. |If an adversary is able to
gai n access to the database of salted passwords, she would be able to
i mpersonate one side to the other, even if she was unable to
determi ne the underlying, unsalted password.

Resi stance to dictionary attack nmeans that an adversary mnust | aunch
an active attack to make a single guess at the password. |If the size
of the dictionary fromwhich the password was extracted was d, and
each password in the dictionary has an equal probability of being
chosen, then the probability of success after a single guess is 1/d.
After x guesses, and renoval of failed guesses fromthe pool of
possi bl e passwords, the probability becomes 1/(d-x). As x grows, SO
does the probability of success. Therefore, it is possible for an
adversary to determine the password through repeated brute-force,
active, guessing attacks. Users of the Dragonfly key exchange SHOULD
ensure that the size of the pool from which the password was drawn,

d, is sufficiently large to make this attack preventable.

| mpl enent ati ons of Dragonfly SHOULD support counterneasures to dea
with this attack -- for instance, by refusing authentication attenpts
for a certain anmount of tinme, after the nunber of failed

aut hentication attenpts reaches a certain threshold. No such
threshol d or amount of tine is recommended in this meno.

Due to the problens with using groups that contain a small subgroup
it is RECOVWENDED t hat inplenentations of Dragonfly not allow for the
specification of a group’s conpl ete donain paraneter to be sent
in-line, but instead use a common repository and pass an identifier
to a domain paranmeter set whose strength has been rigorously proven
and that does not have small subgroups. |If a group’s conplete domain
paraneter set is passed in-line, it SHOULD NOT be used with Dragonfly
unless it directly matches a known good group

Har ki ns I nf or mat i onal [Page 15]

RFC 7664 Dragonfly Novenber 2015

5.

5.1

5.2.

Har

It is RECOWENDED that an inplenentation set the security paraneter,
k, to a value of at least forty (40) which will put the probability
that nmore than forty iterations are needed in the order of one in one
trillion (1:1, 000, 000, 000, 000).

The techni que used to obtain the Password El enent in Section 3.2.1
addresses side-channel attacks in a manner deened controversial by
sonme reviewers in the CFRG An alternate nmethod, such as the one
defined in [hash2ec], can be used to alleviate concerns.

Thi s key exchange protocol has received cryptanalysis in [clarkehao].
[lanskro] provides a security proof of Dragonfly in the random oracle
nodel when both identities are included in the data sent in the
Confirm Exchange (see Section 3.4).

Ref er ences
Nor mat i ve Ref er ences

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997
<http://ww.rfc-editor.org/info/rfc2119>

I nformati ve References

[cl arkehao] Clarke, D. and F. Hao, "Cryptanalysis of the Dragonfly
Key Exchange Protocol", IET Information Security, Vol ume
8, Issue 6, DA 10.1049/iet-ifs.2013.0081, Novenber 2014.

[FI PS186-4] NI ST, "Digital Signature Standard (DSS)", Federa
I nformation Processing Standard (FIPS) 186-4,
DO 10. 6028/ NI ST. FI PS. 186-4, July 2013

[hash2ec] Brier, E., Coron, J-S., lcart, T., Madore, D., Randriam
H., and M Tibouchi, "Efficient Indifferentiable Hashing
into Odinary Elliptic Curves", Cryptology ePrint Archive
Report 2009/ 340, 2009.

[anskr o] Lancrenon, J. and M Skrobot, "On the Provable Security
of the Dragonfly Protocol™, Proceedings of 18th
International Information Security Conference (1SC
2015), pp 244-261, DA 10.1007/978-3-319-23318-5_14,
Sept enber 2015.

ki ns I nf or mat i onal [Page 16]

RFC 7664

[RANDOR]

[RFC5433]

[RFC5090]

[RFC7296]

[SP800- 108]

[SP800- 56A]

Har ki ns

Dragonfly Novenber 2015

Bellare, M and P. Rogaway, "Random Oracles are
Practical: A Paradigmfor Designing Efficient Protocols",
Proceedi ngs of the 1st ACM Conference on Conputer and
Commruni cati on Security, ACM Press,

DA 10.1145/168588. 168596, 1993.

O ancy, T. and H Tschofenig, "Extensible Authentication
Protocol - Generalized Pre-Shared Key (EAP-GPSK) Met hod",
RFC 5433, DA 10.17487/ RFC5433, February 2009,
<http://ww. rfc-editor.org/info/rfc5433>.

MGew, D., lgoe, K, and M Salter, "Fundanental
Elliptic Curve Cryptography Al gorithms", RFC 6090,
DO 10.17487/ RFC6090, February 2011,

<http://www. rfc-editor.org/info/rfc6090>.

Kauf man, C., Hoffrman, P., Nir, Y., Eronen, P., and T.

Ki vinen, "Internet Key Exchange Protocol Version 2
(IKev2)", STD 79, RFC 7296, DO 10.17487/ RFCr7296, Cctober
2014, <http://ww.rfc-editor.org/info/rfc7296>.

Chen, L., "Recommendation for Key Derivation Using
Pseudor andom Functi ons”, N ST Speci al
Publ i cati on 800-108, October 2009.

Bar ker, E., Johnson, D., and M Snid, "Recomendation for
Pair-Wse Key Establishment Schenes Using Discrete
Logarithm Crypt ography (Revised)", N ST Speci al

Publ i cati on 800-56A, March 2007.

I nf or mat i onal [Page 17]

RFC 7664 Dragonfly Novenber 2015

Acknowl edgenent s

The author would like to thank Kevin I goe and David MG ew, chairnen
of the Crypto Forum Research Group (CFRG for agreeing to accept this
meno as a CFRG work item Additional thanks go to Scott Fluhrer and
H deyuki Suzuki for discovering attacks agai nst earlier versions of
this key exchange and suggesting fixes to address them Lily Chen
provi ded hel pful discussions on hashing into an elliptic curve. Rich
Davi s suggested the validation steps used on received elements to
prevent a small subgroup attack. Dylan O arke and Feng Hao

di scovered a dictionary attack against Dragonfly if those checks are
not made and a group with a small subgroup is used. And finally, a
very heartfelt thanks to Jean Lancrenon and Marjan Skrobot for
devel opi ng a proof of the security of Dragonfly.

The blinding schenme to prevent side-channel attacks when determ ning
whet her a value is a quadratic residue nodulo a prinme was suggested
by Scott Fluhrer. Kevin Igoe suggested addition of the security
paraneter k to hide the anpbunt of tine taken hunting and pecking for
t he password el enent.

Aut hor’' s Address
Dan Harkins (editor)
Aruba Net wor ks
1322 Crossman Avenue
Sunnyval e, CA 94089-1113
United States

Emai | : dhar ki ns@r ubanet wor ks. com

Har ki ns I nf or mat i onal [Page 18]

