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Abstract

   This document specifies a key exchange using discrete logarithm
   cryptography that is authenticated using a password or passphrase.
   It is resistant to active attack, passive attack, and offline
   dictionary attack.  This document is a product of the Crypto Forum
   Research Group (CFRG).

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Research Task Force
   (IRTF).  The IRTF publishes the results of Internet-related research
   and development activities.  These results might not be suitable for
   deployment.  This RFC represents the individual opinion(s) of one or
   more members of the Crypto Forum Research Group of the Internet
   Research Task Force (IRTF).  Documents approved for publication by
   the IRSG are not a candidate for any level of Internet Standard; see
   Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7664.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
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1.  Introduction

   Passwords and passphrases are the predominant way of doing
   authentication in the Internet today.  Many protocols that use
   passwords and passphrases for authentication exchange password-
   derived data as a proof-of-knowledge of the password (for example,
   [RFC7296] and [RFC5433]).  This opens the exchange up to an offline
   dictionary attack where the attacker gleans enough knowledge from
   either an active or passive attack on the protocol to run through a
   pool of potential passwords and compute verifiers until it is able to
   match the password-derived data.

   This protocol employs discrete logarithm cryptography to perform an
   efficient exchange in a way that performs mutual authentication using
   a password that is provably resistant to an offline dictionary
   attack.  Consensus of the CFRG for this document was rough.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].
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1.2.  Definitions

1.2.1.  Notations

   The following notations are used in this memo.

   password
      A shared, secret, and potentially low-entropy word, phrase, code,
      or key used as a credential to mutually authenticate the peers.
      It is not restricted to characters in a human language.

   a | b
      denotes concatenation of bit string "a" with bit string "b".

   len(a)
      indicates the length in bits of the bit string "a".

   lsb(a)
      returns the least-significant bit of the bit string "a".

   lgr(a,b)
      takes "a" and a prime, "b", and returns the Legendre symbol (a/b).

   min(a,b)
      returns the lexicographical minimum of strings "a" and "b", or
      zero (0) if "a" equals "b".

   max(a,b)
      returns the lexicographical maximum of strings "a" and "b", or
      zero (0) if "a" equals "b".

   The convention for this memo is to represent an element in a finite
   cyclic group with an uppercase letter or acronym, while a scalar is
   indicated with a lowercase letter or acronym.  An element that
   represents a point on an elliptic curve has an implied composite
   nature -- i.e., it has both an x- and y-coordinate.

1.2.2.  Resistance to Dictionary Attack

   Resistance to dictionary attack means that any advantage an adversary
   can gain must be directly related to the number of interactions she
   makes with an honest protocol participant and not through
   computation.  The adversary will not be able to obtain any
   information about the password except whether a single guess from a
   protocol run is correct or incorrect.
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2.  Discrete Logarithm Cryptography

   Dragonfly uses discrete logarithm cryptography to achieve
   authentication and key agreement (see [SP800-56A]).  Each party to
   the exchange derives ephemeral keys with respect to a particular set
   of domain parameters (referred to here as a "group").  A group can be
   based on Finite Field Cryptography (FFC) or Elliptic Curve
   Cryptography (ECC).

   Three operations are defined for both types of groups:

   o  "scalar operation" -- takes a scalar and an element in the group
      to produce another element -- Z = scalar-op(x, Y).

   o  "element operation" -- takes two elements in the group to produce
      a third -- Z = element-op(X, Y).

   o  "inverse operation" -- takes an element and returns another
      element such that the element operation on the two produces the
      identity element of the group -- Y = inverse(X).

2.1.  Elliptic Curve Cryptography

   Domain parameters for the ECC groups used by Dragonfly are:

   o  A prime, p, determining a prime field GF(p).  The cryptographic
      group will be a subgroup of the full elliptic curve group that
      consists of points on an elliptic curve -- elements from GF(p)
      that satisfy the curve’s equation -- together with the "point at
      infinity" that serves as the identity element.  The group
      operation for ECC groups is addition of points on the elliptic
      curve.

   o  Elements a and b from GF(p) that define the curve’s equation.  The
      point (x, y) in GF(p) x GF(p) is on the elliptic curve if and only
      if (y^2 - x^3 - a*x - b) mod p equals zero (0).

   o  A point, G, on the elliptic curve, which serves as a generator for
      the ECC group.  G is chosen such that its order, with respect to
      elliptic curve addition, is a sufficiently large prime.

   o  A prime, q, which is the order of G, and thus is also the size of
      the cryptographic subgroup that is generated by G.

   An (x,y) pair is a valid ECC element if: 1) the x- and y-coordinates
   are both greater than zero (0) and less than the prime defining the
   underlying field; and, 2) the x- and y-coordinates satisfy the
   equation for the curve and produce a valid point on the curve that is
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   not the point at infinity.  If either one of those conditions do not
   hold, the (x,y) pair is not a valid element.

   The scalar operation is addition of a point on the curve with itself
   a number of times.  The point Y is multiplied x times to produce
   another point Z:

      Z = scalar-op(x, Y) = x*Y

   The element operation is addition of two points on the curve.  Points
   X and Y are summed to produce another point Z:

      Z = element-op(X, Y) = X + Y

   The inverse function is defined such that the sum of an element and
   its inverse is "0", the point at infinity of an elliptic curve group:

      R + inverse(R) = "0"

   Elliptic curve groups require a mapping function, q = F(Q), to
   convert a group element to an integer.  The mapping function used in
   this memo returns the x-coordinate of the point it is passed.

   scalar-op(x, Y) can be viewed as x iterations of element-op() by
   defining:

      Y = scalar-op(1, Y)

      Y = scalar-op(x, Y) = element-op(Y, scalar-op(x-1, Y)), for x > 1

   A definition of how to add two points on an elliptic curve (i.e.,
   element-op(X, Y)) can be found in [RFC6090].

   Note: There is another elliptic curve domain parameter, a cofactor,
   h, that is defined by the requirement that the size of the full
   elliptic curve group (including "0") be the product of h and q.
   Elliptic curve groups used with Dragonfly authentication MUST have a
   cofactor of one (1).

2.2.  Finite Field Cryptography

   Domain parameters for the FFC groups used in Dragonfly are:

   o  A prime, p, determining a prime field GF(p), the integers modulo
      p.  The FFC group will be a subgroup of GF(p)*, the multiplicative
      group of non-zero elements in GF(p).  The group operation for FFC
      groups is multiplication modulo p.
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   o  An element, G, in GF(p)* which serves as a generator for the FFC
      group.  G is chosen such that its multiplicative order is a
      sufficiently large prime divisor of ((p-1)/2).

   o  A prime, q, which is the multiplicative order of G, and thus also
      the size of the cryptographic subgroup of GF(p)* that is generated
      by G.

   A number is a valid element in an FFC group if: 1) it is between one
   (1) and one (1) less than the prime, p, exclusive (i.e., 1 < element
   < p-1); and, 2) if modular exponentiation of the element by the group
   order, q, equals one (1).  If either one of those conditions do not
   hold, the number is not a valid element.

   The scalar operation is exponentiation of a generator modulo a prime.
   An element Y is taken to the x-th power modulo the prime returning
   another element, Z:

      Z = scalar-op(x, Y) = Y^x mod p

   The element operation is modular multiplication.  Two elements, X and
   Y, are multiplied modulo the prime returning another element, Z:

      Z = element-op(X, Y) = (X * Y) mod p

   The inverse function for a MODP group is defined such that the
   product of an element and its inverse modulo the group prime equals
   one (1).  In other words,

      (R * inverse(R)) mod p = 1

3.  The Dragonfly Key Exchange

   There are two parties to the Dragonfly exchange named, for
   convenience and by convention, Alice and Bob.  The two parties have a
   shared password that was established in an out-of-band mechanism, and
   they both agree to use a particular domain parameter set (either ECC
   or FFC).  In the Dragonfly exchange, both Alice and Bob share an
   identical view of the shared password -- i.e., it is not "augmented",
   where one side holds a password and the other side holds a non-
   invertible verifier.  This allows Dragonfly to be used in traditional
   client-server protocols and also in peer-to-peer applications in
   which there are not fixed roles and either party may initiate the
   exchange (and both parties may implement it simultaneously).

   Prior to beginning the Dragonfly exchange, the two peers MUST derive
   a secret element in the chosen domain parameter set.  Two "hunting-
   and-pecking" techniques to determine a secret element, one for ECC
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   and one for FFC, are described in Section 3.2, but any secure,
   deterministic method that is agreed upon can be used.  For instance,
   the technique described in [hash2ec] can be used for ECC groups.

   The Dragonfly exchange consists of two message exchanges, a "Commit
   Exchange" in which both sides commit to a single guess of the
   password, and a "Confirm Exchange" in which both sides confirm
   knowledge of the password.  A side effect of running the Dragonfly
   exchange is an authenticated, shared, and secret key whose
   cryptographic strength is set by the agreed-upon group.

   Dragonfly uses a random function, H(), a mapping function, F(), and a
   key derivation function, KDF().

3.1.  Assumptions

   In order to avoid attacks on the Dragonfly protocol, some basic
   assumptions are made:

   1.  Function H is a "random oracle" (see [RANDOR]) that maps a binary
       string of indeterminate length onto a fixed binary string that is
       x bits in length.

          H: {0,1}^* --> {0,1}^x

   2.  Function F is a mapping function that takes an element in a group
       and returns an integer.  For ECC groups, function F() returns the
       x-coordinate of the element (which is a point on the elliptic
       curve); for FFC groups, function F() is the identity function
       (since all elements in an FFC group are already integers less
       than the prime).

          ECC: x = F(P), where P=(x,y)

          FFC: x = F(x)

   3.  Function KDF is a key derivation function (see, for instance,
       [SP800-108]) that takes a key to stretch, k, a label to bind to
       the key, label, and an indication of the desired output, n:

          stretch = KDF-n(k, label)

       so that len(stretch) equals n.
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   4.  The discrete logarithm problem for the chosen group is hard.
       That is, given G, P, and Y = G^x mod p, it is computationally
       infeasible to determine x.  Similarly, for an ECC group given the
       curve definition, a generator G, and Y = x * G, it is
       computationally infeasible to determine x.

   5.  There exists a pool of passwords from which the password shared
       by the two peers is drawn.  This pool can consist of words from a
       dictionary, for example.  Each password in this pool has an equal
       probability of being the shared password.  All potential
       attackers have access to this pool of passwords.

   6.  The peers have the ability to produce quality random numbers.

3.2.  Derivation of the Password Element

   Prior to beginning the exchange of information, the peers MUST derive
   a secret element, called the Password Element (PE), in the group
   defined by the chosen domain parameter set.  From the point of view
   of an attacker who does not know the password, the PE will be a
   random element in the negotiated group.  Two examples are described
   here for completeness, but any method of deterministically mapping a
   secret string into an element in a selected group can be used -- for
   instance, the technique in [hash2ec] for ECC groups.  If a different
   technique than the ones described here is used, the secret string
   SHOULD include the identities of the peers.

   To fix the PE, both peers MUST have a common view of the password.
   If there is any password processing necessary (for example, to
   support internationalization), the processed password is then used as
   the shared credential.  If either side wants to store a hashed
   version of the password (hashing the password with random data called
   a "salt"), it will be necessary to convey the salt to the other side
   prior to commencing the exchange, and the hashed password is then
   used as the shared credential.

   Note: Only one party would be able to maintain a salted password, and
   this would require that the Dragonfly key exchange be used in a
   protocol that has strict roles for client (that always initiates) and
   server (that always responds).  Due to the symmetric nature of
   Dragonfly, salting passwords does not prevent an impersonation attack
   after compromise of a database of salted passwords.

   The deterministic process to select the PE begins with choosing a
   secret seed and then performing a group-specific hunting-and-pecking
   technique -- one for FFC groups and another for ECC groups.
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   To thwart side-channel attacks that attempt to determine the number
   of iterations of the hunting-and-pecking loop used to find the PE for
   a given password, a security parameter, k, is used that ensures that
   at least k iterations are always performed.  The probability that one
   requires more than n iterations of the hunting-and-pecking loop to
   find an ECC PE is roughly (q/2p)^n and to find an FFC PE is roughly
   (q/p)^n, both of which rapidly approach zero (0) as n increases.  The
   security parameter, k, SHOULD be set sufficiently large such that the
   probability that finding the PE would take more than k iterations is
   sufficiently small (see Section 4).

   First, an 8-bit counter is set to one (1), and a secret base is
   computed using the negotiated one-way function with the identities of
   the two participants, Alice and Bob, the secret password, and the
   counter:

   base = H(max(Alice,Bob) | min(Alice,Bob) | password | counter)

   The identities are passed to the max() and min() functions to provide
   the necessary ordering of the inputs to H() while still allowing for
   a peer-to-peer exchange where both Alice and Bob each view themselves
   as the "initiator" of the exchange.

   The base is then stretched using the technique from Section B.5.1 of
   [FIPS186-4].  The key derivation function, KDF, is used to produce a
   bitstream whose length is equal to the length of the prime from the
   group’s domain parameter set plus the constant sixty-four (64) to
   derive a temporary value, and the temporary value is modularly
   reduced to produce a seed:

   n = len(p) + 64

   temp = KDF-n(base, "Dragonfly Hunting and Pecking")

   seed = (temp mod (p - 1)) + 1

   The string bound to the derived temporary value is for illustrative
   purposes only.  Implementations of the Dragonfly key exchange SHOULD
   use a usage-specific label with the KDF.

   Note: The base is stretched to 64 more bits than are needed so that
   the bias from the modular reduction is not so apparent.

   The seed is then passed to the group-specific hunting-and-pecking
   technique.
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   If the protocol performing the Dragonfly exchange has the ability to
   exchange random nonces, those SHOULD be added to the computation of
   the base to ensure that each run of the protocol produces a different
   PE.

3.2.1.  Hunting and Pecking with ECC Groups

   The ECC-specific hunting-and-pecking technique entails looping until
   a valid point on the elliptic curve has been found.  The seed is used
   as an x-coordinate with the equation of the curve to check whether
   x^3 + a*x + b is a quadratic residue modulo p.  If it is not, then
   the counter is incremented, a new base and new seed are generated,
   and the hunting and pecking continues.  If it is a quadratic residue
   modulo p, then the x-coordinate is assigned the value of seed and the
   current base is stored.  When the hunting-and-pecking loop
   terminates, the x-coordinate is used with the equation of the curve
   to solve for a y-coordinate.  An ambiguity exists since two values
   for the y-coordinate would be valid, and the low-order bit of the
   stored base is used to unambiguously determine the correct
   y-coordinate.  The resulting (x,y) pair becomes the Password Element,
   PE.
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   Algorithmically, the process looks like this:

        found = 0
        counter = 1
        n = len(p) + 64
        do {
          base = H(max(Alice,Bob) | min(Alice,Bob) | password | counter)
          temp = KDF-n(base, "Dragonfly Hunting And Pecking")
          seed = (temp mod (p - 1)) + 1
          if ( (seed^3 + a*seed + b) is a quadratic residue mod p)
          then
            if ( found == 0 )
            then
              x = seed
              save = base
              found = 1
            fi
          fi
          counter = counter + 1
        } while ((found == 0) || (counter <= k))
        y = sqrt(x^3 + ax + b)
        if ( lsb(y) == lsb(save) )
        then
          PE = (x,y)
        else
          PE = (x,p-y)
        fi

                    Figure 1: Fixing PE for ECC Groups

   Checking whether a value is a quadratic residue modulo a prime can
   leak information about that value in a side-channel attack.
   Therefore, it is RECOMMENDED that the technique used to determine if
   the value is a quadratic residue modulo p blind the value with a
   random number so that the blinded value can take on all numbers
   between 1 and p-1 with equal probability while not changing its
   quadratic residuosity.  Determining the quadratic residue in a
   fashion that resists leakage of information is handled by flipping a
   coin and multiplying the blinded value by either a random quadratic
   residue or a random quadratic nonresidue and checking whether the
   multiplied value is a quadratic residue (qr) or a quadratic
   nonresidue (qnr) modulo p, respectively.  The random residue and
   nonresidue can be calculated prior to hunting and pecking by
   calculating the Legendre symbol on random values until they are
   found:
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      do {
        qr = random() mod p
      } while ( lgr(qr, p) != 1)

      do {
        qnr = random() mod p
      } while ( lgr(qnr, p) != -1)

   Algorithmically, the masking technique to find out whether or not a
   value is a quadratic residue looks like this:

      is_quadratic_residue (val, p) {
          r = (random() mod (p - 1)) + 1
          num = (val * r * r) mod p
          if ( lsb(r) == 1 )
             num = (num * qr) mod p
             if ( lgr(num, p) == 1)
             then
                return TRUE
             fi
          else
             num = (num * qnr) mod p
             if ( lgr(num, p) == -1)
             then
                return TRUE
             fi
          fi
          return FALSE
      }

3.2.2.  Hunting and Pecking with MODP Groups

   The MODP-specific hunting-and-pecking technique entails finding a
   random element which, when used as a generator, will create a group
   with the same order as the group created by the generator from the
   domain parameter set.  The secret generator is found by
   exponentiating the seed to the value ((p-1)/q), where p is the prime
   and q is the order from the domain parameter set.  If that value is
   greater than one (1), it becomes the PE; otherwise, the counter is
   incremented, a new base and seed are generated, and the hunting and
   pecking continues.
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   Algorithmically, the process looks like this:

      found = 0
      counter = 1
      n = len(p) + 64
      do {
        base = H(max(Alice,Bob) | min(Alice,Bob) | password | counter)
        temp = KDF-n(seed, "Dragonfly Hunting And Pecking")
        seed = (temp mod (p - 1)) + 1
        temp = seed ^ ((p-1)/q) mod p
        if (temp > 1)
        then
          if (not found)
            PE = temp
            found = 1
          fi
        fi
        counter = counter + 1
      } while ((found == 0) || (counter <= k))

                    Figure 2: Fixing PE for MODP Groups

3.3.  The Commit Exchange

   In the Commit Exchange, both sides commit to a single guess of the
   password.  The peers generate a scalar and an element, exchange them
   with each other, and process the other’s scalar and element to
   generate a common and shared secret.

   First, each peer generates two random numbers, private and mask that
   are each greater than one (1) and less than the order from the
   selected domain parameter set:

      1 < private < q
      1 < mask < q

   These two secrets and the Password Element are then used to construct
   the scalar and element:

         scalar = (private + mask) modulo q
         Element = inverse(scalar-op(mask, PE))

   If the scalar is less than two (2), the private and mask MUST be
   thrown away and new values generated.  Once a valid scalar and
   Element are generated, the mask is no longer needed and MUST be
   irretrievably destroyed.
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   The peers exchange their scalar and Element and check the peer’s
   scalar and Element, deemed peer-scalar and Peer-Element.  If the peer
   has sent an identical scalar and Element -- i.e., if scalar equals
   peer-scalar and Element equals Peer-Element -- it is sign of a
   reflection attack, and the exchange MUST be aborted.  If the values
   differ, peer-scalar and Peer-Element must be validated.  For the
   peer-scalar to be valid, it MUST be between 1 and q exclusive.
   Validation of the Peer-Element depends on the type of cryptosystem --
   validation of an (x,y) pair as an ECC element is specified in
   Section 2.1, and validation of a number as an FFC element is
   specified in Section 2.2.  If either the peer-scalar or Peer-Element
   fail validation, then the exchange MUST be terminated and
   authentication fails.  If both the peer-scalar and Peer-Element are
   valid, they are used with the Password Element to derive a shared
   secret, ss:

            ss = F(scalar-op(private,
                             element-op(peer-Element,
                                        scalar-op(peer-scalar, PE))))

   To enforce key separation and cryptographic hygiene, the shared
   secret is stretched into two subkeys -- a key confirmation key, kck,
   and a master key, mk.  Each of the subkeys SHOULD be at least the
   length of the prime used in the selected group.

         kck | mk = KDF-n(ss, "Dragonfly Key Derivation")

   where n = len(p)*2.

3.4.  The Confirm Exchange

   In the Confirm Exchange, both sides confirm that they derived the
   same secret, and therefore, are in possession of the same password.

   The Commit Exchange consists of an exchange of data that is the
   output of the random function, H(), the key confirmation key, and the
   two scalars and two elements exchanged in the Commit Exchange.  The
   order of the scalars and elements are: scalars before elements, and
   sender’s value before recipient’s value.  So from each peer’s
   perspective, it would generate:

                confirm = H(kck | scalar | peer-scalar |
                            Element | Peer-Element | <sender-id>)

   Where <sender-id> is the identity of the sender of the confirm
   message.  This identity SHALL be that contributed by the sender of
   the confirm message in generation of the base in Section 3.2.
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   The two peers exchange these confirmations and verify the correctness
   of the other peer’s confirmation that they receive.  If the other
   peer’s confirmation is valid, authentication succeeds; if the other
   peer’s confirmation is not valid, authentication fails.

   If authentication fails, all ephemeral state created as part of the
   particular run of the Dragonfly exchange MUST be irretrievably
   destroyed.  If authentication does not fail, mk can be exported as an
   authenticated and secret key that can be used by another protocol,
   for instance IPsec, to protect other data.

4.  Security Considerations

   The Dragonfly exchange requires both participants to have an
   identical representation of the password.  Salting of the password
   merely generates a new credential -- the salted password -- that must
   be identically represented on both sides.  If an adversary is able to
   gain access to the database of salted passwords, she would be able to
   impersonate one side to the other, even if she was unable to
   determine the underlying, unsalted password.

   Resistance to dictionary attack means that an adversary must launch
   an active attack to make a single guess at the password.  If the size
   of the dictionary from which the password was extracted was d, and
   each password in the dictionary has an equal probability of being
   chosen, then the probability of success after a single guess is 1/d.
   After x guesses, and removal of failed guesses from the pool of
   possible passwords, the probability becomes 1/(d-x).  As x grows, so
   does the probability of success.  Therefore, it is possible for an
   adversary to determine the password through repeated brute-force,
   active, guessing attacks.  Users of the Dragonfly key exchange SHOULD
   ensure that the size of the pool from which the password was drawn,
   d, is sufficiently large to make this attack preventable.
   Implementations of Dragonfly SHOULD support countermeasures to deal
   with this attack -- for instance, by refusing authentication attempts
   for a certain amount of time, after the number of failed
   authentication attempts reaches a certain threshold.  No such
   threshold or amount of time is recommended in this memo.

   Due to the problems with using groups that contain a small subgroup,
   it is RECOMMENDED that implementations of Dragonfly not allow for the
   specification of a group’s complete domain parameter to be sent
   in-line, but instead use a common repository and pass an identifier
   to a domain parameter set whose strength has been rigorously proven
   and that does not have small subgroups.  If a group’s complete domain
   parameter set is passed in-line, it SHOULD NOT be used with Dragonfly
   unless it directly matches a known good group.
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   It is RECOMMENDED that an implementation set the security parameter,
   k, to a value of at least forty (40) which will put the probability
   that more than forty iterations are needed in the order of one in one
   trillion (1:1,000,000,000,000).

   The technique used to obtain the Password Element in Section 3.2.1
   addresses side-channel attacks in a manner deemed controversial by
   some reviewers in the CFRG.  An alternate method, such as the one
   defined in [hash2ec], can be used to alleviate concerns.

   This key exchange protocol has received cryptanalysis in [clarkehao].
   [lanskro] provides a security proof of Dragonfly in the random oracle
   model when both identities are included in the data sent in the
   Confirm Exchange (see Section 3.4).
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