
Internet Engineering Task Force (IETF) M. Ramalho, Ed.
Request for Comments: 7655 P. Jones
Category: Standards Track Cisco Systems
ISSN: 2070-1721 N. Harada
 NTT
 M. Perumal
 Ericsson
 L. Miao
 Huawei Technologies
 November 2015

 RTP Payload Format for G.711.0

Abstract

 This document specifies the Real-time Transport Protocol (RTP)
 payload format for ITU-T Recommendation G.711.0. ITU-T Rec. G.711.0
 defines a lossless and stateless compression for G.711 packet
 payloads typically used in IP networks. This document also defines a
 storage mode format for G.711.0 and a media type registration for the
 G.711.0 RTP payload format.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7655.

Ramalho, et al. Standards Track [Page 1]

RFC 7655 G.711.0 Payload Format November 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Ramalho, et al. Standards Track [Page 2]

RFC 7655 G.711.0 Payload Format November 2015

Table of Contents

 1. Introduction . 4
 2. Requirements Language . 4
 3. G.711.0 Codec Background 4
 3.1. General Information and Use of the ITU-T G.711.0 Codec . 4
 3.2. Key Properties of G.711.0 Design 6
 3.3. G.711 Input Frames to G.711.0 Output Frames 8
 3.3.1. Multiple G.711.0 Output Frames per RTP Payload
 Considerations 9
 4. RTP Header and Payload 10
 4.1. G.711.0 RTP Header 10
 4.2. G.711.0 RTP Payload 12
 4.2.1. Single G.711.0 Frame per RTP Payload Example 12
 4.2.2. G.711.0 RTP Payload Definition 13
 4.2.2.1. G.711.0 RTP Payload Encoding Process 14
 4.2.3. G.711.0 RTP Payload Decoding Process 15
 4.2.4. G.711.0 RTP Payload for Multiple Channels 17
 5. Payload Format Parameters 19
 5.1. Media Type Registration 20
 5.2. Mapping to SDP Parameters 22
 5.3. Offer/Answer Considerations 22
 5.4. SDP Examples . 23
 5.4.1. SDP Example 1 . 23
 5.4.2. SDP Example 2 . 23
 6. G.711.0 Storage Mode Conventions and Definition 24
 6.1. G.711.0 PLC Frame . 24
 6.2. G.711.0 Erasure Frame 25
 6.3. G.711.0 Storage Mode Definition 26
 7. IANA Considerations . 27
 8. Security Considerations 27
 9. Congestion Control . 28
 10. References . 29
 10.1. Normative References 29
 10.2. Informative References 30
 Acknowledgements . 31
 Contributors . 31
 Authors’ Addresses . 31

Ramalho, et al. Standards Track [Page 3]

RFC 7655 G.711.0 Payload Format November 2015

1. Introduction

 The International Telecommunication Union (ITU-T) Recommendation
 G.711.0 [G.711.0] specifies a stateless and lossless compression for
 G.711 packet payloads typically used in Voice over IP (VoIP)
 networks. This document specifies the Real-time Transport Protocol
 (RTP) RFC 3550 [RFC3550] payload format and storage modes for this
 compression.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. G.711.0 Codec Background

 ITU-T Recommendation G.711.0 [G.711.0] is a lossless and stateless
 compression mechanism for ITU-T Recommendation G.711 [G.711] and thus
 is not a "codec" in the sense of "lossy" codecs typically carried by
 RTP. When negotiated end-to-end, ITU-T Rec. G.711.0 is negotiated as
 if it were a codec, with the understanding that ITU-T Rec. G.711.0
 losslessly encoded the underlying (lossy) G.711 Pulse Code Modulation
 (PCM) sample representation of an audio signal. For this reason,
 ITU-T Rec. G.711.0 will be interchangeably referred to in this
 document as a "lossless data compression algorithm" or a "codec",
 depending on context. Within this document, individual G.711 PCM
 samples will be referred to as "G.711 symbols" or just "symbols" for
 brevity.

 This section describes the ITU-T Recommendation G.711 [G.711] codec,
 its properties, typical uses cases, and its key design properties.

3.1. General Information and Use of the ITU-T G.711.0 Codec

 ITU-T Recommendation G.711 is the benchmark standard for narrowband
 telephony. It has been successful for many decades because of its
 proven voice quality, ubiquity, and utility. A new ITU-T
 recommendation, G.711.0, has been established for defining a
 stateless and lossless compression for G.711 packet payloads
 typically used in VoIP networks. ITU-T Rec. G.711.0 is also known as
 ITU-T Rec. G.711 Annex A [G.711-A1], as ITU-T Rec. G.711 Annex A is
 effectively a pointer ITU-T Rec. G.711.0. Henceforth in this
 document, ITU-T Rec. G.711.0 will simply be referred to as "G.711.0"
 and ITU-T Rec. G.711 simply as "G.711".

Ramalho, et al. Standards Track [Page 4]

RFC 7655 G.711.0 Payload Format November 2015

 G.711.0 may be employed end-to-end, in which case the RTP payload
 format specification and use is nearly identical to the G.711 RTP
 specification found in RFC 3551 [RFC3551]. The only significant
 difference for G.711.0 is the required use of a dynamic payload type
 (the static PT of 0 or 8 is presently almost always used with G.711
 even though dynamic assignment of other payload types is allowed) and
 the recommendation not to use Voice Activity Detection (see
 Section 4.1).

 G.711.0, being both lossless and stateless, may also be employed as a
 lossless compression mechanism for G.711 payloads anywhere between
 end systems that have negotiated use of G.711. Because the only
 significant difference between the G.711 RTP payload format header
 and the G.711.0 payload format header defined in this document is the
 payload type, a G.711 RTP packet can be losslessly converted to a
 G.711.0 RTP packet simply by compressing the G.711 payload (thus
 creating a G.711.0 payload), changing the payload type to the dynamic
 value desired and copying all the remaining G.711 RTP header fields
 into the corresponding G.711.0 RTP header. In a similar manner, the
 corresponding decompression of the G.711.0 RTP packet thus created
 back to the original source G.711 RTP packet can be accomplished by
 losslessly decompressing the G.711.0 payload back to the original
 source G.711 payload, changing the payload type back to the payload
 type of the original G.711 RTP packet and copying all the remaining
 G.711.0 RTP header fields into the corresponding G.711 RTP header.
 As a packet produced by the compression and decompression as
 described above is indistinguishable in every detail to the source
 G.711 packet, such compression can be made invisible to the end
 systems. Specification of how systems on the path between the end
 systems discover each other and negotiate the use of G.711.0
 compression as described in this paragraph is outside the scope of
 this document.

 It is informative to note that G.711.0, being both lossless and
 stateless, can be employed multiple times (e.g., on multiple,
 individual hops or series of hops) of a given flow with no
 degradation of quality relative to end-to-end G.711. Stated another
 way, multiple "lossless transcodes" from/to G.711.0/G.711 do not
 affect voice quality as typically occurs with lossy transcodes to/
 from dissimilar codecs.

 Lastly, it is expected that G.711.0 will be used as an archival
 format for recorded G.711 streams. Therefore, a G.711.0 Storage Mode
 Format is also included in this document.

Ramalho, et al. Standards Track [Page 5]

RFC 7655 G.711.0 Payload Format November 2015

3.2. Key Properties of G.711.0 Design

 The fundamental design of G.711.0 resulted from the desire to
 losslessly encode and compress frames of G.711 symbols independent of
 what types of signals those G.711 frames contained. The primary
 G.711.0 use case is for G.711 encoded, zero-mean, acoustic signals
 (such as speech and music).

 G.711.0 attributes are below:

 A1 Compression for zero-mean acoustic signals: G.711.0 was designed
 as its primary use case for the compression of G.711 payloads
 that contained "speech" or other zero-mean acoustic signals.
 G.711.0 obtains greater than 50% average compression in service
 provider environments [ICASSP].

 A2 Lossless for any G.711 payload: G.711.0 was designed to be
 lossless for any valid G.711 payload - even if the payload
 consisted of apparently random G.711 symbols (e.g., a modem or
 FAX payload). G.711.0 could be used for "aggregate 64 kbps
 G.711 channels" carried over IP without explicit concern if a
 subset of these channels happened to be carrying something
 other than voice or general audio. To the extent that a
 particular channel carried something other than voice or
 general audio, G.711.0 ensured that it was carried losslessly,
 if not significantly compressed.

 A3 Stateless: Compression of a frame of G.711 symbols was only to be
 dependent on that frame and not on any prior frame. Although
 greater compression is usually available by observing a longer
 history of past G.711 symbols, it was decided that the
 compression design would be stateless to completely eliminate
 error propagation common in many lossy codec designs (e.g.,
 ITU-T Rec. G.729 [G.729] and ITU-T Rec. G.722 [G.722]). That
 is, the decoding process need not be concerned about lost prior
 packets because the decompression of a given G.711.0 frame is
 not dependent on potentially lost prior G.711.0 frames. Owing
 to this stateless property, the frames input to the G.711.0
 encoder may be changed "on-the-fly" (a 5 ms encoding could be
 followed by a 20 ms encoding).

 A4 Self-describing: This property is defined as the ability to
 determine how many source G.711 samples are contained within
 the G.711.0 frame solely by information contained within the
 G.711.0 frame. Generally, the number of source G.711 symbols
 can be determined by decoding the initial octets of the
 compressed G.711.0 frame (these octets are called "prefix
 codes" in the standard). A G.711.0 decoder need not know how

Ramalho, et al. Standards Track [Page 6]

RFC 7655 G.711.0 Payload Format November 2015

 many symbols are contained in the original G.711 frame (e.g.,
 parameter ptime in the Session Description Protocol (SDP)
 [RFC4566]), as it is able to decompress the G.711.0 frame
 presented to it without signaling knowledge.

 A5 Accommodate G.711 payload sizes typically used in IP: G.711 input
 frames of length typically found in VoIP applications represent
 SDP ptime values of 5 ms, 10 ms, 20 ms, 30 ms, or 40 ms.
 Because the dominant sampling frequency for G.711 is 8000
 samples per second, G.711.0 was designed to compress G.711
 input frames of 40, 80, 160, 240, or 320 samples.

 A6 Bounded expansion: Since attribute A2 above requires G.711.0 to
 be lossless for any payload (which could consist of any
 combination of octets with each octet spanning the entire space
 of 2^8 values), by definition there exists at least one
 potential G.711 payload that must be "uncompressible". Since
 the quantum of compression is an octet, the minimum expansion
 of such an uncompressible payload was designed to be the
 minimum possible of one octet. Thus, G.711.0 "compressed"
 frames can be of length one octet to X+1 octets, where X is the
 size of the input G.711 frame in octets. G.711.0 can therefore
 be viewed as a Variable Bit Rate (VBR) encoding in which the
 size of the G.711.0 output frame is a function of the G.711
 symbols input to it.

 A7 Algorithmic delay: G.711.0 was designed to have the algorithmic
 delay equal to the time represented by the number of samples in
 the G.711 input frame (i.e., no "look-ahead").

 A8 Low Complexity: Less than 1.0 Weighted Million Operations Per
 Second (WMOPS) average and low memory footprint (˜5k octets
 RAM, ˜5.7k octets ROM, and ˜3.6 basic operations) [ICASSP]
 [G.711.0].

 A9 Both A-law and mu-law supported: G.711 has two operating laws,
 A-law and mu-law. These two laws are also known as PCMA and
 PCMU in RTP applications [RFC3551].

 These attributes generally make it trivial to compress a G.711 input
 frame consisting of 40, 80, 160, 240, or 320 samples. After the
 input frame is presented to a G.711.0 encoder, a G.711.0 "self-
 describing" output frame is produced. The number of samples
 contained within this frame is easily determined at the G.711.0
 decoder by virtue of attribute A4. The G.711.0 decoder can decode
 the G.711.0 frame back to a G.711 frame by using only data within the
 G.711.0 frame.

Ramalho, et al. Standards Track [Page 7]

RFC 7655 G.711.0 Payload Format November 2015

 Lastly we note that losing a G.711.0 encoded packet is identical in
 effect to losing a G.711 packet (when using RTP); this is because a
 G.711.0 payload, like the corresponding G.711 payload, is stateless.
 Thus, it is anticipated that existing G.711 Packet Loss Concealment
 (PLC) mechanisms will be employed when a G.711.0 packet is lost and
 an identical MOS degradation relative to G.711 loss will be achieved.

3.3. G.711 Input Frames to G.711.0 Output Frames

 G.711.0 is a lossless and stateless compression of G.711 frames.
 Figure 1 depicts this where "A" is the process of G.711.0 encoding
 and "B" is the process of G.711.0 decoding.

 |--------------------------| A |------------------------------|
 | G.711 Input Frame |----->| G.711.0 Output Frame |
 | of X Octets | | containing 1 to X+1 Octets |
 | (where X MUST be 40, 80, | | (precise value dependent on |
 | 160, 240, or 320 octets) |<-----| G.711.0 ability to compress) |
 |__________________________| B |______________________________|

 Figure 1: 1:1 Mapping from G.711 Input Frame to G.711.0 Output Frame

 Note that the mapping is 1:1 (lossless) in both directions, subject
 to two constraints. The first constraint is that the input frame
 provided to the G.711.0 encoder (process "A") has a specific number
 of input G.711 symbols consistent with attribute A5 (40, 80, 160,
 240, or 320 octets). The second constraint is that the companding
 law used to create the G.711 input frame (A-law or mu-law) must be
 known, consistent with attribute A9.

 Subject to these two constraints, the input G.711 frame is processed
 by the G.711.0 encoder ("process A") and produces a "self-describing"
 G.711.0 output frame, consistent with attribute A4. Depending on the
 source G.711 symbols, the G.711.0 output frame can contain anywhere
 from 1 to X+1 octets, where X is the number of input G.711 symbols.
 Compression results for virtually every zero-mean acoustic signal
 encoded by G.711.0.

 Since the G.711.0 output frame is "self-describing", a G.711.0
 decoder (process "B") can losslessly reproduce the original G.711
 input frame with only the knowledge of which companding law was used
 (A-law or mu-law). The first octet of a G.711.0 frame is called the
 "Prefix Code" octet; the information within this octet conveys how
 many G.711 symbols the decoder is to create from a given G.711.0
 input frame (i.e., 0, 40, 80, 160, 240, or 320). The Prefix Code
 value of 0x00 is used to denote zero G.711 source symbols, which
 allows the use of 0x00 as a payload padding octet (described later in
 Section 3.3.1).

Ramalho, et al. Standards Track [Page 8]

RFC 7655 G.711.0 Payload Format November 2015

 Since G.711.0 was designed with typical G.711 payload lengths as a
 design constraint (attribute A5), this lossless encoding can be
 performed only with knowledge of the companding law being used. This
 information is anticipated to be signaled in SDP and is described
 later in this document.

 If the original inputs were known to be from a zero-mean acoustic
 signal coded by G.711, an intelligent G.711.0 encoder could infer the
 G.711 companding law in use (via G.711 input signal amplitude
 histogram statistics). Likewise, an intelligent G.711.0 decoder
 producing G.711 from the G.711.0 frames could also infer which
 encoding law is in use. Thus, G.711.0 could be designed for use in
 applications that have limited stream signaling between the G.711
 endpoints (i.e., they only know "G.711 at 8k sampling is being used",
 but nothing more). Such usage is not further described in this
 document. Additionally, if the original inputs were known to come
 from zero-mean acoustic signals, an intelligent G.711.0 encoder could
 tell if the G.711.0 payload had been encrypted -- as the symbols
 would not have the distribution expected in either companding law and
 would appear random. Such determination is also not further
 discussed in this document.

 It is easily seen that this process is 1:1 and that lossless
 compression based on G.711.0 can be employed multiple times, as the
 original G.711 input symbols are always reproduced with 100%
 fidelity.

3.3.1. Multiple G.711.0 Output Frames per RTP Payload Considerations

 As a general rule, G.711.0 frames containing more source G.711
 symbols (from a given channel) will typically result in higher
 compression, but there are exceptions to this rule. A G.711.0
 encoder may choose to encode 20 ms of input G.711 symbols as: 1) a
 single 20 ms G.711.0 frame, or 2) as two 10 ms G.711.0 frames, or 3)
 any other combination of 5 ms or 10 ms G.711.0 frames -- depending on
 which encoding resulted in fewer bits. As an example, an intelligent
 encoder might encode 20 ms of G.711 symbols as two 10 ms G.711.0
 frames if the first 10 ms was "silence" and two G.711.0 frames took
 fewer bits than any other possible encoding combination of G.711.0
 frame sizes.

 During the process of G.711.0 standardization, it was recognized that
 although it is sometimes advantageous to encode integer multiples of
 40 G.711 symbols in whatever input symbol format resulted in the most
 compression (as per above), the simplest choice is to encode the
 entire ptime’s worth of input G.711 symbols into one G.711.0 frame
 (if the ptime supported it). This is especially so since the larger
 number of source G.711 symbols typically resulted in the highest

Ramalho, et al. Standards Track [Page 9]

RFC 7655 G.711.0 Payload Format November 2015

 compression anyway and there is added complexity in searching for
 other possibilities (involving more G.711.0 frames) that were
 unlikely to produce a more bit efficient result.

 The design of ITU-T Rec. G.711.0 [G.711.0] foresaw the possibility of
 multiple G.711.0 input frames in that the decoder was defined to
 decode what it refers to as an incoming "bit stream". For this
 specification, the bit stream is the G.711.0 RTP payload itself.
 Thus, the decoder will take the G.711.0 RTP payload and will produce
 an output frame containing the original G.711 symbols independent of
 how many G.711.0 frames were present in it. Additionally, any number
 of 0x00 padding octets placed between the G.711.0 frames will be
 silently (and safely) ignored by the G.711.0 decoding process
 Section 4.2.3).

 To recap, a G.711.0 encoder may choose to encode incoming G.711
 symbols into one or more than one G.711.0 frames and put the
 resultant frame(s) into the G.711.0 RTP payload. Zero or more 0x00
 padding octets may also be included in the G.711.0 RTP payload. The
 G.711.0 decoder, being insensitive to the number of G.711.0 encoded
 frames that are contained within it, will decode the G.711.0 RTP
 payload into the source G.711 symbols. Although examples of single
 or multiple G.711 frame cases are illustrated in Section 4.2, the
 multiple G.711.0 frame cases MUST be supported and there is no need
 for negotiation (SDP or otherwise) required for it.

4. RTP Header and Payload

 In this section, we describe the precise format for G.711.0 frames
 carried via RTP. We begin with an RTP header description relative to
 G.711, then provide two G.711.0 payload examples.

4.1. G.711.0 RTP Header

 Relative to G.711 RTP headers, the utilization of G.711.0 does not
 create any special requirements with respect to the contents of the
 RTP packet header. The only significant difference is that the
 payload type (PT) RTP header field MUST have a value corresponding to
 the dynamic payload type assigned to the flow. This is in contrast
 to most current uses of G.711 that typically use the static payload
 assignment of PT = 0 (PCMU) or PT = 8 (PCMA) [RFC3551] even though
 the negotiation and use of dynamic payload types is allowed for
 G.711. With the exception of rare PT exhaustion cases, the existing
 G.711 PT values of 0 and 8 MUST NOT be used for G.711.0 (helping to
 avoid possible payload confusion with G.711 payloads).

Ramalho, et al. Standards Track [Page 10]

RFC 7655 G.711.0 Payload Format November 2015

 Voice Activity Detection (VAD) SHOULD NOT be used when G.711.0 is
 negotiated because G.711.0 obtains high compression during "VAD
 silence intervals" and one of the advantages of G.711.0 over G.711
 with VAD is the lack of any VAD-inducing artifacts in the received
 signal. However, if VAD is employed, the Marker bit (M) MUST be set
 in the first packet of a talkspurt (the first packet after a silence
 period in which packets have not been transmitted contiguously as per
 rules specified in [RFC3551] for G.711 payloads). This definition,
 being consistent with the G.711 RTP VAD use, further allows lossless
 transcoding between G.711 RTP packets and G.711.0 RTP packets as
 described in Section 3.1.

 With this introduction, the RTP packet header fields are defined as
 follows:

 V - As per [RFC3550]

 P - As per [RFC3550]

 X - As per [RFC3550]

 CC - As per [RFC3550]

 M - As per [RFC3550] and [RFC3551]

 PT - The assignment of an RTP payload type for the format defined
 in this memo is outside the scope of this document. The RTP
 profiles in use currently mandate binding the payload type
 dynamically for this payload format (e.g., see [RFC3550] and
 [RFC4585]).

 SN - As per [RFC3550]

 timestamp - As per [RFC3550]

 SSRC - As per [RFC3550]

 CSRC - As per [RFC3550]

 V (version bits), P (padding bit), X (extension bit), CC (CSRC
 count), M (marker bit), PT (payload type), SN (sequence number),
 timestamp, SSRC (synchronizing source) and CSRC (contributing
 sources) are as defined in [RFC3550] and are as typically used with
 G.711. PT (payload type) is as defined in [RFC3551].

Ramalho, et al. Standards Track [Page 11]

RFC 7655 G.711.0 Payload Format November 2015

4.2. G.711.0 RTP Payload

 This section defines the G.711.0 RTP payload and illustrates it by
 means of two examples.

 The first example, in Section 4.2.1, depicts the case in which
 carrying only one G.711.0 frame in the RTP payload is desired. This
 case is expected to be the dominant use case and is shown separately
 for the purposes of clarity.

 The second example, in Section 4.2.2, depicts the general case in
 which carrying one or more G.711.0 frames in the RTP payload is
 desired. This is the actual definition of the G.711.0 RTP payload.

4.2.1. Single G.711.0 Frame per RTP Payload Example

 This example depicts a single G.711.0 frame in the RTP payload. This
 is expected to be the dominant RTP payload case for G.711.0, as the
 G.711.0 encoding process supports the SDP packet times (ptime and
 maxptime, see [RFC4566]) commonly used when G.711 is transported in
 RTP. Additionally, as mentioned previously, larger G.711.0 frames
 generally compress more effectively than a multiplicity of smaller
 G.711.0 frames.

 The following figure illustrates the single G.711.0 frame per RTP
 payload case.

 |-------------------|-------------------|
 | One G.711.0 Frame | Zero or more 0x00 |
 | | Padding Octets |
 |___________________|___________________|

 Figure 2: Single G.711.0 Frame in RTP Payload Case

 Encoding Process: A single G.711.0 frame is inserted into the RTP
 payload. The amount of time represented by the G.711 symbols
 compressed in the G.711.0 frame MUST correspond to the ptime signaled
 for applications using SDP. Although generally not desired, padding
 desired in the RTP payload after the G.711.0 frame MAY be created by
 placing one or more 0x00 octets after the G.711.0 frame. Such
 padding may be desired based on the Security Considerations (see
 Section 8).

 Decoding Process: Passing the entire RTP payload to the G.711.0
 decoder is sufficient for the G.711.0 decoder to create the source
 G.711 symbols. Any padding inserted after the G.711.0 frame (i.e.,
 the 0x00 octets) present in the RTP payload is silently ignored by

Ramalho, et al. Standards Track [Page 12]

RFC 7655 G.711.0 Payload Format November 2015

 the G.711.0 decoding process. The decoding process is fully
 described in Section 4.2.3.

4.2.2. G.711.0 RTP Payload Definition

 This section defines the G.711.0 RTP payload and illustrates the case
 in which one or more G.711.0 frames are to be placed in the payload.
 All G.711.0 RTP decoders MUST support the general case described in
 this section (rationale presented previously in Section 3.3.1).

 Note that since each G.711.0 frame is self-describing (see Attribute
 A4 in Section 3.2), the individual G.711.0 frames in the RTP payload
 need not represent the same duration of time (i.e., a 5 ms G.711.0
 frame could be followed by a 20 ms G.711.0 frame). Owing to this,
 the amount of time represented in the RTP payload MAY be any integer
 multiple of 5 ms (as 5 ms is the smallest interval of time that can
 be represented in a G.711.0 frame).

 The following figure illustrates the one or more G.711.0 frames per
 RTP payload case where the number of G.711.0 frames placed in the RTP
 payload is N. We note that when N is equal to 1, this case is
 identical to the previous example.

 |----------|---------|----------|---------|----------------|
 | First | Second | | Nth | Zero or more |
 | G.711.0 | G.711.0 | ... | G.711.0 | 0x00 |
 | Frame | Frame | | Frame | Padding Octets |
 |__________|_________|__________|_________|________________|

 Figure 3: One or More G.711.0 Frames in RTP Payload Case

 We note here that when we have multiple G.711.0 frames, the
 individual frames can be, and generally are, of different lengths.
 The decoding process described in Section 4.2.3 is used to determine
 the frame boundaries.

 Encoding Process: One or more G.711.0 frames are placed in the RTP
 payload simply by concatenating the G.711.0 frames together. The
 amount of time represented by the G.711 symbols compressed in all the
 G.711.0 frames in the RTP payload MUST correspond to the ptime
 signaled for applications using SDP. Although not generally desired,
 padding in the RTP payload SHOULD be placed after the last G.711.0
 frame in the payload and MAY be created by placing one or more 0x00
 octets after the last G.711.0 frame. Such padding may be desired
 based on security considerations (see Section 8). Additional details
 about the encoding process and considerations are specified later in
 Section 4.2.2.1.

Ramalho, et al. Standards Track [Page 13]

RFC 7655 G.711.0 Payload Format November 2015

 Decoding Process: As G.711.0 frames can be of varying length, the
 payload decoding process described in Section 4.2.3 is used to
 determine where the individual G.711.0 frame boundaries are. Any
 padding octets inserted before or after any G.711.0 frame in the RTP
 payload is silently (and safely) ignored by the G.711.0 decoding
 process specified in Section 4.2.3.

4.2.2.1. G.711.0 RTP Payload Encoding Process

 ITU-T G.711.0 supports five possible input frame lengths: 40, 80,
 160, 240, and 320 samples per frame, and the rationale for choosing
 those lengths was given in the description of property A5 in
 Section 3.2. Assuming a frequency of 8000 samples per second, these
 lengths correspond to input frames representing 5 ms, 10 ms, 20 ms,
 30 ms, or 40 ms. So while the standard assumed the input "bit
 stream" consisted of G.711 symbols of some integer multiple of 5 ms
 in length, it did not specify exactly what frame lengths to use as
 input to the G.711.0 encoder itself. The intent of this section is
 to provide some guidance for the selection.

 Consider a typical IETF use case of 20 ms (160 octets) of G.711 input
 samples represented in a G.711.0 payload and signaled by using the
 SDP parameter ptime. As described in Section 3.3.1, the simplest way
 to encode these 160 octets is to pass the entire 160 octets to the
 G.711.0 encoder, resulting in precisely one G.711.0 compressed frame,
 and put that singular frame into the G.711.0 RTP payload. However,
 neither the ITU-T G.711.0 standard nor this IETF payload format
 mandates this. In fact, 20 ms of input G.711 symbols can be encoded
 as 1, 2, 3, or 4 G.711.0 frames in any one of six combinations (i.e.,
 {20ms}, {10ms:10ms}, {10ms:5ms:5ms}, {5ms:10ms:5ms}, {5ms:5ms:10ms},
 {5ms:5ms:5ms:5ms}) and any of these combinations would decompress
 into the same source 160 G.711 octets. As an aside, we note that the
 first octet of any G.711.0 frame will be the prefix code octet and
 information in this octet determines how many G.711 symbols are
 represented in the G.711.0 frame.

 Notwithstanding the above, we expect one of two encodings to be used
 by implementers: the simplest possible (one 160-byte input to the
 G.711.0 encoder that usually results in the highest compression) or
 the combination of possible input frames to a G.711.0 encoder that
 results in the highest compression for the payload. The explicit
 mention of this issue in this IETF document was deemed important
 because the ITU-T G.711.0 standard is silent on this issue and there
 is a desire for this issue to be documented in a formal Standards
 Developing Organization (SDO) document (i.e., here).

Ramalho, et al. Standards Track [Page 14]

RFC 7655 G.711.0 Payload Format November 2015

4.2.3. G.711.0 RTP Payload Decoding Process

 The G.711.0 decoding process is a standard part of G.711.0 bit stream
 decoding and is implemented in the ITU-T Rec. G.711.0 reference code.
 The decoding process algorithm described in this section is a slight
 enhancement of the ITU-T reference code to explicitly accommodate RTP
 padding (as described above).

 Before describing the decoding, we note here that the largest
 possible G.711.0 frame is created whenever the largest number of
 G.711 symbols is encoded (320 from Section 3.2, property A5) and
 these 320 symbols are "uncompressible" by the G.711.0 encoder. In
 this case (via property A6 in Section 3.2), the G.711.0 output frame
 will be 321 octets long. We also note that the value 0x00 chosen for
 the optional padding cannot be the first octet of a valid ITU-T Rec.
 G.711.0 frame (see [G.711.0]). We also note that whenever more than
 one G.711.0 frame is contained in the RTP payload, decoding of the
 individual G.711.0 frames will occur multiple times.

 For the decoding algorithm below, let N be the number of octets in
 the RTP payload (i.e., excluding any RTP padding, but including any
 RTP payload padding), let P equal the number of RTP payload octets
 processed by the G.711.0 decoding process, let K be the number of
 G.711 symbols presently in the output buffer, let Q be the number of
 octets contained in the G.711.0 frame being processed, and let "!="
 represent not equal to. The keyword "STOP" is used below to indicate
 the end of the processing of G.711.0 frames in the RTP payload. The
 algorithm below assumes an output buffer for the decoded G.711 source
 symbols of length sufficient to accommodate the expected number of
 G.711 symbols and an input buffer of length 321 octets.

 G.711.0 RTP Payload Decoding Heuristic:

 H1 Initialization of counters: Initialize P, the number of processed
 octets counter, to zero. Initialize K, the counter for how
 many G.711 symbols are in the output buffer, to zero.
 Initialize N to the number of octets in the RTP payload
 (including any RTP payload padding). Go to H2.

 H2 Read internal buffer: Read min{320+1, (N-P)-1} octets into the
 internal buffer from the (P+1) octet of the RTP payload. We
 note at this point, N-P octets have yet to be processed and
 that 320+1 octets is the largest possible G.711.0 frame. Also
 note that in the common case of zero-based array indexing of a
 uint8 array of octets, that this operation will read octets
 from index P through index [min{320+1, (N-P)}] from the RTP
 payload. Go to H3.

Ramalho, et al. Standards Track [Page 15]

RFC 7655 G.711.0 Payload Format November 2015

 H3 Analyze the first octet in the internal buffer: If this octet is
 0x00 (a padding octet), go to H4; otherwise, go to H5 (process
 a G.711.0 frame).

 H4 Process padding octet (no G.711 symbols generated): Increment the
 processed packets counter by one (set P = P + 1). If the
 result of this increment results in P >= N, then STOP (as all
 RTP Payload octets have been processed); otherwise, go to H2.

 H5 Process an individual G.711.0 frame (produce G.711 samples in the
 output frame): Pass the internal buffer to the G.711.0 decoder.
 The G.711.0 decoder will read the first octet (called the
 "prefix code" octet in ITU-T Rec. G.711.0 [G.711.0]) to
 determine the number of source G.711 samples M are contained in
 this G.711.0 frame. The G.711.0 decoder will produce exactly M
 G.711 source symbols (M can only have values of 0, 40, 80, 160,
 240, or 320). If K = 0, these M symbols will be the first in
 the output buffer and are placed at the beginning of the output
 buffer. If K != 0, concatenate these M symbols with the prior
 symbols in the output buffer (there are K prior symbols in the
 buffer). Set K = K + M (as there are now this many G.711
 source symbols in the output buffer). The G.711.0 decoder will
 have consumed some number of octets, Q, in the internal buffer
 to produce the M G.711 symbols. Increment the number of
 payload octets processed counter by this quantity (set P = P +
 Q). If the result of this increment results in P >= N, then
 STOP (as all RTP Payload octets have been processed);
 otherwise, go to H2.

 At this point, the output buffer will contain precisely K G.711
 source symbols that should correspond to the ptime signaled if SDP
 was used and the encoding process was without error. If ptime was
 signaled via SDP and the number of G.711 symbols in the output buffer
 is something other than what corresponds to ptime, the packet MUST be
 discarded unless other system design knowledge allows for otherwise
 (e.g., occasional 5 ms clock slips causing one more or one less
 G.711.0 frame than nominal to be in the payload). Lastly, due to the
 buffer reads in H2 being bounded (to 321 octets or less), N being
 bounded to the size of the G.711.0 RTP payload, and M being bounded
 to the number of source G.711 symbols, there is no buffer overrun
 risk.

 We also note, as an aside, that the algorithm above (and the ITU-T
 G.711.0 reference code) accommodates padding octets (0x00) placed
 anywhere between G.711.0 frames in the RTP payload as well as prior
 to or after any or all G.711.0 frames. The ITU-T G.711.0 reference
 code does not have Steps H3 and H4 as separate steps (i.e., Step H5
 immediately follows H2) at the added computational cost of some

Ramalho, et al. Standards Track [Page 16]

RFC 7655 G.711.0 Payload Format November 2015

 additional buffer passing to/from the G.711.0 frame decoder
 functions. That is, the G.711.0 decoder in the reference code
 "silently ignores" 0x00 padding octets at the beginning of what it
 believes to be a frame boundary encoded by G.711.0. Thus, Steps H3
 and H4 above are an optimization over the reference code shown for
 clarity.

 If the decoder is at a playout endpoint location, this G.711 buffer
 SHOULD be used in the same manner as a received G.711 RTP payload
 would have been used (passed to a playout buffer, to a PLC
 implementation, etc.).

 We explicitly note that a framing error condition will result
 whenever the buffer sent to a G.711.0 decoder does not begin with a
 valid first G.711.0 frame octet (i.e., a valid G.711.0 prefix code or
 a 0x00 padding octet). The expected result is that the decoder will
 not produce the desired/correct G.711 source symbols. However, as
 already noted, the output returned by the G.711.0 decoder will be
 bounded (to less than 321 octets per G.711.0 decode request) and if
 the number of the (presumed) G.711 symbols produced is known to be in
 error, the decoded output MUST be discarded.

4.2.4. G.711.0 RTP Payload for Multiple Channels

 In this section, we describe the use of multiple "channels" of G.711
 data encoded by G.711.0 compression.

 The dominant use of G.711 in RTP transport has been for single
 channel use cases. For this case, the above G.711.0 encoding and
 decoding process is used. However, the multiple channel case for
 G.711.0 (a frame-based compression) is different from G.711 (a
 sample-based encoding) and is described separately here.

 Section 4 of RFC 3551 [RFC3551] provides guidelines for encoding
 audio channels and Section 4.1 of RFC 3551 [RFC3551] for the ordering
 of the channels within the RTP payload. The ordering guidelines in
 Section 4.1 of RFC 3551 SHOULD be used unless an application-specific
 channel ordering is more appropriate.

 An implicit assumption in RFC 3551 is that all the channel data
 multiplexed into an RTP payload MUST represent the same physical time
 span. The case for G.711.0 is no different; the underlying G.711
 data for all channels in a G.711.0 RTP payload MUST span the same
 interval in time (e.g., the same "ptime" for a SDP-specified codec
 negotiation).

Ramalho, et al. Standards Track [Page 17]

RFC 7655 G.711.0 Payload Format November 2015

 Section 4.2 of RFC 3551 provides guidelines for sample-based
 encodings such as G.711. This guidance is tantamount to interleaving
 the individual samples in that they SHOULD be packed in consecutive
 octets.

 RFC 3551 provides guidelines for frame-based encodings in which the
 frames are interleaved. However, this guidance stems from the stated
 assumption that "the frame size for the frame-oriented codecs is
 given". However, this assumption is not valid for G.711.0 in that
 individual consecutive G.711.0 frames (as per Section 4.2.2 of this
 document) can:

 1. represent different time spans (e.g., two 5 ms G.711.0 frames in
 lieu of one 10 ms G.711.0 frame), and

 2. be of different lengths in octets (and typically are).

 Therefore, a different, but also simple, concatenation-based approach
 is specified in this RFC.

 For the multiple channel G.711.0 case, each G.711 channel is
 independently encoded into one or more G.711.0 frames defined here as
 a "G.711.0 channel superframe". Each one of these superframes is
 identical to the multiple G.711.0 frame case illustrated in Figure 3
 of Section 4.2.2 in which each superframe can have one or more
 individual G.711.0 frames within it. Then each G.711.0 channel
 superframe is concatenated -- in channel order -- into a G.711.0 RTP
 payload. Then, if optional G.711.0 padding octets (0x00) are
 desired, it is RECOMMENDED that these octets are placed after the
 last G.711.0 channel superframe. As per above, such padding may be
 desired based on Security Considerations (see Section 8). This is
 depicted in Figure 4.

 |----------|---------|----------|---------|---------|
 | First | Second | | Nth | Zero |
 | G.711.0 | G.711.0 | ... | G.711.0 | or more |
 | Channel | Channel | | Channel | 0x00 |
 | Super- | Super- | | Super | Padding |
 | Frame | Frame | | Frame | Octets |
 |__________|_________|__________|_________|_________|

 Figure 4: Multiple G.711.0 Channel Superframes in RTP Payload

 We note that although the individual superframes can be of different
 lengths in octets (and usually are), the number of G.711 source
 symbols represented -- in compressed form -- in each channel
 superframe is identical (since all the channels represent the
 identically same time interval).

Ramalho, et al. Standards Track [Page 18]

RFC 7655 G.711.0 Payload Format November 2015

 The G.711.0 decoder at the receiving end simply decodes the entire
 G.711.0 (multiple channel) payload into individual G.711 symbols. If
 M such G.711 symbols result and there were N channels, then the first
 M/N G.711 samples would be from the first channel, the second M/N
 G.711 samples would be from the second channel, and so on until the
 Nth set of G.711 samples are found. Similarly, if the number of
 channels was not known, but the payload "ptime" was known, one could
 infer (knowing the sampling rate) how many G.711 symbols each channel
 contained; then, with this knowledge, the number of channels of data
 contained in the payload could be determined. When SDP is used, the
 number of channels is known because the optional parameter is a MUST
 when there is more than one channel negotiated (see Section 5.1).
 Additionally, when SDP is used, the parameter ptime is a RECOMMENDED
 optional parameter. We note that if both parameters channels and
 ptime are known, one could provide a check for the other and the
 converse. Whichever algorithm is used to determine the number of
 channels, if the length of the source G.711 symbols in the payload
 (M) is not an integer multiple of the number of channels (N), then
 the packet SHOULD be discarded.

 Lastly, we note that although any padding for the multiple channel
 G.711.0 payload is RECOMMENDED to be placed at the end of the
 payload, the G.711.0 decoding algorithm described in Section 4.2.3
 will successfully decode the payload in Figure 4 if the 0x00 padding
 octet is placed anywhere before or after any individual G.711.0 frame
 in the RTP payload. The number of padding octets introduced at any
 G.711.0 frame boundary therefore does not affect the number M of the
 source G.711 symbols produced. Thus, the decision for padding MAY be
 made on a per-superframe basis.

5. Payload Format Parameters

 This section defines the parameters that may be used to configure
 optional features in the G.711.0 RTP transmission.

 The parameters defined here are a part of the media subtype
 registration for the G.711.0 codec. Mapping of the parameters into
 SDP RFC 4566 [RFC4566] is also provided for those applications that
 use SDP.

Ramalho, et al. Standards Track [Page 19]

RFC 7655 G.711.0 Payload Format November 2015

5.1. Media Type Registration

 Type name: audio

 Subtype name: G711-0

 Required parameters:

 clock rate: The RTP timestamp clock rate, which is equal to the
 sampling rate. The typical rate used with G.711 encoding is 8000,
 but other rates may be specified. The default rate is 8000.

 complaw: This format-specific parameter, specified on the "a=fmtp:
 line", indicates the companding law (A-law or mu-law) employed.
 This format-specific parameter, as per RFC 4566 [RFC4566], is
 given unchanged to the media tool using this format. The case-
 insensitive values are "complaw=al" or "complaw=mu" are used for
 A-law and mu-law, respectively.

 Optional parameters:

 channels: See RFC 4566 [RFC4566] for definition. Specifies how
 many audio streams are represented in the G.711.0 payload and MUST
 be present if the number of channels is greater than one. This
 parameter defaults to 1 if not present (as per RFC 4566) and is
 typically a non-zero, small-valued positive integer. It is
 expected that implementations that specify multiple channels will
 also define a mechanism to map the channels appropriately within
 their system design; otherwise, the channel order specified in
 Section 4.1 of RFC 3551 [RFC3551] will be assumed (e.g., left,
 right, center). Similar to the usual interpretation in RFC 3551
 [RFC3551], the number of channels SHALL be a non-zero, positive
 integer.

 maxptime: See RFC 4566 [RFC4566] for definition.

 ptime: See RFC 4566 [RFC4566] for definition. The inclusion of
 "ptime" is RECOMMENDED and SHOULD be in the SDP unless there is an
 application-specific reason not to include it (e.g., an
 application that has a variable ptime on a packet-by-packet
 basis). For constant ptime applications, it is considered good
 form to include "ptime" in the SDP for session diagnostic
 purposes. For the constant ptime multiple channel case described
 in Section 4.2.2, the inclusion of "ptime" can provide a desirable
 payload check.

Ramalho, et al. Standards Track [Page 20]

RFC 7655 G.711.0 Payload Format November 2015

 Encoding considerations:

 This media type is framed binary data (see Section 4.8 in RFC 6838
 [RFC6838]) compressed as per ITU-T Rec. G.711.0.

 Security considerations:

 See Section 8.

 Interoperability considerations: none

 Published specification:

 ITU-T Rec. G.711.0 and RFC 7655 (this document).

 Applications that use this media type:

 Although initially conceived for VoIP, the use of G.711.0, like
 G.711 before it, may find use within audio and video streaming
 and/or conferencing applications for the audio portion of those
 applications.

 Additional information:

 The following applies to stored-file transfer methods:

 Magic numbers: #!G7110A\n or #!G7110M\n (for A-law or MU-law
 encodings respectively, see Section 6).

 File Extensions: None

 Macintosh file type code: None

 Object identifier or OIL: None

 Person & email address to contact for further information:

 Michael A. Ramalho <mramalho@cisco.com> or <mar42@cornell.edu>

 Intended usage: COMMON

 Restrictions on usage:

 This media type depends on RTP framing, and hence is only defined
 for transfer via RTP [RFC3550]. Transport within other framing
 protocols is not defined at this time.

 Author: Michael A. Ramalho

Ramalho, et al. Standards Track [Page 21]

RFC 7655 G.711.0 Payload Format November 2015

 Change controller:

 IETF Payload working group delegated from the IESG.

5.2. Mapping to SDP Parameters

 The information carried in the media type specification has a
 specific mapping to fields in SDP, which is commonly used to describe
 an RTP session. When SDP is used to specify sessions employing
 G.711.0, the mapping is as follows:

 o The media type ("audio") goes in SDP "m=" as the media name.

 o The media subtype ("G711-0") goes in SDP "a=rtpmap" as the
 encoding name.

 o The required parameter "rate" also goes in "a=rtpmap" as the clock
 rate.

 o The parameters "ptime" and "maxptime" go in the SDP "a=ptime" and
 "a=maxptime" attributes, respectively.

 o Remaining parameters go in the SDP "a=fmtp" attribute by copying
 them directly from the media type string as a semicolon-separated
 list of parameter=value pairs.

5.3. Offer/Answer Considerations

 The following considerations apply when using the SDP offer/answer
 mechanism [RFC3264] to negotiate the "channels" attribute.

 o If the offering endpoint specifies a value for the optional
 channels parameter that is greater than one, and the answering
 endpoint both understands the parameter and cannot support that
 value requested, the answer MUST contain the optional channels
 parameter with the highest value it can support.

 o If the offering endpoint specifies a value for the optional
 channels parameter, the answer MUST contain the optional channels
 parameter unless the only value the answering endpoint can support
 is one, in which case the answer MAY contain the optional channels
 parameter with a value of 1.

 o If the offering endpoint specifies a value for the ptime parameter
 that the answering endpoint cannot support, the answer MUST
 contain the optional ptime parameter.

Ramalho, et al. Standards Track [Page 22]

RFC 7655 G.711.0 Payload Format November 2015

 o If the offering endpoint specifies a value for the maxptime
 parameter that the answering endpoint cannot support, the answer
 MUST contain the optional maxptime parameter.

5.4. SDP Examples

 The following examples illustrate how to signal G.711.0 via SDP.

5.4.1. SDP Example 1

 m=audio RTP/AVP 98
 a=rtpmap:98 G711-0/8000
 a=fmtp:98 complaw=mu

 In the above example, the dynamic payload type 98 is mapped to
 G.711.0 via the "a=rtpmap" parameter. The mandatory "complaw" is on
 the "a=fmtp" parameter line. Note that neither optional parameters
 "ptime" nor "channels" is present; although, it is generally good
 form to include "ptime" in the SDP if the session is a constant ptime
 session for diagnostic purposes.

5.4.2. SDP Example 2

 The following example illustrates an offering endpoint requesting 2
 channels, but the answering endpoint can only support (or render) one
 channel.

 Offer:

 m=audio RTP/AVP 98
 a=rtpmap:98 G711-0/8000/2
 a=ptime:20
 a=fmtp:98 complaw=al

 Answer:

 m=audio RTP/AVP 98
 a=rtpmap: 98 G711-0/8000/1
 a=ptime: 20
 a=fmtp:98 complaw=al

 In this example, the offer had an optional channels parameter. The
 answer must have the optional channels parameter also unless the
 value in the answer is one. Shown here is when the answer explicitly
 contains the channels parameter (it need not have and it would be
 interpreted as one channel). As mentioned previously, it is
 considered good form to include "ptime" in the SDP for session
 diagnostic purposes if the session is a constant ptime session.

Ramalho, et al. Standards Track [Page 23]

RFC 7655 G.711.0 Payload Format November 2015

6. G.711.0 Storage Mode Conventions and Definition

 The G.711.0 storage mode definition in this section is similar to
 many other IETF codecs (e.g., iLBC RFC 3951 [RFC3951] and EVRC-NW RFC
 6884 [RFC6884]), and is essentially a concatenation of individual
 G.711.0 frames.

 We note that something must be stored for any G.711.0 frames that are
 not received at the receiving endpoint, no matter what the cause. In
 this section, we describe two mechanisms, a "G.711.0 PLC Frame" and a
 "G.711.0 Erasure Frame". These G.711.0 PLC and G.711.0 Erasure
 Frames are described prior to the G.711.0 storage mode definition for
 clarity.

6.1. G.711.0 PLC Frame

 When G.711 RTP payloads are not received by a rendering endpoint, a
 PLC mechanism is typically employed to "fill in" the missing G.711
 symbols with something that is auditorially pleasing; thus, the loss
 may be not noticed by a listener. Such a PLC mechanism for G.711 is
 specified in ITU-T Rec. G.711 - Appendix 1 [G.711-AP1].

 A natural extension when creating G.711.0 frames for storage
 environments is to employ such a PLC mechanism to create G.711
 symbols for the span of time in which G.711.0 payloads were not
 received -- and then to compress the resulting "G.711 PLC symbols"
 via G.711.0 compression. The G.711.0 frame(s) created by such a
 process are called "G.711.0 PLC Frames".

 Since PLC mechanisms are designed to render missing audio data with
 the best fidelity and intelligibility, G.711.0 frames created via
 such processing is likely best for most recording situations (such as
 voicemail storage) unless there is a requirement not to fabricate
 (audio) data not actually received.

 After such PLC G.711 symbols have been generated and then encoded by
 a G.711.0 encoder, the resulting frames may be stored in G.711.0
 frame format. As a result, there is nothing to specify here -- the
 G.711.0 PLC frames are stored as if they were received by the
 receiving endpoint. In other words, PLC-generated G.711.0 frames
 appear as "normal" or "ordinary" G.711.0 frames in the storage mode
 file.

Ramalho, et al. Standards Track [Page 24]

RFC 7655 G.711.0 Payload Format November 2015

6.2. G.711.0 Erasure Frame

 "Erasure Frames", or equivalently "Null Frames", have been designed
 for many frame-based codecs since G.711 was standardized. These
 null/erasure frames explicitly represent data from incoming audio
 that were either not received by the receiving system or represent
 data that a transmitting system decided not to send. Transmitting
 systems may choose not to send data for a variety of reasons (e.g.,
 not enough wireless link capacity in radio-based systems) and can
 choose to send a "null frame" in lieu of the actual audio. It is
 also envisioned that erasure frames would be used in storage mode
 applications for specific archival purposes where there is a
 requirement not to fabricate audio data that was not actually
 received.

 Thus, a G.711.0 erasure frame is a representation of the amount of
 time in G.711.0 frames that were not received or not encoded by the
 transmitting system.

 Prior to defining a G.711.0 erasure frame, it is beneficial to note
 what many G.711 RTP systems send when the endpoint is "muted". When
 muted, many of these systems will send an entire G.711 payload of
 either 0+ or 0- (i.e., one of the two levels closest to "analog zero"
 in either G.711 companding law). Next we note that a desirable
 property for a G.711.0 erasure frame is for "non-G.711.0 Erasure
 Frame-aware" endpoints to be able to playback a G.711.0 erasure frame
 with the existing G.711.0 ITU-T reference code.

 A G.711.0 Erasure Frame is defined as any G.711.0 frame for which the
 corresponding G.711 sample values are either the value 0++ or the
 value 0-- for the entirety of the G.711.0 frame. The levels of 0++
 and 0-- are defined to be the two levels above or below analog zero,
 respectively. An entire frame of value 0++ or 0-- is expected to be
 extraordinarily rare when the frame was in fact generated by a
 natural signal, as analog inputs such as speech and music are zero-
 mean and are typically acoustically coupled to digital sampling
 systems. Note that the playback of a G.711.0 frame characterized as
 an erasure frame is auditorially equivalent to a muted signal (a very
 low value constant).

 These G.711.0 erasure frames can be reasonably characterized as null
 or erasure frames while meeting the desired playback goal of being
 decoded by the G.711.0 ITU-T reference code. Thus, similarly to
 G.711 PLC frames, the G.711.0 erasure frames appear as "normal" or
 "ordinary" G.711.0 frames in the storage mode format.

Ramalho, et al. Standards Track [Page 25]

RFC 7655 G.711.0 Payload Format November 2015

6.3. G.711.0 Storage Mode Definition

 The storage format is used for storing G.711.0 encoded frames. The
 format for the G.711.0 storage mode file defined by this RFC is shown
 below.

 |---------------------------|----------|--------------|
 | Magic Number | | |
 | | Version | Concatenated |
 | "#!G7110A\n" (for A-law) | Octet | G.711.0 |
 | or | | Frames |
 | "#!G7110M\n" (for mu-law) | "0x00" | |
 |___________________________|__________|______________|

 Figure 5: G.711.0 Storage Mode Format

 The storage mode file consists of a magic number and a version octet
 followed by the individual G.711.0 frames concatenated together.

 The magic number for G.711.0 A-law corresponds to the ASCII character
 string "#!G7110A\n", i.e., "0x23 0x21 0x47 0x37 0x31 0x31 0x30 0x41
 0x0A". Likewise, the magic number for G.711.0 MU-law corresponds to
 the ASCII character string "#!G7110M\n", i.e., "0x23 0x21 0x47 0x37
 0x31 0x31 0x4E 0x4D 0x0A".

 The version number octet allows for the future specification of other
 G.711.0 storage mode formats. The specification of other storage
 mode formats may be desirable as G.711.0 frames are of variable
 length and a future format may include an indexing methodology that
 would enable playout far into a long G.711.0 recording without the
 necessity of decoding all the G.711.0 frames since the beginning of
 the recording. Other future format specification may include support
 for multiple channels, metadata, and the like. For these reasons, it
 was determined that a versioning strategy was desirable for the
 G.711.0 storage mode definition specified by this RFC. This RFC only
 specifies Version 0 and thus the value of "0x00" MUST be used for the
 storage mode defined by this RFC.

 The G.711.0 codec data frames, including any necessary erasure or PLC
 frames, are stored in consecutive order concatenated together as
 shown in Section 4.2.2. As the Version 0 storage mode only supports
 a single channel, the RTP payload format supporting multiple channels
 defined in Section 4.2.4 is not supported in this storage mode
 definition.

 To decode the individual G.711.0 frames, the algorithm presented in
 Section 4.2.2 may be used to decode the individual G.711.0 frames.
 If the version octet is determined not to be zero, the remainder of

Ramalho, et al. Standards Track [Page 26]

RFC 7655 G.711.0 Payload Format November 2015

 the payload MUST NOT be passed to the G.711.0 decoder, as the ITU-T
 G.711.0 reference decoder can only decode concatenated G.711.0 frames
 and has not been designed to decode elements in yet to be specified
 future storage mode formats.

7. IANA Considerations

 One media type (audio/G711-0) has been defined and registered in
 IANA’s "Media Types" registry. See Section 5.1 for details.

8. Security Considerations

 RTP packets using the payload format defined in this specification
 are subject to the security considerations discussed in the RTP
 specification [RFC3550], and in any applicable RTP profile (such as
 RTP/AVP [RFC3551], RTP/AVPF [RFC4585], RTP/SAVP [RFC3711], or RTP/
 SAVPF [RFC5124]. However, as "Securing the RTP Protocol Framework:
 Why RTP Does Not Mandate a Single Media Security Solution" [RFC7202]
 discusses, it is not a responsibility of the RTP payload format to
 discuss or mandate what solutions are used to meet the basic security
 goals like confidentiality, integrity, and source authenticity for
 RTP in general. This responsibility lays on anyone using RTP in an
 application. They can find guidance on available security mechanisms
 and important considerations in "Options for Securing RTP Sessions"
 [RFC7201]. Applications SHOULD use one or more appropriate strong
 security mechanisms. The rest of this Security Considerations
 section discusses the security impacting properties of the playload
 format itself.

 Because the data compression used with this payload format is applied
 end-to-end, any encryption needs to be performed after compression.

 Note that end-to-end security with either authentication, integrity,
 or confidentiality protection will prevent a network element not
 within the security context from performing media-aware operations
 other than discarding complete packets. To allow any (media-aware)
 intermediate network element to perform its operations, it is
 required to be a trusted entity that is included in the security
 context establishment.

 G.711.0 has no known denial-of-service (DoS) attacks due to decoding,
 as data posing as a desired G711.0 payload will be decoded into
 something (as per the decoding algorithm) with a finite amount of
 computation. This is due to the decompression algorithm having a
 finite worst-case processing path (no infinite computational loops
 are possible). We also note that the data read by the G.711.0
 decoder is controlled by the length of the individual encoded G.711.0
 frame(s) contained in the RTP payload. The decoding algorithm

Ramalho, et al. Standards Track [Page 27]

RFC 7655 G.711.0 Payload Format November 2015

 specified previously in Section 4.2.3 ensures that the G.711.0
 decoder will not read beyond the length of the internal buffer
 specified (which is in turn specified to be no greater than the
 largest possible G.711.0 frame of 321 octets). Therefore, a G.711.0
 payload does not carry "active content" that could impose malicious
 side-effects upon the receiver.

 G.711.0 is a VBR audio codec. There have been recent concerns with
 VBR speech codecs where a passive observer can identify phrases from
 a standard speech corpus by means of the lengths produced by the
 encoder even when the payload is encrypted [IEEE]. In this paper, it
 was determined that some Code-Excited Linear Prediction (CELP) codecs
 would produce discrete packet lengths for some phonemes.
 Furthermore, with the use of appropriately designed Hidden Markov
 Models (HMMs), such a system could predict phrases with unexpected
 accuracy. One CELP codec studied, SPEEX, had the property that
 produced 21 different packet lengths in its wideband mode, and these
 packet lengths probabilistically mapped to phonemes that an HMM
 system could be trained on. In this paper, it was determined that a
 mitigation technique would be to pad the output of the encoder with
 random padding lengths to the effect: 1) that more discrete payload
 sizes would result, and 2) that the probabilistic mapping to phonemes
 would become less clear. As G.711 is not a speech-model-based codec,
 neither is G.711.0. A G.711.0 encoding, during talking periods,
 produces frames of varying frame lengths that are not likely to have
 a strong mapping to phonemes. Thus, G.711.0 is not expected to have
 this same vulnerability. It should be noted that "silence" (only one
 value of G.711 in the entire G.711 input frame) or "near silence"
 (only a few G.711 values) is easily detectable as G.711.0 frame
 lengths or one or a few octets. If one desires to mitigate for
 silence/non-silence detection, statistically variable padding should
 be added to G.711.0 frames that resulted in very small G.711.0 frames
 (less than about 20% of the symbols of the corresponding G.711 input
 frame). Methods of introducing padding in the G.711.0 payloads have
 been provided in the G.711.0 RTP payload definition in Section 4.2.2.

9. Congestion Control

 The G.711 codec is a Constant Bit Rate (CBR) codec that does not have
 a means to regulate the bitrate. The G.711.0 lossless compression
 algorithm typically compresses the G.711 CBR stream into a lower-
 bandwidth VBR stream. However, being lossless, it does not possess
 means of further reducing the bitrate beyond the compression result
 based on G.711.0. The G.711.0 RTP payloads can be made arbitrarily
 large by means of adding optional padding bytes (subject only to MTU
 limitations).

Ramalho, et al. Standards Track [Page 28]

RFC 7655 G.711.0 Payload Format November 2015

 Therefore, there are no explicit ways to regulate the bit rate of the
 transmissions outlined in this RTP payload format except by means of
 modulating the number of optional padding bytes in the RTP payload.

10. References

10.1. Normative References

 [G.711] ITU-T, "Pulse Code Modulation (PCM) of Voice
 Frequencies", ITU-T Recommendation G.711 PCM, 1988.

 [G.711-A1] ITU-T, "New Annex A on Lossless Encoding of PCM Frames",
 ITU-T Recommendation G.711 Amendment 1, 2009.

 [G.711-AP1] ITU-T, "A high quality low-complexity algorithm for
 packet loss concealment with G.711", ITU-T
 Recommendation G.711 AP1, 1999.

 [G.711.0] ITU-T, "Lossless Compression of G.711 Pulse Code
 Modulation", ITU-T Recommendation G.711 LC PCM, 2009.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 DOI 10.17487/RFC3264, June 2002,
 <http://www.rfc-editor.org/info/rfc3264>.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <http://www.rfc-editor.org/info/rfc3550>.

 [RFC3551] Schulzrinne, H. and S. Casner, "RTP Profile for Audio
 and Video Conferences with Minimal Control", STD 65,
 RFC 3551, DOI 10.17487/RFC3551, July 2003,
 <http://www.rfc-editor.org/info/rfc3551>.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol
 (SRTP)", RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <http://www.rfc-editor.org/info/rfc3711>.

Ramalho, et al. Standards Track [Page 29]

RFC 7655 G.711.0 Payload Format November 2015

 [RFC3951] Andersen, S., Duric, A., Astrom, H., Hagen, R., Kleijn,
 W., and J. Linden, "Internet Low Bit Rate Codec (iLBC)",
 RFC 3951, DOI 10.17487/RFC3951, December 2004,
 <http://www.rfc-editor.org/info/rfc3951>.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, DOI 10.17487/RFC4566,
 July 2006, <http://www.rfc-editor.org/info/rfc4566>.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J.
 Rey, "Extended RTP Profile for Real-time Transport
 Control Protocol (RTCP)-Based Feedback (RTP/AVPF)",
 RFC 4585, DOI 10.17487/RFC4585, July 2006,
 <http://www.rfc-editor.org/info/rfc4585>.

 [RFC5124] Ott, J. and E. Carrara, "Extended Secure RTP Profile for
 Real-time Transport Control Protocol (RTCP)-Based
 Feedback (RTP/SAVPF)", RFC 5124, DOI 10.17487/RFC5124,
 February 2008, <http://www.rfc-editor.org/info/rfc5124>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <http://www.rfc-editor.org/info/rfc6838>.

 [RFC6884] Fang, Z., "RTP Payload Format for the Enhanced Variable
 Rate Narrowband-Wideband Codec (EVRC-NW)", RFC 6884,
 DOI 10.17487/RFC6884, March 2013,
 <http://www.rfc-editor.org/info/rfc6884>.

 [RFC7201] Westerlund, M. and C. Perkins, "Options for Securing RTP
 Sessions", RFC 7201, DOI 10.17487/RFC7201, April 2014,
 <http://www.rfc-editor.org/info/rfc7201>.

 [RFC7202] Perkins, C. and M. Westerlund, "Securing the RTP
 Framework: Why RTP Does Not Mandate a Single Media
 Security Solution", RFC 7202, DOI 10.17487/RFC7202, April
 2014, <http://www.rfc-editor.org/info/rfc7202>.

10.2. Informative References

 [G.722] ITU-T, "7 kHz audio-coding within 64 kbit/s", ITU-T
 Recommendation G.722, 1988.

 [G.729] ITU-T, "Coding of speech at 8 kbit/s using conjugate-
 structure algebraic-code-excited linear prediction
 (CS-ACELP)", ITU-T Recommendation G.729, 2007.

Ramalho, et al. Standards Track [Page 30]

RFC 7655 G.711.0 Payload Format November 2015

 [ICASSP] Harada, N., Yamamoto, Y., Moriya, T., Hiwasaki, Y.,
 Ramalho, M., Netsch, L., Stachurski, J., Miao, L.,
 Taddei, H., and F. Qi, "Emerging ITU-T Standard G.711.0 -
 Lossless Compression of G.711 Pulse Code Modulation,
 International Conference on Acoustics Speech and Signal
 Processing (ICASSP), 2010, ISBN 978-1-4244-4244-4295-9",
 March 2010.

 [IEEE] Wright, C., Ballard, L., Coull, S., Monrose, F., and G.
 Masson, "Spot Me if You Can: Uncovering Spoken Phrases in
 Encrypted VoIP Conversations, IEEE Symposium on Security
 and Privacy, 2008, ISBN: 978-0-7695-3168-7", May 2008.

Acknowledgements

 There have been many people contributing to G.711.0 in the course of
 its development. The people listed here deserve special mention:
 Takehiro Moriya, Claude Lamblin, Herve Taddei, Simao Campos, Yusuke
 Hiwasaki, Jacek Stachurski, Lorin Netsch, Paul Coverdale, Patrick
 Luthi, Paul Barrett, Jari Hagqvist, Pengjun (Jeff) Huang, John Gibbs,
 Yutaka Kamamoto, and Csaba Kos. The review and oversight by the IETF
 Payload working group chairs Ali Begen and Roni Even during the
 development of this RFC is appreciated. Additionally, the careful
 review by Richard Barnes, the extensive review by David Black, and
 the reviews provided by the IESG are likewise very much appreciated.

Contributors

 The authors thank everyone who have contributed to this document.
 The people listed here deserve special mention: Ali Begen, Roni Even,
 and Hadriel Kaplan.

Authors’ Addresses

 Michael A. Ramalho (editor)
 Cisco Systems, Inc.
 6310 Watercrest Way Unit 203
 Lakewood Ranch, FL 34202
 United States
 Phone: +1 919 476 2038
 Email: mramalho@cisco.com

Ramalho, et al. Standards Track [Page 31]

RFC 7655 G.711.0 Payload Format November 2015

 Paul E. Jones
 Cisco Systems, Inc.
 7025 Kit Creek Road
 Research Triangle Park, NC 27709
 United States

 Phone: +1 919 476 2048
 Email: paulej@packetizer.com

 Noboru Harada
 NTT Communications Science Labs
 3-1 Morinosato-Wakamiya
 Atsugi, Kanagawa 243-0198
 Japan

 Phone: +81 46 240 3676
 Email: harada.noboru@lab.ntt.co.jp

 Muthu Arul Mozhi Perumal
 Ericsson
 Ferns Icon
 Doddanekundi, Mahadevapura
 Bangalore, Karnataka 560037
 India

 Phone: +91 9449288768
 Email: muthu.arul@gmail.com

 Lei Miao
 Huawei Technologies Co. Ltd
 Q22-2-A15R, Environment Protection Park
 No. 156 Beiqing Road
 HaiDian District
 Beijing 100095
 China

 Phone: +86 1059728300
 Email: lei.miao@huawei.com

Ramalho, et al. Standards Track [Page 32]

