
Internet Engineering Task Force (IETF) J. Jimenez
Request for Comments: 7650 Ericsson
Category: Standards Track J. Lopez-Vega
ISSN: 2070-1721 University of Granada
 J. Maenpaa
 G. Camarillo
 Ericsson
 September 2015

 A Constrained Application Protocol (CoAP) Usage
 for REsource LOcation And Discovery (RELOAD)

Abstract

 This document defines a Constrained Application Protocol (CoAP) Usage
 for REsource LOcation And Discovery (RELOAD). The CoAP Usage
 provides the functionality to federate Wireless Sensor Networks
 (WSNs) in a peer-to-peer fashion. The CoAP Usage for RELOAD allows
 CoAP nodes to store resources in a RELOAD peer-to-peer overlay,
 provides a lookup service, and enables the use of RELOAD overlay as a
 cache for sensor data. This functionality is implemented in the
 RELOAD overlay itself, without the use of centralized servers. The
 RELOAD AppAttach method is used to establish a direct connection
 between nodes through which CoAP messages are exchanged.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7650.

Jimenez, et al. Standards Track [Page 1]

RFC 7650 A CoAP Usage for RELOAD September 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. Architecture . 5
 4. Registering CoAP URIs . 7
 5. Lookup . 8
 6. Forming a Direct Connection and Reading Data 9
 7. Caching Mechanisms . 11
 7.1. ProxyCache . 11
 7.2. SensorCache . 13
 8. CoAP Usage Kinds Definition 14
 8.1. CoAP-REGISTRATION Kind 14
 8.2. CoAP-CACHING Kind . 15
 9. Access Control Rules . 15
 10. Security Considerations 16
 11. IANA Considerations . 17
 11.1. CoAP-REGISTRATION Kind-ID 17
 11.2. CoAP-CACHING Kind-ID 17
 11.3. Access Control Policies 17
 12. References . 18
 12.1. Normative References 18
 12.2. Informative References 18
 Authors’ Addresses . 19

Jimenez, et al. Standards Track [Page 2]

RFC 7650 A CoAP Usage for RELOAD September 2015

1. Introduction

 The Constrained Application Protocol (CoAP) Usage for REsource
 LOcation And Discovery (RELOAD) allows CoAP nodes to store resources
 in a RELOAD peer-to-peer overlay, provides a lookup service, and
 enables the use of RELOAD overlay as a cache for sensor data. This
 functionality is implemented in the RELOAD overlay itself, without
 the use of centralized servers.

 This usage is intended for interconnected devices over a wide-area
 geographical coverage, such as in cases where multiple Wireless
 Sensor Networks (WSNs) need to be federated over some wider-area
 network. These WSNs would interconnect by means of nodes that are
 equipped with long range modules (e.g., 2G, 3G, 4G) as well as short
 range ones (e.g., XBee, ZigBee, Bluetooth LE).

 Constrained devices are likely to be heterogeneous when it comes to
 their radio layer; however, we expect them to use a common
 application-layer protocol -- CoAP, which is a specialized web
 transfer protocol [RFC7252]. It realizes the Representational State
 Transfer (REST) architecture for the most constrained nodes, such as
 sensors and actuators. CoAP can be used not only between nodes on
 the same constrained network but also between constrained nodes and
 nodes on the Internet. The latter is possible since CoAP can be
 translated to Hypertext Transfer Protocol (HTTP) for integration with
 the web. Application areas of CoAP include different forms of
 machine-to-machine (M2M) communication, such as home automation,
 construction, health care or transportation. Areas with heavy use of
 sensor and actuator devices that monitor and interact with the
 surrounding environment.

 As specified in [RFC6940], RELOAD is fundamentally an overlay
 network. It provides a layered architecture with pluggable
 application layers that can use the underlaying forwarding, storage,
 and lookup functionalities. Figure 1 illustrates where the CoAP
 Usage is placed within the RELOAD architecture.

Jimenez, et al. Standards Track [Page 3]

RFC 7650 A CoAP Usage for RELOAD September 2015

 Application

 +-------+
 | CoAP | ...
 | Usage |
 +-------+
 ------------------------------------ Messaging Service
 +------------------+ +---------+
 | Message |<--->| Storage |
 | Transport | +---------+
 +------------------+ ^
 ^ ^ |
 | v v
 | +-------------------+
 | | Topology |
 | | Plug-in |
 | +-------------------+
 | ^
 v v
 +------------------+
 | Forwarding & |
 | Link Management |
 +------------------+
 ------------------------------------ Overlay Link Service
 +-------+ +-------+
 |TLS | |DTLS | ...
 |Overlay| |Overlay|
 |Link | |Link |
 +-------+ +-------+

 Figure 1: Architecture

 The CoAP Usage involves three basic functions:

 Registration: CoAP nodes that can use the RELOAD data storage
 functionality, can store a mapping from their CoAP URI to their Node-
 ID in the overlay. They can also retrieve the Node-IDs of other
 nodes. Nodes that are not RELOAD aware can use other mechanisms, for
 example [CORERESDIR] in their local network.

 Lookup: Once a CoAP node has identified the Node-ID for an URI it
 wishes to retrieve, it can use the RELOAD message routing system to
 set up a connection that can be used to exchange CoAP messages.
 Similarly as with the registration, nodes that are not RELOAD aware
 can use CoAP messages with a RELOAD Node (RN) that will in turn
 perform the lookup in the overlay.

Jimenez, et al. Standards Track [Page 4]

RFC 7650 A CoAP Usage for RELOAD September 2015

 Caching: Nodes can use the RELOAD overlay as a caching mechanism for
 information about what CoAP resources are available on the node.
 This is especially useful for power-constrained nodes that can make
 their data available in the cache provided by the overlay while in
 sleep mode.

 For instance, a CoAP proxy (See Section 3) could register its Node-ID
 (e.g. "9996172") and a list of sensors (e.g. "/sensors/temp-1;
 /sensors/temp-2; /sensors/light, /sensors/humidity") under its URI
 (e.g. "coap://overlay-1.com/proxy-1/").

 When a node wants to discover the values associated with that URI, it
 queries the overlay for "coap://overlay-1.com/proxy-1/" and gets back
 the Node-ID of the proxy and the list of its associated sensors. The
 requesting node can then use the RELOAD overlay to establish a direct
 connection with the proxy and to read sensor values.

 Moreover, the CoAP proxy can store the sensor information in the
 overlay. In this way, information can be retrieved directly from the
 overlay without performing a direct connection to the storing proxy.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 We use the terminology and definitions from the RELOAD Base Protocol
 [RFC6940] extensively in this document. Some of those concepts are
 further described in the "Concepts and Terminology for Peer to Peer
 SIP" [P2PSIP] document.

3. Architecture

 In our architecture we extend the different nodes present in RELOAD
 (Peer, Client) and add support for sensor devices or other
 constrained devices. Figure 2 illustrates the overlay topology. The
 different nodes, according to their functionality, are:

 Client
 As specified in [RFC6940], clients are nodes that do not have
 routing or storage responsibilities in the Overlay.

 Peer
 As specified in [RFC6940], peers are nodes in the overlay that can
 route messages for nodes other than those to which it is directly
 connected.

Jimenez, et al. Standards Track [Page 5]

RFC 7650 A CoAP Usage for RELOAD September 2015

 Sensor
 Devices capable of measuring a physical quantity. Sensors usually
 acquire quantifiable information about their surrounding
 environment such as: temperature, humidity, electric current,
 moisture, radiation, and so on.

 Actuator
 Devices capable of interacting and affecting their environment
 such as: electrical motors, pneumatic actuators, electric
 switches, and so on.

 Proxy Node
 Devices having sufficient resources to run RELOAD either as client
 or peer. These devices are located at the edge of the sensor
 network and, in case of Wireless Sensor Networks (WSN), act as
 coordinators of the network.

 Physical devices can have one or several of the previous functional
 roles. According to the functionalities that are present in each of
 the nodes, they can be:

 Constrained Node
 A Constrained Node (CN) is a node with limited computational
 capabilities. CN devices belong to classes of at least C1 and C2
 devices as defined in [RFC7228], their main constraint being the
 implementation of the CoAP protocol. If the CN is wireless, then
 it will be part of a Low-Rate Wireless Personal Area Network
 (LR-WPAN), also termed Low-Power and Lossy Network (LLN). Lastly,
 devices will usually be in sleep mode in order to prevent battery
 drain, and will not communicate during those periods. A CN is NOT
 part of the RELOAD overlay, therefore it cannot act as a client,
 peer, nor proxy. A CN is always either a Sensor or an Actuator.
 In the latter case, the node is often connected to a continuous
 energy power supply.

 RELOAD Node
 A RELOAD Node (RN) MUST implement the client functionality in the
 Overlay. Additionally, the node will often be a full RELOAD peer.
 An RN may also be sensor or actuator since it can have those
 devices connected to it.

 Proxy Node
 A Proxy Node (PN) MUST implement the RN functionality and act as a
 sink for the LR-WPAN network. The PN connects the short range
 Wireless Network to the Wide Area Network or the Internet. A
 Proxy Node fulfills the "Proxy Node" role as described previously
 in the Architecture.

Jimenez, et al. Standards Track [Page 6]

RFC 7650 A CoAP Usage for RELOAD September 2015

 +------+
 | |
 +--------+ RN +---------+
 | | | |
 +---+--+ +------+ +--+---+
 | | | |
 | RN | | RN |
 | | | | +------------+
 +---+--+ +--+---+ | WSN |
 | RELOAD | | +----+ |
 | OVERLAY | | +---+ CN | |
 +---+--+ +--+---+ | | +----+ |
 | | | +-----+ | | |
 | RN | | PN | | |
 | | | +-----+ |
 +---+--+ +------+ +--+---+ | | +----+ |
 | | | | | +---+ CN | |
 +--------+ PN +---------+ | +----+ |
 | | +------------+
 +-+--+-+
 | |
 +--------|--|--------+
 | +--+ +--+ |
 | | | |
 | +--+-+ +-+--+ |
 | | CN | | CN | |
 | +----+ +----+ |
 | WSN |
 +--------------------+

 Figure 2: Overlay Topology

4. Registering CoAP URIs

 CoAP URIs are typically resolved using a DNS. When CoAP is needed in
 a RELOAD environment, URI resolution is provided by the overlay as a
 whole. Instead of registering a URI, a peer stores a
 CoAPRegistration structure under a hash of its own URI. This uses
 the CoAP REGISTRATION Kind-ID, which is formally defined in
 Section 8.1 and uses a DICTIONARY data model.

 In this example, a CoAP proxy that is located in an overlay
 overlay-1.com using a Node-ID "9996172" wants to register four
 different sensors to the URI "coap://overlay-1.com/proxy-1/.well-
 known/". We will be using the link format specified in [RFC6690] to
 store the following mapping in the overlay:

Jimenez, et al. Standards Track [Page 7]

RFC 7650 A CoAP Usage for RELOAD September 2015

 Resource-ID = h(coap://overlay-1.com/proxy-1/.well-known/)
 KEY = 9996172,

 VALUE = [
 </sensors/temp-1>;rt="temperature-c";if="sensor",
 </sensors/temp-2>;rt="temperature-c";if="sensor",
 </sensors/light>;rt="light-lux";if="sensor",
 </sensors/humidity>;rt="humidity-p";if="sensor"
]

 Note that the Resource-ID stored in the overlay is calculated as hash
 over the URI, that is -- h(URI), which in RELOAD is usually SHA-1.

 This would inform any other node performing a lookup for the previous
 URI "coap://overlay-1.com/proxy-1/.well-known" that the Node-ID value
 for proxy-1 is "9996172". In addition, this mapping provides
 relevant information as to the number of sensors (CNs) and the URI
 path to connect to them using CoAP.

5. Lookup

 The RELOAD overlay supports a rendezvous system that can be used for
 the lookup of other CoAP nodes. This is done by fetching mapping
 information between CoAP URIs and Node-IDs.

 As an example, if a node RN located in the overlay overlay-1.com
 wishes to read which resources are served at an RN with URI
 coap://overlay-1.com/proxy-1/, it performs a fetch in the overlay.
 The Resource-ID used in this fetch is a SHA-1 hash over the URI
 "coap://overlay-1.com/proxy-1/.well-known/".

 After this fetch request, the overlay will return the following
 result:

 Resource-ID = h(coap://overlay-1.com/proxy-1/.well-known/)
 KEY = 9996172,

 VALUE = [
 </sensors/temp-1>;rt="temperature-c";if="sensor",
 </sensors/temp-2>;rt="temperature-c";if="sensor",
 </sensors/light>;rt="light-lux";if="sensor",
 </sensors/humidity>;rt="humidity-p";if="sensor"
]

 The obtained KEY is the Node-ID of the RN responsible of this KEY/
 VALUE pair. The VALUE is the set of URIs necessary to read data from
 the CNs associated with the RN.

Jimenez, et al. Standards Track [Page 8]

RFC 7650 A CoAP Usage for RELOAD September 2015

 Using the RELOAD DICTIONARY model allows for multiple nodes to
 perform a store to the same Resource-ID. This can be used, for
 example, to perform a store of resources of the same type or with
 similar characteristics. After performing a lookup, this feature
 allows the fetching of those multiple RNs that host CNs of the same
 class.

 As an example, provided that the previous peer (9996172) and another
 peer (9996173) have stored the links to their respective temperature
 resources in this same Resource-ID (temperature), an RN (e.g.,
 node-A) can do a fetch to the URI "coap://overlay-1.com/
 temperature/.well-known/", obtaining the following results:

 Resource-ID = h(coap://overlay-1.com/temperature/.well-known/)

 KEY = 9996172,
 VALUE = [
 </sensors/temp-1>;rt="temperature-c";if="sensor",
 </sensors/temp-2>;rt="temperature-c";if="sensor",
]

 KEY = 9996173,
 VALUE = [
 </sensors/temp-a>;rt="temperature-c";if="sensor",
 </sensors/temp-b>;rt="temperature-c";if="sensor"
]

6. Forming a Direct Connection and Reading Data

 Once an RN (e.g., node-A) has obtained the lookup information for a
 node in the overlay (e.g., proxy-1), it can directly connect to that
 node. This is performed by sending an AppAttach request to the
 Node-ID obtained during the lookup process.

 After the AppAttach negotiation, node-A can access the values of the
 CNs at proxy-1 using the information obtained during the lookup.
 Following the example in Section 5, and according to [RFC6690], the
 requests for accessing the CNs at proxy-1 would be:

 REQ: GET /sensors/temp-1
 REQ: GET /sensors/temp-2

Jimenez, et al. Standards Track [Page 9]

RFC 7650 A CoAP Usage for RELOAD September 2015

 Figure 3 shows a sample of a node reading temperature data.

 +-----+ +---------+ +-----+ +---+
 | PNA | | OVERLAY | | PNB | |CNB|
 +-----+ +---------+ +-----+ +---+
 | | | |
 | | | |
 | 1.RELOAD | | |
 | FetchReq | | |
 |+----------->| | |
 | | | |
 | 2.RELOAD | | |
 | FetchAns | | |
 |<-----------+| | |
 | | | |
 | 3.RELOAD | | |
 | AppAttach | | |
 |+----------->| | |
 | | 4.RELOAD | |
 | | AppAttach | |
 | |+---------->| |
 | | | |
 | | 5.RELOAD | |
 | 6.RELOAD |AppAttachAns| |
 |AppAttachAns |<----------+| |
 |<-----------+| | |
 | | | |
 | | |
 | --------------------- | |
 | / 7.ICE \| |
 | \ connectivity checks /| |
 | --------------------- | |
 | | |
 | 8.CoAP CON | |
 | GET /sensors/temp-1 | |
 |+------------------------>| |
 | | 9.CoAP GET |
 | |/sensors/temp-1 |
 | |+-------------->|
 | | 10.CoAP |
 | 11.CoAP | ACK 200 |
 | ACK 200 |<--------------+|
 |<------------------------+| |
 | | |

 Figure 3: An Example of a Message Sequence

Jimenez, et al. Standards Track [Page 10]

RFC 7650 A CoAP Usage for RELOAD September 2015

7. Caching Mechanisms

 The CoAP protocol itself supports the caching of sensor information
 in order to reduce the response time and network bandwidth
 consumption of future, equivalent requests. CoAP caching is
 specified in Section 5 of [RFC7252]. It consists of reusing stored
 responses when new requests arrive. This type of storage is done in
 CoAP proxies.

 This CoAP usage for RELOAD proposes an additional caching mechanism
 for storing sensor information directly in the overlay. In order to
 do so, it is necessary to define how the data should be stored. Such
 caching mechanism is primarily intended for CNs with sensor
 capabilities, not for RN sensors. This is due to the battery
 constraints of CNs, forcing them to stay in sleep mode for long
 periods of time.

 Whenever a CN wakes up, it sends the most recent data from its
 sensors to its proxy (PN), which stores the data in the overlay using
 a RELOAD StoredData structure defined in Section 6 of [RFC6940]. We
 use the StoredDataValue structure defined in Section 6.2 of
 [RFC6940], in particular we use the SingleValue format type to store
 the cached values in the overlay. From that structure length,
 storage_time, lifetime and Signature are used in the same way. The
 only difference is DataValue, which in our case can be either a
 ProxyCache or a SensorCache:

 enum { reserved (0), proxy_cache(1), sensor_cache(2), (255) }
 CoAPCachingType;
 struct {
 CoAPCachingType coap_caching_type;

 select(coap_caching_type) {
 case proxy_cache: ProxyCache proxy_cache_entry;
 case sensor_cache: SensorCache sensor_cache_entry;
 /* extensions */

 }
 } CoAPCaching;

7.1. ProxyCache

 ProxyCache is meant to store values and sensor information (e.g.,
 inactivity time) for all the sensors associated with a certain proxy,
 as well as their CoAP URIs. SensorCache, on the other hand, is used
 for storing the information and cached value of only one sensor (CoAP
 URI is not necessary, as it is the same as the one used for
 generating the Resource-ID associated to that SensorCache entry).

Jimenez, et al. Standards Track [Page 11]

RFC 7650 A CoAP Usage for RELOAD September 2015

 ProxyCache contains the Node-ID, length, and a series of SensorEntry
 types.

 struct {
 Node-ID Node_ID;
 uint32 length;
 SensorEntry sensors[count];
 } ProxyCache;

 Node-ID
 The Node-ID of the Proxy Node (PN) responsible for different
 sensor devices;

 length
 The length of the rest of the structure;

 Sensor-Entry
 List of sensors in the form of SensorEntry types;

 SensorEntry contains the coap_uri, sensor_info, and a series of
 SensorValue types.

 struct {
 opaque coap_uri;
 SensorInfo sensor_info;
 uint32 length;
 SensorValue sensor_value[count];
 } SensorEntry;

 coap_uri
 CoAP name of the sensor device in question;

 sensor_info
 contains relevant sensor information;

 length
 The length of the rest of the structure;

 sensor_value
 contains a list of values stored by the sensor;

Jimenez, et al. Standards Track [Page 12]

RFC 7650 A CoAP Usage for RELOAD September 2015

7.2. SensorCache

 SensorCache: contains the information related to one sensor.

 struct {
 Node-ID Node_ID;
 SensorInfo sensor_info;
 uint32 length;
 SensorValue sensor_value[count];
 } SensorCache;

 Node_ID
 identifies the Node-ID of the Proxy Node responsible for the
 sensor;

 sensor_info
 contains relevant sensor information;

 length
 The length of the rest of the structure;

 sensor_value
 contains a list of values stored by the sensor;

 SensorInfo contains relevant sensor information that is dependent on
 the use case. As an example, we use the sensor manufacturer as
 relevant information.

 struct {
 opaque dev_info;

 /* extensions */

 } SensorInfo;

 dev_info
 Contains specific device information as defined in [RFC6690] --
 for example, temperature, luminosity, etc. It can also represent
 other semantic information about the device.

 SensorValue contains the measurement_time, lifetime, and value of the
 measurement.

Jimenez, et al. Standards Track [Page 13]

RFC 7650 A CoAP Usage for RELOAD September 2015

 struct {
 uint32 measurement_time;
 uint32 lifetime;
 opaque value;

 /* extensions */

 } SensorValue;

 measurement_time
 indicates the moment when the measure was taken, represented as
 the number of milliseconds elapsed since midnight Jan 1, 1970 UTC
 not counting leap seconds.

 lifetime
 indicates the validity time of that measured value in milliseconds
 since measurement_time.

 value
 indicates the actual value measured. It can be of different types
 (integer, long, string); therefore, opaque has been used.

8. CoAP Usage Kinds Definition

 This section defines the CoAP-REGISTRATION and CoAP-CACHING Kinds.

8.1. CoAP-REGISTRATION Kind

 Kind-IDs
 The Resource Name for the CoAP-REGISTRATION Kind-ID is the CoAP
 URI. The data stored is a CoAPRegistration, which contains a set
 of CoAP URIs.

 Data Model
 The data model for the CoAP-REGISTRATION Kind-ID is dictionary.
 The dictionary key is the Node-ID of the storing RN. This allows
 each RN to store a single mapping.

 Access Control
 URI-NODE-MATCH. The "coap:" prefix needs to be removed from the
 COAP URI before matching.

Jimenez, et al. Standards Track [Page 14]

RFC 7650 A CoAP Usage for RELOAD September 2015

 Data stored under the COAP-REGISTRATION Kind is of type
 CoAPRegistration, defined below.

 struct {
 Node-ID Node_ID;
 uint16 coap_uris_length;
 opaque coap_uris (0..2^16-1);
 } CoAPRegistration;

8.2. CoAP-CACHING Kind

 Kind-IDs
 The Resource Name for the CoAP-CACHING Kind-ID is the CoAP URI.
 The data stored is a CoAPCaching, which contains a cached value.

 Data Model
 The data model for the CoAP-CACHING Kind-ID is single value.

 Access Control
 URI-MATCH. The "coap:" prefix needs to be removed from the COAP
 URI before matching.

 Data stored under the CoAP-CACHING Kind is of type CoAPCaching,
 defined in Section 7.

9. Access Control Rules

 As specified in RELOAD Base [RFC6940], every Kind that is storable in
 an overlay must be associated with an access control policy. This
 policy defines whether a request from a given node to operate on a
 given value should succeed or fail. Usages can define any access
 control rules they choose, including publicly writable values.

 CoAP Usage for RELOAD requires an access control policy that allows
 multiple nodes in the overlay read and write access. This access is
 for registering and caching information using CoAP URIs as
 identifiers. Therefore, none of the access control policies
 specified in RELOAD Base [RFC6940] are sufficient.

 This document defines two access control policies, called URI-MATCH
 and URI-NODE-MATCH. In the URI-MATCH policy, a given value MUST be
 written and overwritten if and only if the signer’s certificate
 contains an uniformResourceIdentifier entry in the subjectAltName
 Extension [RFC5280] that in canonicalized form hashes to the
 Resource-ID for the resource. As explained in Section 6.3 of
 [RFC7252] the "coap" and "coaps" schemes conform to the generic URI,
 thus they are normalized in the generic form as explained in

Jimenez, et al. Standards Track [Page 15]

RFC 7650 A CoAP Usage for RELOAD September 2015

 Section 6 of [RFC3986]. The hash function used is specified in
 Section 10.2 of [RFC6940]. The certificate can be generated as
 specified in Section 9 of [RFC7252], using Certificate mode.

 In the URI-NODE-MATCH policy, a given value MUST be written and
 overwritten if and only if the condition for URI-MATCH is met and, in
 addition, the dictionary key is equal to the Node-ID in the
 certificate and that Node-ID is the one indicated in the
 SignerIdentity value cert_hash.

 These Access Control Policies are specified for IANA in Section 11.3.

10. Security Considerations

 The security considerations of RELOAD [RFC6940] and CoAP [RFC7252]
 apply to this specification. RELOAD’s security model is based on
 public key certificates, which are used for signing messages and
 stored objects. At the connection level, RELOAD can use either TLS
 or DTLS. In the case of CoAP, several security modes have been
 defined. Implementations of this specification MUST follow all the
 security-related rules specified in the RELOAD [RFC6940] and CoAP
 [RFC7252] specifications.

 Additionally, in RELOAD every Kind that is storable in an overlay
 must be associated with an access control policy. This document
 specifies two new access control policies, which are specified in
 Section 9. These policies cover the most typical deployment
 scenarios.

 During the phase of registration and lookup, security considerations
 relevant to RELOAD apply. A CoAP node that advertises its existence
 via this mechanism, is more likely to be attacked, compared to a node
 (especially a sleepy node) that does not advertise its existence.
 Section 11 of [RFC7252] and Section 13 of [RFC6940] have more
 information about the kinds of attack and mitigation possible.

 The caching mechanism specified in this document is additional to the
 caching already done in CoAP. Access control is handled by the
 RELOAD overlay, where the peer storing the data is responsible for
 validating the signature on the data being stored.

Jimenez, et al. Standards Track [Page 16]

RFC 7650 A CoAP Usage for RELOAD September 2015

11. IANA Considerations

11.1. CoAP-REGISTRATION Kind-ID

 This document introduces a data Kind-ID to the "RELOAD Data Kind-ID"
 registry:

 +-------------------+------------+----------+
 | Kind | Kind-ID | RFC |
 +-------------------+------------+----------+
 | CoAP-REGISTRATION | 0x105 | RFC 7650 |
 +-------------------+------------+----------+

 This Kind-ID was defined in Section 8.1.

11.2. CoAP-CACHING Kind-ID

 This document introduces another data Kind-ID to the "RELOAD Data
 Kind-ID" registry:

 +--------------+------------+----------+
 | Kind | Kind-ID | RFC |
 +--------------+------------+----------+
 | CoAP-CACHING | 0x106 | RFC 7650 |
 +--------------+------------+----------+

 This Kind-ID was defined in Section 8.2.

11.3. Access Control Policies

 IANA has created a "CoAP Usage for RELOAD Access Control Policy"
 registry. This registry has been added to the existing RELOAD
 registry. Entries in this registry are strings denoting access
 control policies, as described in Section 9. New entries in this
 registry are to be registered per the Specification Required policy
 in [RFC5226]. The initial contents of this registry are:

 +-----------------+----------+
 | Access Policy | RFC |
 +-----------------+----------+
 | URI-NODE-MATCH | RFC 7650 |
 | URI-MATCH | RFC 7650 |
 +-----------------+----------+

 This access control policy was described in Section 9.

Jimenez, et al. Standards Track [Page 17]

RFC 7650 A CoAP Usage for RELOAD September 2015

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC6940] Jennings, C., Lowekamp, B., Ed., Rescorla, E., Baset, S.,
 and H. Schulzrinne, "REsource LOcation And Discovery
 (RELOAD) Base Protocol", RFC 6940, DOI 10.17487/RFC6940,
 January 2014, <http://www.rfc-editor.org/info/rfc6940>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

12.2. Informative References

 [CORERESDIR]
 Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
 Resource Directory", Work in Progress, draft-ietf-core-
 resource-directory-04, July 2015.

 [P2PSIP] Bryan, D., Matthews, P., Shim, E., Willis, D., and S.
 Dawkins, "Concepts and Terminology for Peer to Peer SIP",
 Work in Progress, draft-ietf-p2psip-concepts-07, May 2015.

Jimenez, et al. Standards Track [Page 18]

RFC 7650 A CoAP Usage for RELOAD September 2015

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

Authors’ Addresses

 Jaime Jimenez
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: jaime.jimenez@ericsson.com

 Jose M. Lopez-Vega
 University of Granada
 CITIC UGR Periodista Rafael Gomez Montero 2
 Granada 18071
 Spain

 Email: jmlvega@ugr.es

 Jouni Maenpaa
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: jouni.maenpaa@ericsson.com

 Gonzalo Camarillo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: gonzalo.camarillo@ericsson.com

Jimenez, et al. Standards Track [Page 19]

