
Internet Engineering Task Force (IETF) A. Bakker
Request for Comments: 7574 Vrije Universiteit Amsterdam
Category: Standards Track R. Petrocco
ISSN: 2070-1721 V. Grishchenko
 Technische Universiteit Delft
 July 2015

 Peer-to-Peer Streaming Peer Protocol (PPSPP)

Abstract

 The Peer-to-Peer Streaming Peer Protocol (PPSPP) is a protocol for
 disseminating the same content to a group of interested parties in a
 streaming fashion. PPSPP supports streaming of both prerecorded (on-
 demand) and live audio/video content. It is based on the peer-to-
 peer paradigm, where clients consuming the content are put on equal
 footing with the servers initially providing the content, to create a
 system where everyone can potentially provide upload bandwidth. It
 has been designed to provide short time-till-playback for the end
 user and to prevent disruption of the streams by malicious peers.
 PPSPP has also been designed to be flexible and extensible. It can
 use different mechanisms to optimize peer uploading, prevent
 freeriding, and work with different peer discovery schemes
 (centralized trackers or Distributed Hash Tables). It supports
 multiple methods for content integrity protection and chunk
 addressing. Designed as a generic protocol that can run on top of
 various transport protocols, it currently runs on top of UDP using
 Low Extra Delay Background Transport (LEDBAT) for congestion control.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7574.

Bakker, et al. Standards Track [Page 1]

RFC 7574 PPSPP July 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..5
 1.1. Purpose ..5
 1.2. Requirements Language6
 1.3. Terminology ..6
 2. Overall Operation ...9
 2.1. Example: Joining a Swarm9
 2.2. Example: Exchanging Chunks10
 2.3. Example: Leaving a Swarm10
 3. Messages ...11
 3.1. HANDSHAKE ...11
 3.1.1. Handshake Procedure12
 3.2. HAVE ..14
 3.3. DATA ..15
 3.4. ACK ...15
 3.5. INTEGRITY ...15
 3.6. SIGNED_INTEGRITY ..16
 3.7. REQUEST ...16
 3.8. CANCEL ..16
 3.9. CHOKE and UNCHOKE ...17
 3.10. Peer Address Exchange17
 3.10.1. PEX_REQ and PEX_RES Messages17
 3.11. Channels ...19
 3.12. Keep Alive Signaling20
 4. Chunk Addressing Schemes21
 4.1. Start-End Ranges ..21
 4.1.1. Chunk Ranges21
 4.1.2. Byte Ranges ..21
 4.2. Bin Numbers ...22
 4.3. In Messages ...23
 4.3.1. In HAVE Messages23
 4.3.2. In ACK Messages24

Bakker, et al. Standards Track [Page 2]

RFC 7574 PPSPP July 2015

 5. Content Integrity Protection24
 5.1. Merkle Hash Tree Scheme25
 5.2. Content Integrity Verification26
 5.3. The Atomic Datagram Principle27
 5.4. INTEGRITY Messages ..28
 5.5. Discussion and Overhead28
 5.6. Automatic Detection of Content Size29
 5.6.1. Peak Hashes ..29
 5.6.2. Procedure ..31
 6. Live Streaming ...32
 6.1. Content Authentication32
 6.1.1. Sign All ...33
 6.1.2. Unified Merkle Tree33
 6.1.2.1. Signed Munro Hashes34
 6.1.2.2. Munro Signature Calculation36
 6.1.2.3. Procedure37
 6.1.2.4. Secure Tune In37
 6.2. Forgetting Chunks ...38
 7. Protocol Options ...38
 7.1. End Option ..39
 7.2. Version ...39
 7.3. Minimum Version ...40
 7.4. Swarm Identifier ..40
 7.5. Content Integrity Protection Method41
 7.6. Merkle Tree Hash Function41
 7.7. Live Signature Algorithm42
 7.8. Chunk Addressing Method42
 7.9. Live Discard Window43
 7.10. Supported Messages44
 7.11. Chunk Size ...44
 8. UDP Encapsulation ..45
 8.1. Chunk Size ..45
 8.2. Datagrams and Messages46
 8.3. Channels ..47
 8.4. HANDSHAKE ...47
 8.5. HAVE ..48
 8.6. DATA ..48
 8.7. ACK ...49
 8.8. INTEGRITY ...50
 8.9. SIGNED_INTEGRITY ..51
 8.10. REQUEST ..52
 8.11. CANCEL ...52
 8.12. CHOKE and UNCHOKE ..53
 8.13. PEX_REQ, PEX_RESv4, PEX_RESv6, and PEX_REScert53
 8.14. KEEPALIVE ..55
 8.15. Flow and Congestion Control56
 8.16. Example of Operation57
 9. Extensibility ..61

Bakker, et al. Standards Track [Page 3]

RFC 7574 PPSPP July 2015

 9.1. Chunk Picking Algorithms61
 9.2. Reciprocity Algorithms62
 10. IANA Considerations ...62
 10.1. PPSPP Message Type Registry62
 10.2. PPSPP Option Registry62
 10.3. PPSPP Version Number Registry62
 10.4. PPSPP Content Integrity Protection Method Registry62
 10.5. PPSPP Merkle Hash Tree Function Registry63
 10.6. PPSPP Chunk Addressing Method Registry63
 11. Manageability Considerations63
 11.1. Operations ...63
 11.1.1. Installation and Initial Setup63
 11.1.2. Migration Path64
 11.1.3. Requirements on Other Protocols and
 Functional Components64
 11.1.4. Impact on Network Operation64
 11.1.5. Verifying Correct Operation65
 11.1.6. Configuration65
 11.2. Management Considerations66
 11.2.1. Management Interoperability and Information67
 11.2.2. Fault Management67
 11.2.3. Configuration Management67
 11.2.4. Accounting Management68
 11.2.5. Performance Management68
 11.2.6. Security Management68
 12. Security Considerations68
 12.1. Security of the Handshake Procedure68
 12.1.1. Protection against Attack 169
 12.1.2. Protection against Attack 270
 12.1.3. Protection against Attack 370
 12.2. Secure Peer Address Exchange71
 12.2.1. Protection against the Amplification Attack71
 12.2.2. Example: Tracker as Certification Authority72
 12.2.3. Protection against Eclipse Attacks73
 12.3. Support for Closed Swarms73
 12.4. Confidentiality of Streamed Content74
 12.5. Strength of the Hash Function for Merkle Hash Trees74
 12.6. Limit Potential Damage and Resource Exhaustion by
 Bad or Broken Peers74
 12.6.1. HANDSHAKE ...75
 12.6.2. HAVE ..75
 12.6.3. DATA ..75
 12.6.4. ACK ...75
 12.6.5. INTEGRITY and SIGNED_INTEGRITY76
 12.6.6. REQUEST ...76
 12.6.7. CANCEL ..76
 12.6.8. CHOKE ...77
 12.6.9. UNCHOKE ...77

Bakker, et al. Standards Track [Page 4]

RFC 7574 PPSPP July 2015

 12.6.10. PEX_RES ..77
 12.6.11. Unsolicited Messages in General77
 12.7. Exclude Bad or Broken Peers77
 13. References ..78
 13.1. Normative References78
 13.2. Informative References79
 Acknowledgements ..84
 Authors’ Addresses ..85

1. Introduction

1.1. Purpose

 This document describes the Peer-to-Peer Streaming Peer Protocol
 (PPSPP), designed for disseminating the same content to a group of
 interested parties in a streaming fashion. PPSPP supports streaming
 of both prerecorded (on-demand) and live audio/video content. It is
 based on the peer-to-peer paradigm where clients consuming the
 content are put on equal footing with the servers initially providing
 the content, to create a system where everyone can potentially
 provide upload bandwidth.

 PPSPP has been designed to provide short time-till-playback for the
 end user and to prevent disruption of the streams by malicious peers.
 Central in this design is a simple method of identifying content
 based on self-certification. In particular, content in PPSPP is
 identified by a single cryptographic hash that is the root hash in a
 Merkle hash tree calculated recursively from the content [MERKLE]
 [ABMRKL]. This self-certifying hash tree allows every peer to
 directly detect when a malicious peer tries to distribute fake
 content. The tree can be used for both static and live content.
 Moreover, it ensures only a small amount of information is needed to
 start a download and to verify incoming chunks of content, thus
 ensuring short start-up times.

 PPSPP has also been designed to be extensible for different
 transports and use cases. Hence, PPSPP is a generic protocol that
 can run directly on top of UDP, TCP, or other protocols. As such,
 PPSPP defines a common set of messages that make up the protocol,
 which can have different representations on the wire depending on the
 lower-level protocol used. When the lower-level transport allows,
 PPSPP can also use different congestion control algorithms.

 At present, PPSPP is set to run on top of UDP using LEDBAT for
 congestion control [RFC6817]. Using LEDBAT enables PPSPP to serve
 the content after playback (seeding) without disrupting the user who
 may have moved to different tasks that use its network connection.

Bakker, et al. Standards Track [Page 5]

RFC 7574 PPSPP July 2015

 PPSPP is also flexible and extensible in the mechanisms it uses to
 promote client contribution and prevent freeriding, that is, how to
 deal with peers that only download content but never upload to
 others. It also allows different schemes for chunk addressing and
 content integrity protection, if the defaults are not fit for a
 particular use case. In addition, it can work with different peer
 discovery schemes, such as centralized trackers or fast Distributed
 Hash Tables [JIM11]. Finally, in this default setup, PPSPP maintains
 only a small amount of state per peer. A reference implementation of
 PPSPP over UDP is available [SWIFTIMPL].

 The protocol defined in this document assumes that a peer has already
 discovered a list of (initial) peers using, for example, a
 centralized tracker [PPSP-TP]. Once a peer has this list of peers,
 PPSPP allows the peer to connect to other peers, request chunks of
 content, and discover other peers disseminating the same content.

 The design of PPSPP is based on our research into making BitTorrent
 [BITTORRENT] suitable for streaming content [P2PWIKI]. Most PPSPP
 messages have corresponding BitTorrent messages and vice versa.
 However, PPSPP is specifically targeted towards streaming audio/video
 content and optimizes time-till-playback. It was also designed to be
 more flexible and extensible.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.3. Terminology

 message
 The basic unit of PPSPP communication. A message will have
 different representations on the wire depending on the transport
 protocol used. Messages are typically multiplexed into a
 datagram for transmission.

 datagram
 A sequence of messages that is offered as a unit to the
 underlying transport protocol (UDP, etc.). The datagram is
 PPSPP’s Protocol Data Unit (PDU).

 content
 Either a live transmission or a prerecorded multimedia file.

Bakker, et al. Standards Track [Page 6]

RFC 7574 PPSPP July 2015

 chunk
 The basic unit in which the content is divided. For example, a
 block of N kilobytes. A chunk may be of variable size.

 chunk ID
 Unique identifier for a chunk of content (e.g., an integer). Its
 type depends on the chunk addressing scheme used.

 chunk specification
 An expression that denotes one or more chunk IDs.

 chunk addressing scheme
 Scheme for identifying chunks and expressing the chunk
 availability map of a peer in a compact fashion.

 chunk availability map
 The set of chunks a peer has successfully downloaded and checked
 the integrity of.

 bin
 A number denoting a specific binary interval of the content
 (i.e., one or more consecutive chunks) in the bin numbers chunk
 addressing scheme (see Section 4).

 content integrity protection scheme
 Scheme for protecting the integrity of the content while it is
 being distributed via the peer-to-peer network. That is, methods
 for receiving peers to detect whether a requested chunk has been
 modified, either maliciously by the sending peer or accidentally
 in transit.

 hash
 The result of applying a cryptographic hash function, more
 specifically a Modification Detection Code (MDC) [HAC01], such as
 SHA-256 [FIPS180-4], to a piece of data.

 Merkle hash tree
 A tree of hashes whose base is formed by the hashes of the chunks
 of content, and its higher nodes are calculated by recursively
 computing the hash of the concatenation of the two child hashes
 (see Section 5.1).

 root hash
 The root in a Merkle hash tree calculated recursively from the
 content (see Section 5.1).

Bakker, et al. Standards Track [Page 7]

RFC 7574 PPSPP July 2015

 munro hash
 The hash of a subtree that is the unit of signing in the Unified
 Merkle Tree content authentication scheme for live streaming (see
 Section 6.1.2.1).

 swarm
 A group of peers participating in the distribution of the same
 content.

 swarm ID
 Unique identifier for a swarm of peers, in PPSPP a sequence of
 bytes. For video on demand with content integrity protection
 enabled, the identifier is the so-called root hash of a Merkle
 hash tree over the content. For live streaming, the swarm ID is
 a public key.

 tracker
 An entity that records the addresses of peers participating in a
 swarm, usually for a set of swarms, and makes this membership
 information available to other peers on request.

 choking
 When Peer A is choking Peer B, it means that A is currently not
 willing to accept requests for content from B.

 seeding
 Peer A is said to be seeding when A has downloaded a static
 content file completely and is now offering it for others to
 download.

 leeching
 Peer A is said to be leeching when A has not completely
 downloaded a static content file yet or is not offering to upload
 it to others.

 channel
 A logical connection between two peers. The channel concept
 allows peers to use the same transport address for communicating
 with different peers.

 channel ID
 Unique, randomly chosen identifier for a channel, local to each
 peer. So the two peers logically connected by a channel each
 have a different channel ID for that channel.

 heavy payload
 A datagram has a heavy payload when it contains DATA messages,
 SIGNED_INTEGRITY messages, or a large number of smaller messages.

Bakker, et al. Standards Track [Page 8]

RFC 7574 PPSPP July 2015

 In this document the prefixes kilo-, mega-, etc., denote base 1024.

2. Overall Operation

 The basic unit of communication in PPSPP is the message. Multiple
 messages are multiplexed into a single datagram for transmission. A
 datagram (and hence the messages it contains) will have different
 representations on the wire depending on the transport protocol used
 (see Section 8).

 The overall operation of PPSPP is illustrated in the following
 examples. The examples assume that the content distributed is
 static, UDP is used for transport, the Merkle Hash Tree scheme is
 used for content integrity protection, and that a specific policy is
 used for selecting which chunks to download.

2.1. Example: Joining a Swarm

 Consider a user who wants to watch a video. To play the video, the
 user clicks on the play button of a HTML5 <video> element shown in
 his PPSPP-enabled browser. Imagine this element has a PPSPP URL (to
 be defined elsewhere) identifying the video as its source. The
 browser passes this URL to its peer-to-peer streaming protocol
 handler. Let’s call this protocol handler Peer A. Peer A parses the
 URL to retrieve the transport address of a peer-to-peer streaming
 protocol tracker and swarm metadata of the content. The tracker
 address may be optional in the presence of a decentralized tracking
 mechanism. The mechanisms for tracking peers are outside of the
 scope of this document.

 Peer A now registers with the tracker following the peer-to-peer
 streaming protocol tracker specification [PPSP-TP] and receives the
 IP address and port of peers already in the swarm, say, Peers B, C,
 and D. At this point, the PPSPP starts operating. Peer A now sends
 a datagram containing a PPSPP HANDSHAKE message to Peers B, C, and D.
 This message conveys protocol options. In particular, Peer A
 includes the ID of the swarm (part of the swarm metadata) as a
 protocol option because the destination peers can listen for multiple
 swarms on the same transport address.

 Peers B and C respond with datagrams containing a PPSPP HANDSHAKE
 message and one or more HAVE messages. A HAVE message conveys (part
 of) the chunk availability of a peer; thus, it contains a chunk
 specification that denotes what chunks of the content Peers B and C
 have, respectively. Peer D sends a datagram with a HANDSHAKE and
 HAVE messages, but also with a CHOKE message. The latter indicates
 that Peer D is not willing to upload chunks to Peer A at present.

Bakker, et al. Standards Track [Page 9]

RFC 7574 PPSPP July 2015

2.2. Example: Exchanging Chunks

 In response to Peers B and C, Peer A sends new datagrams to Peers B
 and C containing REQUEST messages. A REQUEST message indicates the
 chunks that a peer wants to download; thus, it contains a chunk
 specification. The REQUEST messages to Peers B and C refer to
 disjoint sets of chunks. Peers B and C respond with datagrams
 containing HAVE, DATA, and, in this example, INTEGRITY messages. In
 the Merkle hash tree content protection scheme (see Section 5.1), the
 INTEGRITY messages contain all cryptographic hashes that Peer A needs
 to verify the integrity of the content chunk sent in the DATA
 message. Using these hashes, Peer A verifies that the chunks
 received from Peers B and C are correct against the trusted swarm ID.
 Peer A also updates the chunk availability of Peers B and C using the
 information in the received HAVE messages. In addition, it passes
 the chunks of video to the user’s browser for rendering.

 After processing, Peer A sends a datagram containing HAVE messages
 for the chunks it just received to all its peers. In the datagram to
 Peers B and C, it includes an ACK message acknowledging the receipt
 of the chunks and adds REQUEST messages for new chunks. ACK messages
 are not used when a reliable transport protocol is used. When, for
 example, Peer C finds that Peer A obtained a chunk (from Peer B) that
 Peer C did not yet have, Peer C’s next datagram includes a REQUEST
 for that chunk.

 Peer D also sends HAVE messages to Peer A when it downloads chunks
 from other peers. When Peer D is willing to accept REQUESTs from
 Peer A, Peer D sends a datagram with an UNCHOKE message to inform
 Peer A. If Peer B or C decides to choke Peer A, they send a CHOKE
 message and Peer A should then re-request from other peers. Peers B
 and C may continue to send HAVE, REQUEST, or periodic keep-alive
 messages such that Peer A keeps sending them HAVE messages.

 Once Peer A has received all content (video-on-demand use case), it
 stops sending messages to all other peers that have all content
 (a.k.a. seeders). Peer A can also contact the tracker or another
 source again to obtain more peer addresses.

2.3. Example: Leaving a Swarm

 To leave a swarm in a graceful way, Peer A sends a specific HANDSHAKE
 message to all its peers (see Section 8.4) and deregisters from the
 tracker following the tracker specification [PPSP-TP]. Peers
 receiving the datagram should remove Peer A from their current peer
 list. If Peer A crashes ungracefully, peers should remove Peer A
 from their peer list when they detect it no longer sends messages
 (see Section 3.12).

Bakker, et al. Standards Track [Page 10]

RFC 7574 PPSPP July 2015

3. Messages

 No error codes or responses are used in the protocol; absence of any
 response indicates an error. Invalid messages are discarded, and
 further communication with the peer SHOULD be stopped. The rationale
 is that it is sufficient to classify peers as either good or bad and
 only use the good ones. A good peer is a peer that responds with
 chunks; a peer that does not respond, or does not respond in time is
 classified as bad. The idea is that, in PPSPP, the content is
 available from multiple sources (unlike HTTP), so a peer should not
 invest too much effort in trying to obtain it from a particular
 source. This classification in good or bad allows a peer to deal
 with slow, crashed, and (silent) malicious peers.

 Multiple messages MUST be multiplexed into a single datagram for
 transmission. Messages in a single datagram MUST be processed in the
 strict order in which they appear in the datagram. If an invalid
 message is found in a datagram, the remaining messages MUST be
 discarded.

 For the sake of simplicity, one swarm of peers deals with one content
 file or stream only. There is a single division of the content into
 chunks that all peers in the swarm adhere to, determined by the
 content publisher. Distribution of a collection of files can be done
 either by using multiple swarms or by using an external storage
 mapping from the linear byte space of a single swarm to different
 files, transparent to the protocol. In other words, the audio/video
 container format used is outside the scope of this document.

3.1. HANDSHAKE

 For Peer P to establish communication with Peer Q in Swarm S, the
 peers must first exchange HANDSHAKE messages by means of a handshake
 procedure. The initiating Peer P needs to know the metadata of Swarm
 S, which consists of:

 (a) the swarm ID of the content (see Sections 5.1 and 6),

 (b) the chunk size used,

 (c) the chunk addressing method used,

 (d) the content integrity protection method used, and

 (e) the Merkle hash tree function used (if applicable).

Bakker, et al. Standards Track [Page 11]

RFC 7574 PPSPP July 2015

 (f) If automatic content size detection (see Section 5.6) is not
 used, the content length is also part of the metadata (for
 static content.)

 This document assumes the swarm metadata is obtained from a trusted
 source. In addition, Peer P needs to know a transport address for
 Peer Q, obtained from a peer discovery/tracking protocol.

 The payload of the HANDSHAKE message contains a sequence of protocol
 options. The protocol options encode the swarm metadata just
 described to enable an end-to-end check to see whether the peers are
 in the right swarm. Additionally, the options encode a number of
 per-peer configuration parameters. The complete set of protocol
 options are specified in Section 7. The HANDSHAKE message also
 contains a channel ID for multiplexing communication and security
 (see Sections 3.11 and 12.1). A HANDSHAKE message MUST always be the
 first message in a datagram.

3.1.1. Handshake Procedure

 The handshake procedure for a peer, Peer P, to start communication
 with another peer, Peer Q, in Swarm S is now as follows.

 1. The first datagram the initiating Peer P sends to Peer Q MUST
 start with a HANDSHAKE message. This HANDSHAKE message MUST
 contain:

 * A channel ID, chanP, randomly chosen as specified in
 Section 12.1.

 * The metadata of Swarm S, encoded as protocol options, as
 specified in Section 7. In particular, the initiating Peer P
 MUST include the swarm ID.

 * The capabilities of Peer P, in particular, its supported
 protocol versions, "Live Discard Window" (in case of a live
 swarm) and "Supported Messages", encoded as protocol options.

 This first datagram MUST be prefixed with the (destination)
 channel ID 0; see Section 3.11. Hence, the datagram contains two
 channel IDs: the destination channel ID prefixed to the datagram
 and the channel ID chanP included in the HANDSHAKE message inside
 the datagram. This datagram MAY also contain some minor
 additional payload, e.g., HAVE messages to indicate Peer P’s
 current progress, but it MUST NOT include any heavy payload
 (defined in Section 1.3), such as a DATA message. Allowing minor

Bakker, et al. Standards Track [Page 12]

RFC 7574 PPSPP July 2015

 payload minimizes the number of initialization round trips, thus
 improving time-till-playback. Forbidding heavy payload prevents
 an amplification attack (see Section 12.1).

 2. The receiving Peer Q checks the HANDSHAKE message from Peer P.
 If any check by Peer Q fails, or if Peers P and Q are not in the
 same swarm, Peer Q MUST NOT send a HANDSHAKE (or any other)
 message back, as the message from Peer P may have been spoofed
 (see Section 12.1). Otherwise, if Peer Q is interested in
 communicating with Peer P, Peer Q MUST send a datagram to Peer P
 that starts with a HANDSHAKE message. This reply HANDSHAKE MUST
 contain:

 * A channel ID, chanQ, randomly chosen as specified in
 Section 12.1.

 * The metadata of Swarm S, encoded as protocol options, as
 specified in Section 7. In particular, the responding Peer Q
 MAY include the swarm ID.

 * The capabilities of Peer Q, in particular, its supported
 protocol versions, its "Live Discard Window" (in case of a
 live swarm) and "Supported Messages", encoded as protocol
 options.

 This reply datagram MUST be prefixed with the channel ID chanP
 sent by Peer P in the first HANDSHAKE message (see Section 3.11).
 This reply datagram MAY also contain some minor additional
 payload, e.g., HAVE messages to indicate Peer Q’s current
 progress, or REQUEST messages (see Section 3.7), but it MUST NOT
 include any heavy payload.

 3. The initiating Peer P checks the reply datagram from Peer Q. If
 the reply datagram is not prefixed with (destination) channel ID
 chanP, Peer P MUST discard the datagram. Peer P SHOULD continue
 to process datagrams from Peer Q that do meet this requirement.
 This check prevents interference by spoofing, see Section 12.1.
 If Peer P’s channel ID is echoed correctly, the initiator Peer P
 knows that the addressed Peer Q really responds.

 4. Next, Peer P checks the HANDSHAKE message in the datagram from
 Peer Q. If any check by Peer P fails, or Peer P is no longer
 interested in communicating with Peer Q, Peer P MAY send a
 HANDSHAKE message to inform Peer Q it will cease communication.
 This closing HANDSHAKE message MUST contain an all zeros channel
 ID and a list of protocol options. The list MUST either be empty
 or contain the maximum version number Peer P supports, following
 the min/max versioning scheme defined in [RFC6709], Section 4.1.

Bakker, et al. Standards Track [Page 13]

RFC 7574 PPSPP July 2015

 The datagram containing this closing HANDSHAKE message MUST be
 prefixed with the (destination) channel ID chanQ. Peer P MAY
 also simply cease communication.

 5. If the addressed peer, Peer Q, does not respond to initiating
 Peer P’s first datagram, Peer P MAY resend that datagram until
 Peer Q is considered dead, according to the rules specified in
 Section 3.12.

 6. If the reply datagram by Peer Q does pass the checks by Peer P,
 and Peer P wants to continue interacting with Peer Q, Peer P can
 now send REQUEST, PEX_REQ, and other messages to Peer Q.
 Datagrams carrying these messages MUST be prefixed with the
 channel ID chanQ sent by Peer Q. More specifically, because Peer
 P knows that Peer Q really responds, Peer P MAY start sending
 Peer Q messages with heavy payload. That means that Peer P MAY
 start responding to any REQUEST messages that Peer Q may have
 sent in this first reply datagram with DATA messages. Hence,
 transfer of chunks can start soon in PPSPP.

 7. If Peer Q receives any datagram (apparently) from Peer P that
 does not contain channel ID chanQ, Peer Q MUST discard the
 datagram but SHOULD continue to process datagrams from Peer P
 that do meet this requirement. Once Peer Q receives a datagram
 from Peer P that does contain the channel ID chanQ, Peer Q knows
 that Peer P really received its reply datagram, and the three-way
 handshake and channel establishment is complete. Peer Q MAY now
 also start sending messages with heavy payload to Peer P.

 8. If Peer P decides it no longer wants to communicate with Peer Q,
 or vice versa, the peer SHOULD send a closing HANDSHAKE message
 to the other, as described above.

3.2. HAVE

 The HAVE message is used to convey which chunks a peer has available
 for download. The set of chunks it has available may be expressed
 using different chunk addressing and availability map compression
 schemes, described in Section 4. HAVE messages can be used both for
 sending a complete overview of a peer’s chunk availability as well as
 for updates to that set.

 In particular, whenever a receiving Peer P has successfully checked
 the integrity of a chunk, or interval of chunks, it MUST send a HAVE
 message to all peers Q1..Qn it wants to allow to download those
 chunks. A policy in Peer P determines when the HAVE is sent. Peer P
 may send it directly, or Peer P may wait either until it has other
 data to send to Peer Qi or until it has received and checked multiple

Bakker, et al. Standards Track [Page 14]

RFC 7574 PPSPP July 2015

 chunks. The policy will depend on how urgent it is to distribute
 this information to the other peers. This urgency is generally
 determined in turn by the chunk picking policy (see Section 9.1). In
 general, the HAVE messages can be piggybacked onto other messages.
 Peers that do not receive HAVE messages are effectively prevented
 from downloading the newly available chunks; hence, the HAVE message
 can be used as a method of choking.

 The HAVE message MUST contain the chunk specification of the received
 and verified chunks. A receiving peer MUST NOT send a HAVE message
 to peers for which the handshake procedure is still incomplete, see
 Section 12.1. A peer SHOULD NOT send a HAVE message to peers that
 have the complete content already (e.g., in video-on-demand
 scenarios).

3.3. DATA

 The DATA message is used to transfer chunks of content. The DATA
 message MUST contain the chunk ID of the chunk and chunk itself. A
 peer MAY send the DATA messages for multiple chunks in the same
 datagram. The DATA message MAY contain additional information if
 needed by the specific congestion control mechanism used. At
 present, PPSPP uses LEDBAT [RFC6817] for congestion control, which
 requires the current system time to be sent along with the DATA
 message, so the current system time MUST be included.

3.4. ACK

 ACK messages MUST be sent to acknowledge received chunks if PPSPP is
 run over an unreliable transport protocol. ACK messages MAY be sent
 if a reliable transport protocol is used. In the former case, a
 receiving peer that has successfully checked the integrity of a
 chunk, or interval of chunks C, MUST send an ACK message containing a
 chunk specification for C. As LEDBAT is used, an ACK message MUST
 contain the one-way delay, computed from the peer’s current system
 time received in the DATA message. A peer MAY delay sending ACK
 messages as defined in the LEDBAT specification [RFC6817].

3.5. INTEGRITY

 The INTEGRITY message carries information required by the receiver to
 verify the integrity of a chunk. Its payload depends on the content
 integrity protection scheme used. When the Merkle Hash Tree scheme
 is used, an INTEGRITY message MUST contain a cryptographic hash of a
 subtree of the Merkle hash tree and the chunk specification that
 identifies the subtree.

Bakker, et al. Standards Track [Page 15]

RFC 7574 PPSPP July 2015

 As a typical example, when a peer wants to send a chunk and Merkle
 hash trees are used, it creates a datagram that consists of several
 INTEGRITY messages containing the hashes the receiver needs to verify
 the chunk and the actual chunk itself encoded in a DATA message.
 What are the necessary hashes and the exact rules for encoding them
 into datagrams is specified in Sections 5.3, and 5.4, respectively.

3.6. SIGNED_INTEGRITY

 The SIGNED_INTEGRITY message carries digitally signed information
 required by the receiver to verify the integrity of a chunk in live
 streaming. It logically contains a chunk specification, a timestamp,
 and a digital signature. Its exact payload depends on the live
 content integrity protection scheme used, see Section 6.1.

3.7. REQUEST

 While bulk download protocols normally do explicit requests for
 certain ranges of data (i.e., use a pull model, for example,
 BitTorrent [BITTORRENT]), live streaming protocols quite often use a
 push model without requests to save round trips. PPSPP supports both
 models of operation.

 The REQUEST message is used to request one or more chunks from
 another peer. A REQUEST message MUST contain the specification of
 the chunks the requester wants to download. A peer receiving a
 REQUEST message MAY send out the requested chunks (by means of DATA
 messages). When Peer Q receives multiple REQUESTs from the same Peer
 P, Peer Q SHOULD process the REQUESTs in the order received.
 Multiple REQUEST messages MAY be sent in one datagram, for example,
 when a peer wants to request several rare chunks at once.

 When live streaming via a push model, a peer receiving REQUESTs also
 MAY send some other chunks in case it runs out of requests or for
 some other reason. In that case, the only purpose of REQUEST
 messages is to provide hints and coordinate peers to avoid
 unnecessary data retransmission.

3.8. CANCEL

 When downloading on-demand or live streaming content, a peer can
 request urgent data from multiple peers to increase the probability
 of it being delivered on time. In particular, when the specific
 chunk picking algorithm (see Section 9.1), detects that a request for
 urgent data might not be served on time, a request for the same data
 can be sent to a different peer. When a Peer P decides to request
 urgent data from a Peer Q, Peer P SHOULD send a CANCEL message to all
 the peers to which the data has been previously requested. The

Bakker, et al. Standards Track [Page 16]

RFC 7574 PPSPP July 2015

 CANCEL message contains the specification of the chunks Peer P no
 longer wants to request. In addition, when Peer Q receives a HAVE
 message for the urgent data from Peer P, Peer Q MUST also cancel the
 previous REQUEST(s) from Peer P. In other words, the HAVE message
 acts as an implicit CANCEL.

3.9. CHOKE and UNCHOKE

 Peer A can send a CHOKE message to Peer B to signal it will no longer
 be responding to REQUEST messages from Peer B, for example, because
 Peer A’s upload capacity is exhausted. Peer A MAY send a subsequent
 UNCHOKE message to signal that it will respond to new REQUESTs from
 Peer B again (Peer A SHOULD discard old requests). When Peer B
 receives a CHOKE message from Peer A, it MUST NOT send new REQUEST
 messages and it cannot expect answers to any outstanding ones, as the
 transfer of chunks is choked. When Peer B is choked but receives a
 HAVE message from Peer A, it is not automatically unchoked and MUST
 NOT send any new REQUEST messages. The CHOKE and UNCHOKE messages
 are informational as responding to REQUESTs is OPTIONAL, see
 Section 3.7.

3.10. Peer Address Exchange

3.10.1. PEX_REQ and PEX_RES Messages

 Peer Exchange (PEX) messages are common in many peer-to-peer
 protocols. They allow peers to exchange the transport addresses of
 the peers they are currently interacting with, thereby reducing the
 need to contact a central tracker (or Distributed Hash Table) to
 discovery new peers. The strength of this mechanism is therefore
 that it enables decentralized peer discovery: after an initial
 bootstrap, a central tracker is no longer needed. Its weakness is
 that it enables a number of attacks, so it should not be used on the
 Internet unless extra security measures are in place.

 PPSPP supports peer-address exchange on the Internet and in benign
 private networks as an OPTIONAL feature (not mandatory to implement)
 under certain conditions. The general mechanism works as follows.
 To obtain some peer addresses, a Peer A MAY send a PEX_REQ message to
 Peer B. Peer B MAY respond with one or more PEX_REScert messages.
 Logically, a PEX_REScert reply message contains the address of a
 single peer Ci. Peer B MUST have exchanged messages with Peer Ci in
 the last 60 seconds to guarantee liveliness. Upon receipt, Peer A
 may contact any or none of the returned peers Ci. Alternatively,
 peers MAY ignore PEX_REQ and PEX_REScert messages if uninterested in
 obtaining new peers or because of security considerations (rate
 limiting) or any other reason. The PEX messages can be used to
 construct a dedicated tracker peer.

Bakker, et al. Standards Track [Page 17]

RFC 7574 PPSPP July 2015

 To use PEX in PPSPP on the Internet, two conditions must be met:

 1. Peer transport addresses must be relatively stable.

 2. A peer must not obtain all its peer addresses through PEX.

 The full security analysis for PEX messages can be found in
 Section 12.2. Physically, a PEX_REScert message carries a swarm-
 membership certificate rather than an IP address and port. A
 membership certificate for Peer C states that Peer C at address
 (ipC,portC) is part of Swarm S at Time T and is cryptographically
 signed by an issuer. The receiver Peer A can check the certificate
 for a valid signature by a trusted issuer, the right swarm, and
 liveliness and only then consider contacting C. These swarm-
 membership certificates correspond to signed node descriptors in
 secure decentralized peer sampling services [SPS].

 Several designs are possible for the security environment for these
 membership certificates. That is, there are different designs
 possible for who signs the membership certificates and how public
 keys are distributed. Section 12.2.2 describes an example where a
 central tracker acts as the Certification Authority.

 In a hostile environment, such as the Internet, peers must also
 ensure that they do not end up interacting only with malicious peers
 when using the peer-address exchange feature. To this extent, peers
 MUST ensure that part of their connections are to peers whose
 addresses came from a trusted and secured tracker (see
 Section 12.2.3).

 In addition to the PEX_REScert, there are two other PEX reply
 messages. The PEX_RESv4 message contains a single IPv4 address and
 port. The PEX_RESv6 message contains a single IPv6 address and port.
 They MUST only be used in a benign environment, such as a private
 network, as they provide no guarantees that the host addressed
 actually participates in a PPSPP swarm.

 Once a PPSPP implementation has obtained a list of peers (either via
 PEX, from a central tracker, or via a Distributed Hash Table (DHT)),
 it has to determine which peers to actually contact. In this
 process, a PPSPP implementation can benefit from information by
 network or content providers to help improve network usage and boost
 PPSPP performance. How a peer-to-peer (P2P) system like PPSPP can
 perform these optimizations using the Application-Layer Traffic
 Optimization (ALTO) protocol is described in detail in [RFC7285],
 Section 7.

Bakker, et al. Standards Track [Page 18]

RFC 7574 PPSPP July 2015

3.11. Channels

 It is increasingly complex for peers to enable communication between
 each other due to NATs and firewalls. Therefore, PPSPP uses a
 multiplexing scheme, called channels, to allow multiple swarms to use
 the same transport address. Channels loosely correspond to TCP
 connections and each channel belongs to a single swarm, as
 illustrated in Figure 1. As with TCP connections, a channel is
 identified by a unique identifier local to the peer at each end of
 the connection (cf. TCP port), which MUST be randomly chosen. In
 other words, the two peers connected by a channel use different IDs
 to denote the same channel. The IDs are different and random for
 security reasons, see Section 12.1.

 In the PPSP-over-UDP encapsulation (Section 8.3), when a Channel C
 has been established between Peer A and Peer B, the datagrams
 containing messages from Peer A to Peer B are prefixed with the four-
 byte channel ID allocated by Peer B, and vice versa for datagrams
 from Peer B to A. The channel IDs used are exchanged as part of the
 handshake procedure, see Section 8.4. In that procedure, the channel
 ID with value 0 is used for the datagram that initiates the
 handshake. PPSPP can be used in combination with Session Traversal
 Utilities for NAT (STUN) [RFC5389].

Bakker, et al. Standards Track [Page 19]

RFC 7574 PPSPP July 2015

 _________ _________ _________
 | | | | | |
 | Swarm | | Swarm | | Swarm |
 | Mgr | | A | | B |
 |_______| |_______| |_______|
 | | / \
 | | / \
 ____|____ ____|____ ______/__ ________
 | | | | | | | |
 | Chan | | Chan | | Chan | | Chan |
 | 0 | | 481 | | 836 | | 372 |
 |_______| |_______| |_______| |_______|
 | | | |
 | | | |
 ____|____________|____________|____________|____
 | |
 | UDP |
 | port 6778 |
 |__|

 Network stack of a PPSPP peer that is reachable on UDP port 6778 and
 is connected via channel 481 to one peer in Swarm A and two peers in
 Swarm B via channels 836 and 372, respectively. Channel ID 0 is
 special and is used for handshaking.

 Figure 1

3.12. Keep Alive Signaling

 A peer SHOULD send a "keep alive" message periodically to each peer
 it is interested in, but has no other messages to send to them at
 present. The goal of the keep alives is to keep a signaling channel
 open to peers that are of interest. Which peers those are is
 determined by a policy that decides which peers are of interest now
 and in the near future. This document does not prescribe a policy,
 but examples of interesting peers are (a) peers that have chunks on
 offer that this client needs or (b) peers that currently do not have
 interesting chunks on offer (because they are still downloading
 themselves, or in live streaming) but gave good performance in the
 past. When these peers have new chunks to offer, the peer that kept
 a signaling channel open can use them again. Periodically sending
 "keep alive" messages prevents other peers declaring the peer dead.
 A guideline for declaring a peer dead when using UDP consists of a
 three minute delay since that last packet has been received from that
 peer and at least three datagrams having been sent to that peer
 during the same period. When a peer is declared dead, the channel to
 it is closed, no more messages will be sent to that peer and the

Bakker, et al. Standards Track [Page 20]

RFC 7574 PPSPP July 2015

 local administration about the peer is discarded. Busy servers can
 force idle clients to disconnect by not sending keep alives. PPSPP
 does not define an explicit message type for "keep alive" messages.
 In the PPSP-over-UDP encapsulation they are implemented as simple
 datagrams consisting of a four-byte channel ID only, see Sections 8.3
 and 8.4.

4. Chunk Addressing Schemes

 PPSPP can use different methods of chunk addressing, that is, support
 different ways of identifying chunks and different ways of expressing
 the chunk availability map of a peer in a compact fashion.

 All peers in a swarm MUST use the same chunk addressing method.

4.1. Start-End Ranges

 A chunk specification consists of a single (start specification,end
 specification) pair that identifies a range of chunks (end
 inclusive). The start and end specifications can use one of multiple
 addressing schemes. Two schemes are currently defined: chunk ranges
 and byte ranges.

4.1.1. Chunk Ranges

 The start and end specification are both chunk identifiers. Chunk
 identifiers are 32-bit or 64-bit unsigned integers. A PPSPP peer
 MUST support this scheme.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ˜ Start chunk (32 or 64) ˜
 +-+
 ˜ End chunk (32 or 64) ˜
 +-+

4.1.2. Byte Ranges

 The start and end specification are 64-bit byte offsets in the
 content. The support for this scheme is OPTIONAL.

Bakker, et al. Standards Track [Page 21]

RFC 7574 PPSPP July 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Start byte offset (64) |
 +-+
 | |
 +-+
 | End byte offset (64) |
 +-+
 | |
 +-+

4.2. Bin Numbers

 PPSPP introduces a novel method of addressing chunks of content
 called "bin numbers" (or "bins" for short). Bin numbers allow the
 addressing of a binary interval of data using a single integer. This
 reduces the amount of state that needs to be recorded per peer and
 the space needed to denote intervals on the wire, making the protocol
 lightweight. In general, this numbering system allows PPSPP to work
 with simpler data structures, e.g., to use arrays instead of binary
 trees, thus reducing complexity. The support for this scheme is
 OPTIONAL.

 In bin addressing, the smallest binary interval is a single chunk
 (e.g., a block of bytes that may be of variable size), the largest
 interval is a complete range of 2**63 chunks. In a novel addition to
 the classical scheme, these intervals are numbered in a way that lays
 them out into a vector nicely, which is called bin numbering, as
 follows. Consider a chunk interval of width W. To derive the bin
 numbers of the complete interval and the subintervals, a minimal
 balanced binary tree is built that is at least W chunks wide at the
 base. The leaves from left-to-right correspond to the chunks 0..W-1
 in the interval, and have bin number I*2 where I is the index of the
 chunk (counting beyond W-1 to balance the tree). The bin number of
 higher-level node P in the tree is calculated as follows:

 binP = (binL + binR) / 2

 where binL is the bin of node P’s left-hand child and binR is the bin
 of node P’s right-hand child. Given that each node in the tree
 represents a subinterval of the original interval, each such
 subinterval now is addressable by a bin number, a single integer.
 The bin number tree of an interval of width W=8 looks like this:

Bakker, et al. Standards Track [Page 22]

RFC 7574 PPSPP July 2015

 7
 / \
 / \
 / \
 / \
 3 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9 13
 / \ / \ / \ / \
 0 2 4 6 8 10 12 14

 C0 C1 C2 C3 C4 C5 C6 C7

 The bin number tree of an interval of width W=8

 Figure 2

 So bin 7 represents the complete interval, bin 3 represents the
 interval of chunk C0..C3, bin 1 represents the interval of chunks C0
 and C1, and bin 2 represents chunk C1. The special numbers
 0xFFFFFFFF (32-bit) or 0xFFFFFFFFFFFFFFFF (64-bit) stands for an
 empty interval, and 0x7FFF...FFF stands for "everything".

 When bin numbering is used, the ID of a chunk is its corresponding
 (leaf) bin number in the tree, and the chunk specification in HAVE
 and ACK messages is equal to a single bin number (32-bit or 64-bit),
 as follows.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ˜ Bin number (32 or 64) ˜
 +-+

4.3. In Messages

4.3.1. In HAVE Messages

 When a receiving peer has successfully checked the integrity of a
 chunk or interval of chunks, it MUST send a HAVE message to all peers
 it wants to allow download of those chunk(s) from. The ability to
 withhold HAVE messages allows them to be used as a method of choking.
 The HAVE message MUST contain the chunk specification of the biggest
 complete interval of all chunks the receiver has received and checked
 so far that fully includes the interval of chunks just received. So

Bakker, et al. Standards Track [Page 23]

RFC 7574 PPSPP July 2015

 the chunk specification MUST denote at least the interval received,
 but the receiver is supposed to aggregate and acknowledge bigger
 intervals, when possible.

 As a result, every single chunk is acknowledged a logarithmic number
 of times. That provides some necessary redundancy of
 acknowledgements and sufficiently compensates for unreliable
 transport protocols.

 Implementation note:

 To record which chunks a peer has in the state that an
 implementation keeps for each peer, an implementation MAY use the
 efficient "binmap" data structure, which is a hybrid of a bitmap
 and a binary tree, discussed in detail in [BINMAP].

4.3.2. In ACK Messages

 PPSPP peers MUST use ACK messages to acknowledge received chunks if
 an unreliable transport protocol is used. When a receiving peer has
 successfully checked the integrity of a chunk or interval of chunks
 C, it MUST send an ACK message containing the chunk specification of
 its biggest, complete interval covering C to the sending peer (see
 HAVE).

5. Content Integrity Protection

 PPSPP can use different methods for protecting the integrity of the
 content while it is being distributed via the peer-to-peer network.
 More specifically, PPSPP can use different methods for receiving
 peers to detect whether a requested chunk has been maliciously
 modified by the sending peer. In benign environments, content
 integrity protection can be disabled.

 For static content, PPSPP currently defines one method for protecting
 integrity, called the Merkle Hash Tree scheme. If PPSPP operates
 over the Internet, this scheme MUST be used. If PPSPP operates in a
 benign environment, this scheme MAY be used. So the scheme is
 mandatory to implement, to satisfy the requirement of strong security
 for an IETF protocol [RFC3365]. An extended version of the scheme is
 used to efficiently protect dynamically generated content (live
 streams), as explained below and in Section 6.1.

 The Merkle Hash Tree scheme can work with different chunk addressing
 schemes. All it requires is the ability to address a range of
 chunks. In the following description abstract node IDs are used to
 identify nodes in the tree. On the wire, these are translated to the
 corresponding range of chunks in the chosen chunk addressing scheme.

Bakker, et al. Standards Track [Page 24]

RFC 7574 PPSPP July 2015

5.1. Merkle Hash Tree Scheme

 PPSPP uses a method of naming content based on self-certification.
 In particular, content in PPSPP is identified by a single
 cryptographic hash that is the root hash in a Merkle hash tree
 calculated recursively from the content [ABMRKL]. This self-
 certifying hash tree allows every peer to directly detect when a
 malicious peer tries to distribute fake content. It also ensures
 only a small the amount of information is needed to start a download
 (the root hash and some peer addresses). For live streaming, a
 dynamic tree and a public key are used, see below.

 The Merkle hash tree of a content file that is divided into N chunks
 is constructed as follows. Note the construction does not assume
 chunks of content to be of a fixed size. Given a cryptographic hash
 function, more specifically an MDC [HAC01], such as SHA-256, the
 hashes of all the chunks of the content are calculated. Next, a
 binary tree of sufficient height is created. Sufficient height means
 that the lowest level in the tree has enough nodes to hold all chunk
 hashes in the set, as with bin numbering. The figure below shows the
 tree for a content file consisting of 7 chunks. As with the content
 addressing scheme, the leaves of the tree correspond to a chunk and,
 in this case, are assigned the hash of that chunk, starting at the
 leftmost leaf. As the base of the tree may be wider than the number
 of chunks, any remaining leaves in the tree are assigned an empty
 hash value of all zeros. Finally, the hash values of the higher
 levels in the tree are calculated, by concatenating the hash values
 of the two children (again left to right) and computing the hash of
 that aggregate. If the two children are empty hashes, the parent is
 an empty all-zeros hash as well (to save computation). This process
 ends in a hash value for the root node, which is called the "root
 hash". Note the root hash only depends on the content and any
 modification of the content will result in a different root hash.

Bakker, et al. Standards Track [Page 25]

RFC 7574 PPSPP July 2015

 7 = root hash
 / \
 / \
 / \
 / \
 3* 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9 13* = uncle hash
 / \ / \ / \ / \
 0 2 4 6 8 10* 12 14

 C0 C1 C2 C3 C4 C5 C6 E
 =chunk index ^^ = empty hash

 Merkle hash tree of a content file with N=7 chunks

 Figure 3

5.2. Content Integrity Verification

 Assuming a peer receives the root hash of the content it wants to
 download from a trusted source, it can check the integrity of any
 chunk of that content it receives as follows. It first calculates
 the hash of the chunk it received, for example, chunk C4 in the
 previous figure. Along with this chunk, it MUST receive the hashes
 required to check the integrity of that chunk. In principle, these
 are the hash of the chunk’s sibling (C5) and that of its "uncles". A
 chunk’s uncles are the sibling Y of its parent X, and the uncle of
 that Y, recursively until the root is reached. For chunk C4, the
 uncles are nodes 13 and 3 and the sibling is 10; all marked with a *
 in the figure. Using this information, the peer recalculates the
 root hash of the tree and compares it to the root hash it received
 from the trusted source. If they match, the chunk of content has
 been positively verified to be the requested part of the content.
 Otherwise, the sending peer sent either the wrong content or the
 wrong sibling or uncle hashes. For simplicity, the set of sibling
 and uncle hashes is collectively referred to as the "uncle hashes".

 In the case of live streaming, the tree of chunks grows dynamically
 and the root hash is undefined or, more precisely, transient, as long
 as new data is generated by the live source. Section 6.1.2 defines a
 method for content integrity verification for live streams that works
 with such a dynamic tree. Although the tree is dynamic, content
 verification works the same for both live and predefined content,
 resulting in a unified method for both types of streaming.

Bakker, et al. Standards Track [Page 26]

RFC 7574 PPSPP July 2015

5.3. The Atomic Datagram Principle

 As explained above, a datagram consists of a sequence of messages.
 Ideally, every datagram sent must be independent of other datagrams:
 each datagram SHOULD be processed separately, and a loss of one
 datagram must not disrupt the flow of datagrams between two peers.
 Thus, as a datagram carries zero or more messages, both messages and
 message interdependencies SHOULD NOT span over multiple datagrams.

 This principle implies that as any chunk is verified using its uncle
 hashes, the necessary hashes SHOULD be put into the same datagram as
 the chunk’s data. If this is not possible because of a limitation on
 datagram size, the necessary hashes MUST be sent first in one or more
 datagrams. As a general rule, if some additional data is still
 missing to process a message within a datagram, the message SHOULD be
 dropped.

 The hashes necessary to verify a chunk are, in principle, its
 sibling’s hash and all its uncle hashes, but the set of hashes to
 send can be optimized. Before sending a packet of data to the
 receiver, the sender inspects the receiver’s previous
 acknowledgements (HAVE or ACK) to derive which hashes the receiver
 already has for sure. Suppose the receiver had acknowledged chunks
 C0 and C1 (the first two chunks of the file), then it must already
 have uncle hashes 5, 11, and so on. That is because those hashes are
 necessary to check C0 and C1 against the root hash. Then, hashes 3,
 7, and so on must also be known as they are calculated in the process
 of checking the uncle hash chain. Hence, to send chunk C7, the
 sender needs to include just the hashes for nodes 14 and 9, which let
 the data be checked against hash 11, which is already known to the
 receiver.

 The sender MAY optimistically skip hashes that were sent out in
 previous, still-unacknowledged datagrams. It is an optimization
 trade-off between redundant hash transmission and the possibility of
 collateral data loss in the case in which some necessary hashes were
 lost in the network so some delivered data cannot be verified and
 thus had to be dropped. In either case, the receiver builds the
 Merkle hash tree on-demand, incrementally, starting from the root
 hash, and uses it for data validation.

 In short, the sender MUST put into the datagram the hashes he
 believes are necessary for the receiver to verify the chunk. The
 receiver MUST remember all the hashes it needs to verify missing
 chunks that it still wants to download. Note that the latter implies
 that a hardware-limited receiver MAY forget some hashes if it does
 not plan to announce possession of these chunks to others (i.e., does
 not plan to send HAVE messages.)

Bakker, et al. Standards Track [Page 27]

RFC 7574 PPSPP July 2015

5.4. INTEGRITY Messages

 Concretely, a peer that wants to send a chunk of content creates a
 datagram that MUST consist of a list of INTEGRITY messages followed
 by a DATA message. If the INTEGRITY messages and DATA message cannot
 be put into a single datagram because of a limitation on datagram
 size, the INTEGRITY messages MUST be sent first in one or more
 datagrams. The list of INTEGRITY messages sent MUST contain an
 INTEGRITY message for each hash the receiver misses for integrity
 checking. An INTEGRITY message for a hash MUST contain the chunk
 specification corresponding to the node ID of the hash and the hash
 data itself. The chunk specification corresponding to a node ID is
 defined as the range of chunks formed by the leaves of the subtree
 rooted at the node. For example, node 3 in Figure 3 denotes chunks
 0, 2, 4, and 6, so the chunk specification should denote that
 interval. The list of INTEGRITY messages MUST be sorted in order of
 the tree height of the nodes, descending (the leaves are at height
 0). The DATA message MUST contain the chunk specification of the
 chunk and the chunk itself. A peer MAY send the required messages
 for multiple chunks in the same datagram, depending on the
 encapsulation.

5.5. Discussion and Overhead

 The current method for protecting content integrity in BitTorrent
 [BITTORRENT] is not suited for streaming. It involves providing
 clients with the hashes of the content’s chunks before the download
 commences by means of metadata files (called .torrent files in
 BitTorrent.) However, when chunks are small, as in the current UDP
 encapsulation of PPSPP, this implies having to download a large
 number of hashes before content download can begin. This, in turn,
 increases time-till-playback for end users, making this method
 unsuited for streaming.

 The overhead of using Merkle hash trees is limited. The size of the
 hash tree expressed as the total number of nodes depends on the
 number of chunks the content is divided (and hence the size of
 chunks) following this formula:

 nnodes = math.pow(2,math.log(nchunks,2)+1)

 In principle, the hash values of all these nodes will have to be sent
 to a peer once for it to verify all of the chunks. Hence, the
 maximum on-the-wire overhead is hashsize * nnodes. However, the
 actual number of hashes transmitted can be optimized as described in
 Section 5.3.

Bakker, et al. Standards Track [Page 28]

RFC 7574 PPSPP July 2015

 To see a peer can verify all chunks whilst receiving not all hashes,
 consider the example tree in Section 5.1. In the case of a simple
 progressive download, of chunks 0, 2, 4, 6, etc., the sending peer
 will send the following hashes:

 +-------+---+
 | Chunk | Node IDs of hashes sent |
 +-------+---+
 | 0 | 2,5,11 |
 | 2 | - (receiver already knows all) |
 | 4 | 6 |
 | 6 | - |
 | 8 | 10,13 (hash 3 can be calculated from 0,2,5) |
 | 10 | - |
 | 12 | 14 |
 | 14 | - |
 | Total | # hashes 7 |
 +-------+---+

 Table 1: Overhead for the Example Tree

 So the number of hashes sent in total (7) is less than the total
 number of hashes in the tree (16), as a peer does not need to send
 hashes that are calculated and verified as part of earlier chunks.

5.6. Automatic Detection of Content Size

 In PPSPP, the size of a static content file, such as a video file,
 can be reliably and automatically derived from information received
 from the network when fixed-size chunks are used. As a result, it is
 not necessary to include the size of the content file as the metadata
 of the content for such files. Implementations of PPSPP MAY use this
 automatic detection feature. Note this feature is the only feature
 of PPSPP that requires that a fixed-size chunk is used. This feature
 builds on the Merkle hash tree and the trusted root hash as swarm ID
 as follows.

5.6.1. Peak Hashes

 The ability for a newcomer peer to detect the size of the content
 depends heavily on the concept of peak hashes. The concept of peak
 hashes depends on the concepts of filled and incomplete nodes.
 Recall that when constructing the binary trees for content
 verification and addressing the base of the tree may have more leaves
 than the number of chunks in the content. In the Merkle hash tree,
 these leaves were assigned empty all-zero hashes to be able to
 calculate the higher-level hashes. A filled node is now defined as a
 node that corresponds to an interval of leaves that consists only of

Bakker, et al. Standards Track [Page 29]

RFC 7574 PPSPP July 2015

 hashes of content chunks, not empty hashes. Reversely, an incomplete
 (not filled) node corresponds to an interval that also contains empty
 hashes, typically, an interval that extends past the end of the file.
 In the following figure, nodes 7, 11, 13, and 14 are incomplete: the
 rest is filled.

 Formally, a peak hash is the hash of a filled node in the Merkle hash
 tree, whose sibling is an incomplete node. Practically, suppose a
 file is 7162 bytes long and a chunk is 1 kilobyte. That file fits
 into 7 chunks, the tail chunk being 1018 bytes long. The Merkle hash
 tree for that file is shown in Figure 4. Following the definition,
 the peak hashes of this file are in nodes 3, 9, and 12, denoted with
 an *. E denotes an empty hash.

 7
 / \
 / \
 / \
 / \
 3* 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9* 13
 / \ / \ / \ / \
 0 2 4 6 8 10 12* 14

 C0 C1 C2 C3 C4 C5 C6 E
 = 1018 bytes

 Peak hashes in a Merkle hash tree

 Figure 4

 Peak hashes can be explained by the binary representation of the
 number of chunks the file occupies. The binary representation for 7
 is 111. Every "1" in binary representation of the file’s packet
 length corresponds to a peak hash. For this particular file, there
 are indeed three peaks: nodes 3, 9, and 12. Therefore, the number of
 peak hashes for a file is also, at most, logarithmic with its size.

 A peer knowing which nodes contain the peak hashes for the file can
 therefore calculate the number of chunks it consists of; thus, it
 gets an estimate of the file size (given all chunks but the last are
 of a fixed size). Which nodes are the peaks can be securely
 communicated from one (untrusted) peer, Peer A, to another peer, Peer
 B, by letting Peer A send the peak hashes and their node IDs to Peer

Bakker, et al. Standards Track [Page 30]

RFC 7574 PPSPP July 2015

 B. It can be shown that the root hash that Peer B obtained from a
 trusted source is sufficient to verify that these are indeed the
 right peak hashes, as follows.

 Lemma: Peak hashes can be checked against the root hash.

 Proof: (a) Any peak hash is always the left sibling. Otherwise, if
 it is the right sibling, its left neighbor/sibling must also be a
 filled node, because of the way chunks are laid out in the leaves,
 which contradicts the definition of a peak hash. (b) For the
 rightmost peak hash, its right sibling is zero. (c) For any peak
 hash, the right sibling might be calculated using peak hashes to the
 left and zeros for empty nodes. (d) Once the right sibling of the
 leftmost peak hash is calculated, its parent might be calculated. (e)
 Once that parent is calculated, we might trivially get to the root
 hash by concatenating the hash with zeros and hashing it repeatedly.

 Informally, the Lemma might be expressed as follows: peak hashes
 cover all data, so the remaining hashes are either trivial (zeros) or
 might be calculated from peak hashes and zero hashes.

 Finally, once Peer B has obtained the number of chunks in the
 content, it can determine the exact file size as follows. Given that
 all chunks except the last are of a fixed size, Peer B just needs to
 know the size of the last chunk. Knowing the number of chunks, Peer
 B can calculate the node ID of the last chunk and download it. As
 always, Peer B verifies the integrity of this chunk against the
 trusted root hash. As there is only one chunk of data that leads to
 a successful verification, the size of this chunk must be correct.
 Peer B can then determine the exact file size as:

 (number of chunks -1) * fixed chunk size + size of last chunk

5.6.2. Procedure

 A PPSPP implementation that wants to use automatic size detection
 MUST operate as follows. When Peer A sends a DATA message for the
 first time to Peer B, Peer A MUST first send all the peak hashes for
 the content, in INTEGRITY messages, unless Peer B has already
 signaled that it knows the peak hashes by having acknowledged any
 chunk. If they are needed, the peak hashes MUST be sent as an extra
 list of uncle hashes for the chunk, before the list of actual uncle
 hashes of the chunk as described in Section 5.3. The receiver, Peer
 B, MUST check the peak hashes against the root hash to determine the
 approximate content size. To obtain the definite content size, Peer
 B MUST download the last chunk of the content from any peer that
 offers it.

Bakker, et al. Standards Track [Page 31]

RFC 7574 PPSPP July 2015

 As an example, let’s consider a 7162-byte file, which fits in 7
 chunks of 1 kilobyte, distributed by Peer A. Figure 4 shows the
 relevant Merkle hash tree. Peer B, which only knows the root hash of
 the file after successfully connecting to Peer A, requests the first
 chunk of data, C0 in Figure 4. Peer A replies to Peer B by including
 in the datagram the following messages in this specific order: first,
 the three peak hashes of this particular file, the hashes of nodes 3,
 9, and 12; second, the uncle hashes of C0, followed by the DATA
 message containing the actual content of C0. Upon receiving the peak
 hashes, Peer B checks them against the root hash determining that the
 file is 7 chunks long. To establish the exact size of the file, Peer
 B needs to request and retrieve the last chunk containing data, C6 in
 Figure 4. Once the last chunk has been retrieved and verified, Peer
 B concludes that it is 1018 bytes long, hence determining that the
 file is exactly 7162 bytes long.

6. Live Streaming

 The set of messages defined above can be used for live streaming as
 well. In a pull-based model, a live streaming injector can announce
 the chunks it generates via HAVE messages, and peers can retrieve
 them via REQUEST messages. Areas that need special attention are
 content authentication and chunk addressing (to achieve an infinite
 stream of chunks).

6.1. Content Authentication

 For live streaming, PPSPP supports two methods for a peer to
 authenticate the content it receives from another peer, called "Sign
 All" and "Unified Merkle Tree".

 In the "Sign All" method, the live injector signs each chunk of
 content using a private key. Upon receiving the chunk, peers check
 the signature using the corresponding public key obtained from a
 trusted source. Support for this method is OPTIONAL.

 In the "Unified Merkle Tree" method, PPSPP combines the Merkle Hash
 Tree scheme for static content with signatures to unify the video-on-
 demand and live streaming scenarios. The use of Merkle hash trees
 reduces the number of signing and verification operations, hence
 providing a similar signature amortization to the approach described
 in [SIGMCAST]. If PPSPP operates over the Internet, the "Unified
 Merkle Tree" method MUST be used. If the protocol operates in a
 benign environment, the "Unified Merkle Tree" method MAY be used. So
 this method is mandatory to implement.

 In both methods, the swarm ID consists of a public key encoded as in
 a DNSSEC DNSKEY resource record without Base64 encoding [RFC4034].

Bakker, et al. Standards Track [Page 32]

RFC 7574 PPSPP July 2015

 In particular, the swarm ID consists of a 1-byte Algorithm field that
 identifies the public key’s cryptographic algorithm and determines
 the format of the Public Key field that follows. The value of this
 Algorithm field is one of the values in the "Domain Name System
 Security (DNSSEC) Algorithm Numbers" registry [IANADNSSECALGNUM].
 The RSASHA1 [RFC4034], RSASHA256 [RFC5702], ECDSAP256SHA256 and
 ECDSAP384SHA384 [RFC6605] algorithms are mandatory to implement.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Algo Number(8)| ˜
 +-+
 ˜ DNSSEC Public Key (variable) ˜
 +-+

6.1.1. Sign All

 In the "Sign All" method, the live injector signs each chunk of
 content using a private key and peers, upon receiving the chunk,
 check the signature using the corresponding public key obtained from
 a trusted source. In particular, in PPSPP, the swarm ID of the live
 stream is that public key.

 A peer that wants to send a chunk of content creates a datagram that
 MUST contain a SIGNED_INTEGRITY message with the chunk’s signature,
 followed by a DATA message with the actual chunk. If the
 SIGNED_INTEGRITY message and DATA message cannot be contained into a
 single datagram, because of a limitation on datagram size, the
 SIGNED_INTEGRITY message MUST be sent first in a separate datagram.
 The SIGNED_INTEGRITY message consists of the chunk specification, the
 timestamp, and the digital signature.

 The digital signature algorithm that is used, is determined by the
 Live Signature Algorithm protocol option, see Section 7.7. The
 signature is computed over a concatenation of the on-the-wire
 representation of the chunk specification, a 64-bit timestamp in NTP
 Timestamp format [RFC5905], and the chunk, in that order. The
 timestamp is the time signature that was made at the injector in UTC.

6.1.2. Unified Merkle Tree

 In this method, the chunks of content are used as the basis for a
 Merkle hash tree as for static content. However, because chunks are
 continuously generated, this tree is not static, but dynamic. As a
 result, the tree does not have a root hash, or, more precisely, it
 has a transient root hash. Therefore, a public key serves as swarm

Bakker, et al. Standards Track [Page 33]

RFC 7574 PPSPP July 2015

 ID of the content. It is used to digitally sign updates to the tree
 allowing peers to expand it based on trusted information using the
 following process.

6.1.2.1. Signed Munro Hashes

 The live injector generates a number of chunks, denoted
 NCHUNKS_PER_SIG, corresponding to fixed power of 2
 (NCHUNKS_PER_SIG>=2), which are added as new leaves to the existing
 hash tree. As a result of this expansion, the hash tree contains a
 new subtree that is NCHUNKS_PER_SIG chunks wide at the base. The
 root of this new subtree is referred to as the munro of that subtree,
 and its hash as the munro hash of the subtree, illustrated in
 Figure 5. In this figure, node 5 is the new munro, labeled with a $
 sign.

 3
 / \
 / \
 / \
 1 5$
 / \ / \
 0 2 4 6

 Expanded live tree. With NCHUNKS_PER_SIG=2, node 5 is the munro for
 the new subtree spanning 4 and 6. Node 1 is the munro for the
 subtree spanning chunks 0 and 2, created in the previous iteration.

 Figure 5

 Informally, the process now proceeds as follows. The injector signs
 only the munro hash of the new subtree using its private key. Next,
 the injector announces the existence of the new subtree to its peers
 using HAVE messages. When a peer, in response to the HAVE messages,
 requests a chunk from the new subtree, the injector first sends the
 signed munro hash corresponding to the requested chunk. Afterwards,
 similar to static content, the injector sends the uncle hashes
 necessary to verify that chunk, as in Section 5.1. In particular,
 the injector sends the uncle hashes necessary to verify the requested
 chunk against the munro hash. This differs from static content,
 where the verification takes places against the root hash. Finally,
 the injector sends the actual chunk.

Bakker, et al. Standards Track [Page 34]

RFC 7574 PPSPP July 2015

 The receiving peer verifies the signature on the signed munro using
 the swarm ID (a public key) and updates its hash tree. As the peer
 now knows the munro hash is trusted, it can verify all chunks in the
 subtree against this munro hash, using the accompanying uncle hashes
 as in Section 5.1.

 To illustrate this procedure, lets consider the next iteration in the
 process. The injector has generated the current tree shown in
 Figure 5, and it is connected to several peers that currently have
 the same tree and all posses chunks 0, 2, 4, and 6. When the
 injector generates two new chunks, NCHUNKS_PER_SIG=2, the hash tree
 expands as shown in Figure 6. The two new chunks, 8 and 10, extend
 the tree on the right side, and to accommodate them, a new root is
 created: node 7. As this tree is wider at the base than the actual
 number of chunks, there are currently two empty leaves. The munro
 node for the new subtree is 9, labeled with a $ sign.

 7
 / \
 / \
 / \
 / \
 3 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9$ 13
 / \ / \ / \ / \
 0 2 4 6 8 10 E E

 Expanded live tree. With NCHUNKS_PER_SIG=2, node 9 is the munro of
 the newly added subtree spanning chunks 8 and 10.

 Figure 6

 The injector now needs to inform its peers of the updated tree,
 communicating the addition of the new munro hash 9. Hence, it sends
 a HAVE message with a chunk specification for nodes 8 + 10 to its
 peers. As a response, Peer P requests the newly created chunk, e.g.,
 chunk 8, from the injector by sending a REQUEST message. In reply,
 the injector sends the signed munro hash of node 9 as an INTEGRITY
 message with the hash of node 9, and a SIGNED_INTEGRITY message with
 the signature of the hash of node 9. These messages are followed by
 an INTEGRITY message with the hash of node 10 and a DATA message with
 chunk 8.

Bakker, et al. Standards Track [Page 35]

RFC 7574 PPSPP July 2015

 Upon receipt, Peer P verifies the signature of the munro and expands
 its view of the tree. Next, the peer computes the hash of chunk 8
 and combines it with the received hash of node 10, computing the
 expected hash of node 9. He can then verify the content of chunk 8
 by comparing the computed hash of node 9 with the munro hash of the
 same node he just received; hence, Peer P has successfully verified
 the integrity of chunk 8.

 This procedure requires just one signing operation for every
 NCHUNKS_PER_SIG chunks created, and one verification operation for
 every NCHUNKS_PER_SIG received, making it much cheaper than "Sign
 All". A receiving peer does additionally need to check one or more
 hashes per chunk via the Merkle Hash Tree scheme, but this has less
 hardware requirements than a signature verification for every chunk.
 This approach is similar to signature amortization via Merkle Tree
 Chaining [SIGMCAST]. The downside of this scheme is in an increased
 latency. A peer cannot download the new chunks until the injector
 has computed the signature and announced the subtree. A peer MUST
 check the signature before forwarding the chunks to other peers
 [POLLIVE].

 The number of chunks per signature NCHUNKS_PER_SIG MUST be a fixed
 power of 2 for simplicity. NCHUNKS_PER_SIG MUST be larger than 1 for
 performance reasons. There are two related factors to consider when
 choosing a value for NCHUNKS_PER_SIG. First, the allowed CPU load on
 clients due to signature verifications, given the expected bitrate of
 the stream. To achieve a low CPU load in a high bitrate stream,
 NCHUNKS_PER_SIG should be high. Second, the effect on latency, which
 increases when NCHUNKS_PER_SIG gets higher, as just discussed. Note
 how the procedure does not preclude the use of variable-size chunks.

 This method of integrity verification provides an additional benefit.
 If the system includes some peers that saved the complete broadcast,
 as soon as the broadcast ends, the content is available as a video-
 on-demand download using the now stabilized tree and the final root
 hash as swarm identifier. Peers that saved all the chunks, can now
 announce the root hash to the tracking infrastructure and instantly
 seed the content.

6.1.2.2. Munro Signature Calculation

 The digital signature algorithm used is determined by the Live
 Signature Algorithm protocol option, see Section 7.7. The signature
 is computed over a concatenation of the on-the-wire representation of
 the chunk specification of the munro node (see Section 6.1.2.1), a
 timestamp in 64-bit NTP Timestamp format [RFC5905], and the hash
 associated with the munro node, in that order. The timestamp is the
 time signature that was made at the injector in UTC.

Bakker, et al. Standards Track [Page 36]

RFC 7574 PPSPP July 2015

6.1.2.3. Procedure

 Formally, the injector MUST NOT send a HAVE message for chunks in the
 new subtree until it has computed the signed munro hash for that
 subtree.

 When Peer B requests a chunk C from Peer A (either the injector or
 another peer), and Peer A decides to reply, it must do so as follows.
 First, Peer A MUST send an INTEGRITY message with the chunk
 specification for the munro of chunk C and the munro’s hash, followed
 by a SIGNED_INTEGRITY message with the chunk specification for the
 munro, timestamp, and its signature in a single datagram, unless Peer
 B indicated earlier in the exchange that it already possess a chunk
 with the same corresponding munro (by means of HAVE or ACK messages).
 Following these two messages (if any), Peer A MUST send the necessary
 missing uncles hashes needed for verifying the chunk against its
 munro hash, and the chunk itself, as described in Section 5.4,
 sharing datagrams if possible.

6.1.2.4. Secure Tune In

 When a peer tunes in to a live stream, it has to determine what is
 the last chunk the injector has generated. To facilitate this
 process in the Unified Merkle Tree scheme, each peer shares its
 knowledge about the injector’s chunks with the others by exchanging
 their latest signed munro hashes, as follows.

 Recall that, in PPSPP, when Peer A initiates a channel with Peer B,
 Peer A sends a first datagram with a HANDSHAKE message, and Peer B
 responds with a second datagram also containing a HANDSHAKE message
 (see Section 3.1). When Peer A sends a third datagram to Peer B, and
 it is received by Peer B, both peers know that the other is listening
 on its stated transport address. Peer B is then allowed to send
 heavy payload like DATA messages in the fourth datagram. Peer A can
 already safely do that in the third datagram.

 In the Unified Merkle Tree scheme, Peer A MUST send its rightmost
 signed munro hash to Peer B in the third datagram, and in any
 subsequent datagrams to Peer B, until Peer B indicates that it
 possess a chunk with the same corresponding munro or a more recent
 munro (by means of a HAVE or ACK message). Peer B may already have
 indicated this fact by means of HAVE messages in the second datagram.
 Conversely, when Peer B sends the fourth datagram or any subsequent
 datagram to Peer A, Peer B MUST send its rightmost signed munro hash,
 unless Peer A indicated knowledge of it or more recent munros. The
 rightmost signed munro hash of a peer is defined as the munro hash
 signed by the injector of the rightmost subtree of width
 NCHUNKS_PER_SIG chunks in the peer’s Merkle hash tree. Peer A MUST

Bakker, et al. Standards Track [Page 37]

RFC 7574 PPSPP July 2015

 NOT send the signed munro hash in the first datagram of the HANDSHAKE
 procedure and Peer B MUST NOT send it in the second datagram as it is
 considered heavy payload.

 When a peer receives a SIGNED_INTEGRITY message with a signed munro
 hash but the timestamp is too old, the peer MUST discard the message.
 Otherwise, it SHOULD use the signed munro to update its hash tree and
 pick a tune-in in the live stream. A peer may use the information
 from multiple peers to pick the tune-in point.

6.2. Forgetting Chunks

 As a live broadcast progresses, a peer may want to discard the chunks
 that it already played out. Ideally, other peers should be aware of
 this fact so that they will not try to request these chunks from this
 peer. This could happen in scenarios where live streams may be
 paused by viewers, or viewers are allowed to start late in a live
 broadcast (e.g., start watching a broadcast at 20:35 when it actually
 began at 20:30).

 PPSPP provides a simple solution for peers to stay up to date with
 the chunk availability of a discarding peer. A discarding peer in a
 live stream MUST enable the Live Discard Window protocol option,
 specifying how many chunks/bytes it caches before the last chunk/byte
 it advertised as being available (see Section 7.9). Its peers SHOULD
 apply this number as a sliding window filter over the peer’s chunk
 availability as conveyed via its HAVE messages.

 Three factors are important when deciding for an appropriate value
 for this option: the desired amount of playback buffer for peers, the
 bitrate of the stream, and the available resources of the peer.
 Consider the case of a fresh peer joining the stream. The size of
 the discard window of the peers it connects to influences how much
 data it can directly download to establish its prebuffer. If the
 window is smaller than the desired buffer, the fresh peer has to wait
 until the peers downloaded more of the stream before it can start
 playback. As media buffers are generally specified in terms of a
 number of seconds, the size of the discard window is also related to
 the (average) bitrate of the stream. Finally, if a peer has few
 resources to store chunks and metadata, it should choose a small
 discard window.

7. Protocol Options

 The HANDSHAKE message in PPSPP can contain the following protocol
 options. Unless stated otherwise, a protocol option consists of an
 8-bit code followed by an 8-bit value. Larger values are all encoded

Bakker, et al. Standards Track [Page 38]

RFC 7574 PPSPP July 2015

 big-endian. Each protocol option is explained in the following
 subsections. The list of protocol options MUST be sorted on code
 value (ascending) in a HANDSHAKE message.

 +--------+-------------------------------------+
 | Code | Description |
 +--------+-------------------------------------+
 | 0 | Version |
 | 1 | Minimum Version |
 | 2 | Swarm Identifier |
 | 3 | Content Integrity Protection Method |
 | 4 | Merkle Hash Tree Function |
 | 5 | Live Signature Algorithm |
 | 6 | Chunk Addressing Method |
 | 7 | Live Discard Window |
 | 8 | Supported Messages |
 | 9 | Chunk Size |
 | 10-254 | Unassigned |
 | 255 | End Option |
 +--------+-------------------------------------+

 Table 2: PPSPP Options

7.1. End Option

 A peer MUST conclude the list of protocol options with the end
 option. Subsequent octets should be considered protocol messages.
 The code for the end option is 255, and unlike others, it has no
 value octet, so the option’s length is 1 octet.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |1 1 1 1 1 1 1 1|
 +-+-+-+-+-+-+-+-+

7.2. Version

 A peer MUST include the maximum version of the PPSPP it supports as
 the first protocol option in the list. The code for this option is
 0. Defined values are listed in Table 3.

Bakker, et al. Standards Track [Page 39]

RFC 7574 PPSPP July 2015

 +---------+--+
 | Version | Description |
 +---------+--+
 | 0 | Reserved |
 | 1 | Protocol as described in this document |
 | 2-255 | Unassigned |
 +---------+--+

 Table 3: PPSPP Version Numbers

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |0 0 0 0 0 0 0 0| Version (8) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.3. Minimum Version

 When a peer initiates the handshake, it MUST include the minimum
 version of the PPSPP it supports in the list of protocol options,
 following the min/max versioning scheme defined in [RFC6709],
 Section 4.1, strategy 5. The code for this option is 1. Defined
 values are listed in Table 3.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |0 0 0 0 0 0 0 1| Min. Ver. (8) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.4. Swarm Identifier

 When a peer initiates the handshake, it MUST include a single swarm
 identifier option. If the peer is not the initiator, it MAY include
 a swarm identifier option, as an end-to-end check. This option has
 the following structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 1 0| Swarm ID Length (16) | ˜
 +-+
 ˜ Swarm Identifier (variable) ˜
 +-+

 The Swarm ID Length field contains the length of the single Swarm
 Identifier that follows in bytes. The Length field is 16 bits wide
 to allow for large public keys as identifiers in live streaming.

Bakker, et al. Standards Track [Page 40]

RFC 7574 PPSPP July 2015

 Each PPSPP peer knows the IDs of the swarms it joins, so this
 information can be immediately verified upon receipt.

7.5. Content Integrity Protection Method

 A peer MUST include the content integrity method used by a swarm.
 The code for this option is 3. Defined values are listed in Table 4.

 +--------+-------------------------+
 | Method | Description |
 +--------+-------------------------+
 | 0 | No integrity protection |
 | 1 | Merkle Hash Tree |
 | 2 | Sign All |
 | 3 | Unified Merkle Tree |
 | 4-255 | Unassigned |
 +--------+-------------------------+

 Table 4: PPSPP Content Integrity Protection Methods

 The "Merkle Hash Tree" method is the default for static content, see
 Section 5.1. "Sign All", and "Unified Merkle Tree" are for live
 content, see Section 6.1, with "Unified Merkle Tree" being the
 default.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |0 0 0 0 0 0 1 1| CIPM (8) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.6. Merkle Tree Hash Function

 When the content integrity protection method is "Merkle Hash Tree",
 this option defining which hash function is used for the tree MUST be
 included. The code for this option is 4. Defined values are listed
 in Table 5 (see [FIPS180-4] for the function semantics).

Bakker, et al. Standards Track [Page 41]

RFC 7574 PPSPP July 2015

 +----------+-------------+
 | Function | Description |
 +----------+-------------+
 | 0 | SHA-1 |
 | 1 | SHA-224 |
 | 2 | SHA-256 |
 | 3 | SHA-384 |
 | 4 | SHA-512 |
 | 5-255 | Unassigned |
 +----------+-------------+

 Table 5: PPSPP Merkle Hash Functions

 Implementations MUST support SHA-1 (see Section 12.5) and SHA-256.
 SHA-256 is the default.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |0 0 0 0 0 1 0 0| MHF (8) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.7. Live Signature Algorithm

 When the content integrity protection method is "Sign All" or
 "Unified Merkle Tree", this option MUST be defined. The code for
 this option is 5. The 8-bit value of this option is one of the
 values listed in the "Domain Name System Security (DNSSEC) Algorithm
 Numbers" registry [IANADNSSECALGNUM]. The RSASHA1 [RFC4034],
 RSASHA256 [RFC5702], ECDSAP256SHA256 and ECDSAP384SHA384 [RFC6605]
 algorithms are mandatory to implement. Default is ECDSAP256SHA256.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |0 0 0 0 0 1 0 1| LSA (8) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.8. Chunk Addressing Method

 A peer MUST include the chunk addressing method it uses. The code
 for this option is 6. Defined values are listed in Table 6.

Bakker, et al. Standards Track [Page 42]

RFC 7574 PPSPP July 2015

 +--------+---------------------+
 | Method | Description |
 +--------+---------------------+
 | 0 | 32-bit bins |
 | 1 | 64-bit byte ranges |
 | 2 | 32-bit chunk ranges |
 | 3 | 64-bit bins |
 | 4 | 64-bit chunk ranges |
 | 5-255 | Unassigned |
 +--------+---------------------+

 Table 6: PPSPP Chunk Addressing Methods

 Implementations MUST support "32-bit chunk ranges" and "64-bit chunk
 ranges". Default is "32-bit chunk ranges".

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |0 0 0 0 0 1 1 0| CAM (8) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.9. Live Discard Window

 A peer in a live swarm MUST include the discard window it uses. The
 code for this option is 7. The unit of the discard window depends on
 the chunk addressing method used, see Table 6. For bins and chunk
 ranges, it is a number of chunks; for byte ranges, it is a number of
 bytes. Its data type is the same as for a bin, or one value in a
 range specification. In other words, its value is a 32-bit or 64-bit
 integer in big-endian format. If this option is used, the Chunk
 Addressing Method MUST appear before it in the list. This option has
 the following structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 1 1 1| Live Discard Window (32 or 64) ˜
 +-+
 ˜ ˜
 +-+

 A peer that does not, under normal circumstances, discard chunks MUST
 set this option to the special value 0xFFFFFFFF (32-bit) or
 0xFFFFFFFFFFFFFFFF (64-bit). For example, peers that record a
 complete broadcast to offer it directly as a static file after the
 broadcast ends use these values (see Section 6.1.2). Section 6.2
 explains how to determine a value for this option.

Bakker, et al. Standards Track [Page 43]

RFC 7574 PPSPP July 2015

7.10. Supported Messages

 Peers may support just a subset of the PPSPP messages. For example,
 peers running over TCP may not accept ACK messages or peers used with
 a centralized tracking infrastructure may not accept PEX messages.
 For these reasons, peers who support only a proper subset of the
 PPSPP messages MUST signal which subset they support by means of this
 protocol option. The code for this option is 8. The value of this
 option is a length octet (SupMsgLen) indicating the length, in bytes,
 of the compressed bitmap that follows.

 The set of messages supported can be derived from the compressed
 bitmap by padding it with bytes of value 0 until it is 256 bits in
 length. Then, a 1 bit in the resulting bitmap at position X
 (numbering left to right) corresponds to support for message type X,
 see Table 7. In other words, to construct the compressed bitmap,
 create a bitmap with a 1 for each message type supported and a 0 for
 a message type that is not, store it as an array of bytes, and
 truncate it to the last non-zero byte. An example of the first 16
 bits of the compressed bitmap for a peer supporting every message
 except ACKs and PEXs is 11011001 11110000.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 0 0 0| SupMsgLen (8) | ˜
 +-+
 ˜ Supported Messages Bitmap (variable, max 256) ˜
 +-+

7.11. Chunk Size

 A peer in a swarm MUST include the chunk size the swarm uses. The
 code for this option is 9. Its value is a 32-bit integer denoting
 the size of the chunks in bytes in big-endian format. When variable
 chunk sizes are used, this option MUST be set to the special value
 0xFFFFFFFF. Section 8.1 explains how content publishers can
 determine a value for this option.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 0 0 1| Chunk Size (32) ˜
 +-+
 ˜ |
 +-+-+-+-+-+-+-+-+

Bakker, et al. Standards Track [Page 44]

RFC 7574 PPSPP July 2015

8. UDP Encapsulation

 PPSPP implementations MUST use UDP as transport protocol and MUST use
 LEDBAT for congestion control [RFC6817]. Using LEDBAT enables PPSPP
 to serve the content after playback (seeding) without disrupting the
 user who may have moved to different tasks that use its network
 connection. Future PPSPP versions can also run over other transport
 protocols or use different congestion control algorithms.

8.1. Chunk Size

 In general, a UDP datagram containing PPSPP messages SHOULD fit
 inside a single IP packet, so its maximum size depends on the MTU of
 the network. If the UDP datagram does not fit, its chance of getting
 lost in the network increases as the loss of a single fragment of the
 datagram causes the loss of the complete datagram.

 The largest message in a PPSPP datagram is the DATA message carrying
 a chunk of content. So the (maximum) size of a chunk to choose for a
 particular swarm depends primarily on the expected MTU. The chunk
 size should be chosen such that a chunk and its required INTEGRITY
 messages can generally be carried inside a single datagram, following
 the Atomic Datagram Principle (Section 5.3). Other considerations
 are the hardware capabilities of the peers. Having large chunks and
 therefore less chunks per megabyte of content reduces processing
 costs. The chunk addressing schemes can all work with different
 chunk sizes, see Section 4.

 The RECOMMENDED approach is to use fixed-size chunks of 1024 bytes,
 as this size has a high likelihood of traveling end-to-end across the
 Internet without any fragmentation. In particular, with this size, a
 UDP datagram with a DATA message can be transmitted as a single IP
 packet over an Ethernet network with 1500-byte frames.

 A PPSPP implementation MAY use a variant of the Packetization Layer
 Path MTU Discovery (PLPMTUD), described in [RFC4821], for discovering
 the optimal MTU between sender and destination. As in PLPMTUD,
 progressively larger probing packets are used to detect the optimal
 MTU for a given path. However, in PPSPP, probe packets SHOULD
 contain actual messages, in particular, multiple DATA messages. By
 using actual DATA messages as probe packets, the returning ACK
 messages will confirm the probe delivery, effectively updating the
 MTU estimate on both ends of the link. To be able to scale up probe
 packets with sensible increments, a minimum chunk size of 512 bytes
 SHOULD be used. Smaller chunk sizes lead to an inefficient protocol.
 An implication is that PPSPP supports datagrams over IPv4 of 576
 bytes or more only. This variant is not mandatory to implement.

Bakker, et al. Standards Track [Page 45]

RFC 7574 PPSPP July 2015

 The chunk size used for a particular swarm, or the fact that it is
 variable, MUST be part of the swarm’s metadata (which then minimally
 consists of the swarm ID and the chunk nature and size).

8.2. Datagrams and Messages

 When using UDP, the abstract datagram described above corresponds
 directly to a UDP datagram. Most messages within a datagram have a
 fixed length, which generally depends on the type of the message.
 The first byte of a message denotes its type. The currently defined
 types are:

 +----------+------------------+
 | Msg Type | Description |
 +----------+------------------+
 | 0 | HANDSHAKE |
 | 1 | DATA |
 | 2 | ACK |
 | 3 | HAVE |
 | 4 | INTEGRITY |
 | 5 | PEX_RESv4 |
 | 6 | PEX_REQ |
 | 7 | SIGNED_INTEGRITY |
 | 8 | REQUEST |
 | 9 | CANCEL |
 | 10 | CHOKE |
 | 11 | UNCHOKE |
 | 12 | PEX_RESv6 |
 | 13 | PEX_REScert |
 | 14-254 | Unassigned |
 | 255 | Reserved |
 +----------+------------------+

 Table 7: PPSPP Message Types

 Furthermore, integers are serialized in network (big-endian) byte
 order. So, consider the example of a HAVE message (Section 3.2)
 using bin chunk addressing. It has a message type of 0x03 and a
 payload of a bin number, a 4-byte integer (say, 1); hence, its on-
 the-wire representation for UDP can be written in hex as
 "0300000001".

 All messages are idempotent or recognizable as duplicates.
 Idempotent means that processing a message more than once does not
 lead to a different state from if it was processed just once. In
 particular, a peer MAY resend DATA, ACK, HAVE, INTEGRITY, PEX_*,
 SIGNED_INTEGRITY, REQUEST, CANCEL, CHOKE, and UNCHOKE messages
 without problems when loss is suspected. When a peer resends a

Bakker, et al. Standards Track [Page 46]

RFC 7574 PPSPP July 2015

 HANDSHAKE message, it can be recognized as duplicate by the receiver,
 because it already recorded the first connection attempt, and be
 dealt with.

8.3. Channels

 As described in Section 3.11, PPSPP uses a multiplexing scheme,
 called channels, to allow multiple swarms to use the same UDP port.
 In the UDP encapsulation, each datagram from Peer A to Peer B is
 prefixed with the channel ID allocated by Peer B. The peers learn
 about each other’s channel ID during the handshake as explained in
 Section 3.1.1. A channel ID consists of 4 bytes and MUST be
 generated following the requirements in [RFC4960] (Section 5.1.3).

8.4. HANDSHAKE

 A channel is established with a handshake. To start a handshake, the
 initiating peer needs to know the swarm metadata, defined in
 Section 3.1 and the IP address and UDP port of a peer. A datagram
 containing a HANDSHAKE message then looks as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Destination Channel ID (32) |
 +-+
 |0 0 0 0 0 0 0 0| Source Channel ID (32) |
 +-+
 | | ˜
 +-+
 | |
 ˜ Protocol Options ˜
 | |
 +-+

 where:

 Destination Channel ID:

 If the datagram is sent by the initiating peer, then it MUST be
 an all-zeros channel ID.

 If the datagram is sent by the responding peer, then it MUST
 consist of the Source Channel ID from the sender’s HANDSHAKE
 message.

 The octet 0x00: The HANDSHAKE message type

Bakker, et al. Standards Track [Page 47]

RFC 7574 PPSPP July 2015

 Source Channel ID: A locally unused channel ID

 Protocol Options: A list of protocol options encoding the swarm’s
 metadata, as defined in Section 7.

 A peer SHOULD explicitly close a channel by sending a HANDSHAKE
 message that MUST contain an all zeros Source Channel ID and a list
 of protocol options. The list MUST either be empty or contain the
 maximum version number the sender supports, following the min/max
 versioning scheme defined in [RFC6709], Section 4.1.

8.5. HAVE

 A HAVE message (type 0x03) consists of a single chunk specification
 that states that the sending peer has those chunks and successfully
 checked their integrity. The single chunk specification represents a
 consecutive range of verified chunks. A bin consists of a single
 integer, and a chunk or byte range of two integers, of the width
 specified by the Chunk Addressing protocol options, encoded big-
 endian.

 A HAVE message using 32-bit chunk ranges as Chunk Addressing method:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 1 1| Start chunk (32) |
 +-+
 | | End chunk (32) |
 +-+
 | |
 +-+-+-+-+-+-+-+-+

 where the first octet is the HAVE message (0x03) followed by the
 start chunk and the end chunk describing the chunk range. Note this
 diagram shows a message and not a datagram, so it is not prefixed by
 the destination Channel ID. This holds for all subsequent message
 diagrams.

8.6. DATA

 A DATA message (type 0x01) consists of a chunk specification, a
 timestamp, and the actual chunk. In case a datagram contains one
 DATA message, a sender MUST always put the DATA message in the tail
 of the datagram. A datagram MAY contain multiple DATA messages when
 the chunk size is fixed and when none of the DATA messages carry the
 last chunk, if that is smaller than the chunk size. As LEDBAT
 congestion control is used, a sender MUST include a timestamp, in

Bakker, et al. Standards Track [Page 48]

RFC 7574 PPSPP July 2015

 particular, a 64-bit integer representing the current system time
 with microsecond accuracy. The timestamp MUST be included between
 chunk specification and the actual chunk.

 A DATA message using 32-bit chunk ranges as Chunk Addressing method:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 0 1| Start chunk (32) |
 +-+
 | | End chunk (32) |
 +-+
 | | |
 +-+
 | Timestamp (64) |
 +-+
 | | |
 +-+
 | |
 ˜ Data ˜
 | |
 +-+

 where the first octet is the DATA message (0x01) followed by the
 start chunk and the end chunk describing the single chunk, the
 timestamp, and the actual data.

8.7. ACK

 An ACK message (type 0x02) acknowledges data that was received from
 its addressee; to comply with the LEDBAT delay-based congestion
 control, an ACK message consists of a chunk specification and a
 timestamp representing a one-way delay sample. The one-way delay
 sample is a 64-bit integer with microsecond accuracy, and it is
 computed from the timestamp received from the previous DATA message
 containing the chunk being acknowledged following the LEDBAT
 specification.

Bakker, et al. Standards Track [Page 49]

RFC 7574 PPSPP July 2015

 An ACK message using 32-bit chunk ranges as Chunk Addressing method:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 0 1 0| Start chunk (32) |
 +-+
 | | End chunk (32) |
 +-+
 | | |
 +-+
 | One-way delay sample (64) |
 +-+
 | |
 +-+-+-+-+-+-+-+-+

 where the first octet is the ACK message (0x02) followed by the start
 chunk and the end chunk describing the chunk range and the one-way
 delay sample.

8.8. INTEGRITY

 An INTEGRITY message (type 0x04) consists of a chunk specification
 and the cryptographic hash for the specified chunk or node. The type
 and format of the hash depends on the protocol options.

 An INTEGRITY message using 32-bit chunk ranges as Chunk Addressing
 method and a SHA-256 hash:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 1 0 0| Start chunk (32) |
 +-+
 | | End chunk (32) |
 +-+
 | | |
 +-+
 | |
 ˜ Hash (256) ˜
 | |
 +-+
 | |
 +-+-+-+-+-+-+-+-+

Bakker, et al. Standards Track [Page 50]

RFC 7574 PPSPP July 2015

 where the first octet is the INTEGRITY message (0x04) followed by the
 start chunk and the end chunk describing the chunk range and the
 hash.

8.9. SIGNED_INTEGRITY

 A SIGNED_INTEGRITY message (type 0x07) consists of a chunk
 specification, a 64-bit timestamp in NTP Timestamp format [RFC5905]
 and a digital signature encoded as a Signature field would be in an
 RRSIG record in DNSSEC without the Base64 encoding [RFC4034]. The
 signature algorithm is defined by the Live Signature Algorithm
 protocol option, see Section 7.7. The plaintext over which the
 signature is taken depends on the content integrity protection method
 used, see Section 6.1.

 A SIGNED_INTEGRITY message using 32-bit chunk ranges as Chunk
 Addressing method:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 1 1 1| Start chunk (32) |
 +-+
 | | End chunk (32) |
 +-+
 | | |
 +-+
 | Timestamp (64) |
 +-+
 | | |
 +-+
 | |
 ˜ Signature ˜
 | |
 +-+

 where the first octet is the SIGNED_INTEGRITY message (0x07) followed
 by the start chunk and the end chunk describing the chunk range, the
 timestamp, and the Signature.

 The length of the digital signature can be derived from the Live
 Signature Algorithm protocol option and the swarm ID as follows. The
 first mandatory algorithms are RSASHA1 and RSASHA256. For those
 algorithms, the swarm ID consists of a 1-byte Algorithm field
 followed by an RSA public key stored as a tuple (exponent length,
 exponent, modulus) [RFC3110]. Given the exponent length and the
 length of the public key tuple in the swarm ID, the length of the
 modulus in bytes can be calculated. This yields the length of the

Bakker, et al. Standards Track [Page 51]

RFC 7574 PPSPP July 2015

 signature, as in RSA this is the length of the modulus [HAC01]. The
 other mandatory algorithms are ECDSAP256SHA256 and ECDSAP384SHA384
 [RFC6605]. For these algorithms, the length of the digital signature
 is 64 and 96 bytes, respectively.

8.10. REQUEST

 A REQUEST message (type 0x08) consists of a chunk specification for
 the chunks the requester wants to download.

 A REQUEST message using 32-bit chunk ranges as Chunk Addressing
 method:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 0 0 0| Start chunk (32) |
 +-+
 | | End chunk (32) |
 +-+
 | |
 +-+-+-+-+-+-+-+-+

 where the first octet is the REQUEST message (0x08) followed by the
 start chunk and the end chunk describing the chunk range.

8.11. CANCEL

 A CANCEL message (type 0x09) consists of a chunk specification for
 the chunks the requester no longer is interested in.

 A CANCEL message using 32-bit chunk ranges as Chunk Addressing
 method:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 0 0 1| Start chunk (32) |
 +-+
 | | End chunk (32) |
 +-+
 | |
 +-+-+-+-+-+-+-+-+

 where the first octet is the CANCEL message (0x09) followed by the
 start chunk and the end chunk describing the chunk range.

Bakker, et al. Standards Track [Page 52]

RFC 7574 PPSPP July 2015

8.12. CHOKE and UNCHOKE

 Both CHOKE and UNCHOKE messages (types 0x0a and 0x0b, respectively)
 carry no payload.

 A CHOKE message:

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0 0 0 0 1 0 1 0|
 +-+-+-+-+-+-+-+-+

 where the first octet is the CHOKE message (0x0a).

 An UNCHOKE message:

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0 0 0 0 1 0 1 1|
 +-+-+-+-+-+-+-+-+

 where the first octet is the UNCHOKE message (0x0b).

8.13. PEX_REQ, PEX_RESv4, PEX_RESv6, and PEX_REScert

 A PEX_REQ (0x06) message has no payload. A PEX_RESv4 (0x05) message
 consists of an IPv4 address in big-endian format followed by a UDP
 port number in big-endian format. A PEX_RESv6 (0x0c) message
 contains a 128-bit IPv6 address instead of an IPv4 one. If a PEX_REQ
 message does not originate from a private, unique-local, link-local,
 or multicast address [RFC1918] [RFC4193] [RFC4291], then the PEX_RES*
 messages sent in reply MUST NOT contain such addresses. This is to
 prevent leaking of internal addresses to external peers.

 A PEX_REQ message:

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0 0 0 0 0 1 1 0|
 +-+-+-+-+-+-+-+-+

 where the first octet is the PEX_REQ message (0x06).

Bakker, et al. Standards Track [Page 53]

RFC 7574 PPSPP July 2015

 A PEX_RESv4 message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 0 1 0 1| IPv4 Address (32) |
 +-+
 | | Port (16) |
 +-+

 where the first octet is the PEX_RESv4 message (0x05) followed by the
 IPv4 address and the port number.

 A PEX_RESv6 message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 1 0 0| |
 +-+
 | |
 +-+
 | IPv6 Address (128) |
 +-+
 | |
 +-+
 | | Port (16) |
 +-+

 where the first octet is the PEX_RESv6 message (0x0c), followed by
 the IPv6 address and the port number.

 A PEX_REScert (0x0d) message consists of a 16-bit integer in big-
 endian specifying the size of the membership certificate that
 follows, see Section 12.2.1. This membership certificate states that
 Peer P at Time T is a member of Swarm S and is a X.509v3 certificate
 [RFC5280] that is encoded using the ASN.1 distinguished encoding
 rules (DER) [CCITT.X690.2002]. The certificate MUST contain a
 "Subject Alternative Name" extension, marked as critical, of type
 uniformResourceIdentifier.

Bakker, et al. Standards Track [Page 54]

RFC 7574 PPSPP July 2015

 A PEX_REScert message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0 1 1 0 1| Size of Memb. Cert. (16) | |
 +-+
 | |
 ˜ Membership Certificate ˜
 | |
 +-+

 where the first octet is the PEX_REScert message (0x0d) followed by
 the size of the membership certificate and the membership
 certificate.

 The URL contained in the name extension MUST follow the generic
 syntax for URLs [RFC3986], where its scheme component is "file", the
 host in the authority component is the DNS name or IP address of Peer
 P, the port in the authority component is the port of Peer P, and the
 path contains the swarm identifier for Swarm S, in hexadecimal form.
 In particular, the preferred form of the swarm identifier is
 xxyyzz..., where the ’x’s, ’y’s, and ’z’s are 2 hexadecimal digits of
 the 8-bit pieces of the identifier. The validity time of the
 certificate is set with notBefore UTCTime set to T and notAfter
 UTCTime set to T plus some expiry time defined by the issuer. An
 example URL:

 file://192.0.2.0:6778/e5a12c7ad2d8fab33c699d1e198d66f79fa610c3

8.14. KEEPALIVE

 Keep alives do not have a message type on UDP. They are just simple
 datagrams consisting of the 4-byte channel ID of the destination
 only.

 A keep-alive datagram:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Channel ID (32) |
 +-+

Bakker, et al. Standards Track [Page 55]

RFC 7574 PPSPP July 2015

8.15. Flow and Congestion Control

 Explicit flow control is not required for PPSPP over UDP. In the
 case of video on demand, the receiver explicitly requests the content
 from peers, and is therefore in control of how much data is coming
 towards it. In the case of live streaming, where a push model may be
 used, the amount of data incoming is limited to the stream bitrate,
 which the receiver must be able to process for a continuous playback.
 Should, for any reason, the receiver get saturated with data, the
 congestion control at the sender side will detect the situation and
 adjust the sending rate accordingly.

 PPSPP over UDP can support different congestion control algorithms.
 At present, it uses the LEDBAT congestion control algorithm
 [RFC6817]. LEDBAT is a delay-based congestion control algorithm that
 is used every day by millions of users as part of the uTP
 transmission protocol of BitTorrent [LBT] [LCOMPL] and is suitable
 for P2P streaming [PPSPPERF].

 LEDBAT monitors the delay of the packets on the data path. It uses
 the one-way delay variations to react early and limit the congestion
 that the stream may induce in the network [RFC6817]. Using LEDBAT
 enables PPSPP to serve the content to other interested peers after
 the playback has finished (seeding), without disrupting the user.
 After the playback, the user might move to different tasks that use
 its network link, which are prioritized over PPSPP traffic. Hence,
 the user does not notice the background PPSPP traffic, which in turn
 increases the chances of seeding the content for a longer period of
 time.

 The property of reacting early is not a problem in a peer-to-peer
 system where multiple sources offer the content. Considering the
 case of congestion near the sender, LEDBAT’s early reaction impacts
 the transmission of chunks to the receiver. However, for the
 receiver, it is actually beneficial to learn early that the
 transmission from a particular source is impacted. The receiver can
 then choose to download time-critical chunks from other sources
 during its chunk picking phase.

 If the bottleneck is near the receiver, the receiver is indeed
 unlucky that transmissions from any source that runs through this
 bottleneck will back off quite fast due to LEDBAT. However, for the
 rest of the network (and the network operator), this is beneficial as
 the video-streaming system will back off early enough and not
 contribute too much to the congestion.

Bakker, et al. Standards Track [Page 56]

RFC 7574 PPSPP July 2015

 The power of LEDBAT is that its behavior can be configured. In the
 case of live streaming, a PPSPP deployer may want a more aggressive
 behavior to ensure quality of service. In that case, LEDBAT can be
 configured to be more aggressive. In particular, LEDBAT’s queuing
 target delay value (TARGET in [RFC6817]) and other parameters can be
 adjusted such that it acts as aggressive as TCP (or even more).
 Hence, LEDBAT is an algorithm that works for many scenarios in a
 peer-to-peer context.

8.16. Example of Operation

 We present a small example of communication between a leecher and a
 seeder. The example presents the transmission of the file "Hello
 World!", which fits within a 1024-byte chunk. For an easy
 understanding, we use the message description names, as listed in
 Table 7, and the protocol option names as listed in Table 2, rather
 than the actual binary value.

 To do the handshake, the initiating peer sends a datagram that MUST
 start with an all-zeros channel ID (0x00000000); followed by a
 HANDSHAKE message, whose payload is a locally unused; a random
 channel ID (in this case 0x00000001); and a list of protocol options.
 Channel IDs MUST be randomly chosen, as described in Section 12.1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0|
 +-+
 | HANDSHAKE |0 0|
 +-+
 |0 0 0 0 0 0 0 1| Version |0 0 0 0 0 0 0 1| Min Version |
 +-+
 |0 0 0 0 0 0 0 1| Swarm ID |0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0|
 +-+
 |0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0|
 ˜ ˜
 |1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1|
 +-+
 | Cont. Int. |0 0 0 0 0 0 0 1| Mer.H.Tree F. |0 0 0 0 0 0 1 0|
 +-+
 | Chunk Add. |0 0 0 0 0 0 1 0| Chunk Size |0 0 0 0 0 0 0 0˜
 +-+
 ˜0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| End |
 +-+

Bakker, et al. Standards Track [Page 57]

RFC 7574 PPSPP July 2015

 The protocol options are:

 Version: 1

 Minimum supported Version: 1

 Swarm Identifier: A 32-byte root hash (47a0...b03b) identifying
 the content

 Content Integrity Protection Method: Merkle Hash Tree

 Merkle Tree Hash Function: SHA-256

 Chunk Addressing Method: 32-bit chunk ranges

 Chunk Size: 1024

 The receiving peer MAY respond, in which case the returned datagram
 MUST consist of the channel ID from the sender’s HANDSHAKE message
 (0x00000001); a HANDSHAKE message, whose payload is a locally unused;
 a random channel ID (0x00000008); and a list of protocol options;
 followed by any other messages it wants to send.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1|
 +-+
 | HANDSHAKE |0 0|
 +-+
 |0 0 0 0 1 0 0 0| Version |0 0 0 0 0 0 0 1| Cont. Int. |
 +-+
 |0 0 0 0 0 0 0 1| Mer.H.Tree F. |0 0 0 0 0 0 1 0| Chunk Add. |
 +-+
 |0 0 0 0 0 0 1 0| Chunk Size |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0˜
 +-+
 ˜0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| End | HAVE |
 +-+
 |0 0|0 0 0 0 0 0 0 0|
 +-+
 |0 0|0 0 0 0 0 0 0 0|
 +-+

 With the protocol options, the receiving peer agrees on speaking
 protocol version 1, on using the Merkle Hash Tree as the Content
 Integrity Protection Method, SHA-256 hash as the Merkle Tree Hash
 Function, 32-bit chunk ranges as the Chunk Addressing Method, and

Bakker, et al. Standards Track [Page 58]

RFC 7574 PPSPP July 2015

 Chunk Size 1024. Furthermore, it sends a HAVE message within the
 same datagram, announcing that it has locally available the first
 chunk of content.

 At this point, the initiator knows that the peer really responds; for
 that purpose, channel IDs MUST be random enough to prevent easy
 guessing. So, the third datagram of a handshake MAY already contain
 some heavy payload. To minimize the number of initialization round
 trips, the first two datagrams MAY also contain some minor payload,
 e.g., the HAVE message.

 The initiating peer MAY send a request for the chunks of content it
 wants to retrieve from the receiving peer, e.g., the first chunk
 announced during the handshake. It always precedes the message with
 the channel ID of the peer it is communicating with (0x00000008 in
 our example), as described in Section 3.11. Furthermore, it MAY add
 additional messages such as a PEX_REQ.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 0 0|
 +-+
 | REQUEST |0 0|
 +-+
 |0 0 0 0 0 0 0 0|0 0|
 +-+
 |0 0 0 0 0 0 0 0| PEX_REQ |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 When receiving the third datagram, both peers have proof that they
 really talk to each other; the three-way handshake is complete. The
 receiving peer responds to the request by sending a DATA message
 containing the requested content.

Bakker, et al. Standards Track [Page 59]

RFC 7574 PPSPP July 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1|
 +-+
 | DATA |0 0|
 +-+
 |0 0 0 0 0 0 0 0|0 0|
 +-+
 |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1|
 +-+
 |0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1|
 +-+
 |0 1 0 0 0 1 0 0|0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0|
 +-+
 ˜ ˜
 |0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0|
 +-+

 The DATA message consists of:

 The 32-bit chunk range: 0,0 (the first chunk)

 The timestamp value: 0004e94180b7db44

 The data: 48656c6c6f20776f726c6421 (the "Hello world!" file)

 Note that the above datagram does not include the INTEGRITY message,
 as the entire content can fit into a single message; hence, the
 initiating peer is able to verify it against the root hash. Also, in
 this example, the peer does not respond to the PEX_REQ as it does not
 know any third peer participating in the swarm.

 Upon receiving the requested data, the initiating peer responds with
 an ACK message for the first chunk, containing a one-way delay sample
 (100 ms). Furthermore, it also adds a HAVE message for the chunk.

Bakker, et al. Standards Track [Page 60]

RFC 7574 PPSPP July 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 0 0|
 +-+
 | ACK |0 0|
 +-+
 |0 0 0 0 0 0 0 0|0 0|
 +-+
 |0 0 0 0 0 0 0 0|0 0|
 +-+
 |0 0|
 +-+
 |0 1 1 0 0 1 0 0| HAVE |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
 +-+
 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
 +-+
 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 At this point, the initiating peer has successfully retrieved the
 entire file. Then, it explicitly closes the connection by sending a
 HANDSHAKE message that contains an all-zeros Source Channel ID.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 1 0 0 0|
 +-+
 | HANDSHAKE |0 0|
 +-+
 |0 0 0 0 0 0 0 0| End |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

9. Extensibility

9.1. Chunk Picking Algorithms

 Chunk (or piece) picking entirely depends on the receiving peer. The
 sending peer is made aware of preferred chunks by the means of
 REQUEST messages. In some (live) scenarios, it may be beneficial to
 allow the sender to ignore those hints and send unrequested data.

 The chunk picking algorithm is external to the PPSPP and will
 generally be a pluggable policy that uses the mechanisms provided by
 PPSPP. The algorithm will handle the choices made by the user

Bakker, et al. Standards Track [Page 61]

RFC 7574 PPSPP July 2015

 consuming the content, such as seeking or switching audio tracks or
 subtitles. Example policies for P2P streaming can be found in
 [BITOS], and [EPLIVEPERF].

9.2. Reciprocity Algorithms

 The role of reciprocity algorithms in peer-to-peer systems is to
 promote client contribution and prevent freeriding. A peer is said
 to be freeriding if it only downloads content but never uploads to
 others. Examples of reciprocity algorithms are tit-for-tat as used
 in BitTorrent [TIT4TAT] and Give-to-Get [GIVE2GET]. In PPSPP,
 reciprocity enforcement is the sole responsibility of the sending
 peer.

10. IANA Considerations

 IANA has created a new top-level registry called "Peer-to-Peer
 Streaming Peer Protocol (PPSPP)", which hosts the six new sub-
 registries defined below for the extensibility of the protocol. For
 all registries, assignments consist of a name and its associated
 value. Also, for all registries, the "Unassigned" ranges designated
 are governed by the policy "IETF Review" as described in [RFC5226].

10.1. PPSPP Message Type Registry

 The registry name is "PPSPP Message Type Registry". Values are
 integers in the range 0-255, with initial assignments and
 reservations given in Table 7.

10.2. PPSPP Option Registry

 The registry name is "PPSPP Option Registry". Values are integers in
 the range 0-255, with initial assignments and reservations given in
 Table 2.

10.3. PPSPP Version Number Registry

 The registry name is "PPSPP Version Number Registry". Values are
 integers in the range 0-255, with initial assignments and
 reservations given in Table 3.

10.4. PPSPP Content Integrity Protection Method Registry

 The registry name is "PPSPP Content Integrity Protection Method
 Registry". Values are integers in the range 0-255, with initial
 assignments and reservations given in Table 4.

Bakker, et al. Standards Track [Page 62]

RFC 7574 PPSPP July 2015

10.5. PPSPP Merkle Hash Tree Function Registry

 The registry name is "PPSPP Merkle Hash Tree Function Registry".
 Values are integers in the range 0-255, with initial assignments and
 reservations given in Table 5.

10.6. PPSPP Chunk Addressing Method Registry

 The registry name is "PPSPP Chunk Addressing Method Registry".
 Values are integers in the range 0-255, with initial assignments and
 reservations given in Table 6.

11. Manageability Considerations

 This section presents operations and management considerations
 following the checklist in [RFC5706], Appendix A.

 In this section, "PPSPP client" is defined as a PPSPP peer acting on
 behalf of an end user which may not yet have a copy of the content,
 and "PPSPP server" as a PPSPP peer that provides the initial copies
 of the content to the swarm on behalf of a content provider.

11.1. Operations

11.1.1. Installation and Initial Setup

 A content provider wishing to use PPSPP to distribute content should
 set up at least one PPSPP server. PPSPP servers need to have access
 to either some static content or some live audio/video sources. To
 provide flexibility for implementors, this configuration process is
 not standardized. The output of this process will be a list of
 metadata records, one for each swarm. A metadata record consists of
 the swarm ID, the chunk size used, the chunk addressing method used,
 the content integrity protection method used, and the Merkle hash
 tree function used (if applicable). If automatic content size
 detection (see Section 5.6) is not used, the content length is also
 part of the metadata record for static content. Note the swarm ID
 already contains the Live Signature Algorithm used, in case of a live
 stream.

 In addition, a content provider should set up a tracking facility for
 the content by configuring, for example, a peer-to-peer streaming
 protocol tracker [PPSP-TP] or a Distributed Hash Table. The output
 of the latter process is a list of transport addresses for the
 tracking facility.

Bakker, et al. Standards Track [Page 63]

RFC 7574 PPSPP July 2015

 The list of metadata records of available content, and transport
 address for the tracking facility, can be distributed to users in
 various ways. Typically, they will be published on a website as
 links. When a user clicks such a link, the PPSPP client is launched,
 either as a standalone application or by invoking the browser’s
 internal PPSPP protocol handler, as exemplified in Section 2. The
 clients use the tracking facility to obtain the transport address of
 the PPSPP server(s) and other peers from the swarm, executing the
 peer protocol to retrieve and redistribute the content. The format
 of the PPSPP URLs should be defined in an extension document. The
 default protocol options should be exploited to keep the URLs small.

 The minimal information a tracking facility must return when queried
 for a list of peers for a swarm is as follows. Assuming the
 communication between tracking facility and requester is protected,
 the facility must at least return for each peer in the list its IP
 address, transport protocol identifier (i.e., UDP), and transport
 protocol port number.

11.1.2. Migration Path

 This document does not detail a migration path since there is no
 previous standard protocol providing similar functionality.

11.1.3. Requirements on Other Protocols and Functional Components

 When using the peer-to-peer streaming protocol tracker, PPSPP
 requires a specific behavior from this protocol for security reasons,
 as detailed in Section 12.2.

11.1.4. Impact on Network Operation

 PPSPP is a peer-to-peer protocol that takes advantage of the fact
 that content is available from multiple sources to improve
 robustness, scalability, and performance. At the same time, poor
 choices in determining which exact sources to use can lead to bad
 experience for the end user and high costs for network operators.
 Hence, PPSPP can benefit from the ALTO protocol to steer peer
 selection, as described in Section 3.10.1.

Bakker, et al. Standards Track [Page 64]

RFC 7574 PPSPP July 2015

11.1.5. Verifying Correct Operation

 PPSPP is operating correctly when all peers obtain the desired
 content on time. Therefore, the PPSPP client is the ideal location
 to verify the protocol’s correct operation. However, it is not
 feasible to mandate logging the behavior of PPSPP peers in all
 implementations and deployments, for example, due to privacy reasons.
 There are two alternative options:

 o Monitoring the PPSPP servers initially providing the content,
 using standard metrics such as bandwidth usage, peer connections,
 and activity, can help identify trouble, see next section and
 [RFC2564].

 o The tracker protocol [PPSP-TP] may be used to gather information
 about all peers in a swarm, to obtain a global view of operation,
 according to PPSP.OAM.REQ-3 in [RFC6972].

 Basic operation of the protocol can be easily verified when a tracker
 and swarm metadata are known by starting a PPSPP download. Deep
 packet inspection for DATA and ACK messages help to establish that
 actual content transfer is happening and that the chunk availability
 signaling and integrity checking are working.

11.1.6. Configuration

 Table 8 shows the PPSPP parameters, their defaults, and where the
 parameter is defined. For parameters that have no default, the table
 row contains the word "var" and refers to the section discussing the
 considerations to make when choosing a value.

Bakker, et al. Standards Track [Page 65]

RFC 7574 PPSPP July 2015

 +-------------------------+-----------------------+-----------------+
 | Name | Default | Definition |
 +-------------------------+-----------------------+-----------------+
Chunk Size	var, 1024 bytes	Section 8.1
	recommended	
Static Content	1 (Merkle Hash Tree)	Section 7.5
Integrity Protection		
Method		
Live Content Integrity	3 (Unified Merkle	Section 7.5
Protection Method	Tree)	
Merkle Hash Tree	2 (SHA-256)	Section 7.6
Function		
Live Signature	13 (ECDSAP256SHA256)	Section 7.7
Algorithm		
Chunk Addressing Method	2 (32-bit chunk	Section 7.8
	ranges)	
Live Discard Window	var	Section 6.2,
		Section 7.9
NCHUNKS_PER_SIG	var	Section 6.1.2.1
Dead peer detection	No reply in 3 minutes	Section 3.12
	+ 3 datagrams	
 +-------------------------+-----------------------+-----------------+

 Table 8: PPSPP Defaults

11.2. Management Considerations

 The management considerations for PPSPP are very similar to other
 protocols that are used for large-scale content distribution, in
 particular HTTP. How does one manage large numbers of servers? How
 does one push new content out to a server farm and allows staged
 releases? How are faults detected and how are servers and end-user
 performance measured? As standard solutions to these challenges are
 still being developed, this section cannot provide a definitive
 recommendation on how PPSPP should be managed. Hence, it describes
 the standard solutions available at this time and assumes a future
 extension document will provide more complete guidelines.

Bakker, et al. Standards Track [Page 66]

RFC 7574 PPSPP July 2015

11.2.1. Management Interoperability and Information

 As just stated, PPSPP servers providing initial copies of the content
 are akin to WWW and FTP servers. They can also be deployed in large
 numbers and thus can benefit from standard management facilities.
 Therefore, PPSPP servers may implement an SNMP management interface
 based on the APPLICATION-MIB [RFC2564], where the file object can be
 used to report on swarms.

 What is missing is the ability to remove or rate limit specific PPSPP
 swarms on a server. This corresponds to removing or limiting
 specific virtual servers on a web server. In other words, as
 multiple pieces of content (swarms, virtual WWW servers) are
 multiplexed onto a single server process, more fine-grained
 management of that process is required. This functionality is
 currently missing.

 Logging is an important functionality for PPSPP servers and,
 depending on the deployment, PPSPP clients. Logging should be done
 via syslog [RFC5424].

11.2.2. Fault Management

 The facilities for verifying correct operation and server management
 (just discussed) appear sufficient for PPSPP fault monitoring. This
 can be supplemented with host resource [RFC2790] and UDP/IP network
 monitoring [RFC4113], as PPSPP server failures can generally be
 attributed directly to conditions on the host or network.

 Since PPSPP has been designed to work in a hostile environment, many
 benign faults will be handled by the mechanisms used for managing
 attacks. For example, when a malfunctioning peer starts sending the
 wrong chunks, this is detected by the content integrity protection
 mechanism and another source is sought.

11.2.3. Configuration Management

 Large-scale deployments may benefit from a standard way of
 replicating a new piece of content on a set of initial PPSPP servers.
 This functionality may need to include controlled releasing, such
 that content becomes available only at a specific point in time
 (e.g., the release of a movie trailer). This functionality could be
 provided via NETCONF [RFC6241], to enable atomic configuration
 updates over a set of servers. Uploading the new content could be
 one configuration change, making the content available for download
 by the public another.

Bakker, et al. Standards Track [Page 67]

RFC 7574 PPSPP July 2015

11.2.4. Accounting Management

 Content providers may offer PPSPP hosting for different customers and
 will want to bill these customers, for example, based on bandwidth
 usage. This situation is a common accounting scenario, similar to
 billing per virtual server for web servers. PPSPP can therefore
 benefit from general standardization efforts in this area [RFC2975]
 when they come to fruition.

11.2.5. Performance Management

 Depending on the deployment scenarios, the application performance
 measurement facilities of [RFC3729] and associated [RFC4150] can be
 used with PPSPP.

 In addition, when the PPSPP tracker protocol is used, it provides a
 built-in, application-level, performance measurement infrastructure
 for different metrics. See PPSP.OAM.REQ-3 in [RFC6972].

11.2.6. Security Management

 Malicious peers should ideally be locked out long term. This is
 primarily for performance reasons, as the protocol is robust against
 attacks (see next section). Section 12.7 describes a procedure for
 long-term exclusion.

12. Security Considerations

 As any other network protocol, PPSPP faces a common set of security
 challenges. An implementation must consider the possibility of
 buffer overruns, DoS attacks and manipulation (i.e., reflection
 attacks). Any guarantee of privacy seems unlikely, as the user is
 exposing its IP address to the peers. A probable exception is the
 case of the user being hidden behind a public NAT or proxy. This
 section discusses the protocol’s security considerations in detail.

12.1. Security of the Handshake Procedure

 Borrowing from the analysis in [RFC5971], the PPSPP may be attacked
 with three types of denial-of-service attacks:

 1. DoS amplification attack: attackers try to use a PPSPP peer to
 generate more traffic to a victim.

 2. DoS flood attack: attackers try to deny service to other peers by
 allocating lots of state at a PPSPP peer.

Bakker, et al. Standards Track [Page 68]

RFC 7574 PPSPP July 2015

 3. Disrupt service to an individual peer: attackers send bogus,
 e.g., REQUEST and HAVE messages appearing to come from victim
 Peer A to the Peers B1..Bn serving that peer. This causes Peer A
 to receive chunks it did not request or to not receive the chunks
 it requested.

 The basic scheme to protect against these attacks is the use of a
 secure handshake procedure. In the UDP encapsulation, the handshake
 procedure is secured by the use of randomly chosen channel IDs as
 follows. The channel IDs must be generated following the
 requirements in [RFC4960] (Section 5.1.3).

 When UDP is used, all datagrams carrying PPSPP messages are prefixed
 with a 4-byte channel ID. These channel IDs are random numbers,
 established during the handshake phase as follows. Peer A initiates
 an exchange with Peer B by sending a datagram containing a HANDSHAKE
 message prefixed with the channel ID consisting of all zeros. Peer
 A’s HANDSHAKE contains a randomly chosen channel ID, chanA:

 A->B: chan0 + HANDSHAKE(chanA) + ...

 When Peer B receives this datagram, it creates some state for Peer A,
 that at least contains the channel ID chanA. Next, Peer B sends a
 response to Peer A, consisting of a datagram containing a HANDSHAKE
 message prefixed with the chanA channel ID. Peer B’s HANDSHAKE
 contains a randomly chosen channel ID, chanB.

 B->A: chanA + HANDSHAKE(chanB) + ...

 Peer A now knows that Peer B really responds, as it echoed chanA. So
 the next datagram that Peer A sends may already contain heavy
 payload, i.e., a chunk. This next datagram to Peer B will be
 prefixed with the chanB channel ID. When Peer B receives this
 datagram, both peers have the proof they are really talking to each
 other, the three-way handshake is complete. In other words, the
 randomly chosen channel IDs act as tags (cf. [RFC4960]
 (Section 5.1)).

 A->B: chanB + HAVE + DATA + ...

12.1.1. Protection against Attack 1

 In short, PPSPP does a so-called return routability check before
 heavy payload is sent. This means that attack 1 is fended off: PPSPP
 does not send back much more data than it received, unless it knows
 it is talking to a live peer. Attackers sending a spoofed HANDSHAKE
 to Peer B pretending to be Peer A now need to intercept the message

Bakker, et al. Standards Track [Page 69]

RFC 7574 PPSPP July 2015

 from Peer B to Peer A to get Peer B to send heavy payload, and ensure
 that that heavy payload goes to the victim, something assumed too
 hard to be a practical attack.

 Note the rule is that no heavy payload may be sent until the third
 datagram. This has implications for PPSPP implementations that use
 chunk addressing schemes that are verbose. If a PPSPP implementation
 uses large bitmaps to convey chunk availability, these may not be
 sent by Peer B in the second datagram.

12.1.2. Protection against Attack 2

 On receiving the first datagram Peer B will record some state about
 Peer A. At present, this state consists of the chanA channel ID, and
 the results of processing the other messages in the first datagram.
 In particular, if Peer A included some HAVE messages, Peer B may add
 a chunk availability map to Peer A’s state. In addition, Peer B may
 request some chunks from Peer A in the second datagram, and Peer B
 will maintain state about these outgoing requests.

 So presently, PPSPP is somewhat vulnerable to attack 2. An attacker
 could send many datagrams with HANDSHAKEs and HAVEs and thus allocate
 state at the PPSPP peer. Therefore, Peer A MUST respond immediately
 to the second datagram, if it is still interested in Peer B.

 The reason for using this slightly vulnerable three-way handshake
 instead of the safer handshake procedure of Stream Control
 Transmission Protocol (SCTP) [RFC4960] (Section 5.1) is quicker
 response time for the user. In the SCTP procedure, Peers A and B
 cannot request chunks until datagrams 3 and 4 respectively, as
 opposed to 2 and 1 in the proposed procedure. This means that the
 user has to wait less time in PPSPP between starting the video stream
 and seeing the first images.

12.1.3. Protection against Attack 3

 In general, channel IDs serve to authenticate a peer. Hence, to
 attack, a malicious Peer T would need to be able to eavesdrop on
 conversations between victim A and a benign Peer B to obtain the
 channel ID Peer B assigned to Peer A, chanB. Furthermore, attacker
 Peer T would need to be able to spoof, e.g., REQUEST and HAVE
 messages from Peer A to cause Peer B to send heavy DATA messages to
 Peer A, or prevent Peer B from sending them, respectively.

 The capability to eavesdrop is not common, so the protection afforded
 by channel IDs will be sufficient in most cases. If not, point-to-
 point encryption of traffic should be used, see below.

Bakker, et al. Standards Track [Page 70]

RFC 7574 PPSPP July 2015

12.2. Secure Peer Address Exchange

 As described in Section 3.10, Peer A can send Peer-Exchange messages
 PEX_RES to Peer B, which contain the IP address and port of other
 peers that are supposedly also in the current swarm. The strength of
 this mechanism is that it allows decentralized tracking: after an
 initial bootstrap, no central tracker is needed. The vulnerability
 of this mechanism (and DHTs) is that malicious peers can use it for
 an Amplification attack.

 In particular, a malicious Peer T could send PEX_RES messages to
 well-behaved Peer A with addresses of Peers B1..Bn; on receipt, Peer
 A could send a HANDSHAKE to all these peers. So, in the worst case,
 a single datagram results in N datagrams. The actual damage depends
 on Peer A’s behavior. For example, when Peer A already has
 sufficient connections, it may not connect to the offered ones at
 all; but if it is a fresh peer, it may connect to all directly.

 In addition, PEX can be used in Eclipse attacks [ECLIPSE] where
 malicious peers try to isolate a particular peer such that it only
 interacts with malicious peers. Let us distinguish two specific
 attacks:

 E1. Malicious peers try to eclipse the single injector in live
 streaming.

 E2. Malicious peers try to eclipse a specific consumer peer.

 Attack E1 has the most impact on the system as it would disrupt all
 peers.

12.2.1. Protection against the Amplification Attack

 If peer addresses are relatively stable, strong protection against
 the attack can be provided by using public key cryptography and
 certification. In particular, a PEX_REScert message will carry
 swarm-membership certificates rather than IP address and port. A
 membership certificate for Peer B states that Peer B at address
 (ipB,portB) is part of Swarm S at Time T and is cryptographically
 signed. The receiver Peer A can check the certificate for a valid
 signature, the right swarm and liveliness, and only then consider
 contacting Peer B. These swarm-membership certificates correspond to
 signed node descriptors in secure decentralized peer sampling
 services [SPS].

Bakker, et al. Standards Track [Page 71]

RFC 7574 PPSPP July 2015

 Several designs are possible for the security environment for these
 membership certificates. That is, there are different designs
 possible for who signs the membership certificates and how public
 keys are distributed. As an example, we describe a design where the
 peer-to-peer streaming protocol tracker acts as certification
 authority.

12.2.2. Example: Tracker as Certification Authority

 Peer A wanting to join Swarm S sends a certificate request message to
 a Tracker X for that swarm. Upon receipt, the tracker creates a
 membership certificate from the request with Swarm ID S, a Timestamp
 T, and the external IP and port it received the message from, signed
 with the tracker’s private key. This certificate is returned to Peer
 A.

 Peer A then includes this certificate when it sends a PEX_REScert to
 Peer B. Receiver Peer B verifies it against the tracker public key.
 This tracker public key should be part of the swarm’s metadata, which
 Peer B received from a trusted source. Subsequently, Peer B can send
 the member certificate of Peer A to other peers in PEX_REScert
 messages.

 Peer A can send the certification request when it first contacts the
 tracker or at a later time. Furthermore, the responses the tracker
 sends could contain membership certificates instead of plain
 addresses, such that they can be gossiped securely as well.

 We assume the tracker is protected against attacks and does a return
 routability check. The latter ensures that malicious peers cannot
 obtain a certificate for a random host, just for hosts where they can
 eavesdrop on incoming traffic.

 The load generated on the tracker depends on churn and the lifetime
 of a certificate. Certificates can be fairly long lived, given that
 the main goal of the membership certificates is to prevent that
 malicious Peer T can cause good Peer A to contact *random* hosts.
 The freshness of the timestamp just adds extra protection in addition
 to achieving that goal. It protects against malicious hosts causing
 a good Peer A to contact hosts that previously participated in the
 swarm.

 The membership certificate mechanism itself can be used for a kind of
 amplification attack against good peers. Malicious Peer T can cause
 Peer A to spend some CPU to verify the signatures on the membership
 certificates that Peer T sends. To counter this, Peer A SHOULD check
 a few of the certificates sent and discard the rest if they are
 defective.

Bakker, et al. Standards Track [Page 72]

RFC 7574 PPSPP July 2015

 The same membership certificates described above can be registered in
 a Distributed Hash Table that has been secured against the well-known
 DHT specific attacks [SECDHTS].

 Note that this scheme does not work for peers behind a symmetric
 Network Address Translator, but neither does normal tracker
 registration.

12.2.3. Protection against Eclipse Attacks

 Before we can discuss Eclipse attacks, we first need to establish the
 security properties of the central tracker. A tracker is vulnerable
 to Amplification attacks, too. A malicious Peer T could register a
 victim Peer B with the tracker, and many peers joining the swarm will
 contact Peer B. Trackers can also be used in Eclipse attacks. If
 many malicious peers register themselves at the tracker, the
 percentage of bad peers in the returned address list may become high.
 Leaving the protection of the tracker to the peer-to-peer streaming
 protocol tracker specification [PPSP-TP], we assume for the following
 discussion that it returns a true random sample of the actual swarm
 membership (achieved via Sybil attack protection). This means that
 if 50% of the peers are bad, you’ll still get 50% good addresses from
 the tracker.

 Attack E1 on PEX can be fended off by letting live injectors disable
 PEX -- or at least, letting live injectors ensure that part of their
 connections are to peers whose addresses came from the trusted
 tracker.

 The same measures defend against attack E2 on PEX. They can also be
 employed dynamically. When the current set of Peers B that Peer A is
 connected to doesn’t provide good quality of service, Peer A can
 contact the tracker to find new candidates.

12.3. Support for Closed Swarms

 Regarding PPSP.SEC.REQ-1 in [RFC6972], the Closed Swarms [CLOSED] and
 Enhanced Closed Swarms [ECS] mechanisms provide swarm-level access
 control. The basic idea is that a peer cannot download from another
 peer unless it shows a Proof-of-Access. Enhanced Closed Swarms
 improve on the original Closed Swarms by adding on-the-wire
 encryption against man-in-the-middle attacks and more flexible access
 control rules.

 The exact mapping of ECS to PPSPP is defined in [ECS-protocol].

Bakker, et al. Standards Track [Page 73]

RFC 7574 PPSPP July 2015

12.4. Confidentiality of Streamed Content

 Regarding PPSP.SEC.REQ-1 in [RFC6972], no extra mechanism is needed
 to support confidentiality in PPSPP. A content publisher wishing
 confidentiality should just distribute content in ciphertext and/or
 in a format to which Digital Rights Management (DRM) techniques have
 been applied. In that case, it is assumed a higher layer handles key
 management out-of-band. Alternatively, pure point-to-point
 encryption of content and traffic can be provided by the proposed
 Closed Swarms access control mechanism, by DTLS [RFC6347], or by
 IPsec [RFC4301].

 When transmitting over DTLS, PPSPP can obtain the PMTU estimate
 maintained by the IP layer to determine how much payload can be put
 in a single datagram without fragmentation ([RFC6347],
 Section 4.1.1.1). If PMTU changes and the chunk size becomes too
 large to fit into a single datagram, PPSPP can choose to allow
 fragmentation by clearing the Don’t Fragment (DF) bit.
 Alternatively, the content publisher can decide to use smaller chunks
 and transmit multiple in the same datagram when the MTU allows.

12.5. Strength of the Hash Function for Merkle Hash Trees

 Implementations MUST support SHA-1 as the hash function for content
 integrity protection via Merkle hash trees. SHA-1 may be preferred
 over stronger hash functions by content providers because it reduces
 on-the-wire overhead. As such, it presents a trade-off between
 performance and security. The security considerations for SHA-1 are
 discussed in [RFC6194].

 In general, note that the hash function is used in a hash tree, which
 makes it more complex to create collisions. In particular, if
 attackers manage to find a collision for a hash, it can replace just
 one chunk, so the impact is limited. If fixed-size chunks are used,
 the collision even has to be of the same size as the original chunk.
 For hashes higher up in the hash tree, a collision must be a
 concatenation of two hashes. In sum, finding collisions that fit
 with the hash tree are generally harder to find than regular
 collisions.

12.6. Limit Potential Damage and Resource Exhaustion by Bad or Broken
 Peers

 Regarding PPSP.SEC.REQ-2 in [RFC6972], this section provides an
 analysis of the potential damage a malicious peer can do with each
 message in the protocol, and how it is prevented by the protocol
 (implementation).

Bakker, et al. Standards Track [Page 74]

RFC 7574 PPSPP July 2015

12.6.1. HANDSHAKE

 o Secured against DoS Amplification attacks as described in
 Section 12.1.

 o Threat HS.1: An Eclipse attack where Peers T1..Tn fill all
 connection slots of Peer A by initiating the connection to Peer A.

 Solution: Peer A must not let other peers fill all its available
 connection slots, i.e., Peer A must initiate connections itself
 too, to prevent isolation.

12.6.2. HAVE

 o Threat HAVE.1: Malicious Peer T can claim to have content that it
 does not. Subsequently, Peer T won’t respond to requests.

 Solution: Peer A will consider Peer T to be a slow peer and not
 ask it again.

 o Threat HAVE.2: Malicious Peer T can claim not to have content.
 Hence, it won’t contribute.

 Solution: Peer and chunk selection algorithms external to the
 protocol will implement fairness and provide sharing incentives.

12.6.3. DATA

 o Threat DATA.1: Peer T sending bogus chunks.

 Solution: The content integrity protection schemes defend against
 this.

 o Threat DATA.2: Peer T sends Peer A unrequested chunks.

 To protect against this threat we need network-level DoS
 prevention.

12.6.4. ACK

 o Threat ACK.1: Peer T acknowledges wrong chunks.

 Solution: Peer A will detect inconsistencies with the data it sent
 to Peer T.

 o Threat ACK.2: Peer T modifies timestamp in ACK to Peer A used for
 time-based congestion control.

Bakker, et al. Standards Track [Page 75]

RFC 7574 PPSPP July 2015

 Solution: In theory, by decreasing the timestamp, Peer T could
 fake that there is no congestion when in fact there is, causing
 Peer A to send more data than it should. [RFC6817] does not list
 this as a security consideration. Possibly, this attack can be
 detected by the large resulting asymmetry between round-trip time
 and measured one-way delay.

12.6.5. INTEGRITY and SIGNED_INTEGRITY

 o Threat INTEGRITY.1: An amplification attack where Peer T sends
 bogus INTEGRITY or SIGNED_INTEGRITY messages, causing Peer A to
 checks hashes or signatures, thus spending CPU unnecessarily.

 Solution: If the hashes/signatures don’t check out, Peer A will
 stop asking Peer T because of the atomic datagram principle and
 the content integrity protection. Subsequent unsolicited traffic
 from Peer T will be ignored.

 o Threat INTEGRITY.2: An attack where Peer T sends old
 SIGNED_INTEGRITY messages in the Unified Merkle Tree scheme,
 trying to make Peer A tune in at a past point in the live stream.

 Solution: The timestamp in the SIGNED_INTEGRITY message protects
 against such replays. Subsequent traffic from Peer T will be
 ignored.

12.6.6. REQUEST

 o Threat REQUEST.1: Peer T could request lots from Peer A, leaving
 Peer A without resources for others.

 Solution: A limit is imposed on the upload capacity a single peer
 can consume, for example, by using an upload bandwidth scheduler
 that takes into account the need of multiple peers. A natural
 upper limit of this upload quotum is the bitrate of the content,
 taking into account that this may be variable.

12.6.7. CANCEL

 o Threat CANCEL.1: Peer T sends CANCEL messages for content it never
 requested to Peer A.

 Solution: Peer A will detect the inconsistency of the messages and
 ignore them. Note that CANCEL messages may be received
 unexpectedly when a transport is used where REQUEST messages may
 be lost or reordered with respect to the subsequent CANCELs.

Bakker, et al. Standards Track [Page 76]

RFC 7574 PPSPP July 2015

12.6.8. CHOKE

 o Threat CHOKE.1: Peer T sends REQUEST messages after Peer A sent
 Peer B a CHOKE message.

 Solution: Peer A will just discard the unwanted REQUESTs and
 resend the CHOKE, assuming it got lost.

12.6.9. UNCHOKE

 o Threat UNCHOKE.1: Peer T sends an UNCHOKE message to Peer A
 without having sent a CHOKE message before.

 Solution: Peer A can easily detect this violation of protocol
 state, and ignore it. Note this can also happen due to loss of a
 CHOKE message sent by a benign peer.

 o Threat UNCHOKE.2: Peer T sends an UNCHOKE message to Peer A, but
 subsequently does not respond to its REQUESTs.

 Solution: Peer A will consider Peer T to be a slow peer and not
 ask it again.

12.6.10. PEX_RES

 o Secured against amplification and Eclipse attacks as described in
 Section 12.2.

12.6.11. Unsolicited Messages in General

 o Threat: Peer T could send a spoofed PEX_REQ or REQUEST from Peer B
 to Peer A, causing Peer A to send a PEX_RES/DATA to Peer B.

 Solution: the message from Peer T won’t be accepted unless Peer T
 does a handshake first, in which case the reply goes to Peer T,
 not victim Peer B.

12.7. Exclude Bad or Broken Peers

 This section is regarding PPSP.SEC.REQ-2 in [RFC6972]. A receiving
 peer can detect malicious or faulty senders as just described, which
 it can then subsequently ignore. However, excluding such a bad peer
 from the system completely is complex. Random monitoring by trusted
 peers that would blacklist bad peers as described in [DETMAL] is one
 option. This mechanism does require extra capacity to run such
 trusted peers, which must be indistinguishable from regular peers,
 and requires a solution for the timely distribution of this blacklist
 to peers in a scalable manner.

Bakker, et al. Standards Track [Page 77]

RFC 7574 PPSPP July 2015

13. References

13.1. Normative References

 [CCITT.X690.2002]
 International Telephone and Telegraph Consultative
 Committee, "ASN.1 encoding rules: Specification of basic
 encoding Rules (BER), Canonical encoding rules (CER) and
 Distinguished encoding rules (DER)", CCITT Recommendation
 X.690, July 2002.

 [FIPS180-4]
 National Institute of Standards and Technology,
 Information Technology Laboratory, "Federal Information
 Processing Standards: Secure Hash Standard (SHS)", FIPS
 PUB 180-4, March 2012.

 [IANADNSSECALGNUM]
 IANA, "Domain Name System Security (DNSSEC) Algorithm
 Numbers", March 2014,
 <http://www.iana.org/assignments/dns-sec-alg-numbers>.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., J. de Groot,
 G., and E. Lear, "Address Allocation for Private
 Internets", BCP 5, RFC 1918, DOI 10.17487/RFC1918,
 February 1996, <http://www.rfc-editor.org/info/rfc1918>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3110] Eastlake 3rd, D., "RSA/SHA-1 SIGs and RSA KEYs in the
 Domain Name System (DNS)", RFC 3110, DOI 10.17487/RFC3110,
 May 2001, <http://www.rfc-editor.org/info/rfc3110>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <http://www.rfc-editor.org/info/rfc4034>.

Bakker, et al. Standards Track [Page 78]

RFC 7574 PPSPP July 2015

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <http://www.rfc-editor.org/info/rfc5280>.

 [RFC5702] Jansen, J., "Use of SHA-2 Algorithms with RSA in DNSKEY
 and RRSIG Resource Records for DNSSEC", RFC 5702,
 DOI 10.17487/RFC5702, October 2009,
 <http://www.rfc-editor.org/info/rfc5702>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

 [RFC6605] Hoffman, P. and W. Wijngaards, "Elliptic Curve Digital
 Signature Algorithm (DSA) for DNSSEC", RFC 6605,
 DOI 10.17487/RFC6605, April 2012,
 <http://www.rfc-editor.org/info/rfc6605>.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 DOI 10.17487/RFC6817, December 2012,
 <http://www.rfc-editor.org/info/rfc6817>.

13.2. Informative References

 [ABMRKL] Bakker, A., "Merkle hash torrent extension", BitTorrent
 Enhancement Proposal 30, March 2009,
 <http://bittorrent.org/beps/bep_0030.html>.

 [BINMAP] Grishchenko, V. and J. Pouwelse, "Binmaps: Hybridizing
 Bitmaps and Binary Trees", Delft University of Technology
 Parallel and Distributed Systems Report Series, Report
 number PDS-2011-005, ISSN 1387-2109, April 2009.

 [BITOS] Vlavianos, A., Iliofotou, M., Mathieu, F., and M.
 Faloutsos, "BiToS: Enhancing BitTorrent for Supporting
 Streaming Applications", IEEE INFOCOM Global Internet
 Symposium, Barcelona, Spain, April 2006.

Bakker, et al. Standards Track [Page 79]

RFC 7574 PPSPP July 2015

 [BITTORRENT]
 Cohen, B., "The BitTorrent Protocol Specification",
 BitTorrent Enhancement Proposal 3, February 2008,
 <http://bittorrent.org/beps/bep_0003.html>.

 [CLOSED] Borch, N., Mitchell, K., Arntzen, I., and D. Gabrijelcic,
 "Access Control to BitTorrent Swarms Using Closed Swarms",
 ACM workshop on Advanced Video Streaming Techniques for
 Peer-to-Peer Networks and Social Networking (AVSTP2P ’10),
 Florence, Italy, October 2010,
 <http://doi.acm.org/10.1145/1877891.1877898>.

 [DETMAL] Shetty, S., Galdames, P., Tavanapong, W., and Ying. Cai,
 "Detecting Malicious Peers in Overlay Multicast
 Streaming", IEEE Conference on Local Computer Networks,
 (LCN’06), Tampa, FL, USA, November 2006.

 [ECLIPSE] Sit, E. and R. Morris, "Security Considerations for Peer-
 to-Peer Distributed Hash Tables", IPTPS ’01: Revised
 Papers from the First International Workshop on Peer-to-
 Peer Systems, pp. 261-269, Springer-Verlag, 2002.

 [ECS] Jovanovikj, V., Gabrijelcic, D., and T. Klobucar, "Access
 Control in BitTorrent P2P Networks Using the Enhanced
 Closed Swarms Protocol", International Conference on
 Emerging Security Information, Systems and Technologies
 (SECURWARE 2011), pp. 97-102, Nice, France, August 2011.

 [ECS-protocol]
 Gabrijelcic, D., "Enhanced Closed Swarm protocol", Work in
 Progress, draft-ppsp-gabrijelcic-ecs-01, June 2013.

 [EPLIVEPERF]
 Bonald, T., Massoulie, L., Mathieu, F., Perino, D., and A.
 Twigg, "Epidemic live streaming: optimal performance
 trade-offs", Proceedings of the 2008 ACM SIGMETRICS
 International Conference on Measurement and Modeling of
 Computer Systems, Annapolis, MD, USA, June 2008.

 [GIVE2GET] Mol, J., Pouwelse, J., Meulpolder, M., Epema, D., and H.
 Sips, "Give-to-Get: Free-riding-resilient Video-on-Demand
 in P2P Systems", Proceedings Multimedia Computing and
 Networking conference (Proceedings of SPIE, Vol. 6818),
 San Jose, CA, USA, January 2008.

Bakker, et al. Standards Track [Page 80]

RFC 7574 PPSPP July 2015

 [HAC01] Menezes, A., van Oorschot, P., and S. Vanstone, "Handbook
 of Applied Cryptography", CRC Press, (Fifth Printing,
 August 2001), October 1996.

 [JIM11] Jimenez, R., Osmani, F., and B. Knutsson, "Sub-Second
 Lookups on a Large-Scale Kademlia-Based Overlay", IEEE
 International Conference on Peer-to-Peer Computing
 (P2P’11), Kyoto, Japan, August 2011.

 [LBT] Rossi, D., Testa, C., Valenti, S., and L. Muscariello,
 "LEDBAT: the new BitTorrent congestion control protocol",
 Computer Communications and Networks (ICCCN), Zurich,
 Switzerland, August 2010.

 [LCOMPL] Testa, C. and D. Rossi, "On the impact of uTP on
 BitTorrent completion time", IEEE International Conference
 on Peer-to-Peer Computing (P2P’11), Kyoto, Japan, August
 2011.

 [MERKLE] Merkle, R., "Secrecy, Authentication, and Public Key
 Systems", Ph.D. thesis, Dept. of Electrical Engineering,
 Stanford University, CA, USA, pp 40-45, 1979.

 [P2PWIKI] Bakker, A., Petrocco, R., Dale, M., Gerber, J.,
 Grishchenko, V., Rabaioli, D., and J. Pouwelse, "Online
 video using BitTorrent and HTML5 applied to Wikipedia",
 IEEE International Conference on Peer-to-Peer Computing
 (P2P’10), Delft, The Netherlands, August 2010.

 [POLLIVE] Dhungel, P., Hei, Xiaojun., Ross, K., and N. Saxena,
 "Pollution in P2P Live Video Streaming", International
 Journal of Computer Networks & Communications (IJCNC) Vol.
 1, No. 2, Jul 2009.

 [PPSP-TP] Cruz, R., Nunes, M., Yingjie, G., Xia, J., Huang, R.,
 Taveira, J., and D. Lingli, "PPSP Tracker Protocol-Base
 Protocol (PPSP-TP/1.0)", Work in Progress,
 draft-ietf-ppsp-base-tracker-protocol-09, March 2015.

 [PPSPPERF] Petrocco, R., Pouwelse, J., and D. Epema, "Performance
 Analysis of the Libswift P2P Streaming Protocol", IEEE
 International Conference on Peer-to-Peer Computing
 (P2P’12), Tarragona, Spain, September 2012.

Bakker, et al. Standards Track [Page 81]

RFC 7574 PPSPP July 2015

 [RFC2564] Kalbfleisch, C., Krupczak, C., Presuhn, R., and J.
 Saperia, "Application Management MIB", RFC 2564,
 DOI 10.17487/RFC2564, May 1999,
 <http://www.rfc-editor.org/info/rfc2564>.

 [RFC2790] Waldbusser, S. and P. Grillo, "Host Resources MIB", RFC
 2790, DOI 10.17487/RFC2790, March 2000,
 <http://www.rfc-editor.org/info/rfc2790>.

 [RFC2975] Aboba, B., Arkko, J., and D. Harrington, "Introduction to
 Accounting Management", RFC 2975, DOI 10.17487/RFC2975,
 October 2000, <http://www.rfc-editor.org/info/rfc2975>.

 [RFC3365] Schiller, J., "Strong Security Requirements for Internet
 Engineering Task Force Standard Protocols", BCP 61, RFC
 3365, DOI 10.17487/RFC3365, August 2002,
 <http://www.rfc-editor.org/info/rfc3365>.

 [RFC3729] Waldbusser, S., "Application Performance Measurement MIB",
 RFC 3729, DOI 10.17487/RFC3729, March 2004,
 <http://www.rfc-editor.org/info/rfc3729>.

 [RFC4113] Fenner, B. and J. Flick, "Management Information Base for
 the User Datagram Protocol (UDP)", RFC 4113,
 DOI 10.17487/RFC4113, June 2005,
 <http://www.rfc-editor.org/info/rfc4113>.

 [RFC4150] Dietz, R. and R. Cole, "Transport Performance Metrics
 MIB", RFC 4150, DOI 10.17487/RFC4150, August 2005,
 <http://www.rfc-editor.org/info/rfc4150>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <http://www.rfc-editor.org/info/rfc4193>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <http://www.rfc-editor.org/info/rfc4301>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <http://www.rfc-editor.org/info/rfc4821>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <http://www.rfc-editor.org/info/rfc4960>.

Bakker, et al. Standards Track [Page 82]

RFC 7574 PPSPP July 2015

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008,
 <http://www.rfc-editor.org/info/rfc5389>.

 [RFC5424] Gerhards, R., "The Syslog Protocol", RFC 5424,
 DOI 10.17487/RFC5424, March 2009,
 <http://www.rfc-editor.org/info/rfc5424>.

 [RFC5706] Harrington, D., "Guidelines for Considering Operations and
 Management of New Protocols and Protocol Extensions", RFC
 5706, DOI 10.17487/RFC5706, November 2009,
 <http://www.rfc-editor.org/info/rfc5706>.

 [RFC5971] Schulzrinne, H. and R. Hancock, "GIST: General Internet
 Signalling Transport", RFC 5971, DOI 10.17487/RFC5971,
 October 2010, <http://www.rfc-editor.org/info/rfc5971>.

 [RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
 Considerations for the SHA-0 and SHA-1 Message-Digest
 Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
 <http://www.rfc-editor.org/info/rfc6194>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6709] Carpenter, B., Aboba, B., Ed., and S. Cheshire, "Design
 Considerations for Protocol Extensions", RFC 6709,
 DOI 10.17487/RFC6709, September 2012,
 <http://www.rfc-editor.org/info/rfc6709>.

 [RFC6972] Zhang, Y. and N. Zong, "Problem Statement and Requirements
 of the Peer-to-Peer Streaming Protocol (PPSP)", RFC 6972,
 DOI 10.17487/RFC6972, July 2013,
 <http://www.rfc-editor.org/info/rfc6972>.

Bakker, et al. Standards Track [Page 83]

RFC 7574 PPSPP July 2015

 [RFC7285] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
 Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
 "Application-Layer Traffic Optimization (ALTO) Protocol",
 RFC 7285, DOI 10.17487/RFC7285, September 2014,
 <http://www.rfc-editor.org/info/rfc7285>.

 [SECDHTS] Urdaneta, G., Pierre, G., and M. van Steen, "A Survey of
 DHT Security Techniques", ACM Computing Surveys,
 vol. 43(2), January 2011.

 [SIGMCAST]
 Wong, C. and S. Lam, "Digital Signatures for Flows and
 Multicasts", IEEE/ACM Transactions on Networking 7(4),
 pp. 502-513, August 1999.

 [SPS] Jesi, G., Montresor, A., and M. van Steen, "Secure Peer
 Sampling", Computer Networks vol. 54(12), pp. 2086-2098,
 Elsevier, August 2010.

 [SWIFTIMPL]
 Grishchenko, V., Paananen, J., Pronchenkov, A., Bakker,
 A., and R. Petrocco, "Swift reference implementation",
 2015, <https://github.com/libswift/libswift>.

 [TIT4TAT] Cohen, B., "Incentives Build Robustness in BitTorrent",
 1st Workshop on Economics of Peer-to-Peer Systems,
 Berkeley, CA, USA, May 2003.

Acknowledgements

 Arno Bakker, Riccardo Petrocco, and Victor Grishchenko are partially
 supported by the P2P-Next project <http://www.p2p-next.org/>, a
 research project supported by the European Community under its 7th
 Framework Programme (grant agreement no. 216217). The views and
 conclusions contained herein are those of the authors and should not
 be interpreted as necessarily representing the official policies or
 endorsements, either expressed or implied, of the P2P-Next project or
 the European Commission.

 PPSPP was designed by Victor Grishchenko at Technische Universiteit
 Delft under supervision of Johan Pouwelse. The authors would like to
 thank the following people for their contributions to this document:
 the chairs (Martin Stiemerling, Yunfei Zhang, Stefano Previdi, and
 Ning Zong) and members of the IETF PPSP working group, and Mihai
 Capota, Raul Jimenez, Flutra Osmani, and Raynor Vliegendhart.

Bakker, et al. Standards Track [Page 84]

RFC 7574 PPSPP July 2015

Authors’ Addresses

 Arno Bakker
 Vrije Universiteit Amsterdam
 De Boelelaan 1081
 Amsterdam 1081HV
 The Netherlands

 Email: arno@cs.vu.nl

 Riccardo Petrocco
 Technische Universiteit Delft
 Mekelweg 4
 Delft 2628CD
 The Netherlands

 Email: r.petrocco@gmail.com

 Victor Grishchenko
 Technische Universiteit Delft
 Mekelweg 4
 Delft 2628CD
 The Netherlands

 Email: victor.grishchenko@gmail.com

Bakker, et al. Standards Track [Page 85]

