
Internet Engineering Task Force (IETF) J. Maenpaa
Request for Comments: 7363 G. Camarillo
Category: Standards Track Ericsson
ISSN: 2070-1721 September 2014

 Self-Tuning Distributed Hash Table (DHT)
 for REsource LOcation And Discovery (RELOAD)

Abstract

 REsource LOcation And Discovery (RELOAD) is a peer-to-peer (P2P)
 signaling protocol that provides an overlay network service. Peers
 in a RELOAD overlay network collectively run an overlay algorithm to
 organize the overlay and to store and retrieve data. This document
 describes how the default topology plugin of RELOAD can be extended
 to support self-tuning, that is, to adapt to changing operating
 conditions such as churn and network size.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7363.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Maenpaa & Camarillo Standards Track [Page 1]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

Table of Contents

 1. Introduction ..2
 2. Terminology ...3
 3. Introduction to Stabilization in DHTs5
 3.1. Reactive versus Periodic Stabilization5
 3.2. Configuring Periodic Stabilization6
 3.3. Adaptive Stabilization7
 4. Introduction to Chord ...7
 5. Extending Chord-Reload to Support Self-Tuning9
 5.1. Update Requests ..9
 5.2. Neighbor Stabilization10
 5.3. Finger Stabilization11
 5.4. Adjusting Finger Table Size11
 5.5. Detecting Partitioning11
 5.6. Leaving the Overlay11
 6. Self-Tuning Chord Parameters12
 6.1. Estimating Overlay Size12
 6.2. Determining Routing Table Size13
 6.3. Estimating Failure Rate13
 6.3.1. Detecting Failures14
 6.4. Estimating Join Rate14
 6.5. Estimate Sharing ..15
 6.6. Calculating the Stabilization Interval17
 7. Overlay Configuration Document Extension17
 8. Security Considerations ..18
 9. IANA Considerations ..18
 9.1. Message Extensions ..18
 9.2. New Overlay Algorithm Type19
 9.3. A New IETF XML Registry19
 10. Acknowledgments ...19
 11. References ..19
 11.1. Normative References19
 11.2. Informative References20

1. Introduction

 REsource LOcation And Discovery (RELOAD) [RFC6940] is a peer-to-peer
 signaling protocol that can be used to maintain an overlay network
 and to store data in and retrieve data from the overlay. For
 interoperability reasons, RELOAD specifies one overlay algorithm,
 called "chord-reload", that is mandatory to implement. This document
 extends the chord-reload algorithm by introducing self-tuning
 behavior.

 DHT-based overlay networks are self-organizing, scalable, and
 reliable. However, these features come at a cost: peers in the
 overlay network need to consume network bandwidth to maintain routing

Maenpaa & Camarillo Standards Track [Page 2]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 state. Most DHTs use a periodic stabilization routine to counter the
 undesirable effects of churn on routing. To configure the parameters
 of a DHT, some characteristics such as churn rate and network size
 need to be known in advance. These characteristics are then used to
 configure the DHT in a static fashion by using fixed values for
 parameters such as the size of the successor set, size of the routing
 table, and rate of maintenance messages. The problem with this
 approach is that it is not possible to achieve a low failure rate and
 a low communication overhead by using fixed parameters. Instead, a
 better approach is to allow the system to take into account the
 evolution of network conditions and adapt to them.

 This document extends the mandatory-to-implement chord-reload
 algorithm by making it self-tuning. The use of the self-tuning
 feature is optional. However, when used, it needs to be supported by
 all peers in the RELOAD overlay network. The fact that a RELOAD
 overlay uses the self-tuning feature is indicated in the RELOAD
 overlay configuration document using the CHORD-SELF-TUNING algorithm
 name specified in Section 9.2 in the topology-plugin element. Two
 main advantages of self-tuning are that users no longer need to tune
 every DHT parameter correctly for a given operating environment and
 that the system adapts to changing operating conditions.

 The remainder of this document is structured as follows: Section 2
 provides definitions of terms used in this document. Section 3
 discusses alternative approaches to stabilization operations in DHTs,
 including reactive stabilization, periodic stabilization, and
 adaptive stabilization. Section 4 gives an introduction to the Chord
 DHT algorithm. Section 5 describes how this document extends the
 stabilization routine of the chord-reload algorithm. Section 6
 describes how the stabilization rate and routing table size are
 calculated in an adaptive fashion.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 This document uses terminology and definitions from the RELOAD base
 specification [RFC6940].

 numBitsInNodeId: Specifies the number of bits in a RELOAD Node-ID.

 DHT: Distributed Hash Tables are a class of decentralized
 distributed systems that provide a lookup service similar to a
 regular hash table. Given a key, any peer participating in the

Maenpaa & Camarillo Standards Track [Page 3]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 system can retrieve the value associated with that key. The
 responsibility for maintaining the mapping from keys to values is
 distributed among the peers.

 Chord Ring: The Chord DHT uses ring topology and orders identifiers
 on an identifier circle of size 2^numBitsInNodeId. This
 identifier circle is called the Chord ring. On the Chord ring,
 the responsibility for a key k is assigned to the node whose
 identifier equals to or immediately follows k.

 Finger Table: A data structure with up to (but typically less than)
 numBitsInNodeId entries maintained by each peer in a Chord-based
 overlay. The ith entry in the finger table of peer n contains the
 identity of the first peer that succeeds n by at least
 2^(numBitsInNodeId-i) on the Chord ring. This peer is called the
 ith finger of peer n. As an example, the first entry in the
 finger table of peer n contains a peer halfway around the Chord
 ring from peer n. The purpose of the finger table is to
 accelerate lookups.

 n.id: In this document, this abbreviation is used to refer to the
 Node-ID of peer n.

 O(g(n)): Informally, saying that some equation f(n) = O(g(n)) means
 that f(n) is less than some constant multiple of g(n). For the
 formal definition, please refer to [Weiss1998].

 Omega(g(n)): Informally, saying that some equation f(n) =
 Omega(g(n)) means that f(n) is more than some constant multiple of
 g(n). For the formal definition, please refer to [Weiss1998].

 Percentile: The Pth (0<=P<=100) percentile of N values arranged in
 ascending order is obtained by first calculating the (ordinal)
 rank n=(P/100)*N, rounding the result to the nearest integer and
 then taking the value corresponding to that rank.

 Predecessor List: A data structure containing the first r
 predecessors of a peer on the Chord ring.

 Successor List: A data structure containing the first r successors
 of a peer on the Chord ring.

 Neighborhood Set: A term used to refer to the set of peers included
 in the successor and predecessor lists of a given peer.

Maenpaa & Camarillo Standards Track [Page 4]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 Routing Table: Contents of a given peer’s routing table include the
 set of peers that the peer can use to route overlay messages. The
 routing table is made up of the finger table, successor list, and
 predecessor list.

3. Introduction to Stabilization in DHTs

 DHTs use stabilization routines to counter the undesirable effects of
 churn on routing. The purpose of stabilization is to keep the
 routing information of each peer in the overlay consistent with the
 constantly changing overlay topology. There are two alternative
 approaches to stabilization: periodic and reactive [Rhea2004].
 Periodic stabilization can either use a fixed stabilization rate or
 calculate the stabilization rate in an adaptive fashion.

3.1. Reactive versus Periodic Stabilization

 In reactive stabilization, a peer reacts to the loss of a peer in its
 neighborhood set or to the appearance of a new peer that should be
 added to its neighborhood set by sending a copy of its neighbor table
 to all peers in the neighborhood set. Periodic recovery, in
 contrast, takes place independently of changes in the neighborhood
 set. In periodic recovery, a peer periodically shares its
 neighborhood set with each or a subset of the members of that set.

 The chord-reload algorithm [RFC6940] supports both reactive and
 periodic stabilization. It has been shown in [Rhea2004] that
 reactive stabilization works well for small neighborhood sets (i.e.,
 small overlays) and moderate churn. However, in large-scale (e.g.,
 1000 peers or more [Rhea2004]) or high-churn overlays, reactive
 stabilization runs the risk of creating a positive feedback cycle,
 which can eventually result in congestion collapse. In [Rhea2004],
 it is shown that a 1000-peer overlay under churn uses significantly
 less bandwidth and has lower latencies when periodic stabilization is
 used than when reactive stabilization is used. Although in the
 experiments carried out in [Rhea2004], reactive stabilization
 performed well when there was no churn, its bandwidth use was
 observed to jump dramatically under churn. At higher churn rates and
 larger scale overlays, periodic stabilization uses less bandwidth and
 the resulting lower contention for the network leads to lower
 latencies. For this reason, most DHTs, such as CAN [CAN], Chord
 [Chord], Pastry [Pastry], and Bamboo [Rhea2004], use periodic
 stabilization [Ghinita2006]. As an example, the first version of
 Bamboo used reactive stabilization, which caused Bamboo to suffer
 from degradation in performance under churn. To fix this problem,
 Bamboo was modified to use periodic stabilization.

Maenpaa & Camarillo Standards Track [Page 5]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 In Chord, periodic stabilization is typically done both for
 successors and fingers. An alternative strategy is analyzed in
 [Krishnamurthy2008]. In this strategy, called the "correction-on-
 change maintenance strategy", a peer periodically stabilizes its
 successors but does not do so for its fingers. Instead, finger
 pointers are stabilized in a reactive fashion. The results obtained
 in [Krishnamurthy2008] imply that although the correction-on-change
 strategy works well when churn is low, periodic stabilization
 outperforms the correction-on-change strategy when churn is high.

3.2. Configuring Periodic Stabilization

 When periodic stabilization is used, one faces the problem of
 selecting an appropriate execution rate for the stabilization
 procedure. If the execution rate of periodic stabilization is high,
 changes in the system can be quickly detected, but at the
 disadvantage of increased communication overhead. Alternatively, if
 the stabilization rate is low and the churn rate is high, routing
 tables become inaccurate and DHT performance deteriorates. Thus, the
 problem is setting the parameters so that the overlay achieves the
 desired reliability and performance even in challenging conditions,
 such as under heavy churn. This naturally results in high cost
 during periods when the churn level is lower than expected, or
 alternatively, poor performance or even network partitioning in worse
 than expected conditions.

 In addition to selecting an appropriate stabilization interval,
 regardless of whether or not periodic stabilization is used, an
 appropriate size needs to be selected for the neighborhood set and
 for the finger table.

 The current approach is to configure overlays statically. This works
 in situations where perfect information about the future is
 available. In situations where the operating conditions of the
 network are known in advance and remain static throughout the
 lifetime of the system, it is possible to choose fixed optimal values
 for parameters such as stabilization rate, neighborhood set size and
 routing table size. However, if the operating conditions (e.g., the
 size of the overlay and its churn rate) do not remain static but
 evolve with time, it is not possible to achieve both a low lookup
 failure rate and a low communication overhead by using fixed
 parameters [Ghinita2006].

 As an example, to configure the Chord DHT algorithm, one needs to
 select values for the following parameters: size of successor list,
 stabilization interval, and size of the finger table. To select an
 appropriate value for the stabilization interval, one needs to know
 the expected churn rate and overlay size. According to

Maenpaa & Camarillo Standards Track [Page 6]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 [Liben-Nowell2002], a Chord network in a ring-like state remains in a
 ring-like state as long as peers send Omega(square(log(N))) messages
 before N new peers join or N/2 peers fail. Thus, in a 500-peer
 overlay churning at a rate such that one peer joins and one peer
 leaves the network every 30 seconds, an appropriate stabilization
 interval would be on the order of 93 s. According to [Chord], the
 size of the successor list and finger table should be on the order of
 log(N). Already a successor list of a modest size (e.g., log2(N) or
 2*log2(N), which is the successor list size used in [Chord]) makes it
 very unlikely that a peer will lose all of its successors, which
 would cause the Chord ring to become disconnected. Thus, in a
 500-peer network each peer should maintain on the order of nine
 successors and fingers. However, if the churn rate doubles and the
 network size remains unchanged, the stabilization rate should double
 as well. That is, the appropriate maintenance interval would now be
 on the order of 46 s. On the other hand, if the churn rate becomes,
 e.g., six-fold and the size of the network grows to 2000 peers, on
 the order of 11 fingers and successors should be maintained and the
 stabilization interval should be on the order of 42 s. If one
 continued using the old values, this could result in inaccurate
 routing tables, network partitioning, and deteriorating performance.

3.3. Adaptive Stabilization

 A self-tuning DHT takes into consideration the continuous evolution
 of network conditions and adapts to them. In a self-tuning DHT, each
 peer collects statistical data about the network and dynamically
 adjusts its stabilization rate, neighborhood set size, and finger
 table size based on the analysis of the data [Ghinita2006].
 Reference [Mahajan2003] shows that by using self-tuning, it is
 possible to achieve high reliability and performance even in adverse
 conditions with low maintenance cost. Adaptive stabilization has
 been shown to outperform periodic stabilization in terms of both
 lookup failures and communication overhead [Ghinita2006].

4. Introduction to Chord

 Chord [Chord] is a structured P2P algorithm that uses consistent
 hashing to build a DHT out of several independent peers. Consistent
 hashing assigns each peer and resource a fixed-length identifier.
 Peers use SHA-1 as the base hash function to generate the
 identifiers. As specified in RELOAD base [RFC6940], the length of
 the identifiers is numBitsInNodeId=128 bits. The identifiers are
 ordered on an identifier circle of size 2^numBitsInNodeId. On the
 identifier circle, key k is assigned to the first peer whose
 identifier equals or follows the identifier of k in the identifier
 space. The identifier circle is called the Chord ring.

Maenpaa & Camarillo Standards Track [Page 7]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 Different DHTs differ significantly in performance when bandwidth is
 limited. It has been shown that when compared to other DHTs, the
 advantages of Chord include that it uses bandwidth efficiently and
 can achieve low lookup latencies at little cost [Li2004].

 A simple lookup mechanism could be implemented on a Chord ring by
 requiring each peer to only know how to contact its current successor
 on the identifier circle. Queries for a given identifier could then
 be passed around the circle via the successor pointers until they
 encounter the first peer whose identifier is equal to or larger than
 the desired identifier. Such a lookup scheme uses a number of
 messages that grows linearly with the number of peers. To reduce the
 cost of lookups, Chord maintains also additional routing information;
 each peer n maintains a data structure with up to numBitsInNodeId
 entries, called the finger table. The first entry in the finger
 table of peer n contains the peer halfway around the ring from peer
 n. The second entry contains the peer that is 1/4th of the way
 around, the third entry the peer that is 1/8th of the way around,
 etc. In other words, the ith entry in the finger table at peer n
 contains the identity of the first peer s that succeeds n by at least
 2^(numBitsInNodeId-i) on the Chord ring. This peer is called the ith
 finger of peer n. The interval between two consecutive fingers is
 called a finger interval. The ith finger interval of peer n covers
 the range [n.id + 2^(numBitsInNodeId-i), n.id + 2^(numBitsInNodeId-
 i+1)) on the Chord ring. In an N-peer network, each peer maintains
 information about O(log(N)) other peers in its finger table. As an
 example, if N=100000, it is sufficient to maintain 17 fingers.

 Chord needs all peers’ successor pointers to be up to date in order
 to ensure that lookups produce correct results as the set of
 participating peers changes. To achieve this, peers run a
 stabilization protocol periodically in the background. The
 stabilization protocol of the original Chord algorithm uses two
 operations: successor stabilization and finger stabilization.
 However, the Chord algorithm of RELOAD base defines two additional
 stabilization components, as will be discussed below.

 To increase robustness in the event of peer failures, each Chord peer
 maintains a successor list of size r, containing the peer’s first r
 successors. The benefit of successor lists is that if each peer
 fails independently with probability p, the probability that all r
 successors fail simultaneously is only p^r.

 The original Chord algorithm maintains only a single predecessor
 pointer. However, multiple predecessor pointers (i.e., a predecessor
 list) can be maintained to speed up recovery from predecessor
 failures. The routing table of a peer consists of the successor
 list, finger table, and predecessor list.

Maenpaa & Camarillo Standards Track [Page 8]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

5. Extending Chord-Reload to Support Self-Tuning

 This section describes how the mandatory-to-implement chord-reload
 algorithm defined in RELOAD base [RFC6940] can be extended to support
 self-tuning.

 The chord-reload algorithm supports both reactive and periodic
 recovery strategies. When the self-tuning mechanisms defined in this
 document are used, the periodic recovery strategy is used. Further,
 chord-reload specifies that at least three predecessors and three
 successors need to be maintained. When the self-tuning mechanisms
 are used, the appropriate sizes of the successor list and predecessor
 list are determined in an adaptive fashion based on the estimated
 network size, as will be described in Section 6.

 As specified in RELOAD base [RFC6940], each peer maintains a
 stabilization timer. When the stabilization timer fires, the peer
 restarts the timer and carries out the overlay stabilization routine.
 Overlay stabilization has four components in chord-reload:

 1. Update the neighbor table. We refer to this as "neighbor
 stabilization".

 2. Refreshing the finger table. We refer to this as "finger
 stabilization".

 3. Adjusting finger table size.

 4. Detecting partitioning. We refer to this as "strong
 stabilization".

 As specified in RELOAD base [RFC6940], a peer sends periodic messages
 as part of the neighbor stabilization, finger stabilization, and
 strong stabilization routines. In neighbor stabilization, a peer
 periodically sends an Update request to every peer in its connection
 table. The default time is every ten minutes. In finger
 stabilization, a peer periodically searches for new peers to include
 in its finger table. This time defaults to one hour. This document
 specifies how the neighbor stabilization and finger stabilization
 intervals can be determined in an adaptive fashion based on the
 operating conditions of the overlay. The subsections below describe
 how this document extends the four components of stabilization.

5.1. Update Requests

 As described in RELOAD base [RFC6940], the neighbor and finger
 stabilization procedures are implemented using Update requests.
 RELOAD base defines three types of Update requests: ’peer_ready’,

Maenpaa & Camarillo Standards Track [Page 9]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 ’neighbors’, and ’full’. Regardless of the type, all Update requests
 include an ’uptime’ field. The self-tuning extensions require
 information on the uptimes of peers in the routing table. The sender
 of an Update request includes its current uptime (in seconds) in the
 ’uptime’ field. Regardless of the type, all Update requests MUST
 include an ’uptime’ field.

 When self-tuning is used, each peer decides independently the
 appropriate size for the successor list, predecessor list, and finger
 table. Thus, the ’predecessors’, ’successors’, and ’fingers’ fields
 included in RELOAD Update requests are of variable length. As
 specified in RELOAD [RFC6940], variable-length fields are on the wire
 preceded by length bytes. In the case of the successor list,
 predecessor list, and finger table, there are two length bytes
 (allowing lengths up to 2^16-1). The number of NodeId structures
 included in each field can be calculated based on the length bytes
 since the size of a single NodeId structure is 16 bytes. If a peer
 receives more entries than fit into its successor list, predecessor
 list, or finger table, the peer MUST ignore the extra entries. A
 peer may also receive less entries than it currently has in its own
 data structure. In that case, it uses the received entries to update
 only a subset of the entries in its data structure. As an example, a
 peer that has a successor list of size 8 may receive a successor list
 of size 4 from its immediate successor. In that case, the received
 successor list can only be used to update the first few successors on
 the peer’s successor list. The rest of the successors will remain
 intact.

5.2. Neighbor Stabilization

 In the neighbor stabilization operation of chord-reload, a peer
 periodically sends an Update request to every peer in its connection
 table. In a small, low-churn overlay, the amount of traffic this
 process generates is typically acceptable. However, in a large-scale
 overlay churning at a moderate or high churn rate, the traffic load
 may no longer be acceptable since the size of the connection table is
 large and the stabilization interval relatively short. The self-
 tuning mechanisms described in this document are especially designed
 for overlays of the latter type. Therefore, when the self-tuning
 mechanisms are used, each peer only sends a periodic Update request
 to its first predecessor and first successor on the Chord ring; it
 MUST NOT send Update requests to others.

 The neighbor stabilization routine is executed when the stabilization
 timer fires. To begin the neighbor stabilization routine, a peer
 sends an Update request to its first successor and its first
 predecessor. The type of the Update request MUST be ’neighbors’.
 The Update request includes the successor and predecessor lists of

Maenpaa & Camarillo Standards Track [Page 10]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 the sender. If a peer receiving such an Update request learns from
 the predecessor and successor lists included in the request that new
 peers can be included in its neighborhood set, it sends Attach
 requests to the new peers.

 After a new peer has been added to the predecessor or successor list,
 an Update request of type ’peer_ready’ is sent to the new peer. This
 allows the new peer to insert the sender into its neighborhood set.

5.3. Finger Stabilization

 Chord-reload specifies two alternative methods for searching for new
 peers to the finger table. Both of the alternatives can be used with
 the self-tuning extensions defined in this document.

 Immediately after a new peer has been added to the finger table, a
 Probe request is sent to the new peer to fetch its uptime. The
 ’requested_info’ field of the Probe request MUST be set to contain
 the ProbeInformationType ’uptime’ defined in RELOAD base [RFC6940].

5.4. Adjusting Finger Table Size

 The chord-reload algorithm defines how a peer can make sure that the
 finger table is appropriately sized to allow for efficient routing.
 Since the self-tuning mechanisms specified in this document produce a
 network size estimate, this estimate can be directly used to
 calculate the optimal size for the finger table. This mechanism is
 used instead of the one specified by chord-reload. A peer uses the
 network size estimate to determine whether it needs to adjust the
 size of its finger table each time when the stabilization timer
 fires. The way this is done is explained in Section 6.2.

5.5. Detecting Partitioning

 This document does not require any changes to the mechanism chord-
 reload uses to detect network partitioning.

5.6. Leaving the Overlay

 As specified in RELOAD base [RFC6940], a leaving peer SHOULD send a
 Leave request to all members of its neighbor table prior to leaving
 the overlay. The ’overlay_specific_data’ field MUST contain the
 ChordLeaveData structure. The Leave requests that are sent to
 successors contain the predecessor list of the leaving peer. The
 Leave requests that are sent to the predecessors contain the
 successor list of the leaving peer. If a given successor can
 identify better predecessors (that is, predecessors that are closer
 to it on the Chord ring than its existing predecessors) than are

Maenpaa & Camarillo Standards Track [Page 11]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 already included in its predecessor lists by investigating the
 predecessor list it receives from the leaving peer, it sends Attach
 requests to them. Similarly, if a given predecessor identifies
 better successors by investigating the successor list it receives
 from the leaving peer, it sends Attach requests to them.

6. Self-Tuning Chord Parameters

 This section specifies how to determine an appropriate stabilization
 rate and routing table size in an adaptive fashion. The proposed
 mechanism is based on [Mahajan2003], [Liben-Nowell2002], and
 [Ghinita2006]. To calculate an appropriate stabilization rate, the
 values of three parameters must be estimated: overlay size N, failure
 rate U, and join rate L. To calculate an appropriate routing table
 size, the estimated network size N can be used. Peers in the overlay
 MUST recalculate the values of the parameters to self-tune the chord-
 reload algorithm at the end of each stabilization period before
 restarting the stabilization timer.

6.1. Estimating Overlay Size

 Techniques for estimating the size of an overlay network have been
 proposed, for instance, in [Mahajan2003], [Horowitz2003],
 [Kostoulas2005], [Binzenhofer2006], and [Ghinita2006]. In Chord, the
 density of peer identifiers in the neighborhood set can be used to
 produce an estimate of the size of the overlay, N [Mahajan2003].
 Since peer identifiers are picked randomly with uniform probability
 from the numBitsInNodeId-bit identifier space, the average distance
 between peer identifiers in the successor set is
 (2^numBitsInNodeId)/N.

 To estimate the overlay network size, a peer computes the average
 inter-peer distance d between the successive peers starting from the
 most distant predecessor and ending to the most distant successor in
 the successor list. The estimated network size is calculated as:

 2^numBitsInNodeId
 N = -------------------
 d

 This estimate has been found to be accurate within 15% of the real
 network size [Ghinita2006]. Of course, the size of the neighborhood
 set affects the accuracy of the estimate.

Maenpaa & Camarillo Standards Track [Page 12]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 During the join process, a joining peer fills its routing table by
 sending a series of Ping and Attach requests, as specified in RELOAD
 base [RFC6940]. Thus, a joining peer immediately has enough
 information at its disposal to calculate an estimate of the network
 size.

6.2. Determining Routing Table Size

 As specified in RELOAD base [RFC6940], the finger table must contain
 at least 16 entries. When the self-tuning mechanisms are used, the
 size of the finger table MUST be set to max(ceiling(log2(N)), 16)
 using the estimated network size N.

 The size of the successor list MUST be set to a maximum of
 ceiling(log2(N)). An implementation can place a lower limit on the
 size of the successor list. As an example, the implementation might
 require the size of the successor list to be always at least three.

 The size of the predecessor list MUST be set to ceiling(log2(N)).

6.3. Estimating Failure Rate

 A typical approach is to assume that peers join the overlay according
 to a Poisson process with rate L and leave according to a Poisson
 process with rate parameter U [Mahajan2003]. The value of U can be
 estimated using peer failures in the finger table and neighborhood
 set [Mahajan2003]. If peers fail with rate U, a peer with M unique
 peer identifiers in its routing table should observe K failures in
 time K/(M*U). Every peer in the overlay maintains a history of the
 last K failures. The current time is inserted into the history when
 the peer joins the overlay. The estimate of U is calculated as:

 k
 U = --------,
 M * Tk

 where M is the number of unique peer identifiers in the routing
 table, Tk is the time between the first and the last failure in the
 history, and k is the number of failures in the history. If k is
 smaller than K, the estimate is computed as if there was a failure at
 the current time. It has been shown that an estimate calculated in a
 similar manner is accurate within 17% of the real value of U
 [Ghinita2006].

 The size of the failure history K affects the accuracy of the
 estimate of U. One can increase the accuracy by increasing K.
 However, this has the side effect of decreasing responsiveness to
 changes in the failure rate. On the other hand, a small history size

Maenpaa & Camarillo Standards Track [Page 13]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 may cause a peer to overreact each time a new failure occurs. In
 [Ghinita2006], K is set to 25% of the routing table size. Use of
 this value is RECOMMENDED.

6.3.1. Detecting Failures

 A new failure is inserted to the failure history in the following
 cases:

 1. A Leave request is received from a neighbor.

 2. A peer fails to reply to a Ping request sent in the situation
 explained below. If no packets have been received on a
 connection during the past 2*Tr seconds (where Tr is the
 inactivity timer defined by Interactive Connectivity
 Establishment (ICE) [RFC5245]), a RELOAD Ping request MUST be
 sent to the remote peer. RELOAD mandates the use of Session
 Traversal Utilities for NAT (STUN) [RFC5389] for keepalives.
 STUN keepalives take the form of STUN Binding Indication
 transactions. As specified in ICE [RFC5245], a peer sends a STUN
 Binding Indication if there has been no packet sent on a
 connection for Tr seconds. Tr is configurable and has a default
 of 15 seconds. Although STUN Binding Indications do not generate
 a response, the fact that a peer has failed can be learned from
 the lack of packets (Binding Indications or application protocol
 packets) received from the peer. If the remote peer fails to
 reply to the Ping request, the sender should consider the remote
 peer to have failed.

 As an alternative to relying on STUN keepalives to detect peer
 failure, a peer could send additional, frequent RELOAD messages to
 every peer in its connection table. These messages could be Update
 requests, in which case they would serve two purposes: detecting peer
 failure and stabilization. However, as the cost of this approach can
 be very high in terms of bandwidth consumption and traffic load,
 especially in large-scale overlays experiencing churn, its use is NOT
 RECOMMENDED.

6.4. Estimating Join Rate

 Reference [Ghinita2006] proposes that a peer can estimate the join
 rate based on the uptime of the peers in its routing table. An
 increase in peer join rate will be reflected by a decrease in the
 average age of peers in the routing table. Thus, each peer
 maintained an array of the ages of the peers in its routing table
 sorted in increasing order. Using this information, an estimate of
 the global peer join rate L is calculated as:

Maenpaa & Camarillo Standards Track [Page 14]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 N
 L = ----------------------,
 Ages[floor(rsize/2)]

 where Ages is an array containing the ages of the peers in the
 routing table sorted in increasing order and rsize is the size of the
 routing table. It has been shown that the estimate obtained by using
 this method is accurate within 22% of the real join rate
 [Ghinita2006]. Of course, the size of the routing table affects the
 accuracy.

 In order for this mechanism to work, peers need to exchange
 information about the time they have been present in the overlay.
 Peers receive the uptimes of their successors and predecessors during
 the stabilization operations since all Update requests carry uptime
 values. A joining peer learns the uptime of the admitting peer since
 it receives an Update from the admitting peer during the join
 procedure. Peers learn the uptimes of new fingers since they can
 fetch the uptime using a Probe request after having attached to the
 new finger.

6.5. Estimate Sharing

 To improve the accuracy of network size, join rate, and leave rate
 estimates, peers share their estimates. When the stabilization timer
 fires, a peer selects number-of-peers-to-probe random peers from its
 finger table and send each of them a Probe request. The targets of
 Probe requests are selected from the finger table rather than from
 the neighbor table since neighbors are likely to make similar errors
 when calculating their estimates. The number-of-peers-to-probe is a
 new element in the overlay configuration document. It is defined in
 Section 7. Both the Probe request and the answer returned by the
 target peer MUST contain a new message extension whose
 MessageExtensionType is ’self_tuning_data’. This extension type is
 defined in Section 9.1. The ’extension_contents’ field of the
 MessageExtension structure MUST contain a SelfTuningData structure:

 struct {
 uint32 network_size;
 uint32 join_rate;
 uint32 leave_rate;
 } SelfTuningData;

Maenpaa & Camarillo Standards Track [Page 15]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 The contents of the SelfTuningData structure are as follows:

 network_size

 The latest network size estimate calculated by the sender.

 join_rate

 The latest join rate estimate calculated by the sender.

 leave_rate

 The latest leave rate estimate calculated by the sender.

 The join and leave rates are expressed as joins or failures per 24
 hours. As an example, if the global join rate estimate a peer has
 calculated is 0.123 peers/s, it would include in the ’join_rate’
 field the ceiling of the value 10627.2 (24*60*60*0.123 = 10627.2),
 that is, the value 10628.

 The ’type’ field of the MessageExtension structure MUST be set to
 contain the value ’self_tuning_data’. The ’critical’ field of the
 structure MUST be set to False.

 A peer stores all estimates it receives in Probe requests and answers
 during a stabilization interval. When the stabilization timer fires,
 the peer calculates the estimates to be used during the next
 stabilization interval by taking the 75th percentile (i.e., third
 quartile) of a data set containing its own estimate and the received
 estimates.

 The default value for number-of-peers-to-probe is 4. This default
 value is recommended to allow a peer to receive a sufficiently large
 set of estimates from other peers. With a value of 4, a peer
 receives four estimates in Probe answers. On the average, each peer
 also receives four Probe requests each carrying an estimate. Thus,
 on the average, each peer has nine estimates (including its own) that
 it can use at the end of the stabilization interval. A value smaller
 than 4 is NOT RECOMMENDED to keep the number of received estimates
 high enough. As an example, if the value were 2, there would be
 peers in the overlay that would only receive two estimates during a
 stabilization interval. Such peers would only have three estimates
 available at the end of the interval, which may not be reliable
 enough since even a single exceptionally high or low estimate can
 have a large impact.

Maenpaa & Camarillo Standards Track [Page 16]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

6.6. Calculating the Stabilization Interval

 According to [Liben-Nowell2002], a Chord network in a ring-like state
 remains in a ring-like state as long as peers send
 Omega(square(log(N))) messages before N new peers join or N/2 peers
 fail. We can use the estimate of peer failure rate, U, to calculate
 the time Tf in which N/2 peers fail:

 1
 Tf = ------
 2*U

 Based on this estimate, a stabilization interval Tstab-1 is
 calculated as:

 Tf
 Tstab-1 = -----------------
 square(log2(N))

 On the other hand, the estimated join rate L can be used to calculate
 the time in which N new peers join the overlay. Based on the
 estimate of L, a stabilization interval Tstab-2 is calculated as:

 N
 Tstab-2 = ---------------------
 L * square(log2(N))

 Finally, the actual stabilization interval Tstab that is used can be
 obtained by taking the minimum of Tstab-1 and Tstab-2.

 The results obtained in [Maenpaa2009] indicate that making the
 stabilization interval too small has the effect of making the overlay
 less stable (e.g., in terms of detected loops and path failures).
 Thus, a lower limit should be used for the stabilization period.
 Based on the results in [Maenpaa2009], a lower limit of 15 s is
 RECOMMENDED, since using a stabilization period smaller than this
 will with a high probability cause too much traffic in the overlay.

7. Overlay Configuration Document Extension

 This document extends the RELOAD overlay configuration document by
 adding one new element, "number-of-peers-to-probe", inside each
 "configuration" element.

 self-tuning:number-of-peers-to-probe: The number of fingers to which
 Probe requests are sent to obtain their network size, join rate,
 and leave rate estimates. The default value is 4.

Maenpaa & Camarillo Standards Track [Page 17]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 The RELAX NG grammar for this element is:

 namespace self-tuning = "urn:ietf:params:xml:ns:p2p:self-tuning"

 parameter &= element self-tuning:number-of-peers-to-probe {
 xsd:unsignedInt }?

 This namespace is added into the <mandatory-extension> element in the
 overlay configuration file.

8. Security Considerations

 In the same way as malicious or compromised peers implementing the
 RELOAD base protocol [RFC6940] can advertise false network metrics or
 distribute false routing table information for instance in RELOAD
 Update messages, malicious peers implementing this specification may
 share false join rate, leave rate, and network size estimates. For
 such attacks, the same security concerns apply as in the RELOAD base
 specification. In addition, as long as the amount of malicious peers
 in the overlay remains modest, the statistical mechanisms applied in
 Section 6.5 (i.e., the use of 75th percentiles) to process the shared
 estimates a peer obtains help ensure that estimates that are clearly
 different from (i.e., larger or smaller than) other received
 estimates will not significantly influence the process of adapting
 the stabilization interval and routing table size. However, it
 should be noted that if an attacker is able to impersonate a high
 number of other peers in the overlay in strategic locations, it may
 be able to send a high enough number of false estimates to a victim
 and therefore influence the victim’s choice of a stabilization
 interval.

9. IANA Considerations

9.1. Message Extensions

 This document introduces one additional extension to the "RELOAD
 Extensions Registry":

 +------------------+-------+---------------+
 | Extension Name | Code | Specification |
 +------------------+-------+---------------+
 | self_tuning_data | 0x3 | RFC 7363 |
 +------------------+-------+---------------+

 The contents of the extension are defined in Section 6.5.

Maenpaa & Camarillo Standards Track [Page 18]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

9.2. New Overlay Algorithm Type

 This document introduces one additional overlay algorithm type to the
 "RELOAD Overlay Algorithm Types" registry:

 +-------------------+-----------+
 | Algorithm Name | Reference |
 +-------------------+-----------+
 | CHORD-SELF-TUNING | RFC 7363 |
 +-------------------+-----------+

9.3. A New IETF XML Registry

 This document registers one new URI for the self-tuning namespace in
 the "ns" subregistry of the IETF XML registry defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:p2p:self-tuning

 Registrant Contact: The IESG

 XML: N/A, the requested URI is an XML namespace

10. Acknowledgments

 The authors would like to thank Jani Hautakorpi for his contributions
 to the document. The authors would also like to thank Carlos
 Bernardos, Martin Durst, Alissa Cooper, Tobias Gondrom, and Barry
 Leiba for their comments on the document.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

Maenpaa & Camarillo Standards Track [Page 19]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 [RFC6940] Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and
 H. Schulzrinne, "REsource LOcation And Discovery (RELOAD)
 Base Protocol", RFC 6940, January 2014.

11.2. Informative References

 [Binzenhofer2006]
 Binzenhofer, A., Kunzmann, G., and R. Henjes, "A Scalable
 Algorithm to Monitor Chord-Based P2P Systems at Runtime",
 In Proceedings of the 20th IEEE International Parallel and
 Distributed Processing Symposium (IPDPS), pp. 1-8, April
 2006.

 [CAN] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and S.
 Schenker, "A Scalable Content-Addressable Network", In
 Proceedings of the 2001 Conference on Applications,
 Technologies, Architectures and Protocols for Computer
 Communications, pp. 161-172, August 2001.

 [Chord] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.,
 Kaashoek, M., Dabek, F., and H. Balakrishnan, "Chord: A
 Scalable Peer-to-peer Lookup Service for Internet
 Applications", IEEE/ACM Transactions on Networking, Volume
 11, Issue 1, pp. 17-32, February 2003.

 [Ghinita2006]
 Ghinita, G. and Y. Teo, "An Adaptive Stabilization
 Framework for Distributed Hash Tables", In Proceedings of
 the 20th IEEE International Parallel and Distributed
 Processing Symposium (IPDPS), pp. 29-38, April 2006.

 [Horowitz2003]
 Horowitz, K. and D. Malkhi, "Estimating Network Size from
 Local Information", Information Processing Letters, Volume
 88, Issue 5, pp. 237-243, December 2003.

 [Kostoulas2005]
 Kostoulas, D., Psaltoulis, D., Gupta, I., Birman, K., and
 A. Demers, "Decentralized Schemes for Size Estimation in
 Large and Dynamic Groups", In Proceedings of the 4th IEEE
 International Symposium on Network Computing and
 Applications, pp. 41-48, July 2005.

Maenpaa & Camarillo Standards Track [Page 20]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 [Krishnamurthy2008]
 Krishnamurthy, S., El-Ansary, S., Aurell, E., and S.
 Haridi, "Comparing Maintenance Strategies for Overlays",
 In Proceedings of the 16th Euromicro Conference on
 Parallel, Distributed and Network-Based Processing, pp.
 473-482, February 2008.

 [Li2004] Li, J., Strinbling, J., Gil, T., Morris, R., and M.
 Kaashoek, "Comparing the Performance of Distributed Hash
 Tables Under Churn", Peer-to-Peer Systems III, Volume 3279
 of Lecture Notes in Computer Science, Springer, pp. 87-99,
 February 2005.

 [Liben-Nowell2002]
 Liben-Nowell, D., Balakrishnan, H., and D. Karger,
 "Observations on the Dynamic Evolution of Peer-to-Peer
 Networks", In Proceedings of the 1st International
 Workshop on Peer-to-Peer Systems (IPTPS), pp. 22-33, March
 2002.

 [Maenpaa2009]
 Maenpaa, J. and G. Camarillo, "A Study on Maintenance
 Operations in a Chord-Based Peer-to-Peer Session
 Initiation Protocol Overlay Network", In Proceedings of
 the 23rd IEEE International Parallel and Distributed
 Processing Symposium (IPDPS), pp. 1-9, May 2009.

 [Mahajan2003]
 Mahajan, R., Castro, M., and A. Rowstron, "Controlling the
 Cost of Reliability in Peer-to-Peer Overlays", In
 Proceedings of the 2nd International Workshop on Peer-to-
 Peer Systems (IPTPS), pp. 21-32, February 2003.

 [Pastry] Rowstron, A. and P. Druschel, "Pastry: Scalable,
 Decentralized Object Location and Routing for Large-Scale
 Peer-to-Peer Systems", In Proceedings of the IFIP/ACM
 International Conference on Distributed Systems Platforms,
 pp. 329-350, November 2001.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [Rhea2004]
 Rhea, S., Geels, D., Roscoe, T., and J. Kubiatowicz,
 "Handling Churn in a DHT", In Proceedings of the USENIX
 Annual Technical Conference, pp. 127-140, June 2004.

Maenpaa & Camarillo Standards Track [Page 21]

RFC 7363 Self-Tuning DHT for RELOAD September 2014

 [Weiss1998]
 Weiss, M., "Data Structures and Algorithm Analysis in
 C++", Addison-Wesley Longman Publishing Co., Inc., 2nd
 Edition, ISBN 0201361221, 1998.

Authors’ Addresses

 Jouni Maenpaa
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Jouni.Maenpaa@ericsson.com

 Gonzalo Camarillo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Gonzalo.Camarillo@ericsson.com

Maenpaa & Camarillo Standards Track [Page 22]

