
Internet Engineering Task Force (IETF) V. Roca
Request for Comments: 6968 INRIA
Category: Experimental B. Adamson
ISSN: 2070-1721 Naval Research Laboratory
 July 2013

 FCAST: Object Delivery for the Asynchronous Layered Coding (ALC) and
 NACK-Oriented Reliable Multicast (NORM) Protocols

Abstract

 This document introduces the FCAST reliable object (e.g., file)
 delivery application. It is designed to operate either on top of the
 underlying Asynchronous Layered Coding (ALC) / Layered Coding
 Transport (LCT) reliable multicast transport protocol or the NACK-
 Oriented Reliable Multicast (NORM) transport protocol.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6968.

Roca & Adamson Experimental [Page 1]

RFC 6968 FCAST Object Delivery July 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 1.1. Requirements Notation4
 1.2. Definitions, Notations, and Abbreviations5
 2. FCAST Data Formats ..6
 2.1. Compound Object Format6
 2.2. Carousel Instance Descriptor Format9
 3. FCAST Principles ...12
 3.1. FCAST Content Delivery Service12
 3.2. Compound Object and Metadata Transmission13
 3.3. Metadata Content ..13
 3.4. Carousel Transmission15
 3.5. Carousel Instance Descriptor Special Object15
 3.6. Compound Object Identification17
 3.7. FCAST Sender Behavior18
 3.8. FCAST Receiver Behavior19
 4. Requirements for Compliant Implementations20
 4.1. Requirements Related to the Object Metadata20
 4.2. Requirements Related to the Carousel Instance Descriptor ..21
 5. Security Considerations ..22
 5.1. Problem Statement ...22
 5.2. Attacks against the Data Flow22
 5.2.1. Attacks Meant to Gain Access to
 Confidential Objects23
 5.2.2. Attacks Meant to Corrupt Objects23
 5.3. Attacks against the Session Control Parameters and
 Associated Building Blocks24
 5.3.1. Attacks against the Session Description25
 5.3.2. Attacks against the FCAST CID25
 5.3.3. Attacks against the Object Metadata25
 5.3.4. Attacks against the ALC/LCT and NORM Parameters26
 5.3.5. Attacks against the Associated Building Blocks26

Roca & Adamson Experimental [Page 2]

RFC 6968 FCAST Object Delivery July 2013

 5.4. Other Security Considerations27
 5.5. Minimum Security Recommendations27
 6. Operational Considerations28
 7. IANA Considerations ..29
 7.1. Creation of the FCAST Object Metadata Format Registry29
 7.2. Creation of the FCAST Object Metadata Encoding Registry ...30
 7.3. Creation of the FCAST Object Metadata Types Registry30
 8. Acknowledgments ..32
 9. References ...32
 9.1. Normative References32
 9.2. Informative References33
 Appendix A. FCAST Examples ..35
 A.1. Simple Compound Object Example35
 A.2. Carousel Instance Descriptor Example36
 Appendix B. Additional Metadata Transmission Mechanisms37
 B.1. Supporting Additional Mechanisms37
 B.2. Using NORM_INFO Messages with FCAST/NORM38
 B.2.1. Example ..38

1. Introduction

 This document introduces the FCAST reliable and scalable object
 (e.g., file) delivery application. Two variants of FCAST exist:

 o FCAST/ALC, which relies on the Asynchronous Layered Coding (ALC)
 [RFC5775] and Layered Coding Transport (LCT) [RFC5651] reliable
 multicast transport protocol, and

 o FCAST/NORM, which relies on the NACK-Oriented Reliable Multicast
 (NORM) [RFC5740] transport protocol.

 Hereafter, the term "FCAST" denotes either FCAST/ALC or FCAST/NORM.
 FCAST is not a new protocol specification per se. Instead, it is a
 set of data format specifications and instructions on how to use ALC
 and NORM to implement a file-casting service.

 FCAST is expected to work in many different environments and is
 designed to be flexible. The service provided by FCAST can differ
 according to the exact conditions under which FCAST is used. For
 instance, the delivery service provided by FCAST might be fully
 reliable, or only partially reliable, depending upon the exact way
 FCAST is used. Indeed, if FCAST/ALC is used for a finite duration
 over purely unidirectional networks (where no feedback is possible),
 a fully reliable service may not be possible in practice. This is
 different with NORM, which can collect reception and loss feedback
 from receivers. This is discussed in Section 6.

Roca & Adamson Experimental [Page 3]

RFC 6968 FCAST Object Delivery July 2013

 The delivery service provided by FCAST might also differ in terms of
 scalability with respect to the number of receivers. The FCAST/ALC
 service is naturally massively scalable, since neither FCAST nor ALC
 limits the number of receivers (there is no feedback message at all).
 Conversely, the scalability of FCAST/NORM is typically limited by
 NORM itself, as NORM relies on feedback messages from the receivers.
 However, NORM is designed in such a way to offer a reasonably
 scalable service (e.g., through the use of proactive Forward Error
 Correction (FEC) codes [RFC6363]), and so does the service provided
 by FCAST/NORM. This aspect is also discussed in Section 6.

 A design goal behind FCAST is to define a streamlined solution, in
 order to enable lightweight implementations of the protocol stack and
 to limit the operational processing and storage requirements. A
 consequence of this choice is that FCAST cannot be considered a
 versatile application capable of addressing all the possible use-
 cases. On the contrary, FCAST has some intrinsic limitations. From
 this point of view, it differs from the File Delivery over
 Unidirectional Transport (FLUTE) [RFC6726], which favors flexibility
 at the expense of some additional complexity.

 A good example of the design choices meant to favor simplicity is the
 way FCAST manages the object metadata: by default, the metadata and
 the object content are sent together, in a Compound Object. This
 solution has many advantages in terms of simplicity, as will be
 described later on. However, this solution has an intrinsic
 limitation, since it does not enable a receiver to decide in advance,
 before beginning the reception of the Compound Object, whether the
 object is of interest or not, based on the information that may be
 provided in the metadata. Therefore, this document discusses
 additional techniques that may be used to mitigate this limitation.
 When use-cases require that each receiver download the whole set of
 objects sent in the session (e.g., with mirroring tools), this
 limitation is not considered a problem.

 Finally, Section 4 provides guidance for compliant implementation of
 the specification and identifies those features that are optional.

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Roca & Adamson Experimental [Page 4]

RFC 6968 FCAST Object Delivery July 2013

1.2. Definitions, Notations, and Abbreviations

 This document uses the following definitions:

 FCAST/ALC: denotes the FCAST application running on top of the
 ALC/LCT transport protocol.

 FCAST/NORM: denotes the FCAST application running on top of the NORM
 transport protocol.

 FCAST: denotes either FCAST/ALC or FCAST/NORM.

 Compound Object: denotes an ALC or NORM transport object composed of
 the FCAST Header and the Object Data (some Compound Objects may
 not include any Object Data).

 FCAST Header: denotes the header prepended to the Object Data, which
 together form the Compound Object. This FCAST Header usually
 contains the object metadata, among other things.

 Object Data: denotes the original object (e.g., a file) that forms
 the payload of the Compound Object.

 Carousel: denotes the building block that enables an FCAST sender to
 transmit Compound Objects in a cyclic manner.

 Carousel Instance: denotes a fixed set of registered Compound
 Objects that are sent by the carousel during a certain number of
 cycles. Whenever Compound Objects need to be added or removed, a
 new Carousel Instance is defined.

 Carousel Instance Descriptor (CID): denotes a special object that
 lists the Compound Objects that comprise a given Carousel
 Instance.

 Carousel Instance IDentifier (CIID): numeric value that identifies a
 Carousel Instance.

 Carousel Cycle: denotes a transmission round within which all the
 Compound Objects registered in the Carousel Instance are
 transmitted a certain number of times. By default, Compound
 Objects are transmitted once per cycle, but higher values, which
 might differ on a per-object basis, are possible.

Roca & Adamson Experimental [Page 5]

RFC 6968 FCAST Object Delivery July 2013

 Transport Object Identifier (TOI): denotes the numeric identifier
 associated with a specific object by the underlying transport
 protocol. In the case of ALC, this corresponds to the TOI
 described in [RFC5651]. In the case of NORM, this corresponds to
 the NormTransportId described in [RFC5740].

 FEC Object Transmission Information (FEC OTI): FEC information
 associated with an object and that is essential for the FEC
 decoder to decode a specific object.

2. FCAST Data Formats

 This section details the various data formats used by FCAST.

2.1. Compound Object Format

 In an FCAST session, Compound Objects are constructed by prepending
 the FCAST Header (which usually contains the metadata of the object)
 to the Object Data (see Section 3.2). Figure 1 illustrates the
 associated format. All multi-byte fields MUST be in network (Big
 Endian) byte order.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+ ^
 | Ver |Resvd|G|C| MDFmt | MDEnc | Checksum | |
 +-+ |
 | FCAST Header Length | h
 +-| d
 | Object Metadata (variable length) | r
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | | Padding (optional) | |
 +-+ v
 | |
 . Object Data (optional, variable length) .
 . .
 . .

 Figure 1: Compound Object Format

Roca & Adamson Experimental [Page 6]

RFC 6968 FCAST Object Delivery July 2013

 The FCAST Header fields are:

 +------------+--+
 | Field | Description |
 +------------+--+
Version	3-bit field that MUST be set to 0 in this
	specification and that indicates the FCAST protocol
	version number.
Reserved	3-bit field that MUST be set to 0 in this
	specification and is reserved for future use.
	Receivers MUST ignore this field.
G	1-bit field that, when set to 1, indicates that the
	checksum encompasses the whole Compound Object
	(Global checksum). When set to 0, this field
	indicates that the checksum encompasses only the
	FCAST Header.
C	1-bit field that, when set to 1, indicates that the
	object is a CID. When set to 0, this field
	indicates that the transported object is a standard
	object.
Metadata	4-bit field that defines the format of the Object
Format	Metadata field (see Section 7). An HTTP/1.1
(MDFmt)	metainformation format [RFC2616] MUST be supported
	and is associated to value 0. Other formats (e.g.,
	XML) may be defined in the future.
Metadata	4-bit field that defines the optional encoding of
Encoding	the Object Metadata field (see Section 7). Two
(MDEnc)	values are currently defined. A value of 0
	indicates that the field contains UTF-8 encoded
	[RFC3629] text. A value of 1 indicates that the
	field contains GZIP [RFC1952] compressed UTF-8
	encoded text.

Roca & Adamson Experimental [Page 7]

RFC 6968 FCAST Object Delivery July 2013

Checksum	16-bit field that contains the checksum computed
	over either the whole Compound Object (when G is set
	to 1) or over the FCAST Header (when G is set to 0),
	using the Internet checksum algorithm specified in
	[RFC1071]. More precisely, the Checksum field is
	the 16-bit one’s complement of the one’s complement
	sum of all 16-bit words to be considered. If a
	segment contains an odd number of octets to be
	checksummed, the last octet is padded on the right
	with zeros to form a 16-bit word for checksum
	purposes (this pad is not transmitted). While
	computing the checksum, the Checksum field itself
	MUST be set to zero.
FCAST	32-bit field indicating total length (in bytes) of
Header	all fields of the FCAST Header, except the optional
Length	padding. An FCAST Header Length field set to value
	8 means that there is no metadata included. When
	this size is not a multiple of 32-bit words and when
	the FCAST Header is followed by non-null Object
	Data, padding MUST be added. It should be noted
	that the Object Metadata field maximum size is equal
	to (2^32 - 8) bytes.
Object	Variable-length field that contains the metadata
Metadata	associated to the object. The format and encoding
	of this field are defined by the MDFmt and MDEnc
	fields, respectively. With the default format and
	encoding, the Object Metadata field, if not empty,
	MUST contain UTF-8 encoded text that follows the
	"TYPE" ":" "VALUE" "<CR-LF>" format used in HTTP/1.1
	for metainformation [RFC2616]. The various
	metadata items can appear in any order. The
	receiver MUST NOT assume that this string is NULL-
	terminated. When no metadata is communicated, this
	field MUST be empty and the FCAST Header Length MUST
	be equal to 8.
Padding	Optional, variable-length field of zero-value bytes
	to align the start of the Object Data to a 32-bit
	boundary. Padding is only used when the FCAST
	Header Length value, in bytes, is not a multiple of
	4 and when the FCAST Header is followed by non-null
	Object Data.
 +------------+--+

Roca & Adamson Experimental [Page 8]

RFC 6968 FCAST Object Delivery July 2013

 The FCAST Header is then followed by the Object Data, i.e., either an
 original object (possibly encoded by FCAST) or a CID. Note that the
 length of the Object Data content is the ALC or NORM transported
 object length (e.g., as specified by the FEC OTI) minus the FCAST
 Header Length and optional padding, if any.

2.2. Carousel Instance Descriptor Format

 In an FCAST session, a CID MAY be sent in order to carry the list of
 Compound Objects that are part of a given Carousel Instance (see
 Section 3.5). The format of the CID that is sent as a special
 Compound Object is given in Figure 2. Being a special case of
 Compound Object, this format is in line with the format described in
 Section 2.1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+ ^
 | Ver |Resvd|G|C| MDFmt | MDEnc | Checksum | |
 +-+ |
 | FCAST Header Length | h
 +-| d
 | Object Metadata (variable length) | r
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | | Padding (optional) | |
 +-+ v
 . . ^
 . Object List (variable length) . |
 . . o
 . +-+-+-+-+-+-+-+-+ b
 . | j
 +-+ v

 Figure 2: Carousel Instance Descriptor Format

 Because the CID is transmitted as a special Compound Object, the
 following CID-specific metadata entries are defined and MUST be
 supported:

 o Fcast-CID-Complete: this is an optional entry that, when set to
 "Fcast-CID-Complete: 1", indicates no new object (if we ignore CID
 Compound Objects) in addition to the ones whose TOIs are listed in
 this CID or the ones that have been listed in the previous CID(s),
 will be sent in the future. Conversely, if it is set to
 "Fcast-CID-Complete: 0", or if this entry is absent, it indicates
 that the session is not complete. An FCAST sender MUST NOT use
 any other value for this entry.

Roca & Adamson Experimental [Page 9]

RFC 6968 FCAST Object Delivery July 2013

 o Fcast-CID-ID: this entry contains the Carousel Instance
 IDentifier, or CIID. It starts from 0 upon FCAST session creation
 and is incremented by 1 for each new Carousel Instance. This
 entry is optional if the FCAST session consists of a single,
 complete Carousel Instance (no need for the FCAST sender to
 specify it and for the FCAST receiver to process it). In all
 other cases, this entry MUST be defined. In particular, the CIID
 is used by the TOI equivalence mechanism, thanks to which any
 object is uniquely identified, even if the TOI is updated (e.g.,
 after re-enqueuing the object with NORM). The Fcast-CID-ID value
 can also be useful for detecting possible gaps in the Carousel
 Instances, for instance, gaps caused by long disconnection
 periods. Finally, it can also be useful for avoiding problems
 when TOI wrapping to 0 takes place to differentiate the various
 incarnations of the TOIs if need be.

 The following standard metadata entry types are also used
 (Section 3.3):

 o Content-Length: specifies the size in bytes of the Object List,
 before any content encoding (if any).

 o Content-Encoding: specifies the optional encoding of the Object
 List, performed by FCAST.

 An empty Object List is valid and indicates that the current Carousel
 Instance does not include any objects (Section 3.5). This can be
 specified by using the following metadata entry:

 Content-Length: 0

 or simply by leaving the Object List empty. In both cases, padding
 MUST NOT be used, and consequently the ALC or NORM transported object
 length (e.g., as specified by the FEC OTI) minus the FCAST Header
 Length equals zero.

 The Object List, when non-empty and with MDEnc=0, is UTF-8-encoded
 text that is not necessarily NULL-terminated. It can contain two
 things:

 o a list of TOI values, and

 o a list of TOI equivalences.

 A list of TOIs included in the current Carousel Instance is specified
 as an ASCII string containing comma-delimited individual TOI values
 and/or TOI intervals. Individual TOIs consist of a single integer
 value, while TOI intervals are a hyphen-delimited pair of TOI values

Roca & Adamson Experimental [Page 10]

RFC 6968 FCAST Object Delivery July 2013

 to indicate an inclusive range of TOI values (e.g., "1,2,4-6" would
 indicate the list of TOI values of 1, 2, 4, 5, and 6). For a TOI
 interval indicated by "TOI_a-TOI_b", the "TOI_a" value MUST be
 strictly inferior to the "TOI_b" value. If a TOI wrapping to 0
 occurs in an interval, then two TOI intervals MUST be specified:
 TOI_a-MAX_TOI and 0-TOI_b.

 This string can also contain the TOI equivalences, if any. The
 format is a comma-separated list of equivalence TOI value pairs with
 a delimiting equals sign ’=’ to indicate the equivalence assignment
 (e.g., " newTOI "=" 1stTOI "/" 1stCIID "). Each equivalence
 indicates that the new TOI, for the current Carousel Instance, is
 equivalent to (i.e., refers to the same object as) the provided
 identifier, 1stTOI, for the Carousel Instance of ID 1stCIID. In the
 case of the NORM protocol, where NormTransportId values need to
 monotonically increase for NACK-based protocol operation, this allows
 an object from a prior Carousel Instance to be relisted in a
 subsequent Carousel Instance with the receiver set informed of the
 equivalence so that unnecessary retransmission requests can be
 avoided.

 The ABNF [RFC5234] is as follows:

 cid-list = *(list-elem *("," list-elem))
 list-elem = toi-elem / toieq-elem
 toi-elem = toi-value / toi-interval
 toi-value = 1*DIGIT
 toi-interval = toi-value "-" toi-value
 ; additionally, the first toi-value MUST be
 ; strictly inferior to the second toi-value
 toieq-elem = "(" toi-value "=" toi-value "/" ciid-value ")"
 ciid-value = 1*DIGIT
 DIGIT = %x30-39
 ; a digit between 0 and 9, inclusive

 For readability purposes and to simplify processing, the TOI
 values in the list MUST be given in increasing order, handling wrap
 of the TOI space appropriately. TOI equivalence elements MUST be
 grouped together at the end of the list in increasing newTOI order.
 Specifying a TOI equivalence for a given newTOI relieves the sender
 from specifying newTOI explicitly in the TOI list. A receiver MUST
 be able to handle situations where the same TOI appears both in the
 TOI value and TOI equivalence lists. Finally, a given TOI value or
 TOI equivalence item MUST NOT be included multiple times in either
 list.

Roca & Adamson Experimental [Page 11]

RFC 6968 FCAST Object Delivery July 2013

 For instance, the following Object List specifies that the current
 Carousel Instance is composed of 8 objects, and that TOIs 100 to 104
 are equivalent to TOIs 10 to 14 of Carousel Instance ID 2 and refer
 to the same objects:

 97,98,99,(100=10/2),(101=11/2),(102=12/2),(103=13/2),(104=14/2)

 or equivalently:

 97-104,(100=10/2),(101=11/2),(102=12/2),(103=13/2),(104=14/2)

3. FCAST Principles

 This section details the principles of FCAST.

3.1. FCAST Content Delivery Service

 The basic goal of FCAST is to transmit objects to a group of
 receivers in a reliable way, where the receiver set may be restricted
 to a single receiver or may include possibly a very large number of
 receivers. FCAST supports two forms of operation:

 1. FCAST/ALC, where the FCAST application works on top of the
 ALC/LCT reliable multicast transport protocol, without any
 feedback from the receivers, and

 2. FCAST/NORM, where the FCAST application works on top of the NORM
 transport protocol, which requires positive/negative
 acknowledgments from the receivers.

 This specification is designed such that both forms of operation
 share as much commonality as possible. Section 6 discusses some
 operational aspects and the content delivery service that is provided
 by FCAST for a given use-case.

Roca & Adamson Experimental [Page 12]

RFC 6968 FCAST Object Delivery July 2013

3.2. Compound Object and Metadata Transmission

 FCAST carries metadata elements by prepending them to the object they
 refer to. As a result, a Compound Object is created that is composed
 of an FCAST Header followed by the Object Data (Figure 3). This
 header is itself composed of the object metadata (if any) as well as
 several fields (e.g., to indicate format, encoding, or boundaries
 (Section 2.1)).

 <------------------------ Compound Object ----------------------->
 +-------------------------+--------------------------------------+
 | FCAST Header | Object Data |
 | (can include metadata) | (can be encoded by FCAST) |
 +-------------------------+--------------------------------------+

 Figure 3: Compound Object Composition

 Attaching the metadata to the object is an efficient solution, since
 it guarantees that metadata are received along with the associated
 object, and it allows the transport of the metadata to benefit from
 any transport-layer erasure protection of the Compound Object (e.g.,
 using FEC encoding and/or NACK-based repair). However, a limit of
 this scheme is that a client does not know the metadata of an object
 before beginning its reception, and in the case of erasures affecting
 the metadata, not until the object decoding is completed. The
 details of course depend upon the transport protocol and the FEC code
 used.

 Appendix B describes extensions that provide additional means to
 carry metadata, e.g., to communicate metadata ahead of time.

3.3. Metadata Content

 The following metadata types are defined in [RFC2616]:

 o Content-Location: the URI of the object, which gives the name and
 location of the object.

 o Content-Type: a string that contains the MIME type of the object.

 o Content-Length: an unsigned 64-bit integer that contains the size
 in bytes of the initial object, before any content encoding (if
 any) and without considering the FCAST Header. Note that the use
 of certain FEC schemes MAY further limit the maximum value of the
 object.

Roca & Adamson Experimental [Page 13]

RFC 6968 FCAST Object Delivery July 2013

 o Content-Encoding: a string that contains the optional encoding of
 the object performed by FCAST. For instance:

 Content-Encoding: gzip

 indicates that the object has been encoded with GZIP [RFC1952].
 If there is no Content-Encoding entry, the receiver MUST assume
 that FCAST did not modify the original encoding of the object
 (default).

 The following additional metadata types are defined to check object
 integrity:

 o Fcast-Obj-Digest-SHA256: a string that contains the "base64"
 [RFC4648] encoding of the SHA-256 message digest of the object
 [RFC3174] [RFC6234], before any content encoding is applied (if
 any) and without considering the FCAST Header. This digest is
 meant to protect from transmission and processing errors, not from
 deliberate attacks by an intelligent attacker (see Section 5).
 This digest only protects the object, not the header, and
 therefore not the metadata. A separate checksum is provided for
 that purpose (Section 2.1).

 o Fcast-Obj-Digest-SHA1: similar to Fcast-Obj-Digest-SHA256, except
 that SHA-256 is replaced by SHA-1. An FCAST sender MAY include
 both an Fcast-Obj-Digest-SHA1 and an Fcast-Obj-Digest-SHA256
 message digest in the metadata, in order to let a receiver select
 the most appropriate algorithm (e.g., depending on local
 processing power).

 The following additional metadata types are used for dealing with
 very large objects (e.g., objects that largely exceed the working
 memory of a receiver). When this happens, the metadata associated to
 each sub-object MUST include the following entries:

 o Fcast-Obj-Slice-Nb: an unsigned 32-bit integer that contains the
 total number of slices. A value greater than 1 indicates that
 this object is the result of a split of the original object.

 o Fcast-Obj-Slice-Idx: an unsigned 32-bit integer that contains the
 slice index (in the {0 .. SliceNb - 1} interval).

 o Fcast-Obj-Slice-Offset: an unsigned 64-bit integer that contains
 the offset at which this slice starts within the original object.

 Future IANA assignments to extend the set of metadata types supported
 by FCAST are to be made through Expert Review [RFC5226].

Roca & Adamson Experimental [Page 14]

RFC 6968 FCAST Object Delivery July 2013

3.4. Carousel Transmission

 A set of FCAST Compound Objects scheduled for transmission is
 considered a logical "Carousel". A given "Carousel Instance" is
 comprised of a fixed set of Compound Objects. Whenever the FCAST
 application needs to add new Compound Objects to or remove old
 Compound Objects from the transmission set, a new Carousel Instance
 is defined, since the set of Compound Objects changes. Because of
 the native object multiplexing capability of both ALC and NORM, a
 sender and receiver(s) are both capable of multiplexing and
 demultiplexing FCAST Compound Objects.

 For a given Carousel Instance, one or more transmission cycles are
 possible. During each cycle, all of the Compound Objects comprising
 the carousel are sent. By default, each object is transmitted once
 per cycle. However, in order to allow different levels of priority,
 some objects MAY be transmitted more often than others during a cycle
 and/or benefit from higher FEC protection than others. For example,
 this can be the case for the CID objects (Section 3.5), where extra
 protection can benefit overall carousel integrity. For some FCAST
 usage (e.g., a unidirectional "push" mode), a Carousel Instance may
 be sent in a single transmission cycle. In other cases, it may be
 conveyed in a large number of transmission cycles (e.g., in
 "on-demand" mode, where objects are made available for download
 during a long period of time).

3.5. Carousel Instance Descriptor Special Object

 The FCAST sender can transmit an OPTIONAL CID. The CID carries the
 list of the Compound Objects that are part of a given Carousel
 Instance by specifying their respective Transport Object Identifiers
 (TOIs). However, the CID does not describe the objects themselves
 (i.e., there is no metadata). Additionally, the CID MAY include an
 "Fcast-CID-Complete: 1" metadata entry to indicate that no further
 modification to the enclosed list will be done in the future.
 Finally, the CID MAY include a Carousel Instance ID (CIID) that
 identifies the Carousel Instance it pertains to. These aspects are
 discussed in Section 2.2.

 There is no reserved TOI value for the CID Compound Object itself,
 since this special object is regarded by ALC/LCT or NORM as a
 standard object. On the contrary, the nature of this object (CID) is
 indicated by means of a specific FCAST Header field (the "C" flag
 from Figure 1) so that it can be recognized and processed by the
 FCAST application as needed. A direct consequence is that since a
 receiver does not know in advance which TOI will be used for the
 following CID (in the case of a dynamic session), it MUST NOT filter

Roca & Adamson Experimental [Page 15]

RFC 6968 FCAST Object Delivery July 2013

 out packets that are not in the current CID’s TOI list. Said
 differently, the goal of the CID is not to set up ALC or NORM packet
 filters (this mechanism would not be secure in any case).

 The use of a CID remains OPTIONAL. If it is not used, then the
 clients progressively learn what files are part of the Carousel
 Instance by receiving ALC or NORM packets with new TOIs. However,
 using a CID has several benefits:

 o When an "Fcast-CID-Complete" metadata entry set to
 "Fcast-CID-Complete: 1" is included, the receivers know when they
 can leave the session, i.e., when they have received all the
 objects that are part of the last Carousel Instance of this
 delivery session.

 o In the case of a session with a dynamic set of objects, the sender
 can reliably inform the receivers that some objects have been
 removed from the carousel with the CID. This solution is more
 robust than the Close Object "B" flag of ALC/LCT, since a client
 with intermittent connectivity might lose all the packets
 containing this "B" flag. And while NORM provides a robust object
 cancellation mechanism in the form of its NORM_CMD(SQUELCH)
 message in response to receiver NACK repair requests, the use of
 the CID provides an additional means for receivers to learn of
 objects for which it is futile to request repair.

 o The TOI equivalence (Section 3.6) is signaled within the CID.

 During idle periods, when the Carousel Instance does not contain any
 object, a CID with an empty TOI list MAY be transmitted. In that
 case, a new Carousel Instance ID MUST be used to differentiate this
 (empty) Carousel Instance from the other ones. This mechanism can be
 useful to inform the receivers that:

 o all the previously sent objects have been removed from the
 carousel. This therefore improves the robustness of FCAST even
 during "idle" periods.

 o the session is still active even if there is currently no content
 being sent. Said differently, it can be used as a heartbeat
 mechanism. If no "Fcast-CID-Complete" metadata entry is included
 (or if set to "Fcast-CID-Complete: 0"), it informs the receivers
 that the Carousel Instance may be modified and that new objects
 could be sent in the future.

Roca & Adamson Experimental [Page 16]

RFC 6968 FCAST Object Delivery July 2013

3.6. Compound Object Identification

 The FCAST Compound Objects are directly associated with the object-
 based transport service that the ALC and NORM protocols provide. In
 each protocol, the packets containing transport object content are
 labeled with a numeric transport object identifier: the TOI with ALC,
 and the NormTransportId with NORM. For the purposes of this
 document, this identifier in either case (ALC or NORM) is referred to
 as the TOI.

 There are several differences between ALC and NORM:

 o ALC’s use of the TOI is rather flexible, since several TOI field
 sizes are possible (from 16 to 112 bits); since this size can be
 changed at any time, on a per-packet basis; and since the
 management of the TOI is totally free as long as each object is
 associated to a unique TOI (if no wraparound occurred).

 o NORM’s use of the TOI serves a more "directive" purpose, since the
 TOI field is 16 bits long and since TOIs MUST be managed
 sequentially.

 In both NORM and ALC, it is possible that the transport
 identification space eventually wraps for long-lived sessions
 (especially with NORM, where this phenomenon is expected to happen
 more frequently). This can possibly introduce some ambiguity in
 FCAST object identification if a sender retains some older objects in
 newer Carousel Instances with updated object sets. To avoid
 ambiguity, the active TOIs (i.e., the TOIs corresponding to objects
 being transmitted) can only occupy half of the TOI sequence space.
 If an old object whose TOI has fallen outside the current window
 needs to be transmitted again, a new TOI must be used for it. In the
 case of NORM, this constraint limits to 32768 the maximum number of
 objects that can be part of any Carousel Instance.

 In order to allow receivers to properly combine the transport packets
 with a newly assigned TOI to those associated to the previously
 assigned TOI, a mechanism is required to equate the objects with the
 new and the old TOIs. This mechanism consists of signaling, within
 the CID, that the newly assigned TOI for the current Carousel
 Instance is equivalent to the TOI used within a previous Carousel
 Instance. By convention, the reference tuple for any object is the
 {TOI; CIID} tuple used for its first transmission within a Carousel
 Instance. This tuple MUST be used whenever a TOI equivalence is
 provided. Section 2.2 details how to describe these TOI
 equivalences.

Roca & Adamson Experimental [Page 17]

RFC 6968 FCAST Object Delivery July 2013

3.7. FCAST Sender Behavior

 This section provides an informative description of expected FCAST
 sender behavior. The following operations can take place at a
 sender:

 1. The user (or another application) selects a set of objects (e.g.,
 files) to deliver and submits them, along with their metadata, to
 the FCAST application.

 2. For each object, FCAST creates the Compound Object and registers
 it in the Carousel Instance.

 3. The user then informs FCAST that all the objects of the set have
 been submitted. If the user knows that no new object will be
 submitted in the future (i.e., if the session’s content is now
 complete), the user informs FCAST. Finally, the user specifies
 how many transmission cycles are desired (this number may be
 infinite).

 4. At this point, the FCAST application knows the full list of
 Compound Objects that are part of the Carousel Instance and can
 create a CID if desired, possibly with "Fcast-CID-Complete: 1" if
 no new objects will be sent in the future.

 5. The FCAST application can now define a transmission schedule of
 these Compound Objects, including the optional CID. This
 schedule defines in which order the packets of the various
 Compound Objects should be sent. This document does not specify
 any scheme. This is left to the developer within the provisions
 of the underlying ALC or NORM protocol used and the knowledge of
 the target use-case.

 6. The FCAST application then starts the carousel transmission, for
 the number of cycles specified. Transmissions take place until:

 * the desired number of transmission cycles has been reached, or

 * the user wants to prematurely stop the transmissions, or

 * the user wants to add one or several new objects to the
 carousel, or on the contrary wants to remove old objects from
 the carousel. In that case, a new Carousel Instance must be
 created.

 7. If the session is not finished, then continue at Step 1 above.

Roca & Adamson Experimental [Page 18]

RFC 6968 FCAST Object Delivery July 2013

3.8. FCAST Receiver Behavior

 This section provides an informative description of expected FCAST
 receiver behavior. The following operations can take place at a
 receiver:

 1. The receiver joins the session and collects incoming packets.

 2. If the header portion of a Compound Object is entirely received
 (which may happen before receiving the entire object with some
 ALC/NORM configurations), or if the metadata is sent by means of
 another mechanism prior to the object, the receiver processes the
 metadata and chooses whether or not to continue to receive the
 object content.

 3. When a Compound Object has been entirely received, the receiver
 processes the header, retrieves the object metadata, perhaps
 decodes the metadata, and processes the object accordingly.

 4. When a CID is received, as indicated by the "C" flag set in the
 FCAST Header, the receiver decodes the CID and retrieves the list
 of objects that are part of the current Carousel Instance. This
 list can be used to remove objects sent in a previous Carousel
 Instance that might not have been totally decoded and that are no
 longer part of the current Carousel Instance.

 5. When a CID is received, the receiver also retrieves the list of
 TOI equivalences, if any, and takes appropriate measures, for
 instance, by informing the transport layer.

 6. When a receiver receives a CID with an "Fcast-CID-Complete"
 metadata entry set to "Fcast-CID-Complete: 1" and has
 successfully received all the objects of the current Carousel
 Instance, it can safely exit from the current FCAST session.

 7. Otherwise, continue at Step 2 above.

Roca & Adamson Experimental [Page 19]

RFC 6968 FCAST Object Delivery July 2013

4. Requirements for Compliant Implementations

 This section lists the features that any compliant FCAST/ALC or
 FCAST/NORM implementation MUST support, and those that remain
 OPTIONAL, e.g., in order to enable some optimizations for a given
 use-case, at a receiver.

4.1. Requirements Related to the Object Metadata

 Metadata transmission mechanisms:

 +------------------+--+
 | Feature | Status |
 +------------------+--+
metadata	An FCAST sender MUST send metadata with the
transmission	in-band mechanism provided by FCAST, i.e.,
using FCAST’s	within the FCAST Header. All the FCAST
in-band	receivers MUST be able to process metadata
mechanism	sent with this FCAST in-band mechanism.
metadata	In addition to the FCAST in-band transmission
transmission	of metadata, an FCAST sender MAY send a subset
using other	or all of the metadata using another
mechanisms	mechanism. Supporting this mechanism in a
	compliant FCAST receiver is OPTIONAL, and its
	use is OPTIONAL too. An FCAST receiver MAY
	support this mechanism and take advantage of
	the metadata sent in this way. If that is
	not the case, the FCAST receiver will receive
	and process metadata sent in-band anyway.
	See Appendix B.
 +------------------+--+

 Metadata format and encoding:

 +-----------------+---+
 | Feature | Status |
 +-----------------+---+
Metadata Format	All FCAST implementations MUST support an
(MDFmt field)	HTTP/1.1 metainformation format [RFC2616].
Metadata	All FCAST implementations MUST support both
Encoding (MDEnc	UTF-8 encoded text and GZIP compressed
field)	[RFC1952] UTF-8 encoded text for the Object
	Metadata field.
 +-----------------+---+

Roca & Adamson Experimental [Page 20]

RFC 6968 FCAST Object Delivery July 2013

 Metadata items (Section 3.3):

 +-------------------------------+-----------------------------------+
 | Feature | Status |
 +-------------------------------+-----------------------------------+
Content-Location	MUST be supported.
Content-Type	MUST be supported.
Content-Length	MUST be supported.
Content-Encoding	MUST be supported. All FCAST
	implementations MUST support GZIP
	encoding [RFC1952].
Fcast-Obj-Digest-SHA1	MUST be supported.
Fcast-Obj-Digest-SHA256	MUST be supported.
Fcast-Obj-Slice-Nb	MUST be supported.
Fcast-Obj-Slice-Idx	MUST be supported.
Fcast-Obj-Slice-Offset	MUST be supported.
 +-------------------------------+-----------------------------------+

4.2. Requirements Related to the Carousel Instance Descriptor

 Any compliant FCAST implementation MUST support the CID mechanism, in
 order to list the Compound Objects that are part of a given Carousel
 Instance. However, its use is OPTIONAL.

 CID-specific Metadata items (Section 2.2):

 +--------------------+--------------------+
 | Feature | Status |
 +--------------------+--------------------+
 | Fcast-CID-Complete | MUST be supported. |
 | Fcast-CID-ID | MUST be supported. |
 +--------------------+--------------------+

Roca & Adamson Experimental [Page 21]

RFC 6968 FCAST Object Delivery July 2013

5. Security Considerations

5.1. Problem Statement

 A content delivery system may be subject to attacks that target:

 o the network, to compromise the delivery infrastructure (e.g., by
 creating congestion),

 o the Content Delivery Protocol (CDP), to compromise the delivery
 mechanism (i.e., FCAST in this case), or

 o the content itself, to corrupt the objects being transmitted.

 These attacks can be launched against all or any subset of the
 following:

 o the data flow itself (e.g., by sending forged packets),

 o the session control parameters sent either in-band or out-of-band
 (e.g., by corrupting the session description, the CID, the object
 metadata, or the ALC/LCT control parameters), or

 o some associated building blocks (e.g., the congestion control
 component).

 More details on these possible attacks are provided in the following
 sections, along with possible countermeasures. Recommendations are
 made in Section 5.5.

5.2. Attacks against the Data Flow

 The following types of attacks against the data flow exist:

 o attacks that are meant to gain unauthorized access to a
 confidential object (e.g., obtaining non-free content without
 purchasing it) and

 o attacks that try to corrupt the object being transmitted (e.g., to
 inject malicious code within an object, or to prevent a receiver
 from using an object; this would be a denial-of-service (DoS)
 attack).

Roca & Adamson Experimental [Page 22]

RFC 6968 FCAST Object Delivery July 2013

5.2.1. Attacks Meant to Gain Access to Confidential Objects

 Modern cryptographic mechanisms can provide access control to
 transmitted objects. One way to do this is by encrypting the entire
 object prior to transmission, knowing that authenticated receivers
 have the cryptographic mechanisms to decrypt the content. Another
 way is to encrypt individual packets using IPsec/ESP [RFC4303] (see
 also Section 5.5). These two techniques can also provide
 confidentiality to the objects being transferred.

 If access control and/or confidentiality services are desired, one of
 these mechanisms is RECOMMENDED and SHOULD be deployed.

5.2.2. Attacks Meant to Corrupt Objects

 Protection against attacks on the data integrity of the object may be
 achieved by a mechanism agreed upon between the sender and receiver
 that features sender authentication and a method to verify that the
 object integrity has remained intact during transmission. This
 service can be provided at the object level, but in that case a
 receiver has no way to identify what symbols are corrupted if the
 object is detected as corrupted. This service can also be provided
 at the packet level. In some cases, after removing all corrupted
 packets, the object may be recovered. Several techniques can provide
 data integrity and sender authentication services:

 o At the object level, the object can be digitally signed, for
 instance, by using RSASSA-PKCS1-v1_5 [RFC3447]. This signature
 enables a receiver to check the object integrity. Even if digital
 signatures are computationally expensive, this calculation occurs
 only once per object, which is usually acceptable.

 o At the packet level, each packet can be digitally signed
 [RFC6584]. A major limitation is the high computational and
 transmission overheads that this solution requires.

 o At the packet level, a Group-keyed Message Authentication Code
 (MAC) [RFC2104] [RFC6584] scheme can be used, for instance, by
 using HMAC-SHA-256 with a secret key shared by all the group
 members, senders, and receivers. This technique creates a
 cryptographically secured digest of a packet that is sent along
 with the packet itself. The Group-keyed MAC scheme does not
 create prohibitive processing loads or transmission overhead, but
 it has a major limitation: it only provides a group
 authentication/integrity service, since all group members share
 the same secret group key; this means that each member can send a
 forged packet. It is therefore restricted to situations where

Roca & Adamson Experimental [Page 23]

RFC 6968 FCAST Object Delivery July 2013

 group members are fully trusted, or in association with another
 technique as a preliminary check to quickly detect attacks
 initiated by non-group members and to discard their packets.

 o At the packet level, Timed Efficient Stream Loss-Tolerant
 Authentication (TESLA) [RFC4082] [RFC5776] is an attractive
 solution that is robust to losses, provides an authentication and
 integrity verification service, and does not create any
 prohibitive processing load or transmission overhead. Yet, a
 delay is incurred in checking a TESLA authenticated packet; this
 delay may be more than what is desired in some use-cases.

 o At the packet level, IPsec/ESP [RFC4303] can be used to check the
 integrity and authenticate the sender of all the packets being
 exchanged in a session (see Section 5.5).

 Techniques relying on public key cryptography (digital signatures and
 TESLA during the bootstrap process, when used) require that public
 keys be securely associated to the entities. This can be achieved
 via a Public Key Infrastructure (PKI), a Pretty Good Privacy (PGP)
 Web of Trust, or by securely preplacing the public keys of each group
 member.

 Techniques relying on symmetric key cryptography (Group-keyed MAC)
 require that a secret key be shared by all group members. This can
 be achieved by means of a group key management protocol or simply by
 securely preplacing the secret key (but this manual solution has many
 limitations).

 It is up to the developer and deployer, who know the security
 requirements and features of the target application area, to define
 which solution is the most appropriate. In any case, whenever there
 is a threat of object corruption, it is RECOMMENDED that at least one
 of these techniques be used. Section 5.5 defines minimum security
 recommendations that can be used to provide such services.

5.3. Attacks against the Session Control Parameters and Associated
 Building Blocks

 Let us now consider attacks against the session control parameters
 and the associated building blocks. The attacker can target, among
 other things, the following:

 o the session description,

 o the FCAST CID,

 o the metadata of an object,

Roca & Adamson Experimental [Page 24]

RFC 6968 FCAST Object Delivery July 2013

 o the ALC/LCT parameters, carried within the LCT header, or

 o the FCAST associated building blocks, for instance, the multiple
 rate congestion control protocol.

 The consequences of these attacks are potentially serious, since they
 can compromise the behavior of the content delivery system or even
 compromise the network itself.

5.3.1. Attacks against the Session Description

 An FCAST receiver may potentially obtain an incorrect session
 description for the session. The consequence is that legitimate
 receivers with the wrong session description will be unable to
 correctly receive the session content or will inadvertently try to
 receive at a much higher rate than they are capable of, thereby
 possibly disrupting other traffic in the network.

 To avoid these problems, it is RECOMMENDED that measures be taken to
 prevent receivers from accepting incorrect session descriptions. One
 such measure is sender authentication to ensure that receivers only
 accept legitimate session descriptions from authorized senders. How
 these measures are achieved is outside the scope of this document,
 since this session description is usually carried out-of-band.

5.3.2. Attacks against the FCAST CID

 Corrupting the FCAST CID is one way to create a DoS attack. For
 example, the attacker can insert an "Fcast-CID-Complete: 1" metadata
 entry to make the receivers believe that no further modification will
 be done.

 It is therefore RECOMMENDED that measures be taken to guarantee the
 integrity and to check the sender’s identity of the CID. To that
 purpose, one of the countermeasures mentioned above (Section 5.2.2)
 SHOULD be used. These measures will either be applied at the packet
 level or globally over the whole CID object. When there is no
 packet-level integrity verification scheme, it is RECOMMENDED to
 digitally sign the CID.

5.3.3. Attacks against the Object Metadata

 Modifying the object metadata is another way to launch an attack.
 For example, the attacker may change the message digest associated to
 an object, leading a receiver to reject an object even if it has been
 correctly received. More generally, a receiver SHOULD be very
 careful during metadata processing. For instance, a receiver SHOULD
 NOT try to follow links (e.g., the URI contained in the

Roca & Adamson Experimental [Page 25]

RFC 6968 FCAST Object Delivery July 2013

 Content-Location metadata). As another example, malformed HTTP
 content can be used as an attack vector, and a receiver should take
 great care with such content.

 It is therefore RECOMMENDED that measures be taken to guarantee the
 integrity and to check the identity of the sender of the Compound
 Object. To that purpose, one of the countermeasures mentioned above
 (Section 5.2.2) SHOULD be used. These measures will either be
 applied at the packet level or globally over the whole Compound
 Object. When there is no packet-level integrity verification scheme,
 it is RECOMMENDED to digitally sign the Compound Object.

5.3.4. Attacks against the ALC/LCT and NORM Parameters

 By corrupting the ALC/LCT header (or header extensions), one can
 execute attacks on the underlying ALC/LCT implementation. For
 example, sending forged ALC packets with the Close Session "A" flag
 set to 1 can lead the receiver to prematurely close the session.
 Similarly, sending forged ALC packets with the Close Object "B" flag
 set to 1 can lead the receiver to prematurely give up the reception
 of an object. The same comments can be made for NORM.

 It is therefore RECOMMENDED that measures be taken to guarantee the
 integrity and to check the sender’s identity in each ALC or NORM
 packet received. To that purpose, one of the countermeasures
 mentioned above (Section 5.2.2) SHOULD be used.

5.3.5. Attacks against the Associated Building Blocks

 Let us first focus on the congestion control building block that may
 be used in an ALC or NORM session. A receiver with an incorrect or
 corrupted implementation of the multiple rate congestion control
 building block may affect the health of the network in the path
 between the sender and the receiver and may also affect the reception
 rates of other receivers who joined the session.

 When congestion control is applied with FCAST, it is therefore
 RECOMMENDED that receivers be authenticated as legitimate receivers
 before they can join the session. If authenticating a receiver does
 not prevent that receiver from launching an attack, the network
 operator will still be able to easily identify the receiver that
 launched the attack and take countermeasures. The details of how
 this is done are outside the scope of this document.

 When congestion control is applied with FCAST, it is also RECOMMENDED
 that a packet-level authentication scheme be used, as explained in
 Section 5.2.2. Some of them, like TESLA, only provide a delayed
 authentication service, whereas congestion control requires a rapid

Roca & Adamson Experimental [Page 26]

RFC 6968 FCAST Object Delivery July 2013

 reaction. It is therefore RECOMMENDED [RFC5775] that a receiver
 using TESLA quickly reduce its subscription level when the receiver
 believes that congestion did occur, even if the packet has not yet
 been authenticated. Therefore, TESLA will not prevent DoS attacks
 where an attacker makes the receiver believe that congestion
 occurred. This is an issue for the receiver, but this will not
 compromise the network. Other authentication methods that do not
 feature this delayed authentication might be preferable, or a Group-
 keyed MAC scheme could be used in parallel with TESLA to prevent
 attacks launched from outside of the group.

5.4. Other Security Considerations

 Lastly, we note that the security considerations that apply to, and
 are described in, ALC [RFC5775], LCT [RFC5651], NORM [RFC5740], and
 FEC [RFC5052] also apply to FCAST, as FCAST builds on those
 specifications. In addition, any security considerations that apply
 to any congestion control building block used in conjunction with
 FCAST also apply to FCAST. Finally, the security discussion of
 [RMT-SEC] also applies here.

5.5. Minimum Security Recommendations

 We now introduce a security configuration that is mandatory to
 implement but not necessarily mandatory to use, in the sense of
 [RFC3365]. Since FCAST/ALC relies on ALC/LCT, it inherits the
 "baseline secure ALC operation" of [RFC5775]. Similarly, since
 FCAST/NORM relies on NORM, it inherits the "baseline secure NORM
 operation" of [RFC5740]. Therefore, IPsec/ESP in transport mode MUST
 be implemented, but not necessarily used, in accordance with
 [RFC5775] and [RFC5740]. [RFC4303] explains that ESP can be used to
 potentially provide confidentiality, data origin authentication,
 content integrity, anti-replay, and (limited) traffic flow
 confidentiality. [RFC5775] specifies that the data origin
 authentication, content integrity, and anti-replay services SHALL be
 used, and that the confidentiality service is RECOMMENDED. If a
 short-lived session MAY rely on manual keying, it is also RECOMMENDED
 that an automated key management scheme be used, especially in the
 case of long-lived sessions.

 Therefore, the RECOMMENDED solution for FCAST provides per-packet
 security, with data origin authentication, integrity verification,
 and anti-replay. This is sufficient to prevent most of the in-band
 attacks listed above. If confidentiality is required, a per-packet
 encryption SHOULD also be used.

Roca & Adamson Experimental [Page 27]

RFC 6968 FCAST Object Delivery July 2013

6. Operational Considerations

 FCAST is compatible with any congestion control protocol designed for
 ALC/LCT or NORM. However, depending on the use-case, the data flow
 generated by the FCAST application might not be constant but might
 instead be bursty in nature. Similarly, depending on the use-case,
 an FCAST session might be very short. Whether and how this will
 impact the congestion control protocol is out of the scope of the
 present document.

 FCAST is compatible with any security mechanism designed for ALC/LCT
 or NORM. The use of a security scheme is strongly RECOMMENDED (see
 Section 5).

 FCAST is compatible with any FEC scheme designed for ALC/LCT or NORM.
 Whether FEC is used or not, and the kind of FEC scheme used, are to
 some extent transparent to FCAST.

 FCAST is compatible with both IPv4 and IPv6. Nothing in the FCAST
 specification has any implication on the source or destination IP
 address type.

 The delivery service provided by FCAST might be fully reliable, or
 only partially reliable, depending upon:

 o the way ALC or NORM is used (e.g., whether FEC encoding and/or
 NACK-based repair requests are used or not),

 o the way the FCAST carousel is used (e.g., whether the objects are
 made available for a long time span or not), and

 o the way in which FCAST itself is deployed (e.g., whether there is
 a session control application that might automatically extend an
 existing FCAST session until all receivers have received the
 transmitted content).

 The receiver set can be restricted to a single receiver or possibly a
 very large number of receivers. While the choice of the underlying
 transport protocol (i.e., ALC or NORM) and its parameters may limit
 the practical receiver group size, nothing in FCAST itself limits it.
 For instance, if FCAST/ALC is used on top of purely unidirectional
 transport channels with no feedback information at all, which is the
 default mode of operation, then scalability is at a maximum, since
 neither FCAST, ALC, UDP, nor IP generates any feedback message. On
 the contrary, the scalability of FCAST/NORM is typically limited by
 the scalability of NORM itself. For example, NORM can be configured
 to operate using proactive FEC without feedback, similar to ALC, with
 receivers configured to provide NACK and, optionally, ACK feedback,

Roca & Adamson Experimental [Page 28]

RFC 6968 FCAST Object Delivery July 2013

 or a hybrid combination of these. Similarly, if FCAST is used along
 with a session control application that collects reception
 information from the receivers, then this session control application
 may limit the scalability of the global object delivery system. This
 situation can of course be mitigated by using a hierarchy of servers
 or feedback message aggregation. The details of this are out of the
 scope of the present document.

 The content of a Carousel Instance MAY be described by means of an
 OPTIONAL CID (Section 3.5). The decision of whether the CID
 mechanism should be used or not is left to the sender. When it is
 used, the question of how often and when a CID should be sent is also
 left to the sender. These considerations depend on many parameters,
 including the target use-case and the session dynamics. For
 instance, it may be appropriate to send a CID at the beginning of
 each new Carousel Instance and then periodically. These operational
 aspects are out of the scope of the present document.

7. IANA Considerations

 Per this specification, IANA has created three new registries.

7.1. Creation of the FCAST Object Metadata Format Registry

 IANA has created a new registry, "FCAST Object Metadata Format"
 (MDFmt), with a reference to this document. The registry entries
 consist of a numeric value from 0 to 15, inclusive (i.e., they are
 4-bit positive integers), that defines the format of the object
 metadata (see Section 2.1).

 The initial value for this registry is defined below. Future
 assignments are to be made through Expert Review with Specification
 Required [RFC5226].

 +-------------+---------------------+--------------+----------------+
 | Value | Format Name | Format | Reference |
 | | | Reference | |
 +-------------+---------------------+--------------+----------------+
0 (default)	HTTP/1.1	[RFC2616],	This
	metainformation	Section 7.1	specification
	format		
 +-------------+---------------------+--------------+----------------+

Roca & Adamson Experimental [Page 29]

RFC 6968 FCAST Object Delivery July 2013

7.2. Creation of the FCAST Object Metadata Encoding Registry

 IANA has created a new registry, "FCAST Object Metadata Encoding"
 (MDEnc), with a reference to this document. The registry entries
 consist of a numeric value from 0 to 15, inclusive (i.e., they are
 4-bit positive integers), that defines the encoding of the Object
 Metadata field (see Section 2.1).

 The initial values for this registry are defined below. Future
 assignments are to be made through Expert Review [RFC5226].

 +---------+------------------+-----------------+--------------------+
 | Value | Encoding Name | Encoding | Reference |
 | | | Reference | |
 +---------+------------------+-----------------+--------------------+
0	UTF-8 encoded	[RFC3629]	This specification
	text		
1	GZIP’ed UTF-8	[RFC1952],	This specification
	encoded text	[RFC3629]	
 +---------+------------------+-----------------+--------------------+

7.3. Creation of the FCAST Object Metadata Types Registry

 IANA has created a new registry, "FCAST Object Metadata Types"
 (MDType), with a reference to this document. The registry entries
 consist of additional text metadata type identifiers and descriptions
 for metadata item types that are specific to FCAST operation and not
 previously defined in [RFC2616]. The initial values are those
 described in Section 3.3 of this specification. This table
 summarizes those initial registry entries. Future assignments are to
 be made through Expert Review [RFC5226].

Roca & Adamson Experimental [Page 30]

RFC 6968 FCAST Object Delivery July 2013

 +-------------------------+-----------------------+-----------------+
 | Metadata Type | Description | Reference |
 +-------------------------+-----------------------+-----------------+
Fcast-Obj-Digest-SHA1	A string that	This
	contains the "base64"	specification
	encoding of the SHA-1	
	message digest of the	
	object before any	
	content encoding is	
	applied (if any) and	
	without considering	
	the FCAST Header	
Fcast-Obj-Digest-SHA256	A string that	This
	contains the "base64"	specification
	encoding of the	
	SHA-256 message	
	digest of the object	
	before any content	
	encoding is applied	
	(if any) and without	
	considering the FCAST	
	Header	
Fcast-Obj-Slice-Nb	Unsigned 32-bit	This
	integer that contains	specification
	the total number of	
	slices. A value	
	greater than 1	
	indicates that this	
	object is the result	
	of a split of the	
	original object	
Fcast-Obj-Slice-Idx	Unsigned 32-bit	This
	integer that contains	specification
	the slice index (in	
	the {0 .. SliceNb -	
	1} interval)	
Fcast-Obj-Slice-Offset	Unsigned 64-bit	This
	integer that contains	specification
	the byte offset at	
	which this slice	
	starts within the	
	original object	
 +-------------------------+-----------------------+-----------------+

Roca & Adamson Experimental [Page 31]

RFC 6968 FCAST Object Delivery July 2013

8. Acknowledgments

 The authors are grateful to the authors of [ALC-00] for specifying
 the first version of FCAST/ALC. The authors are also grateful to
 David Harrington, Gorry Fairhurst, and Lorenzo Vicisano for their
 valuable comments. The authors are also grateful to Jari Arkko,
 Ralph Droms, Wesley Eddy, Roni Even, Stephen Farrell, Russ Housley,
 Chris Lonvick, Pete Resnick, Joseph Yee, and Martin Stiemerling.

9. References

9.1. Normative References

 [RFC1071] Braden, R., Borman, D., Partridge, C., and W. Plummer,
 "Computing the Internet checksum", RFC 1071,
 September 1988.

 [RFC1952] Deutsch, P., "GZIP file format specification version 4.3",
 RFC 1952, May 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of
 ISO 10646", STD 63, RFC 3629, November 2003.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5651] Luby, M., Watson, M., and L. Vicisano, "Layered Coding
 Transport (LCT) Building Block", RFC 5651, October 2009.

Roca & Adamson Experimental [Page 32]

RFC 6968 FCAST Object Delivery July 2013

 [RFC5740] Adamson, B., Bormann, C., Handley, M., and J. Macker,
 "NACK-Oriented Reliable Multicast (NORM) Transport
 Protocol", RFC 5740, November 2009.

 [RFC5775] Luby, M., Watson, M., and L. Vicisano, "Asynchronous
 Layered Coding (ALC) Protocol Instantiation", RFC 5775,
 April 2010.

 [RFC6234] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

9.2. Informative References

 [ALC-00] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L., Crowcroft,
 J., and B. Lueckenhoff, "Asynchronous Layered Coding: A
 scalable reliable multicast protocol", Work in Progress,
 March 2000.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC3365] Schiller, J., "Strong Security Requirements for Internet
 Engineering Task Force Standard Protocols", BCP 61,
 RFC 3365, August 2002.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC4082] Perrig, A., Song, D., Canetti, R., Tygar, J., and B.
 Briscoe, "Timed Efficient Stream Loss-Tolerant
 Authentication (TESLA): Multicast Source Authentication
 Transform Introduction", RFC 4082, June 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, December 2005.

 [RFC5052] Watson, M., Luby, M., and L. Vicisano, "Forward Error
 Correction (FEC) Building Block", RFC 5052, August 2007.

 [RFC5510] Lacan, J., Roca, V., Peltotalo, J., and S. Peltotalo,
 "Reed-Solomon Forward Error Correction (FEC) Schemes",
 RFC 5510, April 2009.

Roca & Adamson Experimental [Page 33]

RFC 6968 FCAST Object Delivery July 2013

 [RFC5776] Roca, V., Francillon, A., and S. Faurite, "Use of Timed
 Efficient Stream Loss-Tolerant Authentication (TESLA) in
 the Asynchronous Layered Coding (ALC) and NACK-Oriented
 Reliable Multicast (NORM) Protocols", RFC 5776,
 April 2010.

 [RFC6363] Watson, M., Begen, A., and V. Roca, "Forward Error
 Correction (FEC) Framework", RFC 6363, October 2011.

 [RFC6584] Roca, V., "Simple Authentication Schemes for the
 Asynchronous Layered Coding (ALC) and NACK-Oriented
 Reliable Multicast (NORM) Protocols", RFC 6584,
 April 2012.

 [RFC6726] Paila, T., Walsh, R., Luby, M., Roca, V., and R. Lehtonen,
 "FLUTE - File Delivery over Unidirectional Transport",
 RFC 6726, November 2012.

 [RMT-SEC] Adamson, B., Roca, V., and H. Asaeda, "Security and
 Reliable Multicast Transport Protocols: Discussions and
 Guidelines", Work in Progress, May 2013.

Roca & Adamson Experimental [Page 34]

RFC 6968 FCAST Object Delivery July 2013

Appendix A. FCAST Examples

 This appendix provides informative examples of FCAST Compound Objects
 and Carousel Instance Descriptor formats.

A.1. Simple Compound Object Example

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver=0| 0 |1|0|MDFmt=0|MDEnc=0| Checksum |
 +-+
 | FCAST Header Length=41 |
 +-|
 . .
 . "Content-Location: example_1.txt<CR-LF>" metadata (33 bytes) .
 . .
 + +-+
 | | Padding |
 +-+
 . .
 . Object Data .
 . .
 +-+

 Figure 4: Simple Compound Object Example

 Figure 4 shows a simple Compound Object where the metadata string, in
 HTTP/1.1 metainformation format (MDFmt=0), contains:

 Content-Location: example_1.txt<CR-LF>

 This UTF-8 encoded text (since MDEnc=0) is 33 bytes long (there is no
 final ’\0’ character). Therefore, 3 padding bytes are added. There
 is no Content-Length metadata entry for the object transported
 (without FCAST additional encoding) in the Object Data field, since
 this length can easily be calculated by the receiver as the FEC OTI
 Transfer Length minus the header length. Finally, the checksum
 encompasses the whole Compound Object (G=1).

Roca & Adamson Experimental [Page 35]

RFC 6968 FCAST Object Delivery July 2013

A.2. Carousel Instance Descriptor Example

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver=0| 0 |1|1|MDFmt=0|MDEnc=0| Checksum |
 +-+
 | FCAST Header Length=31 |
 +-|
 . .
 . "Fcast-CID-Complete: 1<CR-LF>" metadata string (23 bytes) .
 . .
 + +-+-+-+-+-+-+-+-+
 | | Padding |
 +-|
 . .
 . Object List string .
 . .
 . +-+
 . |
 +-+-+-+-+-+-+-+-+

 Figure 5: CID Object Example: Static Session

 Figure 5 shows an example CID object, in the case of a static FCAST
 session, i.e., a session where the set of objects is set once and for
 all. The metadata UTF-8 encoded text only contains the following
 entry, since Fcast-CID-ID is implicit:

 Fcast-CID-Complete: 1<CR-LF>

 This UTF-8 encoded text (since MDEnc=0) is 23 bytes long (there is no
 final ’\0’ character). Therefore, 1 padding byte is added.

 The Object List contains the following 25-byte-long string (there is
 no final ’\0’ character):

 1,2,3,100-104,200-203,299

 There are therefore a total of 3+5+4+1 = 13 objects in the Carousel
 Instance and therefore in the FCAST session. There is no metadata
 associated to this CID. As the session is static and composed of a
 single Carousel Instance, the sender did not feel the necessity to
 carry a Carousel Instance ID metadata.

Roca & Adamson Experimental [Page 36]

RFC 6968 FCAST Object Delivery July 2013

Appendix B. Additional Metadata Transmission Mechanisms

B.1. Supporting Additional Mechanisms

 In certain use-cases, FCAST can take advantage of another in-band
 (e.g., via NORM_INFO messages (Appendix B.2)) or out-of-band
 signaling mechanism. This section provides an overview of how other
 signaling mechanisms could be employed and a normative specification
 for how FCAST information is embedded when NORM_INFO messages are
 used for carrying FCAST Headers. Such additional signaling schemes
 can be used to carry the whole metadata, or a subset of it, ahead of
 time, before the associated Compound Object. Therefore, based on the
 information retrieved in this way, a receiver could decide in advance
 (i.e., before beginning the reception of the compound object) whether
 the object is of interest or not; this would mitigate the limitations
 of FCAST. While out-of-band techniques are out of the scope of this
 document, we explain below how this can be achieved in the case of
 FCAST/NORM.

 Supporting additional mechanisms is OPTIONAL in FCAST
 implementations. In any case, an FCAST sender MUST continue to send
 all the required metadata in the Compound Object, even if the whole
 metadata, or a subset of it, is sent by another mechanism
 (Section 4). Additionally, when metadata is sent several times,
 there MUST NOT be any contradiction in the information provided by
 the different mechanisms. If a mismatch is detected, the metadata
 contained in the Compound Object MUST be used as the definitive
 source.

 When metadata elements are communicated out-of-band, in advance of
 data transmission, the following piece of information can be useful:

 o TOI: a positive integer that contains the Transport Object
 Identifier (TOI) of the object, in order to enable a receiver to
 easily associate the metadata to the object. The valid range for
 TOI values is discussed in Section 3.6.

Roca & Adamson Experimental [Page 37]

RFC 6968 FCAST Object Delivery July 2013

B.2. Using NORM_INFO Messages with FCAST/NORM

 The NORM_INFO message of NORM can convey "out-of-band" content with
 respect to a given transport object. With FCAST, this message MAY be
 used as an additional mechanism to transmit metadata. In that case,
 the NORM_INFO message carries a new Compound Object that contains all
 the metadata of the original object, or a subset of it. The
 NORM_INFO Compound Object MUST NOT contain any Object Data field
 (i.e., it is only composed of the header), it MUST feature a
 non-global checksum, and it MUST NOT include a Padding field.
 Finally, note that the availability of NORM_INFO for a given object
 is signaled through the use of a dedicated flag in the NORM_DATA
 message header. Along with NORM’s NACK-based repair request
 signaling, it allows a receiver to quickly (and independently)
 request an object’s NORM_INFO content. However, a limitation here is
 that the FCAST Header MUST fit within the byte size limit defined by
 the NORM sender’s configured "segment size" (typically a little less
 than the network MTU).

B.2.1. Example

 In the case of FCAST/NORM, the object metadata (or a subset of it)
 can be carried as part of a NORM_INFO message, as a new Compound
 Object that does not contain any Object Data. In the following
 informative example, we assume that the whole metadata is carried in
 such a message. Figure 6 shows an example NORM_INFO message that
 contains the FCAST Header, including metadata. In this example, the
 first 16 bytes are the NORM_INFO base header; the next 12 bytes are a
 NORM EXT_FTI header extension containing the FEC Object Transport
 Information for the associated object; and the remaining bytes are
 the FCAST Header, including metadata. Note that "padding" MUST NOT
 be used and that the FCAST checksum only encompasses the Compound
 Object Header (G=0).

Roca & Adamson Experimental [Page 38]

RFC 6968 FCAST Object Delivery July 2013

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+ --
 |version| type=1| hdr_len = 7 | sequence | ^
 +-+ |
 | source_id | n
 +-+ o
 | instance_id | grtt |backoff| gsize | r
 +-+ m
 | flags | fec_id = 5 | object_transport_id | v
 +-+ --
 | HET = 64 | HEL = 3 | | ^
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + f
 | Transfer Length = 41 | t
 +-+ i
 | Encoding Symbol Length (E) | MaxBlkLen (B) | max_n | v
 +-+ --
 | 0 | 0 |0|0| 0 | 0 | Checksum | ^
 +-+ |
 | 41 | f
 +-| c
 . . a
 . metadata UTF-8 encoded text (32 bytes) . s
 . . t
 + +-+ |
 | | v
 +-+-+-+-+-+-+-+-+ --

 Figure 6: NORM_INFO Message Containing an EXT_FTI Header Extension
 and an FCAST Header

 The NORM_INFO message shown in Figure 6 contains the EXT_FTI header
 extension to carry the FEC OTI. In this example, the FEC OTI format
 is that of the Reed-Solomon FEC coding scheme for fec_id = 5, as
 described in [RFC5510]. Other alternatives for providing the FEC OTI
 would have been to either include it directly in the metadata of the
 FCAST Header or to include an EXT_FTI header extension to all
 NORM_DATA packets (or a subset of them). Note that the NORM
 "Transfer Length" is the total length of the associated Compound
 Object, i.e., 41 bytes.

Roca & Adamson Experimental [Page 39]

RFC 6968 FCAST Object Delivery July 2013

 The Compound Object in this example does contain the same metadata
 and is formatted as in the example of Figure 4. With the combination
 of the FEC_OTI and the FCAST metadata, the NORM protocol and FCAST
 application have all of the information needed to reliably receive
 and process the associated object. Indeed, the NORM protocol
 provides rapid (NORM_INFO has precedence over the associated object
 content), reliable delivery of the NORM_INFO message and its payload,
 the FCAST Compound Object.

Authors’ Addresses

 Vincent Roca
 INRIA
 655, av. de l’Europe
 Inovallee; Montbonnot
 ST ISMIER cedex 38334
 France

 EMail: vincent.roca@inria.fr
 URI: http://planete.inrialpes.fr/people/roca/

 Brian Adamson
 Naval Research Laboratory
 Washington, DC 20375
 USA

 EMail: adamson@itd.nrl.navy.mil
 URI: http://cs.itd.nrl.navy.mil

Roca & Adamson Experimental [Page 40]

