
Internet Engineering Task Force (IETF) G. Salgueiro
Request for Comments: 6873 Cisco Systems
Category: Standards Track V. Gurbani
ISSN: 2070-1721 Bell Labs, Alcatel-Lucent
 A. B. Roach
 Mozilla
 February 2013

 Format for the Session Initiation Protocol (SIP)
 Common Log Format (CLF)

Abstract

 The SIPCLF working group has defined a Common Log Format (CLF)
 framework for Session Initiation Protocol (SIP) servers. This CLF
 mimics the successful event logging format found in well-known web
 servers like Apache and web proxies like Squid. This document
 proposes an indexed text encoding format for the SIP CLF that retains
 the key advantages of a text-based format while significantly
 increasing processing performance over a purely text-based
 implementation. This file format adheres to the SIP CLF information
 model and provides an effective encoding scheme for all mandatory and
 optional fields that appear in a SIP CLF record.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6873.

Salgueiro, et al. Standards Track [Page 1]

RFC 6873 Format for SIP CLF February 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 2. Terminology ...3
 3. Document Conventions ..4
 4. Format ..5
 4.1. Index Pointers ...8
 4.2. Mandatory Fields ..10
 4.3. SIP CLF Encoding and Character Escaping Requirements13
 4.4. Optional Fields ...14
 5. Example SIP CLF Record ...22
 6. Text Tool Considerations24
 7. Security Considerations ..24
 8. Operational Guidance ...25
 9. IANA Considerations ..25
 9.1. SIP CLF Version ...25
 9.2. SIP CLF Transport Flag26
 10. Acknowledgments ...26
 11. References ..27
 11.1. Normative References27
 11.2. Informative References27

Salgueiro, et al. Standards Track [Page 2]

RFC 6873 Format for SIP CLF February 2013

1. Introduction

 The extensive list of benefits and the widespread adoption of the
 Apache Common Log Format (CLF) has prompted the development of an
 analogous event logging mechanism for the Session Initiation Protocol
 (SIP) [RFC3261]. Implementing a logging scheme for SIP is a
 considerable challenge. In part, this is due to the fact that the
 behavior of a SIP entity is more complex as compared to an HTTP
 entity. Additionally, there are shortcomings to the purely text-
 based HTTP CLF that need to be addressed in order to allow for real-
 time inspection of SIP log files [RFC6872]. Experience with Apache
 CLF has shown that dealing with large quantities of log data can be
 very processor intensive, as doing so necessarily requires reading
 and parsing every byte in the log file(s) of interest.

 An implementation-independent framework for the SIP CLF has been
 defined in [RFC6872]. This memo describes an indexed text file
 format for logging SIP messages received and sent by SIP clients,
 servers, and proxies that adheres to the information model presented
 in Section 8 of [RFC6872]. This document defines a format that is no
 more difficult to generate by logging entities than standard (i.e.,
 non-indexed) text log formats, while being radically faster to
 process. In particular, the format is optimized for both rapidly
 scanning through log records and quickly locating commonly accessed
 data fields.

 Further, the format proposed by this document retains the key
 advantage of being human readable and able to be processed using the
 various Unix text processing tools, such as sed, awk, perl, cut, and
 grep.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 "SHOULD", "SHOULD NOT", "RECOMMENDED", and "NOT RECOMMENDED" are
 appropriate when valid exceptions to a general requirement are known
 to exist or appear to exist, and it is infeasible or impractical to
 enumerate all of them. However, they should not be interpreted as
 permitting implementers to fail to implement the general requirement
 when such failure would result in interoperability failure.

Salgueiro, et al. Standards Track [Page 3]

RFC 6873 Format for SIP CLF February 2013

 [RFC3261] defines additional terms used in this document that are
 specific to the SIP domain such as "proxy"; "registrar"; "redirect
 server"; "user agent server" or "UAS"; "user agent client" or "UAC";
 "back-to-back user agent" or "B2BUA"; "dialog"; "transaction";
 "server transaction".

 This document uses the term "SIP Server" that is defined to include
 the following SIP entities: user agent server, registrar, redirect
 server, a SIP proxy in the role of user agent server, and a B2BUA in
 the role of a user agent server.

 The reader is expected to be familiar with the terminology and
 concepts defined in [RFC6872].

3. Document Conventions

 This document defines the logging syntax for the SIP CLF. This
 syntax is demonstrated through the use of various examples. The
 formatting described here does not permit these examples to be
 unambiguously rendered due to the constraints imposed by the
 formatting rules for RFCs. To avoid ambiguity and to meet the RFC
 layout requirements, this document uses the <allOneLine/> markup
 convention established in [RFC4475].

 For the sake of clarity and completeness, the entire text defining
 this markup convention from Section 2.1 of [RFC4475] is quoted below:

 Several of these examples contain unfolded lines longer than 72
 characters. These are captured between <allOneLine/> tags. The
 single unfolded line is reconstructed by directly concatenating
 all lines appearing between the tags (discarding any line feeds or
 carriage returns). There will be no whitespace at the end of
 lines. Any whitespace appearing at a fold-point will appear at
 the beginning of a line.

 The following represent the same string of bits:

 Header-name: first value, reallylongsecondvalue, third value

 <allOneLine>
 Header-name: first value,
 reallylongsecondvalue
 , third value
 </allOneLine>

Salgueiro, et al. Standards Track [Page 4]

RFC 6873 Format for SIP CLF February 2013

 <allOneLine>
 Header-name: first value,
 reallylong
 second
 value,
 third value
 </allOneLine>

 Note that this is NOT SIP header-line folding, where different
 strings of bits have equivalent meaning.

 The IP addresses used in the examples in this document correspond to
 the documentation address block 192.0.2.0/24 (TEST-NET-1) as
 described in [RFC5737].

4. Format

 The CLF for the Session Initiation Protocol [RFC6872] defines an
 information model to which this logging format adheres, and Section
 8.1 of that document defines all the mandatory information model
 elements.

 This document defines the format of SIP CLF records as follows:

 0 7 8 15 16 23 24 31
 +-----------+-----------+-----------+-----------+
 | Version | Record Length | 0 - 3
 +-----------+-----------+-----------+-----------+
 | Record Length (cont) | 0x2C | 4 - 7
 +-----------+-----------+-----------+-----------+
 | CSeq Pointer (Hex) | 8 - 11
 +-----------+-----------+-----------+-----------+
 | Response Status-Code Pointer (Hex) | 12 - 15
 +-----------+-----------+-----------+-----------+
 | R-URI Pointer (Hex) | 16 - 19
 +-----------+-----------+-----------+-----------+
 | Destination IP address:port Pointer (Hex) | 20 - 23
 +-----------+-----------+-----------+-----------+
 | Source IP address:port Pointer (Hex) | 24 - 27
 +-----------+-----------+-----------+-----------+
 | To URI Pointer (Hex) | 28 - 31
 +-----------+-----------+-----------+-----------+
 | To Tag Pointer (Hex) | 32 - 35
 +-----------+-----------+-----------+-----------+
 | From URI Pointer (Hex) | 36 - 39
 +-----------+-----------+-----------+-----------+
 | From Tag Pointer (Hex) | 40 - 43
 +-----------+-----------+-----------+-----------+

Salgueiro, et al. Standards Track [Page 5]

RFC 6873 Format for SIP CLF February 2013

 | Call-Id Pointer (Hex) | 44 - 47
 +-----------+-----------+-----------+-----------+
 | Server-Txn Pointer (Hex) | 48 - 51
 +-----------+-----------+-----------+-----------+
 | Client-Txn Pointer (Hex) | 52 - 55
 +-----------+-----------+-----------+-----------+
 | Optional Fields Start Pointer (Hex) | 56 - 59
 +-----------+-----------+-----------+-----------+
 | 0x0A | | 60 - 63
 +-----------+ +
 | Timestamp | 64 - 67
 + +-----------+
 | | 0x2E | 68 - 71
 +-----------+-----------+-----------+-----------+
 | Fractional Seconds | 0x09 | 72 - 75
 +-----------+-----------+-----------+-----------+
 | Flags Field | 76 - 79
 +-----------+-----------+-----------+-----------+
 |Flag (cont)| 0x09 | | 80 - 83
 |-----------+-----------+ |
 | |
 | |
 | Mandatory Fields (variable length) |
 | |
 | |
 +-----------+-----------+-----------+-----------+
 | 0x09 | Tag | 0x40 |\
 +-----------+-----------+-----------+-----------+ \
 | Vendor-ID | \
 +-----------+-----------+-----------+-----------+ \
 | Vendor-ID (cont) | \ Repeated
 +-----------+-----------+-----------+-----------+ \ as many
 | 0x2C | Length (Hex) | > times as
 +-----------+-----------+-----------+-----------+ / necessary
 | Len (cont)| 0x2C | BEB | 0x2C | /
 +-----------+-----------+-----------------------| /
 | | /
 | Value (variable length) | /
 | |/
 +-----------+-----------+-----------+-----------+
 | 0x0A |
 +-----------+

 Figure 1: SIP Common Log Format

 The format presented in Figure 1 is for a single SIP CLF log entry.
 While there is no actual subdivision in practice, this format can be
 logically subdivided into the following three distinct components:

Salgueiro, et al. Standards Track [Page 6]

RFC 6873 Format for SIP CLF February 2013

 1. Index Pointers: The first 60 bytes of this format. This portion
 is metadata, primarily composed of a list of pointers that
 indicate the beginning of both the variable-length mandatory and
 optional fields that are logged as part of this record. These
 pointers are implemented as a mechanism to improve processing of
 these records and to allow a reader to expeditiously skip
 directly to the desired field without unnecessarily going through
 the entire record. This logical subdivision within the SIP CLF
 format will be referenced in this document with the
 <IndexPointers> tag. A 0x0A (LF character) delimits
 <IndexPointers> from the next logical grouping.

 2. Mandatory Fields: The next logical grouping in this format is a
 Tab-delimited (0x09) listing of the mandatory fields as described
 in Section 8.1 of [RFC6872] and in the order listed in
 <IndexPointers>. This logical subdivision within the SIP CLF
 format will be referenced in this document with the
 <MandatoryFields> tag.

 3. Optional Fields: The last logical component MAY be present as it
 is an OPTIONAL extension to the SIP CLF format. Its purpose is
 to provide flexibility to the developer of this SIP CLF to log
 any desired fields not included in <MandatoryFields>. This
 includes SIP bodies and any vendor-specific extensions. This
 logical subdivision within the SIP CLF format will be referenced
 in this document with the <OptionalFields> tag.

 This logical structure of the SIP CLF record format can be
 graphically represented as shown in Figure 2 below:

 <IndexPointers>
 <MandatoryFields>
 <OptionalFields>

 Figure 2: Logical Structure of the SIP CLF Record

 Note that Figures 1 and 2 plus the terminating line-feed (0x0A) at
 the end of the SIP CLF record are different representations of the
 same format but are functionally equivalent. The representation of
 this format is a two-line record where the <IndexPointers> metadata
 is on one line and the actual data like <MandatoryFields> and
 <OptionalFields> (if present) is on another.

 In the following sections note that indications of "hexadecimal
 encoded" indicate values that are always unsigned and are to be
 written out in human-readable base-16 numbers using the UTF-8
 characters 0x30 through 0x39 (’0’ through ’9’) and 0x41 through 0x46
 (’A’ through ’F’). Similarly, indications of "decimal encoded"

Salgueiro, et al. Standards Track [Page 7]

RFC 6873 Format for SIP CLF February 2013

 indicate that the value is to be written out in human-readable
 base-10 numbers using the UTF-8 characters 0x30 through 0x39 (’0’
 through ’9’). In both encodings, numbers always take up the number
 of bytes indicated and are padded on the left with UTF-8 ’0’ (zero)
 characters to fill the entire space.

4.1. Index Pointers

 The <IndexPointers> portion of the SIP CLF record (shown in Figure 3)
 is a 60-byte header that indicates metadata about the record.

 0 7 8 15 16 23 24 31
 +-----------+-----------+-----------+-----------+
 | Version | Record Length | 0 - 3
 +-----------+-----------+-----------+-----------+
 | Record Length (cont) | 0x2C | 4 - 7
 +-----------+-----------+-----------+-----------+
 | CSeq Pointer (Hex) | 8 - 11
 +-----------+-----------+-----------+-----------+
 | Response Status-Code Pointer (Hex) | 12 - 15
 +-----------+-----------+-----------+-----------+
 | R-URI Pointer (Hex) | 16 - 19
 +-----------+-----------+-----------+-----------+
 | Destination IP address:port Pointer (Hex) | 20 - 23
 +-----------+-----------+-----------+-----------+
 | Source IP address:port Pointer (Hex) | 24 - 27
 +-----------+-----------+-----------+-----------+
 | To URI Pointer (Hex) | 28 - 31
 +-----------+-----------+-----------+-----------+
 | To Tag Pointer (Hex) | 32 - 35
 +-----------+-----------+-----------+-----------+
 | From URI Pointer (Hex) | 36 - 39
 +-----------+-----------+-----------+-----------+
 | From Tag Pointer (Hex) | 40 - 43
 +-----------+-----------+-----------+-----------+
 | Call-Id Pointer (Hex) | 44 - 47
 +-----------+-----------+-----------+-----------+
 | Server-Txn Pointer (Hex) | 48 - 51
 +-----------+-----------+-----------+-----------+
 | Client-Txn Pointer (Hex) | 52 - 55
 +-----------+-----------+-----------+-----------+
 | Optional Fields Start Pointer (Hex) | 56 - 59
 +-----------+-----------+-----------+-----------+

 Figure 3: Index Pointers

Salgueiro, et al. Standards Track [Page 8]

RFC 6873 Format for SIP CLF February 2013

 The fields that make up <IndexPointers> are described below:

 Version (1 byte): UTF-8 encoded version for the SIP CLF record.
 Range of valid values for the Version is from ’A’ (0x41) to ’Z’
 (0x5A). This document uses a Version value of "0x41" (’A’).

 The value of the SIP CLF Version MUST be incremented for any new
 SIP CLF specification that changes any part of the SIP CLF record
 format. The SIP CLF Version values are IANA-assigned
 (Section 9.1) via the Standards Action method described in
 [RFC5226].

 Since the version is specified per record, it is possible that a
 SIP CLF log file could contain records with different versions.
 Under normal operating conditions, this is an unlikely occurrence
 and SHOULD be avoided if possible.

 Record Length (6 bytes): Hexadecimal encoded total length of this
 log record, beginning with the "Version" octet and ending with the
 terminating line-feed.

 Bytes 8 through 55 contain hexadecimal encoded pointers that point to
 the starting location of each of the variable-length mandatory
 fields. Bytes 56 through 59 contain a hexadecimal encoded pointer
 that points to the starting location of the optional fields portion
 of the SIP CLF record. Note that there are no delimiters between
 these pointer values -- they are packed together as a single, 52-
 character hexadecimal encoded string. The "Pointer" fields indicate
 absolute byte values within the record, and are therefore >=82. They
 point to the start of the corresponding value within the
 <MandatoryFields> portion. A description of each of the mandatory
 fields that these pointer values point to can be found in
 Section 4.2.

 Optional Fields Start Pointer: This final pointer indicates the
 location within the SIP CLF record where the OPTIONAL group of
 <OptionalFields> begin, if present. The "Optional Fields Start
 Pointer" points to the UTF-8 Tab (0x09) character for the first
 entry in the <OptionalFields> portion. If the OPTIONAL group of
 <OptionalFields> are not implemented, then the "Optional Fields
 Start Pointer" field MUST point to the terminating line-feed
 (0x0A) at the end of the SIP CLF record.

Salgueiro, et al. Standards Track [Page 9]

RFC 6873 Format for SIP CLF February 2013

4.2. Mandatory Fields

 The <MandatoryFields> portion of the SIP CLF record is shown below:

 0 7 8 15 16 23 24 31
 +-----------+-----------+-----------+-----------+
 | 0x0A | | 60 - 63
 +-----------+ +
 | Timestamp | 64 - 67
 + +-----------+
 | | 0x2E | 68 - 71
 +-----------+-----------+-----------+-----------+
 | Fractional Seconds | 0x09 | 72 - 75
 +-----------+-----------+-----------+-----------+
 | Flags Field | 76 - 79
 +-----------+-----------+-----------+-----------+
 |Flag (cont)| 0x09 | | 80 - 83
 |-----------+-----------+ |
 | |
 | |
 | Mandatory Fields (variable length) |
 | |
 | |
 +-----------+-----------+-----------+-----------+

 Figure 4: Mandatory Fields

 Following the pointers in <IndexPointers>, two fixed-length fields
 are encoded to specify the exact time of the log entry. As before,
 all fields are completely filled, pre-pending values with ’0’
 characters as necessary.

 Timestamp (10 bytes): Decimal encoded date and time of the request
 or response represented as the number of seconds since the Unix
 epoch (i.e., seconds since midnight, January 1st, 1970, GMT).

 Fractional Seconds (3 bytes): Decimal encoded fractional seconds
 portion of the Timestamp field to millisecond accuracy.

 The combined Timestamp and Fractional Seconds fields are
 represented in the log file as a UTF-8 encoded string representing
 the date and time of the request or response represented as the
 number of seconds and milliseconds since the Unix epoch. The
 number of milliseconds is separated by a "." (UTF-8 character
 0x2E) from the number of seconds.

Salgueiro, et al. Standards Track [Page 10]

RFC 6873 Format for SIP CLF February 2013

 Flags Field (5 bytes):

 byte 1 - Request/Response Flag

 R = Request
 r = Response

 byte 2 - Retransmission Flag

 O = Original transmission
 D = Duplicate transmission
 S = Server is stateless [i.e., retransmissions are not
 detected]

 byte 3 - Sent/Received Flag

 S = Sent message
 R = Received message

 byte 4 - Transport Flag

 The Transport Flag values are IANA-assigned (Section 9.2) via
 the IETF Review method described in [RFC5226]. Currently,
 registered values are:

 U = UDP
 T = TCP
 S = SCTP

 byte 5 - Encryption Flag

 E = Encrypted message (TLS, DTLS, etc.)
 U = Unencrypted message

 After the "Timestamp", "Fractional Seconds", and the "Flags" fields
 are the values for the mandatory fields specified in Section 8.1 of
 [RFC6872], which are described below:

 CSeq: The Command Sequence header field, including the CSeq number
 and method name.

 Response Status-Code: Set to the value of the SIP response status
 code for responses. Set to a single UTF-8 dash (0x2D) for
 requests.

 R-URI: The Request-URI in the start line (mandatory in request),
 including any URI parameters.

Salgueiro, et al. Standards Track [Page 11]

RFC 6873 Format for SIP CLF February 2013

 Destination IP address:port: The IP address of the downstream server
 and the port number, separated by a single ’:’. IPv4 addresses
 are represented in "dotted decimal" notation as per [RFC1166].
 IPv6 addresses are represented using the hexadecimal notation
 detailed in Section 4 of [RFC5952] (or the special-case mixed
 hexadecimal and decimal notation detailed in Section 5 of
 [RFC5952]) and enclosed in square brackets (’[’ and ’]’).

 Source IP address:port: The IP address of the upstream client and
 the port number over which the SIP message was received, separated
 by a single ’:’. IPv4 addresses are represented in "dotted
 decimal" notation as per [RFC1166]. IPv6 addresses are
 represented using the hexadecimal notation detailed in Section 4
 of [RFC5952] (or the special-case mixed hexadecimal and decimal
 notation detailed in Section 5 of [RFC5952]) and enclosed in
 square brackets (’[’ and ’]’).

 To URI: Value of the URI in the To header field.

 To Tag: Value of the tag parameter (if present) in the To header
 field.

 From URI: Value of the URI in the From header field.

 From Tag: Value of the tag parameter (if present) in the From header
 field.

 Call-Id: The value of the Call-ID header field.

 Server transaction identification code (Server-Txn): The transaction
 identifier associated with the server transaction.
 Implementations can reuse the server transaction identifier (the
 topmost branch-id of the incoming request, with or without the
 magic cookie), or they could generate a unique identification
 string for a server transaction (this identifier needs to be
 locally unique to the server only). This identifier is used to
 correlate ACKs and CANCELs to an INVITE transaction; it is also
 used to aid in tracking forking. (See Section 9 of [RFC6872] for
 usage.)

 Client transaction identification code (Client-Txn): This field is
 used to associate client transactions with a server transaction
 for forking proxies or B2BUAs. Upon forking, implementations can
 reuse the value they inserted into the topmost Via header’s branch
 parameter, or they can generate a unique identification string for
 the client transaction. (See Section 9 of [RFC6872] for usage.)

Salgueiro, et al. Standards Track [Page 12]

RFC 6873 Format for SIP CLF February 2013

 Note: The definitions of the Server-Txn and Client-Txn are taken
 directly from [RFC6872] and are provided here only as a
 convenience to the implementer. The definitions specified in
 [RFC6872] should be considered authoritative in the event of a
 conflict.

 This data MUST appear in the order listed in <IndexPointers>, and
 each field MUST be present. Fields are subject the maximum SIP CLF
 field size of 4096 bytes as detailed in Section 8 of [RFC6872].

4.3. SIP CLF Encoding and Character Escaping Requirements

 The mandatory fields in a SIP CLF record are separated by a single
 UTF-8 Tab character (0x09). Any Tab characters present in the data
 to be written will be replaced by a UTF-8 space character (0x20)
 prior to being logged.

 The decision to replace tabs with spaces was based on there being no
 standardized use of tabs in SIP headers to convey any other meaning
 than whitespace. Tabs may appear in message bodies, and in the event
 that the bodies are logged, the conversion to space may cause
 problems when reconstructing the body from the corresponding log
 entry. Two consequences of the decision to replace Tab with a space
 character are: (a) it will become impossible to reconstruct a
 signature over the logged field that matches the signature over
 fields in the original SIP message, and (b) any future SIP header
 fields that include tabs with a different semantic meaning than
 simply signifying whitespace will lose this meaning when logged.
 Finally, the tabs-to-spaces substitution MUST occur when logging
 mandatory fields and optional SIP Header Field or Reason-Phrase
 (Tag=00); it MUST also occur when optionally logging either the
 entire message (Tag=02) or simply a SIP body (Tag=01) as described in
 Section 4.4.

 An element will not always have an appropriate value to provide for
 one of these fields, even when the field is required to appear in the
 SIP CLF record. In such circumstances, when a given mandatory field
 from Section 4.2 and specified in Section 8.1 of [RFC6872]) is not
 present, then that empty field MUST be encoded as a single horizontal
 dash ("-"). In the event that a field failed to parse, it MUST be
 encoded as a single question mark ("?"). If these characters are
 part of a sequence of other characters, then there is no ambiguity.
 If the field being logged contains only one character, and that
 character is the literal "-", the implementation SHOULD insert an
 escaped %2D for that field in the SIP CLF record. Similarly, if the
 field contains only one character, and that character is the literal
 "?", the implementation SHOULD insert an escaped %3F for that field
 in the SIP CLF record.

Salgueiro, et al. Standards Track [Page 13]

RFC 6873 Format for SIP CLF February 2013

 The terminating carriage return line feed (CRLF) after a given header
 field value MUST NOT be logged. Since a bare CRLF sequence is not
 permitted within a SIP header field value, mandatory fields MUST NOT
 contain a CRLF when logged and consequently no escaping mechanism is
 required for it.

 Clearly, a SIP parser could not possibly successfully parse a SIP CLF
 record in its entirety given the SIP CLF format described in this
 document. It is possible to parse individual fields in the SIP CLF
 record if they are extracted and given to a SIP parser that would
 normally parse those sequence of strings. It should be noted that
 any field value that is modified by the escaping mechanisms defined
 in this document before logging (’-’,’?’, and CRLF) is likely no
 longer well-formed SIP and will fail when given to such a parser.

 The intent of logging using SIP CLF is not to faithfully recreate the
 bit-exact SIP message being logged. In fact, the formatting rules,
 encoding, and character escaping requirements preclude this and may
 introduce information loss relative to the original SIP message. A
 log reader should never unescape anything in the SIP CLF record since
 they are intended to be machine processed using text tools such as
 grep and awk. The human user behind the log reader may be required
 to infer more semantics about any differences between the original
 SIP message and its SIP CLF representation.

4.4. Optional Fields

 The <OptionalFields> portion of the SIP CLF record is shown below:

 0 7 8 15 16 23 24 31
 +-----------+-----------+-----------+-----------+
 | 0x09 | Tag | 0x40 |\
 +-----------+-----------+-----------+-----------+ \
 | Vendor-ID | \
 +-----------+-----------+-----------+-----------+ \
 | Vendor-ID (cont) | \ Repeated
 +-----------+-----------+-----------+-----------+ \ as many
 | 0x2C | Length (Hex) | > times as
 +-----------+-----------+-----------+-----------+ / necessary
 | Len (cont)| 0x2C | BEB | 0x2C | /
 +-----------+-----------+-----------------------| /
 | | /
 | Value (variable length) | /
 | |/
 +-----------+-----------+-----------+-----------+

 Figure 5: Optional Fields

Salgueiro, et al. Standards Track [Page 14]

RFC 6873 Format for SIP CLF February 2013

 Optional fields are those SIP message elements that are not a part of
 the mandatory fields list detailed in Section 8.1 of [RFC6872].
 After the <MandatoryFields> section, there is an OPTIONAL
 <OptionalFields> group (shown in Figure 5) that MAY appear zero or
 more times. This <OptionalFields> group provides extensibility to
 the SIP CLF. It allows SIP CLF implementers the flexibility to
 extend the logging capability of this indexed text representation
 beyond just the mandatory log elements described in Section 8.1 of
 [RFC6872].

 Logging any optional SIP elements MUST be done according to the
 format shown in Figure 5. The location of the start of
 <OptionalFields> within the SIP CLF record is indicated by the
 "Optional Fields Start Pointer" field in <IndexPointers>. After the
 initial Tab delimiter byte (0x09) shown in Figure 5, the optional
 field being logged is generally represented by the notation:

 Tag@Vendor-ID,Length,BEB,Value

 The optional field identifier (Tag@Vendor-ID) is composed of a two-
 byte Tag and an eight-byte Vendor-ID (both decimal encoded) separated
 by an "@" character (0x40). This uniquely identifies the optional
 field being logged. The format for this identifier is loosely
 modeled after the private use option used by the syslog protocol
 [RFC5424] (Note: this is the second format detailed in Section 6.3.2
 of [RFC5424]). It makes use of the Private Enterprise Number (PEN),
 which provides an identifier through a globally unique name space
 [PEN]. This syntax provides the necessary extensibility to SIP CLF
 to allow logging of any SIP header, body, as well as any vendor-
 specified SIP element.

 The Base64 Encoded Byte (BEB) is a boolean that is used to indicate
 whether or not the optional element being logged is Base64 encoded.
 The Value field for the optional element being logged MUST be Base64
 encoded if it has any characters that are ’unprintable’. For the
 purposes of this document, we define ’unprintable’ to mean a string
 of octets that: (a) contains an octet with a value in the range of 0
 to 31, inclusive; (b) contains an octet with a value of 127; or (c)
 contains any series of octets greater than or equal to 128 that do
 not form a valid UTF-8 sequence, as specified by [UNICODE]. If the
 optional element being logged is Base64 encoded, then BEB=0x01; if it
 is not Base64 encoded, then BEB=0x00.

Salgueiro, et al. Standards Track [Page 15]

RFC 6873 Format for SIP CLF February 2013

 Optional fields are logged according to the following two syntax
 rules:

 (1) Vendor-ID = 00000000

 A Vendor-ID of zero is used to log the entire SIP message, message
 body, Reason-Phrase, or any SIP header fields that are not a part
 of the mandatory fields list detailed in Section 8.1 of [RFC6872].
 The following Tag values are used to identify which of these
 optional elements are being logged:

 Tag = 00 - Log SIP Header Field or Reason-Phrase

 When logging a SIP Header Field (Tag=00), the associated
 "Value" field MUST be populated by the entire header field
 being logged. That is, the field-name, the associated colon
 (":"), and the field-value. This mechanism provides the
 capability to optionally log any SIP header field by
 identifying the field being logged within the "Value" field.

 Because the Reason-Phrase in a response is part of the Status-
 Line and is not identified with a field-name, it is a special
 case. In this instance, the associated "Value" field MUST be
 populated by the name "Reason-Phrase" followed by a colon (":")
 and a single space (SP) between the colon and the logged
 Reason-Phrase value.

 The corresponding "Length" field includes the length of the
 entire "Value" field. This includes the field-name, the colon,
 and any linear whitespace (LWS) separator. For Tag=00, the BEB
 is set according to whether the SIP Header Field value contains
 any ’unprintable’ characters. If it does not, the BEB=00; if
 it does, the BEB=01. If BEB=01, then only the field-value MUST
 be Base64 encoded; the field-name, the associated colon, and
 any LWS separator MUST retain their original encoding.

 If an optional field occurs more than once in a SIP message
 (e.g., Contact, Route, Record-Route, etc.), then each
 occurrence MUST be logged with the same Tag value (i.e.,
 Tag=00) as a distinct optional field entry in the SIP CLF
 record. These repeated optionally logged header fields MUST
 preserve the ordinal position of the repeated header fields in
 the SIP header. For example, a SIP header containing two Via
 header fields with the following ordinal positions within the
 SIP header: V1,V2. If optionally logging these header fields,
 they would occur as the following entries in the SIP CLF

Salgueiro, et al. Standards Track [Page 16]

RFC 6873 Format for SIP CLF February 2013

 record. (Note: For the sake of brevity, this example only
 shows how these optional header fields would be logged and
 omits the remainder of the SIP CLF record):

 00@00000000,len_V1,00,Via: V1 00@00000000,len_V2,00,Via: V2

 The terminating carriage return line feed (CRLF) after a given
 header field value MUST NOT be logged. Since a bare CRLF
 sequence is not permitted within a SIP header field value,
 optional SIP header fields logged with Tag=00 MUST NOT contain
 a CRLF when logged and consequently no escaping mechanism is
 required for it.

 Tag = 01 - Log message body

 SIP message bodies of all types can be optionally logged using
 Tag=01. If the message body is logged it MUST adhere to the
 maximum size limitation of 4096 bytes for a SIP CLF field, as
 detailed in Section 8 of [RFC6872]. Unlike with Tag=00, there
 can only be a single entry in the SIP CLF record with Tag=01.
 When optionally logging the message body, if the maximum SIP
 CLF field size of 4096 bytes is exceeded, the message body
 being logged MUST be truncated to meet these size limitations.

 When logging a message body (Tag=01), the associated "Value"
 field is populated with the Content-Type itself plus the SIP
 message body separated with a space. In this manner,
 everything about the SIP message body is self-described using a
 single tag as compared to enumerating a separate tag for each
 body type. Additionally, the corresponding "Length" field
 includes the SIP message body, the length of the embedded
 Content-Type, and the space separator between the MIME type and
 the body content.

 For an optionally logged message body (Tag=01), the BEB is set
 according to whether the message body contains any
 ’unprintable’ characters. If it does not, the BEB=00; if it
 does, the BEB=01. If BEB=01, then the message body that
 follows is entirely Base64 encoded except the prepended
 Content-Type as described in the previous paragraph.

 If an optionally logged SIP message body contains any CRLFs,
 they MUST be escaped by using the URI encoded equivalent value
 of "%0D%0A". This escaping mechanism applies to all body
 types. So we don’t make any distinction in treatment between
 the various possible body types. If a logged message body has
 BEB=01, then it MUST be Base64 encoded prior to any character
 escaping. Thus, if a binary body (like an image) is logged, it

Salgueiro, et al. Standards Track [Page 17]

RFC 6873 Format for SIP CLF February 2013

 will be Base64 encoded first and that Base64 character stream
 could never include the CRLF escape sequence of "%0D%0A"
 because "%" is not a valid Base64 character.

 Tag = 02 - Log entire SIP message

 The entire SIP message (i.e., SIP header and message body) can
 be optionally logged using a Tag=02. Logging the entire SIP
 message MUST conform to the maximum size limitation of 4096
 bytes for a SIP CLF field, as detailed in Section 8 of
 [RFC6872]. Unlike with Tag=00, there can only be a single
 entry in the SIP CLF record with Tag=02. When optionally
 logging the entire SIP message if the maximum SIP CLF field
 size of 4096 bytes is exceeded the entire SIP message being
 logged MUST be truncated to meet these size limitations.

 When optionally logging an entire SIP message (Tag=02), the BEB
 is set according to whether the message body portion contains
 any ’unprintable’ characters. If it does not, the BEB=00; if
 it does, the BEB=01. If BEB=01, then the entire SIP message is
 Base64 encoded (not just the message body). Note that unlike
 the case of Tag=01, when logging an entire SIP message (Tag=02)
 with ’unprintable’ characters (BEB=01), the Content-Type would
 not be known prior to decode.

 All instances of CRLFs, whether they appear in the SIP headers
 or the SIP message body, MUST be escaped by using the URI
 encoded equivalent value of "%0D%0A". If a logged SIP message
 has BEB=01 then it MUST be Base64 encoded prior to any
 character escaping.

 (2) Vendor-ID = PEN

 A Vendor-ID set to a vendor’s own private enterprise number from
 the complete current list of private enterprise numbers maintained
 by IANA [PEN] is used to log any other vendor-specified optional
 element of a SIP header or body. The value of the Tag is set at
 the discretion of the implementer:

 Tag = Vendor-specified tag

 The definition of the various values of the optional field identifier
 (Tag@Vendor-ID) are the basis of how optional elements are logged in
 the SIP CLF. For the sake of completeness, the remaining fields in
 the format shown in Figure 5 are also defined below:

 Length Field (4 bytes): Indicates the length of only the "Value"
 field of this optionally logged element (as shown in Figure 5),

Salgueiro, et al. Standards Track [Page 18]

RFC 6873 Format for SIP CLF February 2013

 hexadecimal encoded. This length corresponds to the length of the
 "Value" field only and MUST NOT include any of the other elements
 shown in Figure 5.

 Base64 Encoded Byte (BEB) Field (1 byte): Indicates whether or not
 the subsequent Value Field of the optionally logged element is
 Base64 encoded. The Value field for the optional element being
 logged MUST be Base64 encoded if it contains any character that is
 deemed ’unprintable’ according to the definition given previously
 in this section. If the optional element being logged is Base64
 encoded, then BEB=0x01; if it is not Base64 encoded, then
 BEB=0x00.

 Value Field (0 to 4096 bytes): Contains the actual value of this
 optional field. As with the mandatory fields, UTF-8 Tab
 characters (0x09) are replaced with UTF-8 space characters (0x20).

 The following are examples of optionally logged SIP elements using
 the syntax described in this section. All these examples only show
 the <OptionalFields> portion of the SIP CLF record. The mandatory
 <IndexPointers> and <MandatoryFields> portions of the SIP CLF are
 intentionally omitted for the sake of brevity. Note that all of
 these examples of optionally logged fields begin with a leading Tab
 delimiter byte (0x09) that is not apparent here.

 (1) Contact header field logged as an optional field:

 Consider the SIP response:

 SIP/2.0 180 Ringing
 <allOneLine>
 Via: SIP/2.0/UDP host.example.com;
 branch=z9hG4bKnashds8;received=192.0.2.1
 </allOneLine>
 To: Bob <sip:bob@example.com>;tag=a6c85cf
 From: Alice <sip:alice@example.com>;tag=1928301774
 Call-ID: a84b4c76e66710
 Contact: <sip:bob@192.0.2.4>
 CSeq: 314159 INVITE
 Content-Length: 0

 The Contact header field would be logged as an optional field in the
 following manner:

 00@00000000,001C,00,Contact: <sip:bob@192.0.2.4>

Salgueiro, et al. Standards Track [Page 19]

RFC 6873 Format for SIP CLF February 2013

 (2) Reason-Phrase logged as an optional field:

 For the same SIP response the Reason-Phrase would be logged as
 an optional field in the following manner:

 00@00000000,0016,00,Reason-Phrase: Ringing

 (3) SDP body to be logged as an optional field:

 v=0
 o=alice 2890844526 2890844526 IN IP4 host.example.com
 s=-
 c=IN IP4 host.example.com
 t=0 0
 m=audio 49170 RTP/AVP 0 8 97

 This body has a Content-Type of application/sdp and has a length of
 123 bytes including all the line-feeds. When logging this body the
 "Value" field is composed of the Content-Type and the body separated
 by a space, which gives it a combined length of 139 (0x008B) bytes.
 This SIP body would be logged as an optional field in the following
 manner:

 <allOneLine>
 01@00000000,008B,00,application/sdp v=0%0D%0Ao=alice 2890844526
 2890844526 IN IP4 host.example.com%0D%0As=-%0D%0A
 c=IN IP4 host.example.com%0D%0At=0 0%0D%0A
 m=audio 49170 RTP/AVP 0 8 97%0D%0A
 </allOneLine>

 Note that the body is actually logged on a single line and is thus
 captured between <allOneLine/> tags. The line-feeds are escaped
 using %0D%0A to delimit the various lines in the message body.

 (4) binary body to be logged as an optional field:

 The second body part of the multipart/mime SIP message shown in
 Section 3.1.1.11 of RFC 4475 is a binary encoded body
 (represented in hex) and if logged would have BEB=01 and would
 require Base64 encoding. That binary body would produce six
 lines of output after being Base64 encoded. Subsequent escaping
 of the CRLF characters would produce an optionally logged body
 that would look like the following:

Salgueiro, et al. Standards Track [Page 20]

RFC 6873 Format for SIP CLF February 2013

 <allOneLine>
 01@00000000,0216,01,multipart/mixed;boundary=7a9cbec02ceef655 MI
 IBUgYJKoZIhvcNAQcCoIIBQzCCAT8CAQExCTAHBgUrDgMCGjALBgkqhkiG9w0BBw
 ExggEgMIIB%0D%0AHAIBATB8MHAxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxp
 Zm9ybmlhMREwDwYDVQQHEwhTYW4g%0D%0ASm9zZTEOMAwGA1UEChMFc2lwaXQxKT
 AnBgNVBAsTIFNpcGl0IFRlc3QgQ2VydGlmaWNhdGUgQXV0%0D%0AaG9yaXR5AggB
 lQBxAjMBEzAHBgUrDgMCGjANBgkqhkiG9w0BAQEFAASBgI70ZvlI8FIt0uWXjp2V
 %0D%0Aquny/hWgZllxYpLo2iqo2DUKaM7/rjy9K/8Wdd3VZI5ZPdZHKPJiIPfpQX
 SeMw2aFe2r25PRDEIQ%0D%0ALntyidKcwMmuLvvHwM/5Fy87An5PwCfhVG3ktqo6
 uz5mzMtd1sZLg4MUnLjm/xgtlE/le2W8mdAF%0D%0A
 </allOneLine>

 Note that the body is actually logged on a single line and is thus
 captured between <allOneLine/> tags. The line-feeds are escaped
 using %0D%0A to delimit the various lines in the Base64 encoded
 binary body.

 (5) Codec information from the SDP body logged as an optional field:

 Consider the SIP message:

 INVITE sip:bob@example.com SIP/2.0
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bKnashds8
 To: Bob <bob@example.com>
 From: Alice <alice@example.com>;tag=1928301774
 Call-ID: a84b4c76e66710
 CSeq: 314159 INVITE
 Max-Forwards: 70
 Date: Thu, 21 Feb 2002 13:02:03 GMT
 Contact: <sip:alice@host.example.com>
 Content-Type: application/sdp
 Content-Length: 147

 v=0
 o=UserA 2890844526 2890844526 IN IP4 example.com
 s=Session SDP
 c=IN IP4 host.example.com
 t=0 0
 m=audio 49172 RTP/AVP 0
 a=rtpmap:0 PCMU/8000

 A vendor may choose to log a SIP message element such as the codec
 information from the SDP body. This vendor-specified SIP element
 would be logged as an optional field in the following manner:

 03@00032473,0014,00,a=rtpmap:0 PCMU/8000

Salgueiro, et al. Standards Track [Page 21]

RFC 6873 Format for SIP CLF February 2013

 (6) N-th message received from a particular peer logged as an
 optional field:

 Perhaps a vendor wants to log that this message is the n-th
 message received from a peering partner. To do so for the SIP
 message shown above, the vendor would log this information as:

 07@00032473,0016,00,1877 example.com

 Which would signify that this is the 1,877th message from the peering
 partner example.com. Note that the previous two examples showing an
 optionally logged vendor-specified SIP element use a Vendor-ID with a
 Private Enterprise Number of 32473. This value has been reserved by
 IANA to be used as an example PEN in documentation according to
 [RFC5612].

5. Example SIP CLF Record

 The following SIP message is an INVITE request sent by a SIP client:

 INVITE sip:192.0.2.10 SIP/2.0
 To: <sip:192.0.2.10>
 Call-ID: DL70dff590c1-1079051554@example.com
 <allOneLine>
 From: "Alice" <sip:1001@example.com:5060>;
 tag=DL88360fa5fc;epid=0x34619b0
 </allOneLine>
 CSeq: 1 INVITE
 Max-Forwards: 70
 Date: Thu, 21 Feb 2012 15:02:03 GMT
 <allOneLine>
 Via: SIP/2.0/TCP 192.0.2.200:5060;
 branch=z9hG4bK-1f6be070c4-DL
 </allOneLine>
 Contact: "1001" <sip:1001@192.0.2.200:5060>
 Content-Type: application/sdp
 Content-Length: 418

 v=0
 o=1001 1456139204 0 IN IP4 192.0.2.200
 s=Session SDP
 c=IN IP4 192.0.2.200
 b=AS:2048
 t=0 0
 m=audio 13756 RTP/AVP 0 101
 a=rtpmap:0 PCMU/8000

Salgueiro, et al. Standards Track [Page 22]

RFC 6873 Format for SIP CLF February 2013

 Shown below is approximately how this message would appear as a
 single record in a SIP CLF logging file if encoded according to the
 syntax described in this document. Due to RFC conventions, this log
 entry has been split into five lines, instead of the two lines that
 actually appear in a log file; and the Tab characters have been
 padded out using spaces to simulate their appearance in a text
 terminal.

 A000100,0053005C005E006D007D008F009E00A000BA00C700EB00F70100
 <allOneLine>
 1328821153.010 RORUU 1 INVITE - sip:192.0.2.10
 192.0.2.10:5060 192.0.2.200:56485 sip:192.0.2.10 -
 sip:1001@example.com:5060 DL88360fa5fc
 DL70dff590c1-1079051554@example.com S1781761-88 C67651-11
 </allOneLine>

 A bit-exact version of the actual log entry is provided here, Base64
 encoded.

 begin-base64 644 clf_record
 QTAwMDEwMCwwMDUzMDA1QzAwNUUwMDZEMDA3RDAwOEYwMDlFMDBBMDAwQkEwMEM3MDBF
 QjAwRjcwMTAwCjEzMjg4MjExNTMuMDEwCVJPUlVVCTEgSU5WSVRFCS0Jc2lwOjE5Mi4w
 LjIuMTAJMTkyLjAuMi4xMDo1MDYwCTE5Mi4wLjIuMjAwOjU2NDg1CXNpcDoxOTIuMC4y
 LjEwCS0Jc2lwOjEwMDFAZXhhbXBsZS5jb206NTA2MAlETDg4MzYwZmE1ZmMJREw3MGRm
 ZjU5MGMxLTEwNzkwNTE1NTRAZXhhbXBsZS5jb20JUzE3ODE3NjEtODgJQzY3NjUxLTEx
 Cg==
 ====

 To recover the unencoded file, the Base64 text above may be passed as
 input to the following perl script (the output should be redirected
 to a file).

Salgueiro, et al. Standards Track [Page 23]

RFC 6873 Format for SIP CLF February 2013

 <CODE BEGINS>

 #!/usr/bin/perl
 use strict;
 my $bdata = "";
 use MIME::Base64;
 while(<>)
 {
 if (/begin-base64 644 clf_record/ .. /-- ==== --/)
 {
 if (m/^\s*[^\s]+\s*$/)
 {
 $bdata = $bdata . $_;
 }
 }
 }
 print decode_base64($bdata);

 <CODE ENDS>

6. Text Tool Considerations

 This format has been designed to allow text tools to easily process
 logs without needing to understand the indexing format. Index lines
 may be rapidly discarded by checking the first character of the line:
 index lines will always start with an alphabetical character, while
 field lines will start with a numerical character.

 Within a field line, script tools can quickly split fields at the Tab
 characters. The first 12 fields are positional, and the meaning of
 any subsequent fields can be determined by checking the first four
 characters of the field. Alternately, these non-positional fields
 can be located using a regular expression. For example, the "Contact
 value" in a request can be found by searching for the perl regex
 /\t0000,....,([^\t]*)/.

7. Security Considerations

 This document does not introduce any new security considerations
 beyond those discussed in [RFC6872].

 In the interest of protecting the sensitive information contained in
 a SIP CLF file, [RFC6872] notes that values might need to be
 obfuscated for privacy reasons when SIP CLF files are exchanged
 between domains. If a Base64 encoded string contains the non-
 obfuscated value, then that would also need to be obfuscated before
 Base64 encoding.

Salgueiro, et al. Standards Track [Page 24]

RFC 6873 Format for SIP CLF February 2013

8. Operational Guidance

 SIP CLF log files will take up a substantive amount of disk space
 depending on traffic volume at a processing entity and the amount of
 information being logged. As such, any enterprise using SIP CLF
 should establish operational procedures for file rollovers as
 appropriate to the needs of the organization.

 Listing such operational guidelines in this document is out of scope
 for this work.

9. IANA Considerations

 This specification establishes a new "Session Initiation Protocol
 (SIP) Common Log Format (CLF) Parameters" registry, which contains
 two new sub-registries: "SIP CLF Version Values" and "SIP CLF
 Transport Flag Values". Initial entries are defined by this
 specification for both sub-registries. Addition of any new sub-
 registry to the "Session Initiation Protocol (SIP) Common Log Format
 (CLF) Parameters" registry is to be done using the IETF Review
 registration policy detailed in [RFC5226].

9.1. SIP CLF Version

 This document defines the SIP CLF "Version" field in Section 4.1.
 IANA has created a registry of Version values entitled "SIP CLF
 Version Values". Version numbers MUST be incremented for any new SIP
 CLF protocol specification that changes any part of the SIP CLF
 record format. Changes include addition or removal of fields or a
 change of syntax or semantics of existing fields.

 Version numbers must be registered via the Standards Action method
 described in [RFC5226]. IANA has registered the Versions shown in
 Table 1 below.

 +------------+----------------------+-----------+
 | Version | FORMAT | Reference |
 +------------+----------------------+-----------+
 | 0x41 (’A’) | Defined in [RFC6873] | [RFC6873] |
 +------------+----------------------+-----------+

 Table 1: IANA-Registered SIP CLF Version Values

Salgueiro, et al. Standards Track [Page 25]

RFC 6873 Format for SIP CLF February 2013

9.2. SIP CLF Transport Flag

 This document defines the SIP CLF "Transport Flag" as fourth byte in
 the Flags field of the SIP CLF record. The format and values of the
 Transport Flag are described in Section 4.2. IANA has created a
 registry of SIP CLF Transport Flag values titled "SIP CLF Transport
 Flag Values".

 SIP CLF Transport Flag values must be registered via the IETF Review
 method described in [RFC5226]. IANA has registered the Transport
 Flag values shown in Table 2 below.

 +-------+--------------------+-----------+
 | Value | Transport Protocol | Reference |
 +-------+--------------------+-----------+
 | U | UDP | [RFC6873] |
 | T | TCP | [RFC6873] |
 | S | SCTP | [RFC6873] |
 +-------+--------------------+-----------+

 Table 2: IANA-Registered SIP CLF Transport Flag

10. Acknowledgments

 The authors of this document would like to acknowledge and thank
 Peter Musgrave (the chair of the SIPCLF working group) and Robert
 Sparks (the assigned Area Director) for their support, guidance, and
 continued invaluable feedback.

 This work benefited from the discussions and invaluable input by the
 various members of the SIPCLF working group. These include Brian
 Trammell, Eric Burger, Cullen Jennings, Benoit Claise, Saverio
 Niccolini, and Dan Burnett. Special thanks to Hadriel Kaplan, Chris
 Lonvick, Paul E. Jones, John Elwell, Claudio Allocchio, and Joe
 Clarke for their constructive comments, suggestions, and reviews that
 were critical to the formulation and refinement of this document.

 Thanks to Anders Nygren for his early implementation, insight, and
 reviews of the SIP CLF format.

Salgueiro, et al. Standards Track [Page 26]

RFC 6873 Format for SIP CLF February 2013

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC6872] Gurbani, V., Burger, E., Anjali, T., Abdelnur, H., and O.
 Festor, "The Common Log Format (CLF) for the Session
 Initiation Protocol (SIP): Framework and Information
 Model", RFC 6872, February 2013.

11.2. Informative References

 [PEN] IANA, "Private Enterprise Numbers", 2009,
 <http://www.iana.org/assignments/enterprise-numbers>.

 [RFC1166] Kirkpatrick, S., Stahl, M., and M. Recker, "Internet
 numbers", RFC 1166, July 1990.

 [RFC4475] Sparks, R., Hawrylyshen, A., Johnston, A., Rosenberg, J.,
 and H. Schulzrinne, "Session Initiation Protocol (SIP)
 Torture Test Messages", RFC 4475, May 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5424] Gerhards, R., "The Syslog Protocol", RFC 5424, March 2009.

 [RFC5612] Eronen, P. and D. Harrington, "Enterprise Number for
 Documentation Use", RFC 5612, August 2009.

 [RFC5737] Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address Blocks
 Reserved for Documentation", RFC 5737, January 2010.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952, August 2010.

 [UNICODE] The Unicode Consortium, "The Unicode Standard, Version
 6.2.0", (Mountain View, CA: ISBN 978-1-936213-07-8), 2012,
 <http://www.unicode.org/versions/Unicode6.2.0/>.

Salgueiro, et al. Standards Track [Page 27]

RFC 6873 Format for SIP CLF February 2013

Authors’ Addresses

 Gonzalo Salgueiro
 Cisco Systems
 7200-12 Kit Creek Road
 Research Triangle Park, NC 27709
 US

 EMail: gsalguei@cisco.com

 Vijay Gurbani
 Bell Labs, Alcatel-Lucent
 1960 Lucent Lane
 Rm 9C-533
 Naperville, IL 60563
 US

 EMail: vkg@bell-labs.com

 Adam Roach
 Mozilla
 Dallas, TX
 US

 EMail: adam@nostrum.com

Salgueiro, et al. Standards Track [Page 28]

