I nt ernet Engi neering Task Force (I ETF) S. Cheshire

Request for Comments: 6763 M Krochnal
Cat egory: Standards Track Appl e Inc.
| SSN: 2070-1721 February 2013

DNS- Based Service Discovery

Abstract

Thi s docunent specifies how DNS resource records are naned and
structured to facilitate service discovery. Gven a type of service
that a client is looking for, and a domain in which the client is

| ooking for that service, this nechanismallows clients to discover
a list of naned instances of that desired service, using standard
DNS queries. This nmechanismis referred to as DNS-based Service

Di scovery, or DNS-SD

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc6763

Copyright Notice

Copyright (c) 2013 | ETF Trust and the persons identified as the
document authors. All rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wthout warranty as
described in the Sinplified BSD License.

Cheshire & Krochnal St andards Track [Page 1]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Tabl e

PP

10.
11.

12.

13.

14.
15.
16.
17.
18.

of Contents
Introducti On 3
Conventions and Term nol ogy Used in This Document 5
Design Goal S 5
Service Instance Enuneration (Browsing) 6
4.1. Structured Service Instance NamesS 6
4.2. User Interface Presentation 9
4.3. Internal Handling of Names 9
Service Instance Resolution 10
Data Syntax for DNS-SD TXT Records, 11
6.1. Ceneral Format Rules for DNS TXT Records 11
6.2. DNS-SD TXT Record Sizet 12
6.3. DNS TXT Record Format Rules for Use in DNS-SD 13
6.4. Rules for Keys in DNS-SD Key/Value Pairs 14
6.5. Rules for Values in DNS-SD Key/Value Pairs 16
6.6. Exanple TXT Record i 17
6. 7. Version Taguuiii e e 17
6.8. Service Instances with Multiple TXT Records 18
ServiCe NaMBS ... 19
7.1. Selective Instance Enuneration (Subtypes) 21
7.2. Service Name Length Limts 23
Flagship Naming e e 25
Service Type Enumerati on 27
Populating the DNS with Information 27
Di scovery of Browsing and Regi strati on Domai ns (Domnain
Enumerati on) 28
DNS Additional Record Generationo, 30
12.1. PTR Records e 30
12.2. SRV ReECOIrdS ... it 30
12.3. TXT RECOrdS ..o 31
12. 4. O her RecOrd TYPES .. i i e e e 31
VWOrking Exanmpl es 31
13.1. What web pages are being advertised fromdns-sd.org? 31
13.2. What printer-configuration web pages are there? 31
13.3. How do | access the web page called "Service
Dl SCOVEI Y 2 i e 32
IPv6 Considerati ONS i e e 32
Security Considerati Ons 32
IANA Considerati ONS 32
AcCknow edgment S 33
Ref erenCes 33
18.1. Normative References i 33
18.2. Informative References i, 34

Appendi x A. Rationale for Using DNS as a Basis for Service

DI SCOVEI Y .ot 37

Cheshire & Krochmal St andards Track [Page 2]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Appendi x B. Ordering of Service Instance Nane Conponents 38

B.1. Semantic StruCture 38

B.2. Network Efficiency 39

B.3. OQperational Flexibility 39
Appendi x C. What You See Is What You Get 40
Appendi x D. Choice of Factory-Default Nanes 42
Appendi x E. Nane Encodings in the Donmain Nanme System.............. 44
Appendi x F. "Continuous Live Update" Browsing Mddel 45
Appendi x G Deployment Hi Story 47

1. Introduction

Thi s docunent specifies how DNS resource records are naned and
structured to facilitate service discovery. Gven a type of service
that a client is looking for, and a domain in which the client is

| ooking for that service, this nechanismallows clients to discover a
list of naned instances of that desired service, using standard DNS
queries. This nmechanismis referred to as DNS-based Service

Di scovery, or DNS-SD

Thi s docunent proposes no change to the structure of DNS nessages,
and no new operation codes, response codes, resource record types, or
any ot her new DNS protocol val ues

This docunent specifies that a particular service instance can be
descri bed using a DNS SRV [RFC2782] and DNS TXT [RFC1035] record.

The SRV record has a nanme of the form "<Instance>. <Servi ce>. <Domai n>"
and gives the target host and port where the service instance can be
reached. The DNS TXT record of the sane nanme gives additiona

i nformati on about this instance, in a structured form using key/val ue
pairs, described in Section 6. A client discovers the |ist of
avai l abl e i nstances of a given service type using a query for a DNS
PTR [RFC1035] record with a nanme of the form "<Service>. <Domai n>"
which returns a set of zero or nore nanes, which are the nanmes of the
af orementi oned DNS SRV/ TXT record pairs.

This specification is conpatible with both Miulticast DNS [RFC6762]
and with today’s existing Unicast DNS server and client software.

When used with Miulticast DNS, DNS-SD can provide zero-configuration
operation -- just connect a DNS-SD/nDNS device, and its services are
advertised on the local link with no further user interaction [Z(C].

Wien used with conventional Unicast DNS, sone configuration will

usual ly be required -- such as configuring the device with the DNS
domain(s) in which it should advertise its services, and configuring
it with the DNS Update [RFC2136] [RFC3007] keys to give it perm ssion
to do so. In rare cases, such as a secure corporate network behind a

Cheshire & Krochmal St andards Track [Page 3]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

firewall where no DNS Update keys are required, zero-configuration
operation may be achieved by sinply having the device register its
services in a default registration domain |earned fromthe network
(see Section 11, "Discovery of Browsing and Regi stration Donmai ns"),
but this is the exception and usually security credentials will be
required to perform DNS updat es.

Not e that when using DNS-SD with Uni cast DNS, the Unicast DNS-SD
service does NOT have to be provided by the sane DNS server hardware
that is currently providing an organi zation’s conventional host nane
| ookup service. \While many people think of "DNS' exclusively in the
context of mapping host nanes to I P addresses, in fact, "the DNS is a
general (if sonewhat limted) hierarchical database, and can store

al nost any kind of data, for al nbst any purpose" [RFC2181]. By

del egating the " _tcp" and "_udp" subdonmains, all the workload rel ated
to DNS-SD can be offloaded to a different nachine. This flexibility,
to handl e DNS-SD on the main DNS server or not, at the network

adm nistrator’s discretion, is one of the benefits of using DNS

Even when the DNS-SD functions are delegated to a different nachine,
the benefits of using DNS remain: it is mature technol ogy, well

understood, with multiple independent inplenmentations fromdifferent
vendors, a wi de selection of books published on the subject, and an

est abl i shed workforce experienced in its operation. |In contrast,
adopti ng sone other service discovery technol ogy would require every
site inthe world to install, learn, configure, operate, and maintain

sonme entirely new and unfaniliar server software. Faced with these
obstacles, it seens unlikely that any other service discovery
technol ogy coul d hope to conpete with the ubiquitous depl oynent that
DNS al ready enjoys. For further discussion, see Appendix A,
"Rationale for Using DNS as a Basis for Service Discovery".

This docunent is witten for two audi ences: for devel opers creating
application software that offers or accesses services on the network
and for developers creating DNS-SD libraries to inplenment the
advertising and discovery nechani sns. For both audi ences,

under standi ng the entire docunent is hel pful. For devel opers
creating application software, this document provides gui dance on
choosi ng i nstance nanes, service nanes, and other aspects that play a
role in creating a good overall user experience. However, also
under st andi ng the underlyi ng DNS nechani sns used to provide the
service discovery facilities hel ps application devel opers understand
the capabilities and limtations of those underlying nechani sns
(e.g., name length linmts). For library devel opers witing software
to construct the DNS records (to advertise a service) and generate
the DNS queries (to discover and use a service), understanding the
ultimate user-experience goals hel ps them provide APIs that can neet
t hose goal s.

Cheshire & Krochmal St andards Track [Page 4]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

2.

Conventions and Term nol ogy Used in This Docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in "Key words for use in
RFCs to I ndicate Requirenent Levels" [RFC2119].

Desi gn CGoal s

O the many properties a good service discovery protocol needs to
have, three of particul ar inportance are:

(i) The ability to query for services of a certain type in a
certain |ogical domain, and receive in response a |list of naned
i nstances (network browsing or "Service |nstance Enuneration").

(ii) Gven a particular named instance, the ability to efficiently
resol ve that instance nane to the required information a client
needs to actually use the service, i.e., |P address and port
nunber, at the very |east (Service |Instance Resol ution).

(iii) Instance nanmes should be relatively persistent. |If a user
selects their default printer froma list of avail able choices
today, then tonorrow they should still be able to print on that
printer -- even if the |IP address and/or port number where the
servi ce resides have changed -- w thout the user (or their
software) having to repeat the step (i) (the initial network
browsi ng) a second tine.

In addition, if it is to becone successful, a service discovery
protocol should be so sinple to inplenent that virtually any device
capabl e of inplementing | P should not have any trouble inplenmenting
the service discovery software as well

These goals are discussed in nore detail in the remainder of this
docunent. A nore thorough treatnent of service discovery
requirenents may be found in "Requirenents for a Protocol to Replace
t he Appl eTal k Nane Bi nding Protocol (NBP)" [RFC6760]. That docunent
draws upon exanples fromtwo decades of operational experience with
Appl eTal k to develop a list of universal requirenents that are
broadly applicable to any potential service discovery protocol

Cheshire & Krochmal St andards Track [Page 5]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

4.

4.

Service | nstance Enuneration (Browsing)

Tradi tional DNS SRV records [RFC2782] are useful for |ocating

i nstances of a particular type of service when all the instances are
ef fectively indistinguishable and provide the sane service to the
client.

For exanple, SRV records with the (hypothetical) nane

" http. _tcp.example.com"” would allow a client to discover servers

i npl ementing the " _http. _tcp" service (i.e., web servers) for the
"exanpl e.com” domain. The unstated assunption is that all these
servers offer an identical set of web pages, and it doesn't matter to
the client which of the servers it uses, as long as it selects one at
random according to the weight and priority rules laid out in the DNS
SRV specification [RFC2782].

I nstances of other kinds of service are | ess easily interchangeabl e.
If a word processing application were to | ook up the (hypothetical)
SRV record " _ipp._tcp.exanple.com"” to find the list of Internet
Printing Protocol (IPP) [RFC2910] printers at Exanple Co., then

pi cki ng one at random and printing on it would probably not be what
t he user want ed.

The renai nder of this section describes how SRV records nay be used
inaslightly different way, to allow a user to discover the nanmes of
all available instances of a given type of service, and then select,
fromthat list, the particular instance they desire.

1. Structured Service |Instance Nanes

Thi s docunent borrows the |ogical service-nam ng syntax and senmantics
from DNS SRV records, but adds one level of indirection. |Instead of
requesting records of type "SRV' wi th nanme "_ipp._tcp.exanple.com",
the client requests records of type "PTR' (pointer fromone nane to
anot her in the DNS nanespace) [RFC1035].

In effect, if one thinks of the donmain name " _ipp._tcp.exanple.com"”
as bei ng anal ogous to an absolute path to a directory in a file
system then DNS-SD s PTR | ookup is akin to performing a listing of
that directory to find all the entries it contains. (Renenber that
domai n nanes are expressed in reverse order conpared to path nanes --
an absolute path nane starts with the root on the left and is read
fromleft to right, whereas a fully qualified domain nane starts with
the root on the right and is read fromright to left. |If the fully
qualified domain nane " _ipp._tcp.exanple.com" were expressed as a
file systempath nane, it would be "/com exanple/ _tcp/ _ipp".)

Cheshire & Krochmal St andards Track [Page 6]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

The result of this PTR | ookup for the nane "<Service>. <Domai n>" is a
set of zero or nore PTR records giving Service Instance Nanes of the
form

Servi ce Instance Nane = <lnstance> . <Service> . <Donmai n>

For expl anation of why the conponents are in this order, see Appendi X
B, "Ordering of Service Instance Nanme Conponents"

4,1.1. I nst ance Nanes

The <l nstance> portion of the Service Instance Nane is a user-
friendly nane consisting of arbitrary Net-Unicode text [RFC5198]. It
MUST NOT contain ASCI|I control characters (byte val ues 0x00-Ox1F and
Ox7F) [RFC20] but otherwise is allowed to contain any characters

wi thout restriction, including spaces, uppercase, |owercase,
punctuation -- including dots -- accented characters, non-Roman text,
and anything el se that may be represented usi ng Net-Unicode. For

di scussi on of why the <lnstance> nane should be a user-visible, user-
friendly nane rather than an invisible machi ne-generated opaque
identifier, see Appendix C, "Wat You See |Is Wiat You Get".

The <l nstance> portion of the nane of a service being offered on the
net wor k SHOULD be configurable by the user setting up the service, so
that he or she may give it an informative nane. However, the device
or service SHOULD NOT require the user to configure a nane before it
can be used. A sensible choice of default name can in many cases
all ow the device or service to be accessed wi thout any manua
configuration at all. The default nanme should be short and
descriptive, and SHOULD NOT i nclude the device's Media Access Contro
(MAC) address, serial nunber, or any simlar inconprehensible
hexadeci mal string in an attenpt to make the nane globally unique.
For discussion of why <Instance> nanes don’t need to be (and SHOULD
NOT be) nade unique at the factory, see Appendi x D, "Choice of

Fact ory-Default Nanmes".

This <lnstance> portion of the Service Instance Nane is stored
directly in the DNS as a single DNS | abel of canonical preconposed
UTF-8 [RFC3629] "Net - Uni code" (Unicode Nornalization Form C)

[RFC5198] text. For further discussion of text encodings, see
Appendi x E, "Nanme Encodings in the Domain Name Systent.

DNS | abels are currently limted to 63 octets in length. UTF-8
encodi ng can require up to four octets per Unicode character, which
nmeans that in the worst case, the <lInstance> portion of a name could
be limted to fifteen Unicode characters. However, the Uni code

Cheshire & Krochmal St andards Track [Page 7]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

characters with longer octet |engths under UTF-8 encoding tend to be
the nore rarely used ones, and tend to be the ones that convey
greater meani ng per character.

Note that any character in the commonly used 16-bit Uni code Basic

Mul tilingual Plane [Unicode6] can be encoded with no nore than three
octets of UTF-8 encoding. This neans that an instance nanme can
contain up to 21 Kanji characters, which is a sufficiently expressive
name for nost purposes.

4.1.2. Service Nanes

The <Service> portion of the Service Instance Nane consists of a pair
of DNS | abels, follow ng the convention already established for SRV
records [RFC2782]. The first |abel of the pair is an underscore
character followed by the Service Name [RFC6335]. The Service Name
identifies what the service does and what application protocol it
uses to do it. The second label is either " _tcp" (for application
protocols that run over TCP) or " _udp" (for all others). For nore
details, see Section 7, "Service Names".

4.1. 3. Domai n Nanes

The <Donmi n> portion of the Service |Instance Nane specifies the DNS
subdonmai n wit hin which those nanmes are registered. It nmay be
"local.", meaning "link-local Milticast DNS' [RFC6762], or it nay be
a conventional Unicast DNS domai n nanme, such as "ietf.org."
"cs.stanford.edu.", or "eng.us.ibmcom" Because Service |Instance
Nanmes are not host nanes, they are not constrained by the usual rules
for host nanes [RFCL033] [RFC1034] [RFC1035], and rich-text service
subdonai ns are all owed and encouraged, for exanpl e:

Building 2, 1st Floor . exanmple . com
Building 2, 2nd Floor . exanple . com
Building 2, 3rd Floor . exanple . com
Building 2, 4th Floor . exanple . com

In addition, because Service Instance Names are not constrai ned by
the linmtations of host names, this docunent recommends that they be
stored in the DNS, and conmuni cated over the wire, encoded as

strai ghtforward canoni cal preconmposed UTF-8 [RFC3629] " Net - Uni code”
(Uni code Normalization Form C) [RFC5198] text. |n cases where the
DNS server returns a negative response for the name in question
client software MAY choose to retry the query using the "Punycode"

al gorithm [RFC3492] to convert the UTF-8 nane to an | DNA "A-1abel "

[RFC5890], beginning with the top-Ilevel l|abel, then issuing the query

Cheshire & Krochmal St andards Track [Page 8]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

repeatedly, with successively nore labels translated to | DNA A-| abel s
each time, and giving up if it has converted all |abels to | DNA
A-l1abels and the query still fails.

4. 2. User Interface Presentation

The nanes resulting fromthe Service Instance Enunerati on PTR | ookup
are presented to the user in alist for the user to select one (or
more). Typically, only the first |abel is shown (the user-friendly
<Instance> portion of the nane).

In the common case the <Service> and <Donmi n> are al ready known to
the client software, these having been provided inplicitly by the
user in the first place, by the act of indicating the service being
sought, and the domain in which to look for it. Note that the

sof tware handling the response should be careful not to nake invalid
assunptions though, since it *is* possible, though rare, for a
service enuneration in one domain to return the nanes of services in
a different domain. Simlarly, when using subtypes (see Section 7.1,
"Sel ective Instance Enuneration") the <Service> of the discovered

i nstance may not be exactly the sane as the <Service> that was
request ed.

For further discussion of Service Instance Enuneration (browsing)
user-interface considerations, see Appendix F, "’ Continuous Live
Updat e’ Browsi ng Model "

Once the user has selected the desired naned instance, the Service
I nstance Nanme may then be used i medi ately, or saved away in sone
persi stent user-preference data structure for future use, depending
on what is appropriate for the application in question

4.3. Internal Handling of Nanes

If client software takes the <lnstance>, <Service> and <Domai n>
portions of a Service Instance Nane and internally concatenates them
together into a single string, then because the <lnstance> portion is
all owed to contain any characters, including dots, appropriate
precauti ons MJST be taken to ensure that DNS | abel boundaries are
properly preserved. Cient software can do this in a variety of
ways, such as character escaping.

This docunment RECOMMENDS that if concatenating the three portions of
a Service Instance Name, any dots in the <Instance> portion be
escaped follow ng the customary DNS convention for text files: by
preceding literal dots with a backslash (so "." becones "\.").

Li kewi se, any backsl ashes in the <lnstance> portion should also be
escaped by preceding themw th a backslash (so "\" becones "\\").

Cheshire & Krochmal St andards Track [Page 9]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Havi ng done this, the three conponents of the nane may be safely
concatenated. The backsl ash-escaping allows literal dots in the name
(escaped) to be distinguished fromlabel -separator dots (not

escaped), and the resulting concatenated string nay be safely passed
to standard DNS APIs |ike res_query(), which will interpret the
backsl ash-escaped string as intended.

5. Service |Instance Resol ution

When a client needs to contact a particular service, identified by a
Service Instance Nane, previously discovered via Service |nstance
Enuneration (browsing), it queries for the SRV and TXT records of
that nane. The SRV record for a service gives the port nunber and
target host nane where the service may be found. The TXT record

gi ves additional information about the service, as described in
Section 6, "Data Syntax for DNS-SD TXT Records"

SRV records are extrenely useful because they renove the need for
preassi gned port nunbers. There are only 65535 TCP port nunbers
avai l abl e. These port nunbers are traditionally allocated one per
application protocol [RFC6335]. Sone protocols |like the X W ndow
System have a bl ock of 64 TCP ports allocated (6000-6063). Using a
different TCP port for each different instance of a given service on
a given nmachine is entirely sensible, but allocating each application
its own large static range, as was done for the X Wndow System is
not a practical way to do that. On any given host, npbst TCP ports
are reserved for services that will never run on that particul ar host
inits lifetime. This is very poor utilization of the linted port
space. Using SRV records allows each host to allocate its avail able
port nunbers dynamically to those services actually running on that
host that need them and then advertise the allocated port nunbers
via SRV records. Allocating the available Iistening port nunmbers
locally on a per-host basis as needed allows rmuch better utilization
of the available port space than today’'s centralized gl oba

al I ocati on.

In the event that nore than one SRV is returned, clients MJST
correctly interpret the priority and weight fields -- i.e., |ower-
nunmbered priority servers should be used in preference to higher-
nunbered priority servers, and servers with equal priority should be
selected randomy in proportion to their relative weights. However,
in the overwhel mi ngly common case, a single advertised DNS-SD service
instance is described by exactly one SRV record, and in this comon
case the priority and weight fields of the SRV record SHOULD both be
set to zero.

Cheshire & Krochmal St andards Track [Page 10]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

6.

6.

Data Syntax for DNS-SD TXT Records

Some services discovered via Service | nstance Enuneration may need
nmore than just an I P address and port nunber to conpletely identify
the service instance. For exanple, printing via the old Unix LPR
(port 515) protocol [RFC1179] often specifies a queue nane [BJP].
This queue nane is typically short and cryptic, and need not be shown
to the user. 1t should be regarded the sane way as the | P address
and port nunmber: it is another conponent of the addressing
information required to identify a specific instance of a service
being of fered by sone piece of hardware. Sinmilarly, a file server
may have multiple volunes, each identified by its own volune nane. A
web server typically has multiple pages, each identified by its own
URL. In these cases, the necessary additional data is stored in a
TXT record with the sane nane as the SRV record. The specific nature
of that additional data, and how it is to be used, is service-
dependent, but the overall syntax of the data in the TXT record is

st andardi zed, as descri bed bel ow

Every DNS-SD service MJST have a TXT record in addition to its SRV
record, with the sane nane, even if the service has no additiona
data to store and the TXT record contains no nore than a single zero
byte. This allows a service to have explicit control over the Tine
to Live (TTL) of its (enpty) TXT record, rather than using the

default negative caching TTL, which would ot herwi se be used for a "no
error no answer" DNS response.

Note that this requirement for a mandatory TXT record applies
exclusively to DNS-SD service advertising, i.e., services advertised
usi ng the PTR+SRV+TXT convention specified in this docunment. It is
not a requirenment of SRV records in general. The DNS SRV record

dat atype [RFC2782] may still be used in other contexts w thout any

requi renent for acconpanying PTR and TXT records.
1. Ceneral Format Rules for DNS TXT Records

A DNS TXT record can be up to 65535 (OxFFFF) bytes long. The total
length is indicated by the length given in the resource record header
in the DNS nessage. There is no way to tell directly fromthe data
alone howlong it is (e.g., there is no length count at the start, or
term nating NULL byte at the end).

Not e that when using Multicast DNS [RFC6762] the nmaxi mum packet size
is 9000 bytes, including the | P header, UDP header, and DNS nessage
header, which inposes an upper linit on the size of TXT records of
about 8900 bytes. |In practice the nmaxi mum sensible size of a DNS-SD
TXT record is snmaller even than this, typically at nost a few hundred
bytes, as described below in Section 6. 2.

Cheshire & Krochmal St andards Track [Page 11]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

The format of the data within a DNS TXT record is one or nore
strings, packed together in nmenory wi thout any intervening gaps or
paddi ng bytes for word alignnent.

The format of each constituent string within the DNS TXT record is a
single length byte, foll owed by 0-255 bytes of text data.

These format rules for TXT records are defined in Section 3.3.14 of
the DNS specification [RFCL035] and are not specific to DNS-SD

DNS- SD specifies additional rules for what data should be stored in
those constituent strings when used for DNS-SD service adverti sing,
i.e., when used to describe services advertised using the PTR+SRV+TXT
convention specified in this docunent.

An enpty TXT record containing zero strings is not allowed [RFC1035].
DNS- SD i npl enent ati ons MJUST NOT emit enpty TXT records. DNS-SD
clients MIST treat the follow ng as equival ent:

0 A TXT record containing a single zero byte.
(i.e., asingle enpty string.)

0 An enpty (zero-length) TXT record
(This is not strictly legal, but should one be received, it should
be interpreted as the sane as a single enpty string.)

o No TXT record.
(i.e., an NXDOVAI N or no-error-no-answer response.)

6. 2. DNS- SD TXT Record Si ze

The total size of a typical DNS-SD TXT record is intended to be small
-- 200 bytes or |ess.

In cases where nore data is justified (e.g., LPR printing [BJP]
keeping the total size under 400 bytes should allowit to fit i
single 512-byte DNS nessage [RFC1035].

)
n a

In extrene cases where even this is not enough, keeping the size of
the TXT record under 1300 bytes should allowit to fit in a single
1500- byt e Et her net packet.

Using TXT records |larger than 1300 bytes is NOI RECOWENDED at this
tinme.

Note that sone Ethernet hardware vendors offer chipsets with

Mul ticast DNS [RFC6762] offl oad, so that conputers can sleep and
still be discoverable on the network. Early versions of such
chi psets were sonetines quite limted: for exanple, sone were

Cheshire & Krochmal St andards Track [Page 12]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

(unwi sely) limted to handling TXT records no |arger than 256 bytes
(which neant that LPR printer services with larger TXT records did
not work). Devel opers should be aware of this real-world limtation
and shoul d understand that even hardware which is otherw se perfectly
capabl e may have | ow power and sl eep nodes that are nore linited

6.3. DNS TXT Record Format Rules for Use in DNS-SD

DNS- SD uses DNS TXT records to store arbitrary key/value pairs
conveyi ng additional information about the named service. Each
key/value pair is encoded as its own constituent string within the
DNS TXT record, in the form"key=val ue" (w thout the quotation
marks). Everything up to the first ’ character is the key (Section
6.4). Everything after the first '=" character to the end of the
string (including subsequent '=" characters, if any) is the val ue
(Section 6.5). No quotation marks are required around the val ue,
even if it contains spaces, '= characters, or other punctuation

mar ks. Each author defining a DNS-SD profile for discovering

i nstances of a particular type of service should define the base set
of key/value attributes that are valid for that type of service

Using this standardi zed key/value syntax within the TXT record nakes
it easier for these base definitions to be expanded | ater by defining
additional naned attributes. |If an inplenentation sees unknown keys
in a service TXT record, it MJST silently ignore them

The target host name and TCP (or UDP) port nunber of the service are
given in the SRV record. This information -- target host name and
port nunber -- MJST NOT be duplicated using key/value attributes in
the TXT record.

The intention of DNS-SD TXT records is to convey a small anount of
useful additional information about a service. ldeally, it should
not be necessary for a client to retrieve this additional information
before it can usefully establish a connection to the service. For a
wel | - desi gned application protocol, even if there is no information
at all in the TXT record, it should be possible, knowi ng only the
host nane, port nunber, and protocol being used, to conmmunicate with
that |istening process and then performversion- or feature-
negotiation to determ ne any further options or capabilities of the
service instance. For exanple, when connecting to an AFP (Apple
Filing Protocol) server [AFP] over TCP, the client enters into a
protocol exchange with the server to deternine which version of AFP
the server inplenments and which optional features or capabilities (if
any) are avail abl e.

For protocols designed with adequate in-band version- and feature-
negotiation, any information in the TXT record should be viewed as a

Cheshire & Krochmal St andards Track [Page 13]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

performance optinization -- when a client discovers nany instances of
a service, the TXT record allows the client to know sone rudi nentary
i nformati on about each instance w thout having to open a TCP
connection to each one and interrogate every service instance
separately. Care should be taken when doing this to ensure that the
information in the TXT record is in agreenent with the information
that would be retrieved by a client connecting over TCP

There are | egacy protocols that provide no feature negotiation
capability, and in these cases it may be useful to convey necessary
information in the TXT record. For exanple, when printing using LPR
[RFC1179], the LPR protocol provides no way for the client to
determi ne whether a particular printer accepts PostScript, what

version of PostScript, etc. In this case it is appropriate to enbed
this information in the TXT record [BJP], because the alternative
woul d be worse -- passing around witten instructions to the users,

arcane manual configuration of "/etc/printcap" files, etc.

The engi neeri ng deci sion about what keys to define for the TXT record
needs to be decided on a case-by-case basis for each service type.

For some service types it is appropriate to comunicate information
via the TXT record as well as (or instead of) via in-band

communi cation in the application protocol

6.4. Rules for Keys in DNS-SD Key/ Val ue Pairs
The key MJST be at |east one character. DNS-SD TXT record strings

beginning with an '=" character (i.e., the key is mssing) MJIST be
silently ignored.

The key SHOULD be no nore than nine characters long. This is because
it is beneficial to keep packet sizes snmall for the sake of network
efficiency. Wen using DNS-SD in conjunction with Milticast DNS

[RFC6762] this is inportant because nulticast traffic is especially
expensi ve on 802. 11 wirel ess networks [I EEEW, but even when using
conventional Unicast DNS, keeping the TXT records snall hel ps inprove
the chance that responses will fit within the original DNS 512-byte
size limt [RFCL035]. Also, each constituent string of a DNS TXT
record is limted to 255 bytes, so excessively |ong keys reduce the
space avail able for that key’'s val ues.

The keys in key/value pairs can be as short as a single character
A key nane needs only to be uni que and unanbi guous w thin the context
of the service type for which it is defined. A key nane is intended
solely to be a machi ne-readable identifier, not a human-readabl e
essay giving detailed discussion of the purpose of a paranmeter, wth
a URL for a web page giving yet nore details of the specification
For ease of devel opnment and debugging, it can be valuable to use key

Cheshire & Krochmal St andards Track [Page 14]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

nanes that are mmenoni ¢ textual names, but excessively verbose keys
are wasteful and inefficient, hence the reconmendation to keep them
to nine characters or fewer.

The characters of a key MJST be printable US-ASCI| val ues (0x20-0x7E)
[RFC20], excluding '= (0x3D)

Spaces in the key are significant, whether leading, trailing, or in
the middle -- so don’t include any spaces unless you really intend
t hat .

Case is ignored when interpreting a key, so "papersize=A4"

" PAPERSI ZE=A4", and "Papersi ze=A4" are all identical

If there is no '=" in a DNS-SD TXT record string, then it is a

bool ean attribute, sinply identified as being present, with no val ue.

A given key SHOULD NOT appear nore than once in a TXT record. The
reason for this sinplifying rule is to facilitate the creation of
client libraries that parse the TXT record into an internal data
structure (such as a hash table or dictionary object that maps from
keys to values) and then nmake that abstraction available to client
code. The rule that a given key may not appear nore than once
sinmplifies these abstractions because they aren’t required to support
the case of returning nore than one value for a given key.

If aclient receives a TXT record containing the same key nore than
once, then the client MIUST silently ignore all but the first
occurrence of that attribute. For client inplenentations that
process a DNS-SD TXT record fromstart to end, placing key/val ue
pairs into a hash table using the key as the hash table key, this
nmeans that if the inplenentation attenpts to add a new key/val ue pair
into the table and finds an entry with the sanme key already present,
then the new entry bei ng added should be silently discarded instead.
Cient inplenentations that retrieve key/value pairs by searching the
TXT record for the requested key should search the TXT record from
the start and sinply return the first matching key they find.

Cheshire & Krochmal St andards Track [Page 15]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

When examining a TXT record for a given key, there are therefore four
categories of results that may be returned:

* Attribute not present (Absent)

* Attribute present, with no val ue
(e.g., "passreq" -- password required for this service)

* Attribute present, with enpty val ue
(e.g., "Pluglns=" -- the server supports plugins, but none are
presently installed)

* Attribute present, with non-enpty val ue
(e.g., "Pluglns=JPEG MPER, MPEA")

Each author defining a DNS-SD profile for discovering instances of a
particul ar type of service should define the interpretation of these
different kinds of result. For exanple, for sone keys, there nay be
a natural true/false boolean interpretation

Absent inplies 'fal se
* Present inplies '"true

For other keys it may be sensible to define other semantics, such as
val ue/ no- val ue/ unknown:

* Present with value inplies that val ue.
(e.g., "Color=4" for a four-color ink-jet printer
or "Color=6" for a six-color ink-jet printer)

* Present with enpty value inplies 'false’
(e.g., not a color printer)

* Absent inplies ’Unknown’ .
(e.g., a print server connected to some unknown printer where the
print server doesn't actually know if the printer does color or
not -- which gives a very bad user experience and shoul d be
avoi ded wherever possible)

Note that this is a hypothetical exanple, not an exanple of actua
key/val ue keys used by DNS-SD network printers, which are docunented
in the "Bonjour Printing Specification" [BJP].

6.5. Rules for Values in DNS-SD Key/Val ue Pairs

If there is an =" in a DNS-SD TXT record string, then everything
after the first "= to the end of the string is the value. The value

can contain any eight-bit values including '=". The val ue MJST NOT

Cheshire & Krochmal St andards Track [Page 16]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

be encl osed in additional quotation narks or any simlar punctuation
any quotation marks, or leading or trailing spaces, are part of the
val ue.

The val ue is opaque binary data. Oten the value for a particul ar
attribute will be US-ASCI| [RFC20] or UTF-8 [RFC3629] text, but it is
| egal for a value to be any binary data.

Ceneri ¢ debuggi ng tools should generally display all attribute val ues
as a hex dunp, with acconpanying text al ongside displaying the UTF-8
interpretation of those bytes, except for attributes where the
debuggi ng tool has enbedded know edge that the value is sone other

ki nd of data.

Aut hors defining DNS-SD profiles SHOULD NOT generically convert
binary attribute data types into printable text using hexadeci nal
representation, Base-64 [RFC4648], or Unix-to-Unix (UU) encoding,
merely for the sake of naking the data appear to be printable text
when seen in a generic debugging tool. Doing this sinply bloats the
size of the TXT record, without actually nmaking the data any nore
under st andabl e to sonmeone | ooking at it in a generic debugging tool

6.6. Exanple TXT Record

The TXT record bel ow contains three syntactically valid key/val ue
strings. (The neaning of these key/value pairs, if any, would depend
on the definitions pertaining to the service in question that is
usi ng them)

| Ox09 | key=value | 0x08 | paper=A4 | 0x07 | passreq

6.7. \Version Tag

It is reconmmended that authors defining DNS-SD profiles include an
attribute of the form"txtvers=x", where "x" is a decinmal version
nunber in US-ASCI|I [RFC20] text (e.g., "txtvers=1" or "txtvers=8"),
in their definition, and require it to be the first key/value pair in
the TXT record. This information in the TXT record can be useful to
hel p clients maintain backwards conpatibility with ol der

i npl enentations if it beconmes necessary to change or update the
specification over tine. Even if the profile author doesn’'t
anticipate the need for any future inconpatible changes, having a
versi on nunber in the TXT record provides useful insurance should

i nconpati bl e changes becone unavoi dabl e [RFC6709]. Cients SHOULD
ignore TXT records with a txtvers nunber higher (or Iower) than the
version(s) they know how to interpret.

Cheshire & Krochmal St andards Track [Page 17]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Note that the version nunber in the txtvers tag describes the version
of the specification governing the defined keys and the neani ng of
those keys for that particular TXT record, not the version of the
application protocol that will be used if the client subsequently
decides to contact that service. ldeally, every DNS-SD TXT record
specification starts at txtvers=1l and stays that way forever

| nprovenents can be made by defining new keys that older clients
silently ignore. The only reason to increnent the version nunber is
if the old specification is subsequently found to be so horribly
broken that there’s no way to do a conpatible forward revision, so
the txtvers nunber has to be increnented to tell all the old clients
they should just not even try to understand this new TXT record.

If there is a need to indicate which version nunber(s) of the
application protocol the service inplenents, the recommended key for
this is "protovers"

6.8. Service Instances with Miltiple TXT Records

Ceneral |y speaking, every DNS-SD service instance has exactly one TXT
record. However, it is possible for a particular protocol’s DNS-SD
advertising specification to state that it allows multiple TXT
records. In this case, each TXT record describes a different variant
of the sane |ogical service, offered using the same underlying
protocol on the sane port, described by the sane SRV record.

Having multiple TXT records to describe a single service instance is
very rare, and to date, of the many hundreds of registered DNS-SD
service types [SN], only one nmakes use of this capability, nanely LPR
printing [BJP]. This capability is used when a printer conceptually
supports nultiple |Iogical queue nanes, where each different |ogica
queue nane i nplenments a different page description | anguage, such as
80- col umm nonospaced plain text, seven-bit Adobe PostScript, eight-
bit ("binary") PostScript, or some proprietary page description

| anguage. Wien nmultiple TXT records are used to describe multiple

| ogi cal LPR queue nanes for the same underlying service, printers

i nclude two additional keys in each TXT record: 'qtotal’, which
specifies the total nunber of TXT records associated with this SRV
record, and ’'priority’, which gives the printer’s relative preference
for this particular TXT record. Cients then select the nost
preferred TXT record that neets the client’s needs [BJP]. The only
reason nultiple TXT records are used is because the LPR protoco

| acks i n-band feature-negotiation capabilities for the client and
server to agree on a data representation for the print job, so this

i nformati on has to be comuni cat ed out-of -band i nstead using the DNS-
SD TXT records. Future protocol designs should not follow this bad
exanpl e by mmcking this inadequacy of the LPR printing protocol

Cheshire & Krochmal St andards Track [Page 18]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

7.

Servi ce Nanes

The <Service> portion of a Service |Instance Nane consists of a pair
of DNS | abels, follow ng the convention al ready established for SRV
records [RFC2782].

The first label of the pair is an underscore character followed by
the Service Nanme [RFC6335]. The Service Nane identifies what the
service does and what application protocol it uses to do it.

For applications using TCP, the second label is "_tcp
For applications using any transport protocol other than TCP, the
second label is " _udp". This applies to all other transport
protocol s, including User Datagram Protocol (UDP), Stream Contro
Transm ssi on Protocol (SCTP) [RFC4960], Datagram Congestion Contro
Prot ocol (DCCP) [RFC4340], Adobe’s Real Tinme Media Fl ow Protocol
(RTMFP), etc. In retrospect, perhaps the SRV specification should
not have used the " tcp" and " _udp" labels at all, and instead should
have used a single label " srv" to carve off a subdonain of DNS
namespace for this use, but that specification is already published
and deployed. At this point there is no benefit in changing

est ablished practice. Wile "_srv" mght be aesthetically nicer than
" udp", it is not a user-visible string, and all that is required
protocol-wise is (i) that it be a |abel that can forma DNS

del egation point, and (ii) that it be short so that it does not take
up too nuch space in the packet, and in this respect either "_udp" or
"_srv" is equally good. Thus, it nmakes sense to use " _tcp" for TCP-
based services and "_udp"” for all other transport protocols -- which
are in fact, in today's world, often encapsul ated over UDP -- rather
than defining a new subdonmain for every new transport protocol

Note that this usage of the "_udp" |abel for all protocols other than

TCP applies exclusively to DNS-SD service advertising, i.e., services
advertised using the PTR+SRV+TXT convention specified in this
docunent. It is not a requirenent of SRV records in general. Oher

specifications that are independent of DNS-SD and not intended to
interoperate with DNS-SD records are not in any way constrained by
how DNS- SD wor ks just because they also use the DNS SRV record

dat atype [RFC2782]; they are free to specify their own nam ng
conventions as appropriate.

The rules for Service Nanes [RFC6335] state that they nmay be no nore
than fifteen characters |long (not counting the nmandatory underscore),
consisting of only letters, digits, and hyphens, nust begin and end
with a letter or digit, must not contain consecutive hyphens, and
must contain at |east one letter. The requirenent to contain at

| east one letter is to disallow Service Nanes such as "80" or

Cheshire & Krochmal St andards Track [Page 19]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

"6000- 6063", which could be nmisinterpreted as port nunmbers or port
nunber ranges. Wile both uppercase and | owercase letters may be
used for menonic clarity, case is ignored for conparison purposes
so the strings "HTTP" and "http" refer to the sane service

Wse selection of a Service Nanme is inportant, and the choice is not
al ways as obvious as it may appear

In many cases, the Service Nanme nerely names and refers to the on-
the-wire nmessage format and semantics being used. FTP is "ftp", |PP
printing is "ipp", and so on

However, it is common to "borrow' an existing protocol and repurpose
it for a newtask. This is entirely sensible and sound engi neeri ng
practice, but that doesn’t nean that the new protocol is providing
the sane senantic service as the old one, even if it borrows the same
message formats. For exanple, the network nusic sharing protoco

i mpl enent ed by i Tunes on Maci ntosh and Wndows is built upon "HTTP
GET" conmands. However, that does *not* mean that it is sensible or
useful to try to access one of these nusic servers by connecting to
it with a standard web browser. Consequently, the DNS-SD service
advertised (and browsed for) by iTunes is "_daap. _tcp" (Digital Audio
Access Protocol), not "_http._tcp".

If i Tunes were to advertise that it offered " _http. _tcp" service,
that woul d cause i Tunes servers to appear in conventional web
browsers (Safari, Cam no, Omi Wb, |Internet Explorer, Firefox,
Chrone, etc.), which is of little use since an i Tunes nusic library
of fers no HTML pages contai ni ng human-readabl e content that a web
browser coul d displ ay.

Equally, if iTunes were to browse for " _http. tcp" service, that
woul d cause it to discover generic web servers, such as the enbedded
web servers in devices like printers, which is of little use since
printers generally don’t have nuch nmusic to offer

Anal ogously, Sun Mcrosystens’s Network File System (NFS) is built on
top of Sun M crosystens’s Renote Procedure Call (Sun RPC) nechani sm
but that doesn’t nmean it nmakes sense for an NFS server to advertise
that it provides "Sun RPC' service. Likew se, Mcrosoft’s Server
Message Bl ock (SMB) file service is built on top of Netbios running
over | P, but that doesn’'t nean it nakes sense for an SMB file server
to advertise that it provides "Netbios-over-IP' service. The DNS-SD
nane of a service needs to encapsul ate both the "what" (semantics)
and the "how' (protocol inplenentation) of the service, since

know edge of both is necessary for a client to use the service

meani ngful ly. Merely advertising that a service was built on top of
Sun RPCis no use if the client has no idea what the service does.

Cheshire & Krochmal St andards Track [Page 20]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Anot her common question is whether the service type advertised by

i Tunes should be " _daap. _http. tcp." This would also be incorrect.
Similarly, a protocol designer inplenmenting a network service that
happens to use the Sinple Object Access Protocol [SQAP] shoul d not
feel conpelled to have "_soap" appear sonewhere in the Service Nane.
Part of the confusion here is that the presence of " _tcp" or " _udp"
in the <Service> portion of a Service Instance Nane has | ed people to
assume that the visible structure of the <Service> should reflect
the private internal structure of how the protocol was inplenmented.
This is not correct. All that is required is that the service be
identified by some uni que opaque Service Nane. Making the Service
Nanme be English text that is at least nmarginally descriptive of what
the service does may be convenient, but it is by no neans essenti al

7.1. Selective Instance Enumeration (Subtypes)

Thi s docunent does not attenpt to define a sophisticated (e.qg.
Turing conplete, or even regul ar expression) query |anguage for
service discovery, nor do we believe one is necessary.

However, there are sone limted circunstances where narrow ng the set
of results may be useful. For exanple, many network printers offer a
web- based user interface, for managenent and admi nistration, using
HTML/ HTTP. A web browser wanting to discover all advertised web
pages issues a query for " _http. _tcp.<Domai n>". On the other hand,
there are cases where users wish to manage printers specifically, not
to di scover web pages in general, and it is good acconmpbdate this.

In this case, we define the "_printer" subtype of " _http._tcp", and
to di scover only the subset of pages advertised as having that
subtype property, the web browser issues a query for

" printer. _sub. _http._tcp. <Domai n>".

The Safari web browser on Mac OS X 10.5 "Leopard" and | ater uses
subtypes in this way. |If an "_http. _tcp" service is discovered both
via "_printer._sub. _http. _tcp" browsing and via "_http._tcp" browsing
then it is displayed in the "Printers" section of Safari’'s U. If a
service is discovered only via " _http. _tcp" browsing then it is

di spl ayed in the "Wbpages" section of Safari’s U . This can be seen
by using the conmands bel ow on Mac OS X to advertise tw "fake"
services. The service instance "A web page" is displayed in the
"Webpages" section of Safari’s Bonjour list, while the instance
"Aprinter’s web page" is displayed in the "Printers" section

dns-sd -R "A web page" _http. _tcp | ocal 100
dns-sd -R "A printer’s web page" _http._tcp,_printer |local 101

Note that the advertised web page’s Service Instance Nane is
unchanged by the use of subtypes -- it is still sonething of the form

Cheshire & Krochmal St andards Track [Page 21]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

"The Server. _http. tcp.exanple.com", and the advertised web page is
still discoverable using a standard browsing query for services of
type "_http. _tcp". The subdomain in which HTTP server SRV records
are registered defines the namespace within which HTTP server nanes
are unique. Additional subtypes (e.g., "_printer") of the basic
service type (e.g., " _http. tcp") serve to allow clients to query for
a narrower set of results, not to create nore nanespace

Using DNS zone file syntax, the service instance "A web page" is
advertised using one PTR record, while the instance "A printer’'s web
page" is advertised using two: the primary service type and the
addi ti onal subtype. Even though the "A printer’'s web page" service
is advertised two different ways, both PTR records refer to the nane
of the same SRV+TXT record pair:

; One PTR record advertises "A web page"
_http. _tcp.local. PTR Al 032web\ 032page. _http. tcp. | ocal

; Two different PTR records advertise "A printer’'s web page"
_http. _tcp.local. PTR A 032printer’s\032web\ 032page. _http._tcp. | ocal
_printer._sub._http._tcp.local

PTR A\ 032pri nter’ s\ 032web\ 032page. _http. tcp. | ocal

Subt ypes are appropriate when it is desirable for different kinds of
client to be able to browse for services at two | evels of

granularity. In the exanple above, we describe two classes of HITP
clients: general web browsing clients that are interested in all web
pages, and specific printer nanagenent tools that would like to

di scover only web U pages advertised by printers. The set of HITP
servers on the network is the same in both cases; the difference is
that some clients want to discover all of them whereas other clients
only want to find the subset of HITP servers whose purpose is printer
admi ni stration.

Subtypes are only appropriate in two-1evel scenarios such as this
one, where sone clients want to find the full set of services of a
given type, and at the sane tine other clients only want to find sone
subset. Generally speaking, if there is no client that wants to find
the entire set, then it’s neither necessary nor desirable to use the
subtype nmechanism If all clients are browsing for sone particul ar
subtype, and no client exists that browses for the parent type, then
a new Service Nane representing the |ogical service should be
defined, and software should sinply advertise and browse for that
particul ar service type directly. |In particular, just because a
particul ar network service happens to be inplenented in terns of sone
ot her underlying protocol, like HTTP, Sun RPC, or SOAP, doesn’t nean
that it's sensible for that service to be defined as a subtype of

" _http", " _sunrpc", or "_soap". That would only be useful if there

Cheshire & Krochmal St andards Track [Page 22]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

were sone class of client for which it is sensible to say, "I want to
di scover a service on the network, and | don't care what it does, as
long as it does it using the SOAP XML RPC nechani sm "

Subt ype strings are not required to begin with an underscore, though
they often do. As with the TXT record key/value pairs, the list of
possi bl e subtypes, if any (including whether some or all begin with
an underscore) are defined and specified separately for each basic
service type

Subtype strings (e.g., "_printer” in the exanple above) may be
constructed using arbitrary 8-bit data values. In nany cases these
data val ues may be UTF-8 [RFC3629] representations of text, or even
(as in the exanple above) plain ASCI1 [RFC20], but they do not have
to be. Note, however, that even when using arbitrary 8-bit data for
subtype strings, DNS name conparisons are still case-insensitive, so
(for example) the byte values 0x41 and O0x61 will be considered

equi val ent for subtype conparison purposes.

7.2. Service Name Length Linmits

As specified above, Service Names are allowed to be no nore than
fifteen characters long. The reason for this limt is to conserve
bytes in the domain nanme for use both by the network adm nistrator
(choosi ng service donmai n nanes) and by the end user (choosing

i nstance nanes).

A fully qualified domain nane may be up to 255 bytes |ong, plus one
byte for the final terminating root |abel at the end. Domain nanes
used by DNS-SD take the follow ng forns:

<sn>. tcp . <servicedonai n> . <parentdonai n>.
<Instance> . <sn>._tcp . <servicedomai n> . <parentdomai n>.
<sub>. _sub . <sn>. _tcp . <servicedonmai n> . <parentdomai n>.

The first exanple shows the nanme used for PTR queries. The second
shows a Service Instance Nane, i.e., the nane of the service's SRV
and TXT records. The third shows a subtype browsing nane, i.e., the
nane of a PTR record pointing to a Service Instance Nane (see Section
7.1, "Selective Instance Enuneration").

The Service Nane <sn> nay be up to 15 bytes, plus the underscore and
| ength byte, nmaking a total of 17. Including the " udp" or " _tcp"
and its length byte, this nakes 22 bytes.

The instance nane <lInstance> may be up to 63 bytes. Including the

| ength byte used by the DNS fornmat when the nane is stored in a
packet, that nakes 64 bytes.

Cheshire & Krochmal St andards Track [Page 23]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

When usi ng subtypes, the subtype identifier is allowed to be up to 63
bytes, plus the length byte, making 64. Including the " sub" and its
I ength byte, this makes 69 bytes.

Typically, DNS-SD service records are placed into subdomains of their
own beneath a conpany’s existing domain nane. Since these subdonains
are intended to be accessed through graphical user interfaces, not
typed on a comand |ine, they are frequently |ong and descriptive.
Including the length byte, the user-visible service domain may be up
to 64 bytes.

O our avail able 255 bytes, we have now accounted for 69+22+64 = 155
bytes. This | eaves 100 bytes to accommpdate the organi zation's

exi sting domai n nane <parentdonmai n> \Wen used with Milticast DNS
<parentdomai n> is "local.", which easily fits. Wen used w th parent
domai ns of 100 bytes or less, the full functionality of DNS-SD is
avail able without restriction. When used with parent donmai ns |onger
than 100 bytes, the protocol risks exceedi ng the maxi num possi bl e

| ength of domain nanes, causing failures. |In this case, carefu
choi ce of short <servicedonai n> nanes can help avoid overflows. |[f
t he <servi cedomai n> and <parentdonai n> are too |ong, then service
instances with long instance nanes will not be discoverable or
resol vabl e, and applicati ons maki ng use of |ong subtype names may
fail

Because of this constraint, we choose to linmit Service Nanes to 15
characters or less. Allowing nore characters would not increase the
expressive power of the protocol and woul d needl essly reduce the
maxi mum <par ent domai n> | ength that may be safely used.

Not e that <lnstance> nane | engths affect the naxi mum nunber of
services of a given type that can be discovered in a given

<servi cedomai n>. The | argest Uni cast DNS response than can be sent
(typically using TCP, not UDP) is 64 kB. Using DNS nane conpression
a Service Instance Enuneration PTR record requires 2 bytes for the
(conpressed) nane, plus 10 bytes for type, class, ttl, and rdata

Il ength. The rdata of the PTR record requires up to 64 bytes for the
<Instance> part of the nane, plus 2 bytes for a name conpression
pointer to the comon suffix, making a maxi num of 78 bytes total
This means that using maxi mum si zed <Instance> names, up to 839

i nstances of a given service type can be discovered in a given
<servi cedonai n>

Mul ti cast DNS aggregates response packets, so it does not have the
sane hard linmt, but in practice it is also useful for up to a few
hundred i nstances of a given service type, but probably not

t housands.

Cheshire & Krochmal St andards Track [Page 24]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

However, displaying even 100 instances in a flat list is probably too
many to be helpful to a typical user. |If a network has nore than 100
i nstances of a given service type, it's probably appropriate to

di vide those services into | ogical subdomains by building, by floor,
by departnment, etc.

8. Flagship Nani ng

In sone cases, there nay be several network protocols avail abl e that
all performroughly the sanme |ogical function. For exanple, the
printing world has the lineprinter (LPR) protocol [RFC1179] and the
Internet Printing Protocol (IPP) [RFC2910], both of which cause
printed sheets to be emitted fromprinters in nuch the sane way. In
addition, many printer vendors send their own proprietary page
description | anguage (PDL) data over a TCP connection to TCP port
9100, herein referred to generically as the "pdl-datastreant
protocol. 1In an ideal world, we would have only one network printing
protocol, and it would be sufficiently good that no one felt a
conpelling need to invent a different one. However, in practice,
nmul ti ple | egacy protocols do exist, and a service discovery protoco
has to acconmodate that.

Many printers inplement all three printing protocols: LPR, |PP, and
pdl -datastream For the benefit of clients that nay speak only one
of those protocols, all three are adverti sed.

However, sone clients may inplenment two, or all three of those
printing protocols. Wen a client looks for all three service types
on the network, it will find three distinct services -- an LPR
service, an |IPP service, and a pdl-datastream service -- all of which
cause printed sheets to be emtted fromthe sane physical printer

In a case like this, where nmultiple protocols all performeffectively
the sane function, a client may browse for all the service types it
supports and display all the discovered instance nanes in a single
aggregated list. Wuere the sane instance nane is discovered nore
than once because that entity supports nore than one service type
(e.g. a single printer which inplements nultiple printing protocols)
t he duplicates should be suppressed and the name shoul d appear only
once in the list. When the user indicates their desire to print on a
gi ven naned printer, the printing client is responsible for choosing
which of the available protocols will best achieve the desired
effect, without, for exanple, requiring the user to nmake a nanual

choi ce between LPR and | PP.

As described so far, this all works very well. However, consider the

case of: some future printer that only supports IPP printing, and
sone other future printer that only supports pdl-datastream printing.

Cheshire & Krochmal St andards Track [Page 25]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

The nanespaces for different service types are intentionally disjoint
(it is acceptable and desirable to be able to have both a file server
called "Sal es Departnment” and a printer called "Sal es Department").
However, it is not desirable, in the conmmon case, to allow two
different printers both to be called "Sal es Departnment™ nerely
because those two printers inplenent different printing protocols.

To hel p guard against this, when there are two or nore network
protocol s that performroughly the sanme |ogical function, one of the
protocols is declared the "flagship" of the fleet of related
protocols. Typically the flagship protocol is the ol dest and/or
best - known protocol of the set.

If a device does not inplenent the flagship protocol, then it instead
creates a placehol der SRV record (priority=0, weight=0, port=0,

target host = host nane of device) with that nane. |[f, when it
attenpts to create this SRV record, it finds that a record with the
sanme nane al ready exists, then it knows that this nanme is al ready
taken by sone other entity inplenenting at | east one of the protocols

fromthe fleet, and it nmust choose another. |If no SRV record al ready
exi sts, then the act of creating it stakes a claimto that nane so
that future devices in the sane protocol fleet will detect a conflict

when they try to use it.

Not e: When used with Multicast DNS [RFC6762], the target host field
of the placehol der SRV record MJUST NOT be the enpty root |abel. The
SRV record needs to contain a real target host nane in order for the
Mul ticast DNS conflict detection rules to operate. If two different
devices were to create placehol der SRV records both using a nul
target host nane (just the root |abel), then the two SRV records
woul d be seen to be in agreenent, and no conflict would be detected.

By defining a conmon wel | -known flagship protocol for the class,
future devices that may not even know about each other’s protocols
establish a conmmon ground where they can coordinate to verify

uni queness of nanes.

No PTR record is created advertising the presence of enpty flagship
SRV records, since they do not represent a real service being
adverti sed, and hence are not (and should not be) discoverable via
Service I nstance Enuneration (browsing).

Cheshire & Krochmal St andards Track [Page 26]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

9.

10.

Service Type Enuneration

In general, a normal client is not interested in finding *every*
service on the network, just the services that the client knows how
to use.

However, for problem diagnosis and network nmanagenent tools, it nay
be useful for network adnministrators to find the list of advertised
service types on the network, even if those Service Nanes are just
opaque identifiers and not particularly informative in isolation

For this purpose, a special neta-query is defined. A DNS query for
PTR records with the nane " _services. _dns-sd. udp. <Donai n>" yields a
set of PTR records, where the rdata of each PTR record is the two-

| abel <Service> nane, plus the sane domain, e.g.

" _http._tcp.<Domain>". Including the domain in the PTR rdata all ows
for slightly better name conpression in Unicast DNS responses, but
only the first two |labels are relevant for the purposes of service
type enuneration. These two-|abel service types can then be used to
construct subsequent Service |nstance Enumeration PTR queries, in
this <Domai n> or others, to discover instances of that service type.

Popul ating the DNS with I nformation

How a service's PTR, SRV, and TXT records nake their way into the DNS
is outside the scope of this docunent, but, for illustrative
pur poses, sone exanples are given here.

On some networks, the adm nistrator mght manually enter the records
into the nane server’'s configuration file.

A network nonitoring tool could output a standard zone file to be
read into a conventional DNS server. For exanple, a tool that can
find networked PostScript laser printers using AppleTal k NBP coul d
find the list of printers, conmmunicate with each one to find its IP
address, PostScript version, installed options, etc., and then wite
out a DNS zone file describing those printers and their capabilities
usi ng DNS resource records. That information would then be avail abl e
to IP-only clients that inplenent DNS-SD but not Appl eTal k NBP

A printer manager device that has know edge of printers on the
networ k through sone ot her managenent protocol could also output a
zone file or use DNS Update [RFC2136] [RFC3007].

Alternatively, a printer manager device could inplenent enough of the
DNS protocol that it is able to answer DNS queries directly, and
Exanpl e Co.’s main DNS server could del egate the

" _ipp._tcp.exanple.com" subdonain to the printer manager device

Cheshire & Krochmal St andards Track [Page 27]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

11.

I P printers could use Dynam ¢ DNS Update [RFC2136] [RFC3007] to
automatically register their own PTR, SRV, and TXT records with the
DNS server.

Zeroconf printers answer Milticast DNS queries on the local link for
their owmn PTR, SRV, and TXT nanes ending with ".local." [RFC6762].

Di scovery of Browsing and Registrati on Domai ns (Donai n Enunerati on)

One of the notivations for DNS-based Service Discovery is to enable a
visiting client (e.g., a W-Fi-equipped [| EEEW | aptop conputer

tabl et, or nobile tel ephone) arriving on a new network to di scover
what services are available on that network, w thout any manual
configuration. The logic that discovering services wthout manual
configuration is a good idea al so dictates that discovering
recomended regi strati on and browsi ng dormai ns wi t hout nanua
configuration is a simlarly good idea.

This discovery is perforned using DNS queries, using Unicast or
Mul ticast DNS. Five special RR names are reserved for this purpose

b. _dns-sd. _udp. <donai n>.
db. _dns-sd. _udp. <domai n>.
r._dns-sd. _udp. <donai n>.
dr. _dns-sd. _udp. <domai n>.
I b. _dns-sd. _udp. <domai n>.

By perform ng PTR queries for these nanes, a client can |learn,
respectively:

o A list of domains reconmended for browsing.
0 A single recommended default donmain for browsing.

o A list of domains reconmended for registering services using
Dynani ¢ Updat e.

o A single recommrended default domain for registering services.

o The "l egacy browsing" or "automatic browsing" donmain(s).
Sophi sticated client applications that care to present choices of
domain to the user use the answers | earned fromthe previous four
queries to discover the donains to present. In contrast, nany
current applications browse w thout specifying an explicit domain,
all owi ng the operating systemto automatically sel ect an
appropriate domain on their behalf. It is for this class of
application that the "automatic browsing"” query is provided, to

Cheshire & Krochmal St andards Track [Page 28]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

all ow the network administrator to comunicate to the client
operating systens which donai n(s) should be used automatically for
t hese applications.

These domains are purely advisory. The client or user is free to
regi ster services and/or browse in any donmains. The purpose of these
special queries is to allow software to create a user interface that
di splays a useful list of suggested choices to the user, from which
the user may nake an infornmed selection, or ignore the offered
suggestions and manually enter their own choice.

The <donmi n> part of the Donmain Enuneration query name may be
"local." (meaning "performthe query using link-local nulticast") or
it my be |earned through some other nmechanism such as the DHCP
"Dormai n" option (option code 15) [RFC2132], the DHCP "Donai n Search"
option (option code 119) [RFC3397], or |Pv6 Router Advertisenent
Options [RFC6106] .

The <donmi n> part of the query name nay al so be derived a different
way, fromthe host’s IP address. The host takes its | P address and
cal cul ates the | ogical AND of that address and its subnet nask, to
derive the 'base’ address of the subnet (the 'network address’ of
that subnet, or, equivalently, the IP address of the "all-zero host
address on that subnet). It then constructs the conventional DNS
"reverse nmappi ng" nanme corresponding to that base address, and uses
that as the <domain> part of the nanme for the queries described
above. For exanple, if a host has the address 192.168.12.34, with

t he subnet nask 255.255.0.0, then the 'base’ address of the subnet is
192.168.0.0, and to discover the recommended automatic browsing

domai n(s) for devices on this subnet, the host issues a DNS PTR query
for the name "I b. _dns-sd. udp.0.0.168.192.in-addr. arpa."

Equi val ent address-derived Domai n Enuneration queries should also be
done for the host’s | Pv6 address(es).

Addr ess-derived Domai n Enuneration queries SHOULD NOT be done for
I Pv4 |ink-1ocal addresses [RFC3927] or IPv6 |ink-local addresses
[RFC4862] .

Sophi sticated clients nay perform Domai n Enunerati on queries both in
"local." and in one or nore unicast domains, using both nane-derived
and address-derived queries, and then present the user with an

conbi ned result, aggregating the infornmation received from al

sour ces.

Cheshire & Krochmal St andards Track [Page 29]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

12.

12.

12.

DNS Additi onal Record Generation

DNS has an efficiency feature whereby a DNS server may place
additional records in the additional section of the DNS nessage.
These additional records are records that the client did not
explicitly request, but the server has reasonable grounds to expect
that the client m ght request themshortly, so including themcan
save the client fromhaving to issue additional queries.

This section recomends whi ch additional records SHOULD be generated
to improve network efficiency, for both Unicast and Milticast DNS-SD
responses.

Note that while servers SHOULD add these additional records for
efficiency purposes, as with all DNS additional records, it is the
client’s responsibility to determ ne whether or not to trust them

Ceneral |y speaking, stub resolvers that talk to a single recursive
nane server for all their queries will trust all records they receive
fromthat recursive name server (whom el se would they ask?).
Recursive nanme servers that talk to multiple authoritative name
servers should verify that any records they receive froma given

aut horitative nanme server are "in bailiw ck” for that server, and
ignore themif not.

Cients MJST be capable of functioning correctly with DNS servers
(and Multicast DNS Responders) that fail to generate these additiona
records automatically, by issuing subsequent queries for any further
record(s) they require. The additional-record generation rules in
this section are RECOMWENDED for inproving network efficiency, but
are not required for correctness.

1. PTR Records
When including a DNS-SD Service |Instance Enuneration or Sel ective

I nstance Enuneration (subtype) PTR record in a response packet, the
server/responder SHOULD include the foll owi ng additional records:

o

The SRV record(s) nanmed in the PTR rdata.
The TXT record(s) named in the PTR rdata.
0o All address records (type "A" and "AAAA') naned in the SRV rdata.

o

2. SRV Records

When including an SRV record in a response packet, the
server/responder SHOULD include the foll owi ng additional records:

o All address records (type "A' and "AAAA") naned in the SRV rdata.

Cheshire & Krochmal St andards Track [Page 30]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

12.3. TXT Records

When including a TXT record in a response packet, no additiona
records are required.

12.4. O her Record Types

In response to address queries, or other record types, no new
additional records are recomended by this docunent.

13. Worki ng Exanpl es

The followi ng exanpl es were prepared using standard unnodi fied
nsl ookup and standard unnodi fied BI ND runni ng on GNU Li nux.

Note: In real products, this information is obtained and presented to
t he user using graphical network browser software, not command-|ine
tools. However, if you wish, you can try these exanples for yourself
as you read al ong, using the nsl ookup comand al ready avail abl e on
nost Uni X machi nes.

13.1. What web pages are being advertised from dns-sd. org?

nsl ookup -q=ptr _http. _tcp.dns-sd.org.
_http. tcp.dns-sd.org

nane = Zeroconf. http. _tcp.dns-sd.org
_http. _tcp.dns-sd.org

nane = Miulticast\032DNS. http. _tcp.dns-sd.org
_http. _tcp.dns-sd.org

nane = Service\ 032D scovery. http. tcp.dns-sd.org
_http. tcp.dns-sd.org

name = Stuart’ s\032Printer._http._tcp.dns-sd.org

Answer: There are four, called "Zeroconf", "Milticast DNS", "Service
Di scovery”, and "Stuart’s Printer”

Not e that nsl ookup escapes spaces as "\ 032" for display purposes, but
a graphi cal DNS-SD browser shoul d not.

13.2. \What printer-configuration web pages are there?
nsl ookup -qg=ptr _printer. _sub. http. tcp.dns-sd.org.
_printer. _sub. http. _tcp.dns-sd.org
name = Stuart’ s\032Printer._http._tcp.dns-sd.org

Answer: "Stuart’s Printer" is the web configuration U of a network
printer.

Cheshire & Krochmal St andards Track [Page 31]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

13.

14.

15.

16.

3. How do | access the web page called "Service Discovery"?

nsl ookup -qg=any "Service\032Di scovery. _http._tcp.dns-sd.org."
Servi ce\ 032Di scovery. _http. _tcp.dns-sd.org

priority = 0, weight = 0, port = 80, host = dns-sd.org
Servi ce\ 032Di scovery. _http. _tcp.dns-sd.org

text = "txtvers=1" "path=/"
dns-sd. org nameserver = nsl.dns-sd.org
dns-sd. org i nternet address 64.142.82. 154

nsl. dns-sd.org internet address 64.142.82. 152
Answer: You need to connect to dns-sd.org port 80, path "/".
The address for dns-sd.org is also given (64.142.82.154).

| Pv6 Consi derations
| Pv6 has only mnor differences from | Pv4.

The address of the SRV record’'s target host is given by the
appropriate | Pv6 "AAAA" address records instead of (or in addition
to) IPv4 "A" records

Addr ess- based Domai n Enuneration queries are perfornmed using nanes
under the 1 Pv6 reverse-napping tree, which is different fromthe |IPv4
reverse-mappi ng tree and has | onger nanes in it.

Security Considerations

Since DNS-SD is just a specification for how to name and use records
in the existing DNS system it has no specific additional security
requi renents over and above those that already apply to DNS queries
and DNS updat es.

For DNS queries, DNS Security Extensions (DNSSEC) [RFC4033] should be
used where the authenticity of information is inportant.

For DNS updates, secure updates [RFC2136] [RFC3007] shoul d generally
be used to control which clients have permi ssion to update DNS
records.

| ANA Consi derations
| ANA nanages the namespace of unique Service Nanes [RFC6335].
When a protocol service advertising specification includes subtypes,
t hese shoul d be docunmented in the protocol specification in question

and/or in the "notes" field of the registration request sent to | ANA
In the event that a new subtype becones relevant after a protoco

Cheshire & Krochmal St andards Track [Page 32]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

speci fication has been published, this can be recorded by requesting
that 1ANA add it to the "notes" field. For exanple, vendors of
network printers advertise their enbedded web servers using the
subtype _printer. This allows printer managenment clients to browse
for only printer-related web servers by browsing for the _printer
subtype. Wiile the existence of the _printer subtype of _http. _tcp
is not directly relevant to the HTTP protocol specification, it is
useful to record this usage in the ANA registry to help avoid

anot her community of devel opers inadvertently using the same subtype
string for a different purpose. The nanespace of possible subtypes
is separate for each different service type. For exanple, the

exi stence of the _printer subtype of _http. tcp does not inply that
the printer subtype is defined or has any neaning for any other
service type

When | ANA records a Service Name registration, if the new application
protocol is one that conceptually duplicates existing functionality
of an ol der protocol, and the inplenenters desire the Flagshi p Nani ng
behavi or described in Section 8, then the registrant shoul d request
that | ANA record the nane of the flagship protocol in the "notes"
field of the newregistration. For exanple, the registrations for

"i pp" and "pdl-datastream' both reference "printer" as the flagship
nane for this famly of printing-related protocols.

17. Acknow edgnents

The concepts described in this docunent have been expl ored,

devel oped, and inplenmented with help from Ran Atkinson, Richard
Brown, Freek Dijkstra, Ralph Droms, Erik Guttman, Pasi Sarol ahti,
Pekka Savol a, Mark Townsley, Paul Vixie, Bill Wodcock, and others.
Speci al thanks go to Bob Bradl ey, Josh Graessley, Scott Herscher
Rory McCQuire, Roger Pantos, and Kiren Sekar for their significant
contributions.

18. Ref er ences
18.1. Nornmtive References

[RFC20] Cerf, V., "ASCI| format for network interchange", RFC 20,
COct ober 1969.

[RFC1033] Lottor, M, "Domain Adnministrators Qperations Cuide", RFC
1033, Novemnber 1987.

[RFC1034] Mockapetris, P., "Donmain names - concepts and
facilities", STD 13, RFC 1034, Novenber 1987.

Cheshire & Krochmal St andards Track [Page 33]

RFC 6763

[RFC1035]

[RFC2119]

[RFC2782]

[RFC3492]

[RFC3629]

[RFC3927]

[RFC4862]

[RFC5198]

[RFC5890]

[RFC6335]

DNS- Based Servi ce Di scovery February 2013

Mockapetris, P., "Domain nanmes - inplenentation and
speci fication", STD 13, RFC 1035, Novenber 1987.

Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

@l brandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
specifying the | ocation of services (DNS SRV)", RFC 2782,
February 2000.

Costello, A, "Punycode: A Bootstring encoding of Unicode
for Internationalized Domain Names in Applications
(1 DNA) ", RFC 3492, March 2003.

Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

Cheshire, S., Aboba, B., and E. Quttman, "Dynanic
Configuration of |1Pv4 Link-Local Addresses", RFC 3927,
May 2005.

Thonson, S., Narten, T., and T. Jinnei, "IPv6 Statel ess
Addr ess Autoconfiguration"”, RFC 4862, Septenber 2007.

Klensin, J. and M Padlipsky, "Unicode Format for Network
I nt erchange", RFC 5198, March 2008.

Klensin, J., "Internationalized Domai n Nanes for
Applications (IDNA): Definitions and Docunent Franmework”,
RFC 5890, August 2010.

Cotton, M, Eggert, L., Touch, J., Wsterlund, M, and S.
Cheshire, "Internet Assigned Nunmbers Authority (IANA)
Procedures for the Managenent of the Service Nane and
Transport Protocol Port Number Registry", BCP 165, RFC
6335, August 2011.

18.2. Informati ve References

[AFP]

[BJ]

Mac OS X Devel oper Library, "Apple Filing Protocol
Programm ng Cui de", <http://devel oper. apple.com
docunent at i on/ Net wor ki ng/ Concept ual / AFP/ >,

Appl e Bonj our Open Source Software,
<htt p://devel oper. appl e. conf bonj our/ >.

Cheshire & Krochmal St andards Track [Page 34]

RFC 6763

[BIF]

[| EEEW

[NI AS]

[NSD]

[RFC1179]

[RFC2132]

[RFC2136]

[RFC2181]

[RFC2910]

[RFCA4960]

[RFC3007]

[RFC4340]

[RFC3397]

[RFC4033]

DNS- Based Servi ce Di scovery February 2013

Bonj our Printing Specification,
<ht t ps:// devel oper. appl e. com bonj our/
printing-specification/bonjourprinting-1.0.2. pdf>.

| EEE 802 LAN MAN St andards Conmittee,
<http://standards. i eee.org/wirel ess/>.

Cheshire, S., "Di scovering Named | nstances of Abstract
Services using DNS', Wirk in Progress, July 2001.

"NsdMvanager | Android Devel oper”, June 2012,
<htt p: // devel oper. androi d. coni r ef erence/ andr oi d/
net / nsd/ NsdManager . ht ml >,

McLaughlin, L., "Line printer daenmon protocol", RFC 1179,
August 1990.

Al exander, S. and R Drons, "DHCP Options and BOOTP
Vendor Extensions", RFC 2132, March 1997.

Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
"Dynam ¢ Updates in the Domai n Nane System (DNS UPDATE)",
RFC 2136, April 1997.

Elz, R and R Bush, "Carifications to the DNS
Specification", RFC 2181, July 1997.

Herriot, R, Ed., Butler, S., More, P., Turner, R, and
J. Wenn, "Internet Printing Protocol/1.1: Encodi ng and
Transport", RFC 2910, Septenber 2000.

Stewart, R, Ed., "Stream Control Transm ssion Protocol",
RFC 4960, Septenber 2007.

Wellington, B., "Secure Domain Name System (DNS) Dynanic
Updat e", RFC 3007, Novenber 2000.

Kohler, E., Handley, M, and S. Floyd, "Datagram
Congestion Control Protocol (DCCP)", RFC 4340, March
2006.

Aboba, B. and S. Cheshire, "Dynam c Host Configuration
Prot ocol (DHCP) Domain Search Option", RFC 3397, Novenber
2002.

Arends, R, Austein, R, Larson, M, Massey, D., and S
Rose, "DNS Security Introduction and Requirenents”, RFC
4033, March 2005.

Cheshire & Krochmal St andards Track [Page 35]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

[RFCA4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

[RFCAT95] Aboba, B., Thaler, D., and L. Esibov, "Link-Iocal
Mul ticast Nanme Resolution (LLWMNR)", RFC 4795, January
2007.

[RFC6106] Jeong, J., Park, S., Beloeil, L., and S. Madanapalli,
"I Pv6 Router Advertisenent Options for DNS
Configuration", RFC 6106, Novenber 2010.

[RFC6281] Cheshire, S., Zhu, Z., Waki kawa, R, and L. Zhang,
"Under st andi ng Apple’'s Back to My Mac (BTMV) Service",
RFC 6281, June 2011.

[RFC6709] Carpenter, B., Aboba, B., Ed., and S. Cheshire, "Design
Consi derations for Protocol Extensions", RFC 6709,
Sept enber 2012.

[RFC6760] Cheshire, S. and M Krochmal, "Requirenents for a
Protocol to Replace the Appl eTal k Name Bi ndi ng Protocol
(NBP)", RFC 6760, February 2013.

[RFC6762] Cheshire, S. and M Krochnal, "Milticast DNS', RFC 6762,
February 2013.

[SN | ANA, "Service Nane and Transport Protocol Port Nunber
Regi stry", <http://ww.iana. org/assi gnments/
servi ce- names- port - nunber s/ >.

[SOAP] Mtra, N, "SOAP Version 1.2 Part 0: Prinmer", WBC
Proposed Reconmendati on 24 June 2003,
<htt p: // www. w3. or g/ TR/ 2003/ REC- soapl2- part 0- 20030624>.

[Uni code6] The Unicode Consortium The Uni code Standard, Version
6.0.0, (Mwuntain View, CA: The Unicode Consortium 2011.
| SBN 978-1-936213-01-6)
<htt p: // www. uni code. or g/ ver si ons/ Uni code6. 0. 0/ >.

[zC Cheshire, S. and D. Steinberg, "Zero Configuration

Net wor ki ng: The Definitive GQuide", OReilly Media, Inc.,
| SBN 0-596-10100-7, Decenber 2005.

Cheshire & Krochmal St andards Track [Page 36]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Appendi x A. Rationale for Using DNS as a Basis for Service Discovery

Over the years, there have been many proposed ways to do network
service discovery with I P, but none achi eved ubiquity in the

mar ket pl ace. Certainly none has achi eved anything close to the
ubi quity of today’s deploynent of DNS servers, clients, and other
i nfrastructure

The advant age of using DNS as the basis for service discovery is that
it makes use of those existing servers, clients, protocols,
infrastructure, and expertise. Existing network analyzer tools

al ready know how to decode and di spl ay DNS packets for network
debuggi ng.

For ad hoc networks such as Zeroconf environnents, peer-to-peer

mul ticast protocols are appropriate. Using DNS-SD runni ng over

Mul ticast DNS [RFC6762] provides zero-configuration ad hoc service
di scovery, while naintaining the DNS-SD semantics and record types
descri bed here.

In larger networks, a high volume of enterprise-wide |IP nulticast
traffic may not be desirable, so any credible service discovery
protocol intended for |arger networks has to provide some facility to
aggregate registrations and | ookups at a central server (or servers)

i nstead of working exclusively using nmulticast. This requires sone
service discovery aggregation server software to be witten,

debugged, depl oyed, and maintained. This also requires some service
di scovery registration protocol to be inplenented and depl oyed for
clients to register with the central aggregation server. Virtually
every conpany with an IP network already runs a DNS server, and DNS
al ready has a dynamic registration protocol [RFC2136] [RFC3007].

G ven that virtually every conpany already has to operate and

mai ntain a DNS server anyway, it nakes sense to take advantage of
this expertise instead of also having to |learn, operate, and maintain
a different service registration server. It should be stressed again
that using the sanme software and protocols doesn’t necessarily nean
usi ng the sane physical piece of hardware. The DNS-SD service

di scovery functions do not have to be provided by the sane piece of
hardware that is currently providing the conpany’s DNS nane service
The " _tcp. <Domai n>" and " _udp. <Domai n>" subdonmai ns may be del egat ed
to a different piece of hardware. However, even when the DNS-SD
service is being provided by a different piece of hardware, it is
still the same familiar DNS server software, with the sane
configuration file syntax, the sane log file format, and so forth.

Service discovery needs to be able to provide appropriate security.
DNS al ready has existing nmechani snms for security [RFC4033].

Cheshire & Krochmal St andards Track [Page 37]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

In summary:

Service discovery requires a central aggregation server
DNS al ready has one: a DNS server.

Service discovery requires a service registration protocol
DNS al ready has one: DNS Dynani ¢ Update.

Service discovery requires a query protocol
DNS al ready has one: DNS queri es.

Service discovery requires security nmechani sns.
DNS al ready has security mechani sns: DNSSEC

Service discovery requires a multicast node for ad hoc networKks.
Usi ng DNS-SD in conjunction with Milticast DNS provides this,
usi ng peer-to-peer multicast instead of a DNS server

It nmakes nore sense to use the existing software that every network
needs al ready, instead of deploying an entire parallel systemjust
for service discovery.

Appendi x B. Ordering of Service |Instance Nane Conponents

There have been questions about why services are nanmed usi ng DNS
Service I nstance Nanmes of the form

Servi ce I nstance Nane <l nstance> . <Service> . <Domai n>

i nstead of:

Service | nstance Nane <Service> . <lInstance> . <Donai n>

There are three reasons why it is beneficial to nane service
instances with the parent donmain as the nost-significant (rightnost)
part of the name, then the abstract service type as the next-nost
significant, and then the specific instance nane as the | east-
significant (leftnost) part of the name. These reasons are discussed
below in Sections B.1, B.2, and B.3

B.1. Semantic Structure

The facility being provided by browsing ("Service |Instance
Enuneration") is effectively enunerating the | eaves of a tree
structure. A given donain offers zero or nore services. For each of
those service types, there may be zero or nore instances of that
service.

Cheshire & Krochmal St andards Track [Page 38]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

The user knows what type of service they are seeking. (If they are
running an FTP client, they are | ooking for FTP servers. |If they
have a docunent to print, they are looking for entities that speak
sonme known printing protocol.) The user knows in which

organi zati onal or geographi cal domain they wish to search. (The user
does not want a single flat list of every single printer on the

pl anet, even if such a thing were possible.) Wat the user does not
know i n advance is whether the service they seek is offered in the
given domain, or if so, the nunber of instances that are offered and
the nanes of those instances.

Hence, having the instance nanes be the | eaves of the tree is
consistent with this semantic nodel

Havi ng the service types be the terminal |eaves of the tree would
imply that the user knows the domain nanme and the nanme of the service
i nstance, but doesn’t have any idea what the service does. W would
argue that this is a |l ess useful nodel

B.2. Network Efficiency

When a DNS response contains nultiple answers, nanme conpressi on works
nmore effectively if all the nanes contain a conmon suffix. If many
answers in the packet have the sanme <Service> and <Domai n>, then each
occurrence of a Service Instance Nane can be expressed using only the
<Instance> part followed by a two-byte conpression pointer
referencing a previous appearance of "<Service>. <Domain>". This
efficiency would not be possible if the <Service> conponent appeared
first in each nane.

B.3. Qperational Flexibility

This name structure allows subdonains to be del egated al ong | ogi ca
service boundaries. For exanple, the network adm nistrator at
Exanpl e Co. could choose to delegate the " _tcp. exanple.com”
subdonmain to a different nachine, so that the nachi ne handling
service discovery doesn’'t have to be the nachi ne that handl es ot her
day-to-day DNS operations. (It *can* be the sane machine if the
admi ni strator so chooses, but the adnministrator is free to make that
choice.) Furthernore, if the network adm nistrator wi shes to

del egate all information related to IPP printers to a nmachi ne
dedicated to that specific task, this is easily done by del egating
the " _ipp. _tcp.exanple.com" subdomain to the desired nmachine. It is

al so convenient to set security policies on a per-zone/per-subdonain
basis. For exanple, the administrator may choose to enabl e DNS
Dynami ¢ Update [RFC2136] [RFC3007] for printers registering in the

Cheshire & Krochmal St andards Track [Page 39]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

_ipp. _tcp.exanple.com" subdonain, but not for other
zones/ subdomains. This easy flexibility would not exist if the
<Servi ce> conponent appeared first in each nane.

Appendi x C. What You See Is \What You Get

Some service discovery protocols decouple the true service identifier
fromthe nane presented to the user. The true service identifier
used by the protocol is an opaque unique identifier, often
represented using a long string of hexadeci mal digits, which should
never be seen by the typical user. The name presented to the user is
nmerely one of the decorative epheneral attributes attached to this
opaque identifier.

The problemwi th this approach is that it decouples user perception
fromnetwork reality:

* \What happens if there are two service instances, with different
uni que ids, but they have inadvertently been given the sanme user-
visible name? |If two instances appear in an on-screen list with
the sane nane, how does the user know which is which?

* Suppose a printer breaks down, and the user replaces it with
anot her printer of the sane nmake and nodel, and configures the new
printer with the exact sane nane as the one being repl aced:

"Stuart’s Printer". Now, when the user tries to print, the on-
screen print dialog tells themthat their selected default printer
is "Stuart’s Printer". Wen they browse the network to see what

is there, they see a printer called "Stuart’s Printer”, yet when
the user tries to print, they are told that the printer "Stuart’s
Printer" can't be found. The hidden internal unique identifier
that the software is trying to find on the network doesn’t match
the hidden internal unique identifier of the new printer, even
though its apparent "nane" and its |ogical purpose for being there
are the same. To renmedy this, the user typically has to delete
the print queue they have created, and then create a new
(apparently identical) queue for the new printer, so that the new
queue will contain the right hidden internal unique identifier
Having all this hidden information that the user can’t see makes
for a confusing and frustrating user experience, and exposi ng

| ong, ugly hexadecinmal strings to the user and forcing themto
under stand what they nean i s even worse.

* Suppose an existing printer is noved to a new departnent, and
given a new nane and a new function. Changing the user-visible
nane of that piece of hardware doesn’t change its hidden interna
uni que identifier. Users who had previously created a print queue

Cheshire & Krochmal St andards Track [Page 40]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

for that printer will still be accessing the sane hardware by its
uni que identifier, even though the |ogical service that used to be
of fered by that hardware has ceased to exist.

Sol ving these problens requires the user or adnmnistrator to be aware
of the supposedly hidden unique identifier, and to set its val ue
correctly as hardware i s noved around, repurposed, or replaced,
thereby contradicting the notion that it is a hidden identifier that
human users never need to deal with. Requiring the user to
understand this expert behind-the-scenes know edge of what is
really going on is just one nore burden placed on the user when
they are trying to diagnose why their conputers and network devices
are not working as expected.

These anonmal i es and counterintuitive behaviors can be elininated by
mai ntai ning a tight bidirectional one-to-one mapping between what the
user sees on the screen and what is really happening "behind the
curtain". |If something is configured incorrectly, then that is
apparent in the fanmiliar day-to-day user interface that everyone
understands, not in sonme little-known, rarely used "expert"

i nterface.

In summary: in DNS-SD the user-visible nanme is also the primary
identifier for a service. |If the user-visible nane is changed, then
conceptually the service being offered is a different |ogical service
-- even though the hardware offering the service may have stayed the
sane. |If the user-visible name doesn’t change, then conceptually the
service being offered is the same |ogical service -- even if the
hardware offering the service is new hardware brought in to replace
sone ol d equi pnent.

There are certainly arguments on both sides of this debate.
Nonet hel ess, the designers of any service discovery protocol have to
make a choice between having the prinmary identifiers be hidden, or
havi ng them be visible, and these are the reasons that we chose to
make themvisible. W’'re not claimng that there are no

di sadvantages of having primary identifiers be visible. W

consi dered both alternatives, and we believe that the few

di sadvant ages of visible identifiers are far outweighed by the many
probl ens caused by use of hidden identifiers.

Cheshire & Krochmal St andards Track [Page 41]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Appendi x D. Choice of Factory-Default Nanes

Wien a DNS-SD service is advertised using Milticast DNS [RFC6762], if
there is already another service of the sane type advertising with
the sane nane then automatic name conflict resolution will occur. As
described in the Miulticast DNS specification [RFC6762], upon
detecting a conflict, the service shoul d:

1. Automatically select a new nane (typically by appendi ng or
incrementing a digit at the end of the nane),

2. Try advertising with the new nane, and

3. Upon success, record the new nane in persistent storage.

This renanmi ng behavior is very inportant, because it is key to
providing user-friendly instance names in the out-of-the-box factory-
default configuration. Sonme product devel opers apparently have not
realized this, because there are sone products today where the
factory-default name is distinctly unfriendly, containing random

| ooki ng strings of characters, such as the device’'s Ethernet address

in hexadecinmal. This is unnecessary and undesirabl e, because the
point of the user-visible name is that it should be friendly and
meani ngful to human users. |If the nanme is not unique on the |oca
network then the protocol will renedy this as necessary. It is

ironic that many of the devices with this design nistake are network
printers, given that these sane printers al so sinmultaneously support
Appl eTal k-over-Ethernet, with nice user-friendly default names (and
automatic conflict detection and renaming). Sonme exanples of good
factory-default names are

Br ot her 5070N

Canon W2200

HP LaserJet 4600
Lexmar k W840

Cki dat a C5300

Ri coh Aficio CL7100
Xer ox Phaser 6200DX

To nake the case for why adding |ong, ugly factory-unique seria
nunbers to the end of nanmes is neither necessary nor desirable,
consi der the cases where the user has (a) only one network printer,
(b) two network printers, and (c) many network printers.

(a) In the case where the user has only one network printer,
a sinmple nane like (to use a vendor-neutral exanple)
"Printer" is nore user-friendly than an ugly name I|ike
"Printer_ OO001E68C74FB". Appendi ng ugly hexadeci nal goop to the
end of the nanme to make sure the nane is unique is irrelevant to
a user who only has one printer anyway.

Cheshire & Krochmal St andards Track [Page 42]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

(b) In the case where the user gets a second network printer, having
the new printer detect that the nanme "Printer" is already in use
and automatically nane itself "Printer (2)" instead, provides a
good user experience. For nost users, renmenbering that the old
printer is "Printer" and the newone is "Printer (2)" is easy
and intuitive. Seeing a printer called "Printer_ 0001E68C74FB"
and anot her called "Printer_ O0306EC3FDLIC' is a |lot |ess hel pful

(c) In the case of a network with ten network printers, seeing a
list of ten nanmes all of the form"Printer XXXXXXXXXXXX" has
effectively taken what was supposed to be a list of user-
friendly rich-text nanes (supporting m xed case, spaces
punctuati on, non-Ronman characters, and other synbols) and turned
it into just about the worst user interface inmaginable: a list
of inconprehensi ble random | ooking strings of letters and
digits. In a network with a lot of printers, it would be
advi sable for the people setting up the printers to take a
nonent to give each one a descriptive nanme, but in the event
they don’t, presenting the users with a |ist of sequentially
numbered printers is a nuch nore desirable default user
experience than showing a |list of raw Ethernet addresses

Cheshire & Krochmal St andards Track [Page 43]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Appendi x E. Nane Encodings in the Domain Nane System

Al t hough the original DNS specifications [RFCL033] [RFCL1034]

[RFC1035] recommend that host nanmes contain only letters, digits, and
hyphens (because of the linmtations of the typing-based user
interfaces of that era), Service Instance Nanes are not host nanes.
Users generally access a service by selecting it froma I|ist
presented by a user interface, not by typing in its Service |nstance
Name. "Clarifications to the DNS Specification" [RFC2181] directly

di scusses the subject of allowable character set in Section 11 ("Name
syntax"), and explicitly states that the traditional letters-digits-
hyphens rul e applies only to conventional host nanes:

Cccasionally it is assunmed that the Donmain Name System serves only
t he purpose of mapping Internet host nanes to data, and mappi ng

I nternet addresses to host nanmes. This is not correct, the DNSis
a general (if somewhat |inited) hierarchical database, and can
store al nost any kind of data, for al nbst any purpose.

The DNS itself places only one restriction on the particul ar

| abel s that can be used to identify resource records. That one
restriction relates to the length of the |abel and the full nane.
The I ength of any one label is limted to between 1 and 63 octets.
A full domain nane is limted to 255 octets (including the
separators). The zero length full nanme is defined as representing
the root of the DNS tree, and is typically witten and di spl ayed
as ".". Those restrictions aside, any binary string whatever can
be used as the | abel of any resource record. Simlarly, any

bi nary string can serve as the value of any record that includes a
domai n nane as sone or all of its value (SOA NS, MX, PTR, CNAME

and any others that nmay be added). |nplenmentations of the DNS
protocol s nust not place any restrictions on the |abels that can
be used. In particular, DNS servers must not refuse to serve a

zone because it contains |abels that m ght not be acceptable to
some DNS client prograns.

Note that just because DNS-based Service Discovery supports arbitrary
UTF- 8- encoded nanes doesn’t nean that any particul ar user or
administrator is obliged to nake use of that capability. Any user is
free, if they wish, to continue nam ng their services using only
letters, digits, and hyphens, with no spaces, capital letters, or

ot her punctuati on.

Cheshire & Krochmal St andards Track [Page 44]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Appendi x F. "Continuous Live Update" Browsing Mde

O particular concern in the design of DNS-SD, especially when used
in conjunction with ad hoc Miulticast DNS, is the dynam c nature of
service discovery in a changing network environment. O her service
di scovery protocols seemto have been designed with an inplicit
unstated assunption that the usage nodel is:

(a) client software calls the service discovery API,

(b) service discovery code spends a few seconds getting a list of
i nstances available at a particular nonent in time, and then

(c) client software displays the list for the user to select from

Superficially this usage nodel seens reasonable, but the problemis

that it’'s too optimstic. It only considers the success case, where
the software inmmedi ately finds the service instance the user is
| ooki ng for.

In the case where the user is looking for (say) a particular printer
and that printer is not turned on or not connected, the user first
has to attenpt to renedy the problem and then has to click a
"refresh” button to retry the service discovery to find out whether
they were successful. Because nothing happens instantaneously in
net wor ki ng, and packets can be | ost, necessitating some nunber of
retransm ssions, a service discovery search is not instantaneous and
typically takes a few seconds. As a result, a fairly typical user
experience is:

(a) display an enpty w ndow,

(b) display sone animation |ike a searchlight sweeping back and
forth for ten seconds, and then

(c) at the end of the ten-second search, display a static |ist
showi ng what was di scovered.

Every tinme the user clicks the "refresh” button they have to endure
anot her ten-second wait, and every tinme the discovered list is
finally shown at the end of the ten-second wait, it’'s already
beginning to get stale and out-of-date the nonent it’'s displayed on
t he screen.

The service di scovery user experience that the DNS-SD desi gners had
in mnd has sone rather different properties:

1. Displaying the initial list of discovered services should be
effectively instantaneous -- i.e., typically 0.1 seconds, not 10
seconds.

Cheshire & Krochmal St andards Track [Page 45]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

2. The list of discovered services should not be getting stale and
out-of-date fromthe nonment it’'s displayed. The list should be
"live’ and should continue to update as new services are
di scovered. Because of the delays, packet |osses, and
retransm ssions inherent in networking, it is to be expected that
sonetines, after the initial list is displayed show ng the
majority of discovered services, a few renmai ning straggl ers nmay
continue to trickle in during the subsequent few seconds. Even
after this stable list has been built and displayed, it should
remain 'live’ and should continue to update. At any future tine,
be it mnutes, hours, or even days later, if a new service of the
desired type is discovered, it should be displayed in the |ist
autonmatically, without the user having to click a "refresh"
button or take any other explicit action to update the display.

3. Wth users getting in the habit of |eaving service discovery
wi ndows open, and expecting themto show a continuous 'live view
of current network reality, this gives us an additiona
requirenent: deletion of stale services. Wen a service
di scovery list shows just a static snapshot at a nonent in tine,
then the situation is sinple: either a service was di scovered and
appears in the list, or it was not and does not. However, when
our list is live and updates continuously with the di scovery of
new services, then this inplies the corollary: when a service
goes away, it needs to *disappear* fromthe service discovery
list. Oherw se, the service discovery list would sinply grow
nmonot oni cally over time, accreting stale data, and would require
a periodic "refresh"” (or conplete dism ssal and recreation) to
restore correct display.

4. Anot her consequence of users |eaving service discovery wi ndows
open for extended periods of tinme is that these wi ndows shoul d
update not only in response to services comnm ng and goi ng, but
al so in response to changes in configuration and connectivity of
the client nachine itself. For exanple, if a user opens a
service discovery wi ndow when the client nmachi ne has no network
connectivity, then the window will typically appear enpty, wth
no di scovered services. Wen the user connects an Ethernet cable
or joins an 802.11 [I EEEW wirel ess network the w ndow should
then automatically populate with di scovered services, wthout
requiring any explicit user action. |f the user disconnects the
Et hernet cable or turns off 802.11 wireless then all the services
di scovered via that network interface should automatically
di sappear. |f the user switches fromone 802.11 wirel ess access
point to another, the service discovery w ndow should
automatically update to renove all the services discovered via
the old wirel ess access point, and add all the services
di scovered via the new one.

Cheshire & Krochmal St andards Track [Page 46]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Appendi x G Depl oynent History

In July 1997, in an enail to the net-thinkers@ hunper.vneng. com
mailing list, Stuart Cheshire first proposed the idea of running the
Appl eTal k Name Bi ndi ng Protocol [RFC6760] over IP. As a result of
this and rel ated | ETF di scussions, the | ETF Zeroconf worki ng group
was chartered Septenber 1999. After various working group

di scussions and other informal |ETF discussions, several |nternet-
Drafts were witten that were loosely related to the general thenes
of DNS and multicast, but did not address the service discovery
aspect of NBP.

In April 2000, Stuart Cheshire registered IPv4 nulticast address
224.0.0.251 with I ANA and began witing code to test and devel op the
i dea of performing NBP-like service discovery using Milticast DNS
whi ch was docunmented in a group of three Internet-Drafts

0 "Requirenents for a Protocol to Replace the Appl eTal k Nane Bi ndi ng
Protocol (NBP)" [RFC6760] is an overview explaining the AppleTal k
Name Bi nding Protocol, because many in the | ETF conmunity had
little first-hand experience using Appl eTal k, and confusion in the
| ETF comuni ty about what AppleTal k NBP did was causi ng conf usi on
about what would be required in an | P-based repl acenent.

o "Discovering Naned | nstances of Abstract Services using DNS'
[Nl AS], which later becanme this docunent, proposed a way to
perform NBP-1i ke service discovery using DNS-conpati bl e names and
record types.

0 "Multicast DNS' [RFC6762] specifies a way to transport those DNS-
conpati bl e queries and responses using |IP rmulticast, for zero-
configuration environments where no conventional Unicast DNS
server was avail abl e.

In 2001, an update to Mac OS 9 added resolver library support for
host nane | ookup using Multicast DNS. |If the user typed a name such
as "MyPrinter.local." into any piece of networking software that used
the standard Mac OS 9 nane | ookup APIs, then those nane | ookup APIs
woul d recogni ze the nane as a dot-local nanme and query for it by
sendi ng sinple one-shot Milticast DNS queries to 224.0.0.251: 5353.
This enabled the user to, for exanple, enter the name

"MyPrinter.local." into their web browser in order to view a
printer’s status and configuration web page, or enter the name
"MyPrinter.local." into the printer setup utility to create a print

queue for printing docunments on that printer

Cheshire & Krochmal St andards Track [Page 47]

RFC 6763 DNS- Based Servi ce Di scovery February 2013

Mul ticast DNS responder software, with full service discovery, first
began shipping to end users in volume with the [aunch of Mac OS X
10. 2 "Jaguar" in August 2002, and network printer nakers (who had
historically supported AppleTalk in their network printers and were
receptive to | P-based technol ogies that could offer themsimlar
ease-of -use) started adopting Milticast DNS shortly thereafter

I n Septenber 2002, Apple rel eased the source code for the
nDNSResponder daenmon as Qpen Source under Apple’s standard Apple
Public Source License (APSL).

Mul ti cast DNS responder software becane available for M crosoft

W ndows users in June 2004 with the launch of Apple’'s "Rendezvous for
W ndows" (now "Bonjour for Wndows"), both in executable form (a
downl oadabl e installer for end users) and as Open Source (one of the
supported platforns within Apple’s body of cross-platformcode in the
publicly accessi bl e nDNSResponder CVS source code repository) [BJ].

I n August 2006, Apple re-licensed the cross-platform nDNSResponder
source code under the Apache License, Version 2.0.

In addition to desktop and | aptop conputers running Mac OS X and

M crosoft Wndows, Multicast DNS is now inplemented in a w de range
of hardware devices, such as Apple’'s "AirPort" wirel ess base
stations, iPhone and i Pad, and in hone gateways from other vendors,
network printers, network cameras, Ti Vo DVRs, etc.

The Open Source comunity has produced many i ndependent

i npl enmentations of Miulticast DNS, sone in Clike Apple’s
nDNSResponder daenon, and others in a variety of different |anguages
i ncludi ng Java, Python, Perl, and C#/ Mono.

In January 2007, the |ETF published the Informational RFC "Link-Loca
Mul ticast Nanme Resolution (LLMNR)" [RFC4795], which is substantially
simlar to Miulticast DNS, but inconpatible in sone small but

i mportant ways. In particular, the LLM\R design explicitly excluded
support for service discovery, which nmade it an unsuitabl e candi date
for a protocol to replace AppleTal k NBP [RFC6760] .

While the original focus of Milticast DNS and DNS-Based Service

Di scovery was for zero-configuration environnents w thout a
conventional Unicast DNS server, DNS-Based Service Discovery also

wor ks usi ng Unicast DNS servers, using DNS Update [RFC2136] [RFC3007]
to create service discovery records and standard DNS queries to query
for them Apple’'s Back to My Mac service, launched with Mac CS X
10.5 "Leopard" in Cctober 2007, uses DNS-Based Service Discovery over
Uni cast DNS [RFC6281] .

Cheshire & Krochmal St andards Track [Page 48]

RFC 6763

DNS- Based Servi ce Di scovery

February 2013

In June 2012, Google's Android operating system added native support
for DNS-SD and Multicast DNS with the android. net.nsd. NsdManager

class in Android 4.1 "Jelly Bean"

Aut hors’ Addresses

Stuart Cheshire

Appl e Inc.

1 Infinite Loop
Cupertino, CA 95014
USA

Phone: +1 408 974 3207

EMai | :

Mar ¢ Kr ochmal

Appl e Inc.
1 Infinite Loop

Cupertino, CA 95014
USA

+1 408 974 4368
mar c@ppl e. com

Phone:
EMi | :

Cheshire & Krochnal

cheshi re@ppl e. com

(APl Level

St andards Track

16) [NSD] .

[Page 49]

