I nt ernet Engi neering Task Force (I ETF) D. Hardt, Ed.

Request for Comments: 6749 M crosoft

osol etes: 5849 Cct ober 2012
Cat egory: Standards Track

| SSN: 2070-1721

The QAuth 2.0 Authorization Franmework
Abst r act

The QAuth 2.0 authorization framework enables a third-party
application to obtain limted access to an HITP service, either on
behal f of a resource owner by orchestrating an approval interaction
bet ween the resource owner and the HTTP service, or by allow ng the
third-party application to obtain access on its own behalf. This
specification replaces and obsol etes the QAuth 1.0 protocol described
in RFC 5849.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6749

Copyright Notice

Copyright (c) 2012 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Har dt St andards Track [Page 1]

RFC 6749

QAuth 2.0 Cct ober 2012

Tabl e of Contents

1

Har dt

Introducti On 4
1.1, ROl ES o 6
1.2. Protocol Flow 7
1.3. Authorization Gant i 8
1.3.1. Authorization Code 8
1.3.2. Inplicit oo 8
1. 3. 3. Resource Omner Password Credentials 9
1.3.4. dient Credentials 9
1.4, Access TOoKEeN 10
1.5. Refresh Token 10
1.6. TLS VerSi ON ..o 12
1.7. HTITP Redirecti Ons i e e e e 12
1.8. Interoperabi lity 12
1.9. Notational Conventions 13
Cient Registrati on e 13
2.1, Qient TYPES ittt e 14
2.2, dient ldentifier e 15
2.3. dient Authentication 16
2.3.1. dient Password 16
2.3.2. Oher Authentication Methods 17
2.4. Unregistered Cients i 17
Protocol Endpoi Nt s e 18
3.1. Authorization Endpoint 18
3. 1. 1. RespoNnse TYPe ..t 19
3.1.2. Redirection Endpoint 19
3.2. Token ENdpoi nt 21
3.2.1. Cient Authentication, 22
3.3. Access TOKEN SCOPE ...ttt 23
Qobtaining Authorization e 23
4.1. Authorization Code Grantty 24
4.1.1. Authorization Request 25
4.1.2. Authorization Response 26
4.1.3. Access Token Request 29
4.1.4. Access Token ReSpONSeiiiiininnanan 30
4.2, Inplicit Gant e 31
4.2.1. Authorization Request 33
4.2.2. Access Token ReSpONSe i, 35
4.3. Resource Omer Password Credentials Grant 37
4.3.1. Authorization Request and Response 39
4.3.2. Access Token Requestc. iy 39
4.3.3. Access Token ReSpONsSeciiiiinninnennns 40
4.4, dient Credentials Gant 40
4.4.1. Authorization Request and Response 41
4.4.2. Access Token Request 41
4.4.3. Access Token Response 42
4.5, EXtension Grants i 42

St andards Track [Page 2]

RFC 6749 QAuth 2.0 COct ober 2012

5.

6.
7.

11.

12.

Har dt

Issuing an Access TOKEN e 43
5.1. Successful ResSponNse 43
5.2, Error ReSPONSE e 45
Refreshing an Access Token i, 47
Accessing Protected RESOUIrCeSt 48
7.1. Access Token TYPeS ...t e e e 49
7.2, Error RESPONSEttt e e e 49
Extensi bi lity ... 50
8.1. Defining Access Token Types 50
8.2. Defining New Endpoint Parameters 50
8.3. Defining New Aut horization Grant Types 51
8. 4. Defining New Authorization Endpoi nt Response Types 51
8.5. Defining Additional Error Codes 51
Native ApplicatiOns e 52
Security Considerati Ons 53
10.1. dient Authentication 53
10. 2. dient Inpersonation 54
10.3. Access TOKENS i 55
10.4. Refresh Tokens 55
10.5. Authorization Codes, 56
10. 6. Authorization Code Redirection URI Manipulation 56
10. 7. Resource Omer Password Credentials 57
10.8. Request Confidentiality 58
10.9. Ensuring Endpoint Authenticity 58
10.10. Credentials-Quessing Attacks 58
10.11. Phishing Attacks 58
10.12. Cross-Site Request FOrgery i 59
10.13. dickjacking 60
10.14. Code Injection and Input Validation 60
10.15. Open RedireCctorst e e 60
10.16. M suse of Access Token to | npersonate Resource
Omer in Inplicit Flow 61
IANA Considerati ONS 62
11.1. QAuth Access Token Types Registry 62
11.1.1. Registration Tenplate 62
11.2. QAuth Parameters Registry 63
11.2.1. Registration Tenplate 63
11.2.2. Initial Registry Contents 64
11.3. QAuth Authorization Endpoint Response Types Registry 66
11.3.1. Registration Tenplate 66
11.3.2. Initial Registry Contents 67
11. 4. QAuth Extensions Error Registry 67
11.4.1. Registration Tenplate 68
Ref er encCes ... 68
12.1. Normative References 68
12.2. Informative References i, 70

St andards Track [Page 3]

RFC 6749 QAuth 2.0 COct ober 2012

Appendi x A Augnent ed Backus-Naur Form (ABNF) Syntax 71
Al "client_id" Syntax i 71
A 2. "client_secret” Syntax 71
A 3. "response_type" Syntax 71
A 4. "SCOope" SYyNtax ... 72
A 5. rstate” SyNtaX ... 72
A 6. "redirect _uri" Syntax e 72
A 7. Terror” SYNtaX 72
A 8. Merror_description" Syntax 72
A9, Terror_urit SYyNtax ... 72
A 10. "grant_type" SyntaxX 73
A 11, "code" SyNtaXx ... e 73
A . 12. "access_token" Syntax e 73
A 13, "token_type" Syntax ... 73
A 14, "expires_in" Syntax 73
A 15, "username" SYNtaX 73
A 16, "password” SYNtaxX ... 73
A 17. "refresh_token" Syntax i, 74
A.18. Endpoint Paraneter Syntaxccuuiiiiiuniinna. 74

Appendi x B. Use of application/x-ww-formurlencoded Media Type ...74

Appendi x C. Acknow edgements 75

1. Introduction

In the traditional client-server authentication nodel, the client
requests an access-restricted resource (protected resource) on the
server by authenticating with the server using the resource owner’s
credentials. In order to provide third-party applications access to
restricted resources, the resource owner shares its credentials with
the third party. This creates several problens and linitations:

0o Third-party applications are required to store the resource
owner’s credentials for future use, typically a password in
cl ear-text.

0 Servers are required to support password authentication, despite
the security weaknesses inherent in passwords.

o Third-party applications gain overly broad access to the resource
owner’s protected resources, |eaving resource owners w thout any
ability to restrict duration or access to a limted subset of
resour ces

0 Resource owners cannot revoke access to an individual third party

wi t hout revoking access to all third parties, and nust do so by
changing the third party’ s password.

Har dt St andards Track [Page 4]

RFC 6749 QAuth 2.0 COct ober 2012

0 Conprom se of any third-party application results in conprom se of
the end-user’s password and all of the data protected by that
password

QAut h addresses these issues by introducing an authorization | ayer
and separating the role of the client fromthat of the resource
owner. |In QAuth, the client requests access to resources controlled
by the resource owner and hosted by the resource server, and is
issued a different set of credentials than those of the resource
owner .

I nstead of using the resource owner’'s credentials to access protected
resources, the client obtains an access token -- a string denoting a
specific scope, lifetine, and other access attributes. Access tokens
are issued to third-party clients by an authorization server with the
approval of the resource owner. The client uses the access token to
access the protected resources hosted by the resource server.

For exanpl e, an end-user (resource owner) can grant a printing
service (client) access to her protected photos stored at a photo-
sharing service (resource server), w thout sharing her usernanme and
password with the printing service. Instead, she authenticates
directly with a server trusted by the photo-sharing service

(aut horization server), which issues the printing service del egation-
specific credentials (access token).

This specification is designed for use with HTTP ([RFC2616]). The
use of QAuth over any protocol other than HTTP is out of scope.

The QAuth 1.0 protocol ([RFC5849]), published as an infornationa
docunent, was the result of a snmall ad hoc community effort. This

St andards Track specification builds on the QAuth 1.0 depl oynent
experience, as well as additional use cases and extensibility

requi renents gathered fromthe wi der | ETF community. The QAuth 2.0
protocol is not backward conpatible with QAuth 1.0. The two versions
may co-exi st on the network, and inplenentations nay choose to
support both. However, it is the intention of this specification
that new i npl enent ati ons support QAuth 2.0 as specified in this
docunment and that QAuth 1.0 is used only to support existing

depl oynents. The QAuth 2.0 protocol shares very few inplenentation
details with the QAuth 1.0 protocol. Inplenenters famliar with
QAuth 1.0 shoul d approach this docunent wi thout any assunptions as to
its structure and details.

Har dt St andards Track [Page 5]

RFC 6749 QAuth 2.0 COct ober 2012

1.1. Roles
QAut h defines four roles:

resource owner
An entity capable of granting access to a protected resource.
When the resource owner is a person, it is referred to as an
end- user.

resource server
The server hosting the protected resources, capable of accepting
and responding to protected resource requests using access tokens.

client
An application making protected resource requests on behal f of the
resource owner and with its authorization. The term"client" does
not inply any particular inplenmentation characteristics (e.qg.
whet her the application executes on a server, a desktop, or other
devi ces).

aut hori zati on server
The server issuing access tokens to the client after successfully
aut henticating the resource owner and obtaining authorization.

The interaction between the authorization server and resource server
i s beyond the scope of this specification. The authorization server
may be the same server as the resource server or a separate entity.
A single authorization server may issue access tokens accepted by
mul ti ple resource servers

Har dt St andards Track [Page 6]

RFC 6749 QAduth 2.0 Cct ober 2012
1.2. Protocol Flow
oo + I +
| | --(A)- Authorization Request ->| Resour ce
| | _ _ | Onner |
| | <-(B)-- Authorization Grant ---| |
| | S +
| |
| | - +
| |--(C)-- Authorization Gant -->| Authorization
| dient | | Server |
| | <-(D)----- Access Token ------- | |
| | S +
| |
| | - +
| |--(E)----- Access Token ------ >| Resour ce
| | | Server |
| | <-(F)--- Protected Resource ---| |
. + . +

Figure 1: Abstract Protocol Fl ow

The abstract QAuth 2.0 flow illustrated in Figure 1 describes the

i nter

(A

(B)

(O

(D

Har dt

action between the four roles and includes the follow ng steps:

The client requests authorization fromthe resource owner. The
aut hori zati on request can be made directly to the resource owner
(as shown), or preferably indirectly via the authorization
server as an intermediary.

The client receives an authorization grant, which is a
credential representing the resource owner’s authorization
expressed using one of four grant types defined in this
specification or using an extension grant type. The

aut hori zation grant type depends on the nethod used by the
client to request authorization and the types supported by the
aut hori zation server.

The client requests an access token by authenticating with the
aut hori zati on server and presenting the authorization grant.

The aut horization server authenticates the client and validates
the authorization grant, and if valid, issues an access token

St andards Track [Page 7]

RFC 6749 QAuth 2.0 COct ober 2012

(E) The client requests the protected resource fromthe resource
server and authenticates by presenting the access token

(F) The resource server validates the access token, and if valid,
serves the request.

The preferred nethod for the client to obtain an authorization grant
fromthe resource owner (depicted in steps (A) and (B)) is to use the
aut hori zation server as an internediary, which is illustrated in
Figure 3 in Section 4.1.

1.3. Authorization G ant

An aut hori zation grant is a credential representing the resource
owner’'s authorization (to access its protected resources) used by the
client to obtain an access token. This specification defines four
grant types -- authorization code, inmplicit, resource owner password
credentials, and client credentials -- as well as an extensibility
mechani sm for defining additional types

1.3.1. Authorizati on Code

The aut horization code is obtained by using an authorization server
as an internediary between the client and resource owner. Instead of
requesting authorization directly fromthe resource ower, the client
directs the resource owner to an authorization server (viaits
user-agent as defined in [RFC2616]), which in turn directs the
resource owner back to the client with the authorization code.

Before directing the resource owner back to the client with the

aut hori zati on code, the authorization server authenticates the
resource owner and obtains authorization. Because the resource owner
only authenticates with the authorization server, the resource
owner’s credentials are never shared with the client.

The aut horization code provides a few inportant security benefits,
such as the ability to authenticate the client, as well as the
transm ssion of the access token directly to the client wthout
passing it through the resource owner’'s user-agent and potentially
exposing it to others, including the resource owner.

1.3.2. Inplicit

The inplicit grant is a sinplified authorization code flow optim zed
for clients inplenmented in a browser using a scripting | anguage such
as JavaScript. In the inplicit flow, instead of issuing the client

an aut horization code, the client is issued an access token directly

Har dt St andards Track [Page 8]

RFC 6749 QAuth 2.0 COct ober 2012

(as the result of the resource owner authorization). The grant type
is inplicit, as no internedi ate credentials (such as an authorization
code) are issued (and | ater used to obtain an access token).

When issuing an access token during the inplicit grant flow, the

aut hori zation server does not authenticate the client. |n sone
cases, the client identity can be verified via the redirection UR
used to deliver the access token to the client. The access token nay
be exposed to the resource owner or other applications with access to
the resource owner’s user-agent.

Inmplicit grants inprove the responsiveness and efficiency of sone
clients (such as a client inplenented as an i n-browser application),
since it reduces the nunmber of round trips required to obtain an
access token. However, this conveni ence should be wei ghed agai nst
the security inplications of using inplicit grants, such as those
described in Sections 10.3 and 10.16, especially when the

aut hori zation code grant type is avail abl e.

1.3.3. Resource Omer Password Credentials

The resource owner password credentials (i.e., usernane and password)
can be used directly as an authorization grant to obtain an access
token. The credentials should only be used when there is a high
degree of trust between the resource owner and the client (e.g., the
client is part of the device operating systemor a highly privileged
application), and when other authorization grant types are not
avai l abl e (such as an authori zation code).

Even though this grant type requires direct client access to the
resource owner credentials, the resource owner credentials are used
for a single request and are exchanged for an access token. This
grant type can elinmnate the need for the client to store the
resource owner credentials for future use, by exchangi ng the
credentials with a long-lived access token or refresh token

1.3.4. dient Credentials

The client credentials (or other fornms of client authentication) can
be used as an authorization grant when the authorization scope is
limted to the protected resources under the control of the client,
or to protected resources previously arranged with the authorization
server. Cient credentials are used as an authorization grant
typically when the client is acting on its own behalf (the client is
al so the resource owner) or is requesting access to protected
resources based on an authorization previously arranged with the

aut hori zati on server.

Har dt St andards Track [Page 9]

RFC 6749 QAuth 2.0 COct ober 2012

1. 4.

1

5.

Access Token

Access tokens are credentials used to access protected resources. An
access token is a string representing an authorization issued to the
client. The string is usually opaque to the client. Tokens
represent specific scopes and durations of access, granted by the
resource owner, and enforced by the resource server and authorization
server.

The token may denote an identifier used to retrieve the authorization
informati on or may self-contain the authorization information in a
verifiable manner (i.e., a token string consisting of sone data and a
signature). Additional authentication credentials, which are beyond
the scope of this specification, may be required in order for the
client to use a token

The access token provides an abstraction |ayer, replacing different
aut hori zation constructs (e.g., usernane and password) with a single
t oken understood by the resource server. This abstraction enables

i ssui ng access tokens nore restrictive than the authorization grant
used to obtain them as well as rempving the resource server’s need
to understand a wi de range of authentication nethods.

Access tokens can have different formats, structures, and methods of
utilization (e.g., cryptographic properties) based on the resource
server security requirenments. Access token attributes and the

nmet hods used to access protected resources are beyond the scope of
this specification and are defined by conpani on specifications such
as [RFC6750] .

Refresh Token

Refresh tokens are credentials used to obtain access tokens. Refresh
tokens are issued to the client by the authorization server and are
used to obtain a new access token when the current access token
becones invalid or expires, or to obtain additional access tokens
with identical or narrower scope (access tokens nmay have a shorter
lifetime and fewer perm ssions than authorized by the resource
owner). |Issuing a refresh token is optional at the discretion of the
aut hori zation server. |f the authorization server issues a refresh
token, it is included when issuing an access token (i.e., step (D) in
Figure 1).

A refresh token is a string representing the authorization granted to
the client by the resource owner. The string is usually opaque to
the client. The token denotes an identifier used to retrieve the

Har dt St andards Track [Page 10]

RFC 6749 QAuth 2.0 COct ober 2012

aut hori zation information. Unlike access tokens, refresh tokens are
intended for use only with authorization servers and are never sent
to resource servers.

- (A)------- Aut hori zation Gant --------- >|

<-(B)----------- Access Token ------------- |
& Refresh Token

	to--o---o-- +			
	--(C)---- Access Token ---->			
	<-(D)- Protected Resource --	Resource		Authorization
ddient		Server		Server
	--(E)---- Access Token ---->			
	<-(F)- Invalid Token Error -			
	AR +			
[--(@----------- Refresh Token ----------- >				
[<-(H)----------- Access Token -------------				
e + & Optional Refresh Token R +
Figure 2: Refreshing an Expired Access Token
The flowillustrated in Figure 2 includes the follow ng steps:

(A) The client requests an access token by authenticating with the
aut hori zati on server and presenting an authorization grant.

(B) The authorization server authenticates the client and validates
the authorization grant, and if valid, issues an access token
and a refresh token.

(C© The client nmakes a protected resource request to the resource
server by presenting the access token.

(D) The resource server validates the access token, and if valid,
serves the request.

(E) Steps (C) and (D) repeat until the access token expires. |f the
client knows the access token expired, it skips to step (Q;
otherwi se, it nakes another protected resource request.

(F) Since the access token is invalid, the resource server returns
an invalid token error.

Har dt St andards Track [Page 11]

RFC 6749 QAuth 2.0 COct ober 2012

(G The client requests a new access token by authenticating wth
t he aut hori zation server and presenting the refresh token. The
client authentication requirements are based on the client type
and on the authorization server policies.

(H) The authorization server authenticates the client and validates
the refresh token, and if valid, issues a new access token (and,
optionally, a new refresh token).

Steps (O, (D), (BE), and (F) are outside the scope of this
specification, as described in Section 7.

1.6. TLS Version

Whenever Transport Layer Security (TLS) is used by this
specification, the appropriate version (or versions) of TLS will vary
over time, based on the wi despread depl oynent and known security
vulnerabilities. At the tinme of this witing, TLS version 1.2

[RFC5246] is the nost recent version, but has a very linited

depl oynent base and ni ght not be readily available for

i npl enentation. TLS version 1.0 [RFC2246] is the nost wi dely

depl oyed version and will provide the broadest interoperability.

| mpl enent ati ons MAY al so support additional transport-layer security
mechani snms that neet their security requirenents.

1.7. HITP Redirections

Thi s specification nakes extensive use of HITP redirections, in which
the client or the authorization server directs the resource owner’s
user-agent to another destination. Wile the exanples in this
specification show the use of the HTTP 302 status code, any other

nmet hod avail able via the user-agent to acconplish this redirection is
all owed and is considered to be an inplenentation detail

1.8. Interoperability

QAuth 2.0 provides a rich authorization franework with well-defined
security properties. However, as a rich and highly extensible
framework with many optional conponents, on its own, this
specification is likely to produce a wi de range of non-interoperable
i mpl enent ati ons.

In addition, this specification | eaves a few required conponents

partially or fully undefined (e.g., client registration
aut hori zati on server capabilities, endpoint discovery). Wthout

Har dt St andards Track [Page 12]

RFC 6749 QAuth 2.0 COct ober 2012

t hese conponents, clients nust be manually and specifically
configured against a specific authorization server and resource
server in order to interoperate.

This framework was designed with the cl ear expectation that future
work will define prescriptive profiles and extensions necessary to
achieve full web-scale interoperability.

1.9. Notational Conventions

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
specification are to be interpreted as described in [RFC2119].

This specification uses the Augnented Backus- Naur Form (ABNF)
notation of [RFC5234]. Additionally, the rule URI-reference is

i ncluded from"Uni form Resource ldentifier (URI): Generic Syntax"
[RFC3986] .

Certain security-related terns are to be understood in the sense
defined in [RFC4949]. These termnms include, but are not linited to,

"attack", "authentication", "authorization", "certificate"
"confidentiality", "credential”, "encryption", "identity", "sign",
"signature", "trust", "validate", and "verify"

Unl ess ot herwi se noted, all the protocol paraneter nanmes and val ues
are case sensitive

2. Cdient Registration

Before initiating the protocol, the client registers with the

aut hori zation server. The neans through which the client registers
with the authorization server are beyond the scope of this
specification but typically involve end-user interaction with an HTM.
registration form

Cient registration does not require a direct interaction between the
client and the authorization server. Wen supported by the

aut hori zation server, registration can rely on other neans for
establishing trust and obtaining the required client properties
(e.g., redirection URI, client type). For exanple, registration can
be acconplished using a self-issued or third-party-issued assertion
or by the authorization server performng client discovery using a
trusted channel

Har dt St andards Track [Page 13]

RFC 6749 QAuth 2.0 COct ober 2012

When registering a client, the client devel oper SHALL:
o specify the client type as described in Section 2.1,

0 provide its client redirection URIs as described in Section 3.1.2,
and

o include any other information required by the authorization server
(e.g., application name, website, description, |ogo image, the
acceptance of |egal ternmns).

2.1. dient Types

QAuth defines two client types, based on their ability to
aut henticate securely with the authorization server (i.e., ability to
mai ntain the confidentiality of their client credentials):

confidential
Cients capable of maintaining the confidentiality of their
credentials (e.g., client inplemented on a secure server with
restricted access to the client credentials), or capable of secure
client authentication using other means.

public
Cients incapable of nmaintaining the confidentiality of their
credentials (e.g., clients executing on the device used by the
resource owner, such as an installed native application or a web
browser - based application), and incapable of secure client
aut hentication via any ot her neans.

The client type designation is based on the authorization server’s
definition of secure authentication and its acceptable exposure

I evel s of client credentials. The authorization server SHOULD NOT
make assunptions about the client type.

A client may be inplenented as a distributed set of conponents, each
with a different client type and security context (e.g., a
distributed client with both a confidential server-based conponent
and a public browser-based conponent). If the authorization server
does not provide support for such clients or does not provide

gui dance with regard to their registration, the client SHOULD

regi ster each conponent as a separate client.

Har dt St andards Track [Page 14]

RFC 6749 QAuth 2.0 COct ober 2012

This specification has been designed around the follow ng client
profiles:

web application
A web application is a confidential client running on a web
server. Resource owners access the client via an HTM. user
interface rendered in a user-agent on the device used by the
resource owner. The client credentials as well as any access
token issued to the client are stored on the web server and are
not exposed to or accessible by the resource owner.

user - agent - based application
A user-agent-based application is a public client in which the
client code is downl oaded froma web server and executes within a
user-agent (e.g., web browser) on the device used by the resource
owner. Protocol data and credentials are easily accessible (and
often visible) to the resource owner. Since such applications
reside within the user-agent, they can nake seanl ess use of the
user-agent capabilities when requesting authorization

nati ve application
A native application is a public client installed and executed on
the device used by the resource owner. Protocol data and
credentials are accessible to the resource owner. It is assuned
that any client authentication credentials included in the
application can be extracted. On the other hand, dynanically
i ssued credentials such as access tokens or refresh tokens can
recei ve an acceptable level of protection. At a mninmm these
credentials are protected fromhostile servers with which the
application nmay interact. On sone platforns, these credentials
m ght be protected fromother applications residing on the sane
devi ce.

2.2. dient ldentifier

The aut horization server issues the registered client a client
identifier -- a unique string representing the registration
information provided by the client. The client identifier is not a
secret; it is exposed to the resource owner and MJUST NOT be used

al one for client authentication. The client identifier is unique to
the aut horization server

The client identifier string size is left undefined by this
specification. The client should avoid making assunptions about the
identifier size. The authorization server SHOULD docunent the size
of any identifier it issues.

Har dt St andards Track [Page 15]

RFC 6749 QAuth 2.0 COct ober 2012

2.3. dient Authentication

If the client type is confidential, the client and authorization
server establish a client authentication nmethod suitable for the
security requirenments of the authorization server. The authorization
server MAY accept any formof client authentication neeting its
security requirenments.

Confidential clients are typically issued (or establish) a set of
client credentials used for authenticating with the authorization
server (e.g., password, public/private key pair).

The aut hori zation server MAY establish a client authentication nethod
with public clients. However, the authorization server MUST NOT rely
on public client authentication for the purpose of identifying the
client.

The client MJUST NOT use nore than one authentication nethod i n each
request.

2.3.1. dient Password

Cients in possession of a client password MAY use the HTTP Basic

aut hentication schene as defined in [RFC2617] to authenticate with
the aut horization server. The client identifier is encoded using the
"application/ x-wwformurl encoded" encodi ng al gorithm per

Appendi x B, and the encoded value is used as the usernane; the client
password is encoded using the same al gorithm and used as the
password. The authorization server MJST support the HTTP Basic

aut hentication schene for authenticating clients that were issued a
client password.

For exanple (with extra line breaks for display purposes only):

Aut hori zation: Basic czZCaGRSa3FOMzo3RmpntDBanl xS3REUMIuZl ZkbU 3
Al ternatively, the authorization server MAY support including the
client credentials in the request-body using the follow ng
par ameters
client_id

REQUI RED. The client identifier issued to the client during
the registration process described by Section 2. 2.
client_secret

REQUI RED. The client secret. The client MAY omit the
paraneter if the client secret is an enpty string.

Har dt St andards Track [Page 16]

RFC 6749 QAuth 2.0 COct ober 2012

Including the client credentials in the request-body using the two
paraneters is NOT RECOMMENDED and SHOULD be limted to clients unable
to directly utilize the HTTP Basic authentication scheme (or other
passwor d- based HTTP aut hentication schenes). The paraneters can only
be transmtted in the request-body and MJUST NOT be included in the
request URI.

For exanple, a request to refresh an access token (Section 6) using
the body paraneters (with extra line breaks for display purposes

only):

POST /token HTTP/ 1.1
Host: server.exanpl e. com
Cont ent - Type: application/ x-ww-form url encoded

grant _type=refresh_t oken&refresh_t oken=t Gzv3JOKFOXGEQXX2TlI KW A
&client i d=s6BhdRkqgt 3&cl i ent _secr et =7Fj f p0ZBr 1Kt DRonf Vdm w

The aut horization server MJST require the use of TLS as described in
Section 1.6 when sending requests using password aut hentication

Since this client authentication nethod involves a password, the
aut hori zati on server MJST protect any endpoint utilizing it against
brute force attacks.

2.3.2. Oher Authentication Methods

The aut horization server MAY support any suitable HITP authentication
schene matching its security requirenments. Wen using other

aut henti cation nethods, the authorization server MIST define a
mappi ng between the client identifier (registration record) and

aut henti cati on schene.

2.4. Unregistered dients
This specification does not exclude the use of unregistered clients.
However, the use of such clients is beyond the scope of this

specification and requires additional security analysis and review of
its interoperability inpact.

Har dt St andards Track [Page 17]

RFC 6749 QAuth 2.0 COct ober 2012

3. Protocol Endpoints

The aut hori zation process utilizes two authorization server endpoints
(HTTP resources):

0 Authorization endpoint - used by the client to obtain
aut hori zation fromthe resource owner via user-agent redirection.

0 Token endpoint - used by the client to exchange an authorization
grant for an access token, typically with client authentication

As well as one client endpoint:

0 Redirection endpoint - used by the authorization server to return
responses containing authorization credentials to the client via
the resource owner user-agent.

Not every authorization grant type utilizes both endpoints.
Ext ensi on grant types MAY define additional endpoints as needed.

3.1. Authorization Endpoint

The aut horization endpoint is used to interact with the resource
owner and obtain an authorization grant. The authorization server
MUST first verify the identity of the resource owner. The way in
whi ch the authorization server authenticates the resource owner
(e.g., usernane and password | ogin, session cookies) is beyond the
scope of this specification

The nmeans through which the client obtains the location of the
aut hori zati on endpoi nt are beyond the scope of this specification,
but the location is typically provided in the service docunentation

The endpoint URI MAY include an "application/x-ww«formurl encoded”
formatted (per Appendi x B) query conponent ([RFC3986] Section 3.4),
whi ch MUST be retained when addi ng addi ti onal query paraneters. The
endpoi nt URI MJST NOT include a fragnment conponent.

Since requests to the authorization endpoint result in user

aut henti cation and the transm ssion of clear-text credentials (in the
HTTP response), the authorization server MIST require the use of TLS
as described in Section 1.6 when sending requests to the

aut hori zati on endpoint.

The aut horization server MJST support the use of the HITP " CGET"

nmet hod [RFC2616] for the authorization endpoint and MAY support the
use of the "POST" nethod as well.

Har dt St andards Track [Page 18]

RFC 6749 QAuth 2.0 COct ober 2012

Paraneters sent wi thout a value MJST be treated as if they were
omitted fromthe request. The authorization server MJST ignore
unrecogni zed request paraneters. Request and response paraneters
MUST NOT be included nore than once.

3.1.1. Response Type

The aut horization endpoint is used by the authorization code grant
type and inplicit grant type flows. The client inforns the

aut hori zati on server of the desired grant type using the foll ow ng
par anet er :

response_type
REQUI RED. The val ue MJUST be one of "code" for requesting an
aut hori zati on code as described by Section 4.1.1, "token" for
requesting an access token (inplicit grant) as described by
Section 4.2.1, or a registered extension value as described by
Section 8. 4.

Ext ensi on response types MAY contain a space-delimted (%20) list of
val ues, where the order of values does not matter (e.g., response
type "a b" is the same as "b a"). The neaning of such conposite
response types is defined by their respective specifications.

If an authorization request is missing the "response_type" paraneter,
or if the response type is not understood, the authorization server
MUST return an error response as described in Section 4.1.2.1.

3.1.2. Redirection Endpoint

After conpleting its interaction with the resource owner, the

aut hori zation server directs the resource owner’s user-agent back to
the client. The authorization server redirects the user-agent to the
client’s redirection endpoint previously established with the

aut hori zation server during the client registration process or when
maki ng the authorization request.

The redirection endpoint URI MJST be an absolute URI as defined by

[RFC3986] Section 4.3. The endpoint URI MAY include an
"application/x-ww-formurl encoded" formatted (per Appendi x B) query
component ([RFC3986] Section 3.4), which MJST be retained when addi ng
addi tional query paraneters. The endpoint URI MJST NOT include a
fragnment conponent.

Har dt St andards Track [Page 19]

RFC 6749 QAuth 2.0 COct ober 2012

3.1.2.1. Endpoint Request Confidentiality

The redirection endpoint SHOULD require the use of TLS as descri bed
in Section 1.6 when the requested response type is "code" or "token",
or when the redirection request will result in the transm ssion of
sensitive credentials over an open network. This specification does
not mandate the use of TLS because at the tine of this witing,
requiring clients to deploy TLS is a significant hurdle for many
client developers. |If TLS is not available, the authorization server
SHOULD warn the resource owner about the insecure endpoint prior to
redirection (e.g., display a nmessage during the authorization
request).

Lack of transport-layer security can have a severe inpact on the
security of the client and the protected resources it is authorized
to access. The use of transport-layer security is particularly
critical when the authorization process is used as a form of

del egat ed end-user authentication by the client (e.g., third-party
sign-in service).

3.1.2.2. Registration Requirenents

The aut horization server MJST require the following clients to
regi ster their redirection endpoint:

0o Public clients.
o0 Confidential clients utilizing the inplicit grant type.

The aut horization server SHOULD require all clients to register their
redirection endpoint prior to utilizing the authorization endpoint.

The aut horization server SHOULD require the client to provide the
complete redirection URI (the client MAY use the "state" request
paraneter to achi eve per-request custom zation). |If requiring the
registration of the conplete redirection URl is not possible, the
aut hori zati on server SHOULD require the registration of the UR
schene, authority, and path (allowing the client to dynanically vary
only the query conponent of the redirection URI when requesting

aut hori zation).

The aut horization server MAY allow the client to register nultiple
redi recti on endpoints.

Lack of a redirection URI registration requirement can enable an

attacker to use the authorization endpoint as an open redirector as
described in Section 10. 15.

Har dt St andards Track [Page 20]

RFC 6749 QAuth 2.0 COct ober 2012

3.1.2.3. Dynanmic Configuration

If nmultiple redirection URIs have been registered, if only part of
the redirection URI has been registered, or if no redirection UR has
been registered, the client MIUST include a redirection URI with the
aut hori zation request using the "redirect_uri" request paraneter.

When a redirection URI is included in an authorization request, the
aut hori zati on server MJST conpare and natch the val ue received

agai nst at |least one of the registered redirection URIs (or URI
conmponents) as defined in [RFC3986] Section 6, if any redirection
URIs were registered. |If the client registration included the ful
redirection URI, the authorization server MJST conpare the two URI's
using sinple string conparison as defined in [RFC3986] Section 6.2.1.

3.1.2.4. Invalid Endpoint
If an authorization request fails validation due to a m ssing,
invalid, or misnmatching redirection URI, the authorization server
SHOULD i nform the resource owner of the error and MJST NOT
automatically redirect the user-agent to the invalid redirection URI.
3.1.2.5. Endpoint Content

The redirection request to the client’s endpoint typically results in

an HTML docunent response, processed by the user-agent. |If the HTM
response is served directly as the result of the redirection request,
any script included in the HTM. docunment will execute with ful

access to the redirection URI and the credentials it contains.

The client SHOULD NOT include any third-party scripts (e.g., third-
party anal ytics, social plug-ins, ad networks) in the redirection

endpoi nt response. Instead, it SHOULD extract the credentials from
the URI and redirect the user-agent again to another endpoint w thout
exposing the credentials (in the URI or elsewhere). |If third-party

scripts are included, the client MJUST ensure that its own scripts
(used to extract and renove the credentials fromthe URI) wll
execute first.

3.2. Token Endpoi nt
The token endpoint is used by the client to obtain an access token by
presenting its authorization grant or refresh token. The token

endpoint is used with every authorization grant except for the
inplicit grant type (since an access token is issued directly).

Har dt St andards Track [Page 21]

RFC 6749 QAuth 2.0 COct ober 2012

The means through which the client obtains the location of the token
endpoi nt are beyond the scope of this specification, but the |ocation
is typically provided in the service docunentation

The endpoint URI MAY include an "application/x-ww«formurl encoded”
formatted (per Appendi x B) query conponent ([RFC3986] Section 3.4),
whi ch MUST be retai ned when addi ng addi tional query paraneters. The
endpoi nt URI MJST NOT include a fragment conponent.

Since requests to the token endpoint result in the transm ssion of
clear-text credentials (in the HITP request and response), the

aut hori zati on server MJST require the use of TLS as described in
Section 1.6 when sending requests to the token endpoint.

The client MJST use the HTTP "POST" met hod when naki ng access token
requests.

Paraneters sent wi thout a value MJST be treated as if they were
omtted fromthe request. The authorization server MJST ignore
unrecogni zed request paraneters. Request and response paraneters
MUST NOT be included nore than once.

3.2.1. dient Authentication

Confidential clients or other clients issued client credentials MJST
authenticate with the authorization server as described in

Section 2.3 when naking requests to the token endpoint. dient
authentication is used for:

o Enforcing the binding of refresh tokens and authorization codes to
the client they were issued to. Cient authentication is critica
when an authorization code is transnitted to the redirection
endpoi nt over an insecure channel or when the redirection UR has
not been registered in full

0 Recovering froma conpronmised client by disabling the client or
changing its credentials, thus preventing an attacker from abusing
stolen refresh tokens. Changing a single set of client
credentials is significantly faster than revoking an entire set of
refresh tokens.

o |Inplenenting authentication managenent best practices, which
require periodic credential rotation. Rotation of an entire set
of refresh tokens can be challenging, while rotation of a single
set of client credentials is significantly easier.

Har dt St andards Track [Page 22]

RFC 6749 QAuth 2.0 COct ober 2012

A client MAY use the "client _id" request paraneter to identify itself
when sending requests to the token endpoint. |In the

"aut hori zati on_code" "grant_type" request to the token endpoint, an
unaut henticated client MJUST send its "client_id" to prevent itself
frominadvertently accepting a code intended for a client with a
different "client_id". This protects the client fromsubstitution of
the aut hentication code. (It provides no additional security for the
protected resource.)

3.3. Access Token Scope

The aut horization and token endpoints allow the client to specify the
scope of the access request using the "scope" request paraneter. In
turn, the authorization server uses the "scope" response paraneter to
informthe client of the scope of the access token issued.

The val ue of the scope paraneter is expressed as a |list of space-
delinmted, case-sensitive strings. The strings are defined by the
aut hori zation server. |If the value contains nultiple space-delinited
strings, their order does not matter, and each string adds an
addi ti onal access range to the requested scope.

scope
scope-t oken

= scope-token *(SP scope-token)

= 1*(%21 / 9%23-5B / 95D 7E)

The aut horization server MAY fully or partially ignore the scope
requested by the client, based on the authorization server policy or
the resource owner’s instructions. |f the issued access token scope
is different fromthe one requested by the client, the authorization
server MJST include the "scope" response paraneter to informthe
client of the actual scope granted.

If the client onmits the scope paraneter when requesting

aut hori zation, the authorization server MIJST either process the
request using a pre-defined default value or fail the request
indicating an invalid scope. The authorization server SHOULD
docunent its scope requirenents and default value (if defined).

4. (Obtaining Authorization

To request an access token, the client obtains authorization fromthe
resource owner. The authorization is expressed in the formof an

aut hori zation grant, which the client uses to request the access
token. QAuth defines four grant types: authorization code, inplicit,
resource owner password credentials, and client credentials. It also
provi des an extension mechani smfor defining additional grant types.

Har dt St andards Track [Page 23]

RFC 6749 QAuth 2.0 COct ober 2012

4.1. Authorization Code G ant

The aut horization code grant type is used to obtain both access
tokens and refresh tokens and is optim zed for confidential clients.
Since this is a redirection-based flow, the client nust be capabl e of
interacting with the resource owner’s user-agent (typically a web
browser) and capabl e of receiving incom ng requests (via redirection)
fromthe authorization server.

S +
| Resource |
| Onner |
| |
[T +
N
|
(B)
R + Client ldentifier e R +
-+----(A)-- & Redirection URl ---->| |
User-		Authorization
Agent -+----(B)-- User authenticates --->	Server	
-+----(0-- Authorization Code ---<		
+l----]---+ S +		
	A v	
(A (9O		
A v		
[S — +		
	>---(D)-- Authorization Code --------- ’	
dient	& Redirection URI	
	<---(E)----- Access Token ------------------- ’	
R + (w Optional Refresh Token)

Note: The lines illustrating steps (A), (B), and (C) are broken into
two parts as they pass through the user-agent.

Fi gure 3: Authorization Code Fl ow

Har dt St andards Track [Page 24]

RFC 6749 QAuth 2.0 COct ober 2012

The flowillustrated in Figure 3 includes the follow ng steps:

(A) The client initiates the flow by directing the resource owner’s
user-agent to the authorization endpoint. The client includes
its client identifier, requested scope, local state, and a
redirection URI to which the authorization server will send the
user - agent back once access is granted (or denied).

(B) The authorization server authenticates the resource owner (via
t he user-agent) and establishes whether the resource owner
grants or denies the client’s access request.

(O Assuming the resource owner grants access, the authorization
server redirects the user-agent back to the client using the
redirection URl provided earlier (in the request or during
client registration). The redirection URH includes an
aut hori zati on code and any | ocal state provided by the client
earlier.

(D) The client requests an access token fromthe authorization
server’s token endpoint by including the authorization code
received in the previous step. Wen making the request, the
client authenticates with the authorization server. The client
includes the redirection URl used to obtain the authorization
code for verification.

(E) The authorization server authenticates the client, validates the
aut hori zation code, and ensures that the redirection UR
recei ved matches the URI used to redirect the client in
step (C. If valid, the authorization server responds back wth
an access token and, optionally, a refresh token

4.1.1. Authorization Request
The client constructs the request URI by adding the foll ow ng
paraneters to the query conponent of the authorization endpoint UR
using the "application/x-wwformurlencoded" fornmat, per Appendix B

response_type
REQUI RED. Val ue MUST be set to "code"

client_id
REQUI RED. The client identifier as described in Section 2.2.

redirect _uri
OPTI ONAL. As described in Section 3.1.2.

Har dt St andards Track [Page 25]

RFC 6749 QAuth 2.0 COct ober 2012

scope
OPTI ONAL. The scope of the access request as described by
Section 3. 3.

state
RECOMVENDED. An opaque val ue used by the client to maintain
state between the request and cal |l back. The authorization
server includes this value when redirecting the user-agent back
to the client. The paranmeter SHOULD be used for preventing
cross-site request forgery as described in Section 10.12.

The client directs the resource owner to the constructed URI using an
HTTP redirection response, or by other neans available to it via the
user - agent .

For exanple, the client directs the user-agent to nake the foll ow ng
HTTP request using TLS (with extra line breaks for display purposes
only):

CET /aut hori ze?response_t ype=code&cl i ent i d=s6BhdRkqt 3&st at e=xyz
& edirect _uri=https¥BAYRF¥2Fcl i ent %2Eexanpl e¥2Econ?@2Fcb HTTP/ 1.1
Host: server. exanpl e. com

The aut horization server validates the request to ensure that al
required paraneters are present and valid. |If the request is valid,
the aut horization server authenticates the resource owner and obtains
an aut hori zation deci sion (by asking the resource owner or by

est abl i shing approval via other neans).

Wien a decision is established, the authorization server directs the
user-agent to the provided client redirection URl using an HTTP
redirection response, or by other nmeans available to it via the
user - agent .

.1.2. Authorization Response

If the resource owner grants the access request, the authorization
server issues an authorization code and delivers it to the client by
addi ng the followi ng paraneters to the query conmponent of the
redirection URl using the "application/x-wweformurlencoded" format,
per Appendix B

code
REQUI RED. The aut hori zation code generated by the
aut hori zation server. The authorization code MJST expire
shortly after it is issued to nitigate the risk of leaks. A
maxi mum aut hori zation code lifetine of 10 mnutes is
RECOMVENDED. The client MJUST NOT use the authorization code

Har dt St andards Track [Page 26]

RFC 6749 QAuth 2.0 COct ober 2012

nore than once. |f an authorization code is used nore than
once, the authorization server MIUST deny the request and SHOULD
revoke (when possible) all tokens previously issued based on
that authorization code. The authorization code is bound to
the client identifier and redirection URl

state
REQUIRED if the "state" paranmeter was present in the client
aut hori zation request. The exact value received fromthe
client.

For exanple, the authorization server redirects the user-agent by
sending the foll owi ng HTTP response:

HTTP/ 1.1 302 Found
Location: https://client.exanple.con cb?code=Spl x| OBeZQQYbYS6WkSbl A
&st at e=xyz

The client MJST ignore unrecogni zed response paraneters. The

aut hori zation code string size is left undefined by this
specification. The client should avoid naking assunpti ons about code
val ue sizes. The authorization server SHOULD docunent the size of
any value it issues.

4.1.2.1. FError Response

If the request fails due to a nmissing, invalid, or m smatching
redirection URI, or if the client identifier is mssing or invalid,
the authorization server SHOULD i nformthe resource owner of the
error and MJUST NOT automatically redirect the user-agent to the
invalid redirection URI.

If the resource owner denies the access request or if the request
fails for reasons other than a missing or invalid redirection URI,
the authorization server infornms the client by adding the foll ow ng
paraneters to the query conponent of the redirection URl using the
"application/x-ww-formurl encoded" fornmat, per Appendix B

error
REQUI RED. A single ASCII [USASCII] error code fromthe
fol |l owi ng:

i nval i d_request
The request is missing a required paraneter, includes an
invalid paraneter value, includes a paraneter nore than
once, or is otherw se nalforned.

Har dt St andards Track [Page 27]

RFC 6749

error_

error_

Har dt

QAuth 2.0 Cct ober 2012

unaut hori zed_cl i ent
The client is not authorized to request an authorization
code using this method.

access_deni ed
The resource owner or authorization server denied the
request.

unsupported_r esponse_t ype
The aut horization server does not support obtaining an
aut hori zati on code using this nethod.

i nval i d_scope
The requested scope is invalid, unknown, or nalforned.

server_error
The aut horization server encountered an unexpected
condition that prevented it fromfulfilling the request.
(This error code is needed because a 500 Internal Server
Error HTTP status code cannot be returned to the client
via an HTTP redirect.)

tenporarily_unavail abl e
The aut horization server is currently unable to handle
the request due to a tenporary overl oadi ng or nmi ntenance
of the server. (This error code is needed because a 503
Servi ce Unavail abl e HTTP status code cannot be returned
to the client via an HTTP redirect.)

Val ues for the "error" paraneter MJST NOT include characters
outside the set %20-21 / %23-5B / %5D- 7E

description

OPTI ONAL. Hurman-readabl e ASCII [USASCI 1] text providing
additional information, used to assist the client devel oper in
under standi ng the error that occurred.

Val ues for the "error_description" parameter MJST NOT include
characters outside the set %20-21 / %23-5B / %5D 7E

uri

OPTIONAL. A URI identifying a human-readabl e web page with
i nformati on about the error, used to provide the client
devel oper with additional information about the error

Val ues for the "error_uri" parameter MJST conformto the
URI -ref erence syntax and thus MJST NOT include characters
out side the set %21 / %23-5B / %5D 7E

St andards Track [Page 28]

RFC 6749 QAuth 2.0 COct ober 2012

state
REQUIRED if a "state" paraneter was present in the client
aut hori zation request. The exact value received fromthe
client.

For exanple, the authorization server redirects the user-agent by
sending the foll owing HTTP response:

HTTP/ 1.1 302 Found
Location: https://client.exanple.con cb?error=access_deni ed&st at e=xyz

4.1.3. Access Token Request

The client makes a request to the token endpoint by sending the
followi ng paraneters using the "application/x-wwformurl encoded”
format per Appendix B with a character encoding of UTF-8 in the HITP
request entity-body:

grant _type
REQUI RED. Val ue MUST be set to "authorization_code"

code
REQUI RED. The aut hori zation code received fromthe
aut hori zati on server.

redirect _uri
REQUIRED, if the "redirect_uri" paraneter was included in the
aut hori zati on request as described in Section 4.1.1, and their
val ues MJST be identi cal

client_id
REQUIRED, if the client is not authenticating with the
aut hori zation server as described in Section 3.2.1.

If the client type is confidential or the client was issued client
credentials (or assigned other authentication requirenents), the
client MUST authenticate with the authorization server as described
in Section 3.2.1.

Har dt St andards Track [Page 29]

RFC 6749 QAuth 2.0 COct ober 2012

For exanple, the client nakes the foll owing HTTP request using TLS
(with extra line breaks for display purposes only):

POST /token HTTP/ 1.1

Host: server. exanpl e. com

Aut hori zation: Basic czZCaGRSa3FOMzpnWDFnTnFOMRIW
Cont ent - Type: application/ x-ww- fornmurl encoded

grant _type=aut hori zati on_code&code=Spl x| OBeZQQYbYS6W Sbl A
& edi rect _uri=https¥BAYRFY2Fcl i ent %2Eexanpl e¥2Econ?2Fcb

The aut hori zati on server MJST

0 require client authentication for confidential clients or for any
client that was issued client credentials (or with other
aut henti cation requirenents),

0o authenticate the client if client authentication is included,

0 ensure that the authorization code was issued to the authenticated
confidential client, or if the client is public, ensure that the
code was issued to "client_id" in the request,

o verify that the authorization code is valid, and

0 ensure that the "redirect _uri" paraneter is present if the
"redirect_uri" paranmeter was included in the initial authorization
request as described in Section 4.1.1, and if included ensure that
their values are identical

4.1.4. Access Token Response

If the access token request is valid and authorized, the

aut hori zati on server issues an access token and optional refresh
token as described in Section 5.1. |If the request client
authentication failed or is invalid, the authorization server returns
an error response as described in Section 5. 2.

Har dt St andards Track [Page 30]

RFC 6749 QAuth 2.0 COct ober 2012

An exanpl e successful response:

HTTP/ 1.1 200 K

Cont ent - Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragnma: no-cache

{
"access_t oken": " 2Yot nFZFEj r 1zCsi cMApAA",
"token_type":"exanpl e",
"expires_in":3600,
"refresh_token":"t Gzv3JOKFOXGQx2TI KW A",
"exanpl e_paraneter":"exanpl e_val ue"

}

4.2. Implicit Gant

The inplicit grant type is used to obtain access tokens (it does not
support the issuance of refresh tokens) and is optinized for public
clients known to operate a particular redirection URI. These clients
are typically inplenented in a browser using a scripting | anguage
such as JavaScri pt.

Since this is a redirection-based flow, the client nust be capabl e of
interacting with the resource owner’s user-agent (typically a web
browser) and capabl e of receiving incom ng requests (via redirection)
fromthe authorization server.

Unl i ke the authorization code grant type, in which the client makes
separate requests for authorization and for an access token, the
client receives the access token as the result of the authorization
request.

The inplicit grant type does not include client authentication, and
relies on the presence of the resource owner and the registration of
the redirection URI. Because the access token is encoded into the
redirection URI, it may be exposed to the resource owner and other
applications residing on the sanme device.

Har dt St andards Track [Page 31]

RFC 6749 QAuth 2.0 COct ober 2012

I +

| Resource |
| Owner |
| |
Fom e e - +

N

|

(B) . .
e + Cient ldentifier R LR +
-+----(A)-- & Redirection URI --->		
User-		Authorization
Agent -	----(B)-- User authenticates -->	Server
	<---(O--- Redirection URI ----<	
	with Access Token e T +	
	i n Fragnent	
	S +	
	----(D)--- Redirection URl ---->	Web- Hosted
	wi t hout Fragnent	dient
		Resour ce
(F) [<--(B)------- Script --------- <		
	T +	
Sl I +

|
(A (G Access Token
N
f S +
]
| dient |
| |
N T +
Note: The lines illustrating steps (A and (B) are broken into two

parts as they pass through the user-agent.

Figure 4: Inplicit Gant Flow

Har dt St andards Track [Page 32]

RFC 6749

QAuth 2.0 Cct ober 2012

The flowillustrated in Figure 4 includes the follow ng steps:

(A

(B)

(O

(D

(B

(F)

(9

The client initiates the flow by directing the resource owner’s
user-agent to the authorization endpoint. The client includes
its client identifier, requested scope, local state, and a
redirection URI to which the authorization server will send the
user - agent back once access is granted (or denied).

The aut hori zation server authenticates the resource owner (via
t he user-agent) and establishes whether the resource owner
grants or denies the client’s access request.

Assum ng the resource owner grants access, the authorization
server redirects the user-agent back to the client using the
redirection URl provided earlier. The redirection URN includes
the access token in the URI fragnent.

The user-agent follows the redirection instructions by nmaking a
request to the web-hosted client resource (which does not

i nclude the fragnment per [RFC2616]). The user-agent retains the
fragment information |ocally.

The web-hosted client resource returns a web page (typically an
HTML docunent with an enbedded script) capable of accessing the
full redirection URl including the fragment retained by the
user-agent, and extracting the access token (and ot her
paraneters) contained in the fragnment.

The user-agent executes the script provided by the web-hosted
client resource locally, which extracts the access token

The user-agent passes the access token to the client.

See Sections 1.3.2 and 9 for background on using the inplicit grant.
See Sections 10.3 and 10.16 for inportant security considerations
when using the inplicit grant.

4.2. 1.

Aut hori zati on Request

The client constructs the request URI by adding the foll ow ng
paraneters to the query conponent of the authorization endpoint UR
using the "application/x-wwformurlencoded" fornmat, per Appendix B

response_t ype

REQUI RED. Val ue MUST be set to "token".

client_id

Har dt

REQUI RED. The client identifier as described in Section 2.2.

St andards Track [Page 33]

RFC 6749 QAuth 2.0 COct ober 2012

redirect _uri
OPTI ONAL. As described in Section 3.1.2.

scope
OPTI ONAL. The scope of the access request as described by
Section 3. 3.

state
RECOMVENDED. An opaque val ue used by the client to naintain
state between the request and cal | back. The authorization
server includes this value when redirecting the user-agent back
to the client. The paraneter SHOULD be used for preventing
cross-site request forgery as described in Section 10.12.

The client directs the resource owner to the constructed URl using an
HTTP redirection response, or by other neans available to it via the
user - agent .

For exanple, the client directs the user-agent to nake the follow ng
HTTP request using TLS (with extra line breaks for display purposes

only):

CET /aut hori ze?response_t ype=t oken&cl i ent _i d=s6BhdRkqt 3&st at e=xyz
& edi rect _uri=https¥%BAYRFY2Fcl i ent %2Eexanpl e¥2Econ?@2Fcb HTTP/ 1.1
Host: server. exanpl e. com

The aut horization server validates the request to ensure that al
required paranmeters are present and valid. The authorization server
MUST verify that the redirection URI to which it will redirect the
access token nmatches a redirection URI registered by the client as
described in Section 3.1.2.

If the request is valid, the authorization server authenticates the
resource owner and obtains an authorization decision (by asking the
resource owner or by establishing approval via other neans).

Wien a decision is established, the authorization server directs the
user-agent to the provided client redirection URl using an HTTP
redirection response, or by other nmeans available to it via the
user - agent .

Har dt St andards Track [Page 34]

RFC 6749 QAuth 2.0 COct ober 2012

4.2.2. Access Token Response

If the resource owner grants the access request, the authorization
server issues an access token and delivers it to the client by adding
the following paraneters to the fragnment component of the redirection
URI using the "application/x-ww-formurl encoded" format, per
Appendi x B

access_t oken
REQUI RED. The access token issued by the authorization server.

t oken_type
REQUI RED. The type of the token issued as described in
Section 7.1. Value is case insensitive.

expires_in
RECOMVENDED. The lifetime in seconds of the access token. For
exanpl e, the value "3600" denotes that the access token will
expire in one hour fromthe tine the response was generat ed.
If omitted, the authorization server SHOULD provide the
expiration time via other neans or docunent the default val ue.

scope
OPTIONAL, if identical to the scope requested by the client;
otherw se, REQUI RED. The scope of the access token as
descri bed by Section 3. 3.

state
REQUIRED if the "state" paranmeter was present in the client
aut hori zation request. The exact value received fromthe
client.

The aut hori zation server MJST NOT i ssue a refresh token

For exanple, the authorization server redirects the user-agent by
sending the following HITP response (with extra |ine breaks for
di spl ay purposes only):

HTTP/ 1.1 302 Found
Location: http://exanpl e.conlf cbh#access_t oken=2Yot nFZFEj r 1zCsi cMApAA
&st at e=xyz&t oken_t ype=exanpl e&expi res_i n=3600

Devel opers should note that sone user-agents do not support the

i nclusion of a fragnent conponent in the HTTP "Location" response
header field. Such clients will require using other nethods for
redirecting the client than a 3xx redirection response -- for
exanpl e, returning an HTM. page that includes a ’continue’ button
with an action linked to the redirection UR

Har dt St andards Track [Page 35]

RFC 6749 QAuth 2.0 COct ober 2012

The client MJST ignore unrecogni zed response paraneters. The access
token string size is left undefined by this specification. The
client should avoid maki ng assunptions about val ue sizes. The
aut hori zati on server SHOULD docunent the size of any value it issues.

4,.2.2.1. FError Response

If the request fails due to a nmissing, invalid, or nismatching
redirection URI, or if the client identifier is missing or invalid,
the aut horization server SHOULD i nformthe resource owner of the
error and MJUST NOT automatically redirect the user-agent to the
invalid redirection URI.

If the resource owner denies the access request or if the request
fails for reasons other than a missing or invalid redirection URI

the authorization server infornms the client by adding the foll ow ng
paraneters to the fragment conmponent of the redirection URI using the
"application/x-ww-formurl encoded" fornmat, per Appendix B

error
REQUI RED. A single ASCII [USASCII] error code fromthe
fol | owi ng:

i nval i d_request
The request is missing a required paraneter, includes an
invalid paraneter value, includes a paraneter nore than
once, or is otherw se nalforned.

unaut hori zed_cli ent
The client is not authorized to request an access token
using this nethod.

access_deni ed
The resource owner or authorization server denied the
request.

unsupport ed_r esponse_t ype
The aut hori zation server does not support obtaining an
access token using this method.

i nval i d_scope
The requested scope is invalid, unknown, or nalforned.

Har dt St andards Track [Page 36]

RFC 6749 QAuth 2.0 COct ober 2012

server_error
The aut horization server encountered an unexpected
condition that prevented it fromfulfilling the request.
(This error code is needed because a 500 Internal Server
Error HITP status code cannot be returned to the client
via an HTTP redirect.)

tenporarily_unavail abl e
The aut horization server is currently unable to handle
the request due to a tenporary overl oadi ng or mnai ntenance
of the server. (This error code is needed because a 503
Servi ce Unavail abl e HTTP status code cannot be returned
to the client via an HTTP redirect.)

Val ues for the "error" paraneter MJST NOT include characters
outside the set %20-21 / %23-5B / 9%&5D 7E

error_description
OPTI ONAL. Hurman-readabl e ASCII [USASCI 1] text providing
addi tional information, used to assist the client devel oper in
under standi ng the error that occurred.
Val ues for the "error_description" parameter MJST NOT include
characters outside the set %20-21 / %23-5B / 9%5D-7E

error_uri
OPTIONAL. A URI identifying a human-readabl e web page with
i nformati on about the error, used to provide the client
devel oper with additional information about the error.
Values for the "error_uri™ paraneter MJST conformto the
URI -reference syntax and thus MJST NOT include characters
outside the set %21 / %23-5B / 9%5D 7E

state
REQUIRED if a "state" paraneter was present in the client
aut hori zati on request. The exact value received fromthe
client.

For exanple, the authorization server redirects the user-agent by
sending the following HTTP response:

HTTP/ 1.1 302 Found
Location: https://client.exanple.conf cb#error=access_deni ed&st at e=xyz

4.3. Resource Oaner Password Credentials G ant
The resource owner password credentials grant type is suitable in

cases where the resource owner has a trust relationship with the
client, such as the device operating systemor a highly privileged

Har dt St andards Track [Page 37]

RFC 6749 QAuth 2.0 COct ober 2012

application. The authorization server should take special care when
enabling this grant type and only allow it when other flows are not
vi abl e.

This grant type is suitable for clients capable of obtaining the
resource owner’s credentials (usernane and password, typically using
an interactive formj. It is also used to migrate existing clients
using direct authentication schenes such as HITP Basic or Digest

aut hentication to QAuth by converting the stored credentials to an
access token.

Fomm e - +

| Resource |

| Owner |

| |

S +
v

| Resour ce Oaner
(A) Password Credentials

%
f S + Fom e e e e e oo oo +
	>--(B)---- Resource Omer ------- >	
	Password Credential s	Authorization
dient		Server
	<--(Q---- Access Token --------- <	
	(w Optional Refresh Token)	
f S + Fom e e e e e oo oo +

Fi gure 5: Resource Omer Password Credentials Flow
The flowillustrated in Figure 5 includes the follow ng steps:

(A) The resource owner provides the client with its username and
password.

(B) The client requests an access token fromthe authorization
server’s token endpoint by including the credentials received
fromthe resource owner. When nmaeking the request, the client
aut henticates with the authorization server.

(© The authorization server authenticates the client and validates

the resource owner credentials, and if valid, issues an access
t oken.

Har dt St andards Track [Page 38]

RFC 6749 QAuth 2.0 COct ober 2012

4.3.1. Authorization Request and Response

The met hod through which the client obtains the resource owner
credentials is beyond the scope of this specification. The client
MJUST di scard the credentials once an access token has been obt ai ned.

4,.3.2. Access Token Request

The client nakes a request to the token endpoint by adding the

foll owi ng paraneters using the "application/x-ww-formurl encoded"
format per Appendix B with a character encoding of UTF-8 in the HITP
request entity-body:

grant _type
REQUI RED. Val ue MJST be set to "password".

user name
REQUI RED. The resource owner usernane.

password
REQUI RED. The resource owner password.

scope
OPTI ONAL. The scope of the access request as described by
Section 3. 3.

If the client type is confidential or the client was issued client
credentials (or assigned other authentication requirenents), the
client MUST authenticate with the authorization server as described
in Section 3.2.1.

For exanple, the client nakes the following HTTP request using
transport-layer security (with extra line breaks for display purposes

only):

POST /token HTTP/ 1.1

Host: server. exanpl e. com

Aut hori zation: Basic czZCaGRSa3FOMzpnWDFnQmFOM2IW
Cont ent - Type: application/ x-ww-form url encoded

gr ant _t ype=passwor d&user nanme=j ohndoe&passwor d=A3ddj 3w

Har dt St andards Track [Page 39]

RFC 6749 QAuth 2.0 COct ober 2012

The aut hori zation server MJST

0 require client authentication for confidential clients or for any
client that was issued client credentials (or with other
aut henti cation requirenents),

0 authenticate the client if client authentication is included, and

o validate the resource owner password credentials using its
exi sting password validation algorithm

Since this access token request utilizes the resource owner’s
password, the authorization server MJST protect the endpoint agai nst
brute force attacks (e.g., using rate-linmtation or generating
alerts).

4.3.3. Access Token Response

If the access token request is valid and authorized, the

aut hori zation server issues an access token and optional refresh

token as described in Section 5.1. |If the request failed client

aut hentication or is invalid, the authorization server returns an
error response as described in Section 5. 2.

An exanpl e successful response:

HTTP/ 1.1 200 K

Cont ent - Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragnma: no-cache

{
"access_t oken": " 2Yot nFZFEj r 1zCsi cMApAA",
"token_type":"exanpl e",
"expires_in":3600,
"refresh_token": "t Gzv3JOKFOXGQ2TI KW A",
"exanpl e_paraneter":"exanpl e_val ue"

}

4.4, Cient Credentials G ant

The client can request an access token using only its client
credentials (or other supported neans of authentication) when the
client is requesting access to the protected resources under its
control, or those of another resource owner that have been previously
arranged with the authorization server (the method of which is beyond
the scope of this specification).

Har dt St andards Track [Page 40]

RFC 6749 QAuth 2.0 COct ober 2012

The client credentials grant type MJST only be used by confidentia

clients.
f S + Fom e e e e e oo oo +
| | . N | .
| | >--(A)- Cient Authentication --->| Authorization
dient		Server
	<--(B)---- Access Token --------- <	
f S + Fom e e e e e oo oo +

Figure 6: Cdient Credentials Flow
The flowillustrated in Figure 6 includes the follow ng steps:

(A) The client authenticates with the authorization server and
requests an access token fromthe token endpoint.

(B) The authorization server authenticates the client, and if valid,
i ssues an access token

4.4.1. Authorization Request and Response

Since the client authentication is used as the authorization grant,
no additi onal authorization request is needed.

4.4.2. Access Token Request

The client nakes a request to the token endpoint by adding the

foll owi ng paraneters using the "application/x-ww-fornurlencoded"
format per Appendix B with a character encoding of UTF-8 in the HITP
request entity-body:

grant _type
REQUI RED. Val ue MUST be set to "client_credentials"

scope
OPTI ONAL. The scope of the access request as described by
Section 3. 3.

The client MIUST authenticate with the authorization server as
described in Section 3.2.1.

Har dt St andards Track [Page 41]

RFC 6749 QAuth 2.0 COct ober 2012

For exanple, the client nakes the followi ng HTTP request using
transport-layer security (with extra line breaks for display purposes

only):

POST /token HTTP/ 1.1

Host: server. exanpl e. com

Aut hori zation: Basic czZCaGRSa3FOMzpnWDFnQmFOMRIW
Cont ent - Type: application/ x-ww-form url encoded

grant _type=client_credentials
The aut hori zation server MJST authenticate the client.
4.4.3. Access Token Response

If the access token request is valid and authorized, the

aut hori zati on server issues an access token as described in

Section 5.1. A refresh token SHOULD NOT be included. |f the request
failed client authentication or is invalid, the authorization server
returns an error response as described in Section 5.2.

An exanpl e successful response:

HTTP/ 1.1 200 K

Cont ent - Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragma: no-cache

{
"access_token":"2Yot nFZFEj r 1zCsi cMADAA",
"token_type":"exanpl e",
"expires_in": 3600,
"exanpl e_par anet er": "exanpl e_val ue"

}

4.5, Extension Gants

The client uses an extension grant type by specifying the grant type
usi ng an absolute URI (defined by the authorization server) as the
val ue of the "grant_type" paraneter of the token endpoint, and by
addi ng any additional paraneters necessary.

Har dt St andards Track [Page 42]

RFC 6749 QAuth 2.0 COct ober 2012

For exanple, to request an access token using a Security Assertion
Mar kup Language (SAM.) 2.0 assertion grant type as defined by

[QAut h- SAML2], the client could make the foll owi ng HTTP request using
TLS (with extra line breaks for display purposes only):

POST /token HTTP/ 1.1
Host: server.exanpl e. com
Cont ent - Type: application/ x-ww-form url encoded

grant _type=ur n¥BAi et f ¥8Apar ans¥BAoaut h¥3Agr ant -t ype¥38Asani 2-
bear er &sserti on=PEFzc2Vydd vbi BJc3N1zZU uc3Rhbn@@I j | wMIr'Et VDU
[...omtted for brevity...]aGTdG0ZWLl bnQ PCO9Bc3N cnRpb24-

If the access token request is valid and authorized, the

aut hori zation server issues an access token and optional refresh
token as described in Section 5.1. |If the request failed client
aut hentication or is invalid, the authorization server returns an
error response as described in Section 5. 2.

5. Issuing an Access Token

If the access token request is valid and authorized, the

aut hori zati on server issues an access token and optional refresh
token as described in Section 5.1. |If the request failed client
aut hentication or is invalid, the authorization server returns an
error response as described in Section 5. 2.

5.1. Successful Response

The aut horization server issues an access token and optional refresh
token, and constructs the response by adding the foll ow ng paraneters
to the entity-body of the HTTP response with a 200 (OK) status code:

access_t oken
REQUI RED. The access token issued by the authorization server

t oken_t ype
REQUI RED. The type of the token issued as described in
Section 7.1. Value is case insensitive.

expires_in
RECOMVENDED. The lifetine in seconds of the access token. For
exanpl e, the value "3600" denotes that the access token will
expire in one hour fromthe tine the response was generat ed.
If omitted, the authorization server SHOULD provide the
expiration time via other nmeans or docunent the default val ue.

Har dt St andards Track [Page 43]

RFC 6749 QAuth 2.0 COct ober 2012

refresh_t oken
OPTI ONAL. The refresh token, which can be used to obtain new
access tokens using the sanme authorization grant as described
in Section 6.

scope
OPTIONAL, if identical to the scope requested by the client;
otherwi se, REQUI RED. The scope of the access token as
descri bed by Section 3. 3.

The paraneters are included in the entity-body of the HTTP response
using the "application/json" nedia type as defined by [RFC4627]. The
paraneters are serialized into a JavaScript Object Notation (JSON)
structure by adding each paraneter at the highest structure |evel

Par aneter nanes and string values are included as JSON strings.

Nureri cal val ues are included as JSON nunbers. The order of
paraneters does not matter and can vary.

The aut hori zation server MJST include the HTTP "Cache-Control "
response header field [RFC2616] with a value of "no-store" in any
response containing tokens, credentials, or other sensitive
information, as well as the "Pragm" response header field [RFC2616]
with a value of "no-cache"

For exanpl e:

HTTP/ 1.1 200 K

Cont ent - Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragnma: no-cache

{
"access_t oken": " 2Yot nFZFEj r 1zCsi cMApAA",
"token_type":"exanpl e",
"expires_in":3600,
"refresh_token": "t Gzv3JOKFOXGQ2TI KW A",
"exanpl e_paraneter":"exanpl e_val ue"

}

The client MJST ignore unrecogni zed val ue nanes in the response. The
si zes of tokens and other val ues received fromthe authorization
server are |left undefined. The client should avoid naking
assunpti ons about val ue sizes. The authorization server SHOULD
docunent the size of any value it issues.

Har dt St andards Track [Page 44]

RFC 6749

QAuth 2.0 Cct ober 2012

5.2. FError Response

The aut horization server responds with an HTTP 400 (Bad Request)

st at us code

(unl ess specified otherwi se) and includes the follow ng

paraneters with the response:

error
REQUI RED. A single ASCII [USASCII] error code fromthe
fol | owi ng:
i nval i d_r equest

i nval i

i nval i

The request is mssing a required paraneter, includes an
unsupported paraneter value (other than grant type),
repeats a paraneter, includes multiple credentials,
utilizes nmore than one nechani smfor authenticating the
client, or is otherw se nalforned.

d client

Cient authentication failed (e.g., unknown client, no
client authentication included, or unsupported

aut hentication nethod). The authorization server NMNAY
return an HTTP 401 (Unauthorized) status code to indicate
whi ch HTTP aut henticati on schenes are supported. If the
client attenpted to authenticate via the "Authorization"
request header field, the authorization server MJST
respond with an HTTP 401 (Unaut hori zed) status code and
i nclude the "WNWM Aut henticate" response header field

mat chi ng the authentication schenme used by the client.

d_grant

The provided authorization grant (e.g., authorization
code, resource owner credentials) or refresh token is
invalid, expired, revoked, does not match the redirection
URI used in the authorization request, or was issued to
anot her client.

unaut hori zed_cl i ent

The authenticated client is not authorized to use this
aut hori zation grant type.

unsupported_grant _type

Har dt

The aut horization grant type is not supported by the
aut hori zation server.

St andards Track [Page 45]

RFC 6749 QAuth 2.0 COct ober 2012

i nval i d_scope
The requested scope is invalid, unknown, nalfornmed, or
exceeds the scope granted by the resource owner

Val ues for the "error" paraneter MJST NOT include characters
outside the set 9%20-21 / %23-5B / 95D 7E

error_description
OPTI ONAL. Human-readabl e ASCII [USASCI 1] text providing
additional information, used to assist the client devel oper in
under standi ng the error that occurred.
Val ues for the "error_description" paranmeter MJST NOT include
characters outside the set %20-21 / %23-5B / 9%5D-7E

error_uri
OPTIONAL. A URI identifying a human-readabl e web page with
i nformati on about the error, used to provide the client
devel oper with additional information about the error
Val ues for the "error_uri" paraneter MJST conformto the
URI -ref erence syntax and thus MJST NOT include characters
outside the set %21 / %23-5B / %5D 7E

The paraneters are included in the entity-body of the HTTP response
using the "application/json" nedia type as defined by [RFC4627]. The
paraneters are serialized into a JSON structure by addi ng each
paraneter at the highest structure level. Paranmeter names and string
val ues are included as JSON strings. Nunerical values are included
as JSON nunbers. The order of paraneters does not natter and can
vary.

For exanpl e:
HTTP/ 1.1 400 Bad Request
Cont ent - Type: application/json;charset=UTF-8

Cache-Control: no-store
Pragnma: no-cache

{
}

"error":"invalid_request"

Har dt St andards Track [Page 46]

RFC 6749 QAuth 2.0 COct ober 2012

6.

Ref reshi ng an Access Token

If the authorization server issued a refresh token to the client, the
client makes a refresh request to the token endpoint by adding the
foll owi ng paraneters using the "application/x-ww-formurl encoded”
format per Appendix B with a character encoding of UTF-8 in the HITP
request entity-body:

grant _type
REQUI RED. Val ue MUST be set to "refresh_token".

refresh_t oken
REQUI RED. The refresh token issued to the client.

scope
OPTI ONAL. The scope of the access request as described by
Section 3.3. The requested scope MJUST NOT include any scope
not originally granted by the resource owner, and if onmtted is
treated as equal to the scope originally granted by the
resource owner.

Because refresh tokens are typically long-lasting credentials used to
request additional access tokens, the refresh token is bound to the
client to which it was issued. |If the client type is confidential or
the client was issued client credentials (or assigned other

aut hentication requirenents), the client MUST authenticate with the
aut hori zation server as described in Section 3.2.1.

For exanple, the client makes the followi ng HTTP request using
transport-layer security (with extra |ine breaks for display purposes

only):

POST /token HTTP/ 1.1

Host: server. exanpl e.com

Aut hori zation: Basic czZCaGRSa3FOMzpn\WDFnQmFOM2IW
Cont ent - Type: application/ x-ww-formurl encoded

grant _type=refresh_token&r efresh_t oken=t Gzv3JOKFOXGEXX2TI KW A

Har dt St andards Track [Page 47]

RFC 6749 QAuth 2.0 COct ober 2012

The aut hori zation server MJST

0 require client authentication for confidential clients or for any
client that was issued client credentials (or with other
aut henti cation requirenents),

0o authenticate the client if client authentication is included and
ensure that the refresh token was i ssued to the authenticated
client, and

o validate the refresh token

If valid and authorized, the authorization server issues an access
token as described in Section 5.1. |If the request failed
verification or is invalid, the authorization server returns an error
response as described in Section 5. 2.

The aut hori zation server MAY issue a new refresh token, in which case
the client MUST discard the old refresh token and replace it with the
new refresh token. The authorization server MAY revoke the old
refresh token after issuing a newrefresh token to the client. |If a
new refresh token is issued, the refresh token scope MJST be
identical to that of the refresh token included by the client in the
request.

7. Accessing Protected Resources

The client accesses protected resources by presenting the access
token to the resource server. The resource server MJST validate the
access token and ensure that it has not expired and that its scope
covers the requested resource. The nethods used by the resource
server to validate the access token (as well as any error responses)
are beyond the scope of this specification but generally involve an
i nteraction or coordination between the resource server and the

aut hori zati on server.

The method in which the client utilizes the access token to
authenticate with the resource server depends on the type of access
token issued by the authorization server. Typically, it involves
using the HTTP "Aut horization" request header field [RFC2617] with an
aut henti cation schene defined by the specification of the access
token type used, such as [RFC6750].

Har dt St andards Track [Page 48]

RFC 6749 QAuth 2.0 COct ober 2012

7.

7.

1

2.

Access Token Types

The access token type provides the client with the information
required to successfully utilize the access token to nmake a protected
resource request (along with type-specific attributes). The client
MJUST NOT use an access token if it does not understand the token

t ype.

For exanple, the "bearer" token type defined in [RFC6750] is utilized
by sinply including the access token string in the request:

GET /resource/ 1 HITP/ 1.1
Host: exanpl e. com
Aut hori zation: Bearer nF_9.B5f-4.1JgM

while the "mac" token type defined in [QAut h-HTTP-MAC] is utilized by
i ssuing a Message Authentication Code (MAC) key together with the
access token that is used to sign certain conponents of the HTTP
requests:

GET /resource/1 HITP/ 1.1

Host: exanpl e. com

Aut hori zation: MAC i d="h480dj s93hd8"
nonce="274312: dj 83hs9s"
mac="kDzZvddkndxvhGRXzZhvuDj EWhGeE="

The above exanples are provided for illustration purposes only.
Devel opers are advised to consult the [RFC6750] and [QAut h- HTTP- MAC]
speci fications before use.

Each access token type definition specifies the additional attributes
(if any) sent to the client together with the "access_token" response
paraneter. It also defines the HITP authentication nethod used to
i nclude the access token when nmaking a protected resource request.

Error Response

If a resource access request fails, the resource server SHOULD i nform
the client of the error. While the specifics of such error responses
are beyond the scope of this specification, this docunent establishes
a conmon registry in Section 11.4 for error values to be shared anong
QAut h token aut hentication schenes.

New aut henti cation schenes designed primarily for QAuth token

aut henti cati on SHOULD defi ne a mechani smfor providing an error
status code to the client, in which the error values allowed are
registered in the error registry established by this specification

Har dt St andards Track [Page 49]

RFC 6749 QAuth 2.0 COct ober 2012

8.

8.

8.

Such schermes MAY linit the set of valid error codes to a subset of
the registered values. |If the error code is returned using a naned
paraneter, the paraneter name SHOULD be "error".

O her schemes capabl e of being used for QAuth token authentication
but not prinmarily designed for that purpose, MAY bind their error
values to the registry in the sane manner.

New aut henti cati on schemes MAY choose to also specify the use of the
"error_description" and "error_uri" paranmeters to return error
information in a manner parallel to their usage in this

speci fication.

Extensibility
1. Defining Access Token Types

Access token types can be defined in one of two ways: registered in
the Access Token Types registry (following the procedures in
Section 11.1), or by using a unique absolute URI as its nane.

Types utilizing a URl nane SHOULD be limted to vendor-specific

i npl ementations that are not commonly applicable, and are specific to
the inplenentation details of the resource server where they are
used.

Al'l other types MIST be registered. Type names MJST conformto the
type-name ABNF. |If the type definition includes a new HTTP

aut henti cation schene, the type name SHOULD be identical to the HITP
aut henti cation schene nane (as defined by [RFC2617]). The token type
"exanpl e" is reserved for use in exanples.

1* nanme- char
e o " | DEAT /[ALPHA

t ype- name
nane- char

2. Defining New Endpoi nt Paraneters

New request or response paraneters for use with the authorization
endpoi nt or the token endpoint are defined and registered in the
QAuth Parameters registry following the procedure in Section 11.2.

Par anet er nanes MUST conformto the param nanme ABNF, and paraneter
val ues syntax MJST be wel | -defined (e.g., using ABNF, or a reference
to the syntax of an existing paraneter).

1* nanme- char
e "/ DIAT / ALPHA

par am nane
nane- char

Har dt St andards Track [Page 50]

RFC 6749 QAuth 2.0 COct ober 2012

Unr egi stered vendor-specific paraneter extensions that are not
commonly applicable and that are specific to the inplenentation
details of the authorization server where they are used SHOULD
utilize a vendor-specific prefix that is not likely to conflict with
other registered values (e.g., begin with ’conpanyname_’).

8.3. Defining New Authorization G ant Types

New aut hori zation grant types can be defined by assigning thema

uni que absolute URI for use with the "grant_type" paraneter. |If the
ext ensi on grant type requires additional token endpoint paraneters,
they MUST be registered in the QAuth Paraneters registry as descri bed

by Section 11.2.
8.4. Defining New Aut horization Endpoi nt Response Types

New response types for use with the authorization endpoint are
defined and registered in the Authorization Endpoi nt Response Types
registry following the procedure in Section 11.3. Response type
names MJUST conformto the response-type ABNF.

response-nane *(SP response-nane)
1*r esponse- char
"""/ DGAT/ ALPHA

response-type
response- nane
response- char

If a response type contains one or nore space characters (%20), it
is conpared as a space-delinmited list of values in which the order of
val ues does not matter. Only one order of values can be registered,
whi ch covers all other arrangenments of the sanme set of val ues

For exanple, the response type "token code" is left undefined by this
specification. However, an extension can define and register the
"token code" response type. Once registered, the same conbination
cannot be registered as "code token", but both values can be used to
denote t he sanme response type.

8.5. Defining Additional Error Codes

In cases where protocol extensions (i.e., access token types,

ext ensi on paraneters, or extension grant types) require additiona
error codes to be used with the authorization code grant error
response (Section 4.1.2.1), the inplicit grant error response
(Section 4.2.2.1), the token error response (Section 5.2), or the
resource access error response (Section 7.2), such error codes MAY be
defi ned.

Har dt St andards Track [Page 51]

RFC 6749 QAuth 2.0 COct ober 2012

Ext ensi on error codes MJST be registered (followi ng the procedures in
Section 11.4) if the extension they are used in conjunction with is a
regi stered access token type, a registered endpoint paranmeter, or an
extension grant type. Error codes used with unregi stered extensions
MAY be regi stered.

Error codes MJUST conformto the error ABNF and SHOULD be prefixed by
an identifying name when possible. For exanple, an error identifying
an invalid value set to the extension paraneter "exanple" SHOULD be
naned "exanpl e_invalid".

1*error-char
%20-21 /| %23-5B / %5D-7E

error
error-char

9. Native Applications

Native applications are clients installed and executed on the device
used by the resource owner (i.e., desktop application, native nobile
application). Native applications require special consideration
related to security, platformcapabilities, and overall end-user
experi ence.

The aut horization endpoint requires interaction between the client
and the resource owner’s user-agent. Native applications can invoke
an external user-agent or enbed a user-agent within the application.
For exanpl e:

0 External user-agent - the native application can capture the
response fromthe authorization server using a redirection UR
with a schene registered with the operating systemto invoke the
client as the handl er, manual copy-and-paste of the credentials,
running a local web server, installing a user-agent extension, or
by providing a redirection URl identifying a server-hosted
resource under the client’s control, which in turn makes the
response available to the native application

o Enbedded user-agent - the native application obtains the response
by directly comunicating with the enbedded user-agent by
nmoni toring state changes enitted during the resource |oad, or
accessing the user-agent’s cooki es storage.

When choosi ng between an external or enbedded user-agent, devel opers
shoul d consi der the foll ow ng:

0 An external user-agent may inprove conpletion rate, as the
resource owner nmay al ready have an active session with the
aut hori zation server, renoving the need to re-authenticate. It
provides a fam |iar end-user experience and functionality. The

Har dt St andards Track [Page 52]

RFC 6749 QAuth 2.0 COct ober 2012

10.

10.

resource owner nay also rely on user-agent features or extensions
to assist with authentication (e.g., password manager, 2-factor
devi ce reader).

0 An enbedded user-agent may offer inproved usability, as it renoves
the need to switch context and open new wi ndows.

0 An enbedded user-agent poses a security challenge because resource
owners are authenticating in an unidentified wi ndow w t hout access
to the visual protections found in nobst external user-agents. An
enbedded user-agent educates end-users to trust unidentified
requests for authentication (nmaking phishing attacks easier to
execute).

When choosing between the inplicit grant type and the authorization
code grant type, the follow ng should be considered:

0 Native applications that use the authorization code grant type
SHOULD do so without using client credentials, due to the native
application’s inability to keep client credentials confidential

0 When using the inplicit grant type flow, a refresh token is not
returned, which requires repeating the authorization process once
the access token expires.

Security Considerations

As a flexible and extensible framework, QAuth’s security

consi derati ons depend on many factors. The follow ng sections
provide inplenmenters with security guidelines focused on the three
client profiles described in Section 2.1: web application,

user - agent - based application, and native application

A conprehensive QAuth security nodel and analysis, as well as
background for the protocol design, is provided by
[QAut h- THREATMODEL] .

1. dient Authentication

The aut hori zation server establishes client credentials with web
application clients for the purpose of client authentication. The
aut hori zation server is encouraged to consider stronger client

aut hentication nmeans than a client password. Wb application clients
MUST ensure confidentiality of client passwords and other client
credenti al s.

Har dt St andards Track [Page 53]

RFC 6749 QAuth 2.0 COct ober 2012

10.

The aut horization server MJST NOT issue client passwords or other
client credentials to native application or user-agent-based
application clients for the purpose of client authentication. The
aut hori zati on server MAY issue a client password or other credentials
for a specific installation of a native application client on a

speci fic device

When client authentication is not possible, the authorization server
SHOULD enpl oy other neans to validate the client’s identity -- for
exanple, by requiring the registration of the client redirection UR
or enlisting the resource owner to confirmidentity. A valid
redirection URI is not sufficient to verify the client’s identity
when asking for resource owner authorization but can be used to
prevent delivering credentials to a counterfeit client after
obt ai ni ng resource owner authorization

The aut horization server must consider the security inplications of
interacting with unauthenticated clients and take neasures to limt
the potential exposure of other credentials (e.g., refresh tokens)
i ssued to such clients.

2. Cdient Inpersonation

A nmalicious client can inpersonate another client and obtain access
to protected resources if the inpersonated client fails to, or is
unable to, keep its client credentials confidential

The aut horization server MJST authenticate the client whenever
possible. If the authorization server cannot authenticate the client
due to the client’s nature, the authorization server MIST require the
registration of any redirection URl used for receiving authorization
responses and SHOULD utilize other neans to protect resource owners
from such potentially malicious clients. For exanple, the

aut hori zati on server can engage the resource owner to assist in
identifying the client and its origin.

The aut horization server SHOULD enforce explicit resource owner

aut henti cation and provide the resource owner wth infornmation about
the client and the requested authorization scope and lifetinme. It is
up to the resource owner to review the information in the context of
the current client and to authorize or deny the request.

The aut horization server SHOULD NOT process repeated authorization
requests automatically (w thout active resource owner interaction)
wi t hout authenticating the client or relying on other neasures to
ensure that the repeated request cones fromthe original client and
not an i npersonator

Har dt St andards Track [Page 54]

RFC 6749 QAuth 2.0 COct ober 2012

10.

10.

3. Access Tokens

Access token credentials (as well as any confidential access token
attributes) MJIST be kept confidential in transit and storage, and
only shared anong the authorization server, the resource servers the
access token is valid for, and the client to whomthe access token is
i ssued. Access token credentials MJST only be transmtted using TLS
as described in Section 1.6 with server authentication as defined by
[RFC2818] .

When using the inplicit grant type, the access token is transnmtted
in the URI fragnent, which can expose it to unauthorized parti es.

The aut horization server MJST ensure that access tokens cannot be
generated, nodified, or guessed to produce valid access tokens by
unaut hori zed parties.

The client SHOULD request access tokens with the nininal scope
necessary. The authorization server SHOULD take the client identity
i nto account when choosing how to honor the requested scope and NAY
i ssue an access token with less rights than requested.

This specification does not provide any nethods for the resource
server to ensure that an access token presented to it by a given
client was issued to that client by the authorization server

4. Refresh Tokens

Aut hori zation servers MAY issue refresh tokens to web application
clients and native application clients.

Refresh tokens MJST be kept confidential in transit and storage, and
shared only anong the authorization server and the client to whomthe
refresh tokens were issued. The authorization server MJUST naintain
the binding between a refresh token and the client to whomit was

i ssued. Refresh tokens MJST only be transmtted using TLS as
described in Section 1.6 with server authentication as defined by

[RFC2818] .

The aut horization server MJST verify the binding between the refresh
token and client identity whenever the client identity can be

aut henticated. When client authentication is not possible, the

aut hori zati on server SHOULD depl oy other neans to detect refresh

t oken abuse.

For exanple, the authorization server could enploy refresh token
rotation in which a new refresh token is issued with every access
token refresh response. The previous refresh token is invalidated

Har dt St andards Track [Page 55]

RFC 6749 QAuth 2.0 COct ober 2012

10.

10.

but retained by the authorization server. |If a refresh token is
conprom sed and subsequently used by both the attacker and the
legitimate client, one of themw Il present an invalidated refresh
token, which will informthe authorization server of the breach

The aut hori zation server MJIST ensure that refresh tokens cannot be
generated, nodified, or guessed to produce valid refresh tokens by
unaut hori zed parties.

5. Authorization Codes

The transm ssion of authorization codes SHOULD be nade over a secure
channel, and the client SHOULD require the use of TLS with its
redirection URI if the URI identifies a network resource. Since

aut hori zation codes are transmitted via user-agent redirections, they
could potentially be disclosed through user-agent history and HITP
referrer headers.

Aut hori zation codes operate as plaintext bearer credentials, used to
verify that the resource owner who granted authorization at the

aut hori zation server is the sane resource owner returning to the
client to conplete the process. Therefore, if the client relies on
the authorization code for its own resource owner authentication, the
client redirection endpoint MJIST require the use of TLS.

Aut hori zation codes MJST be short lived and single-use. |f the

aut hori zati on server observes nultiple attenpts to exchange an

aut hori zation code for an access token, the authorization server
SHOULD attenpt to revoke all access tokens already granted based on
t he conpromi sed aut hori zation code

If the client can be authenticated, the authorization servers MJST
authenticate the client and ensure that the authorization code was
issued to the sanme client.

6. Authorization Code Redirection URl Manipul ation

When requesting authorization using the authorization code grant
type, the client can specify a redirection URI via the "redirect _uri"
paraneter. |If an attacker can nmani pul ate the value of the
redirection URI, it can cause the authorization server to redirect
the resource owner user-agent to a URI under the control of the
attacker with the authorization code.

An attacker can create an account at a legitimate client and initiate
the authorization flow Wen the attacker’s user-agent is sent to
the authorization server to grant access, the attacker grabs the

aut hori zation URI provided by the legitimate client and repl aces the

Har dt St andards Track [Page 56]

RFC 6749 QAuth 2.0 COct ober 2012

10.

client’s redirection URl with a URI under the control of the
attacker. The attacker then tricks the victiminto follow ng the
mani pul ated Iink to authorize access to the legitimate client.

Once at the authorization server, the victimis pronpted with a
normal, valid request on behalf of a legitimte and trusted client,
and authorizes the request. The victimis then redirected to an
endpoi nt under the control of the attacker with the authorization
code. The attacker conpletes the authorization flow by sending the
aut hori zation code to the client using the original redirection UR
provided by the client. The client exchanges the authorization code
with an access token and links it to the attacker’s client account,
whi ch can now gain access to the protected resources authorized by
the victim (via the client).

In order to prevent such an attack, the authorization server MJST
ensure that the redirection URI used to obtain the authorization code
is identical to the redirection UR provi ded when exchangi ng the

aut hori zation code for an access token. The authorization server
MUST require public clients and SHOULD require confidential clients
to register their redirection URIs. If a redirection URl is provided
in the request, the authorization server MIST validate it against the
regi stered val ue.

7. Resource Omer Password Credentials

The resource owner password credentials grant type is often used for

| egacy or nmigration reasons. It reduces the overall risk of storing

user nanmes and passwords by the client but does not elimnate the need
to expose highly privileged credentials to the client.

This grant type carries a higher risk than other grant types because
it maintains the password anti-pattern this protocol seeks to avoid.
The client could abuse the password, or the password could
unintentionally be disclosed to an attacker (e.g., via log files or
other records kept by the client).

Additionally, because the resource owner does not have control over
the aut horization process (the resource owner’s invol venent ends when
it hands over its credentials to the client), the client can obtain
access tokens with a broader scope than desired by the resource
owner. The authorization server should consider the scope and
lifetinme of access tokens issued via this grant type.

The aut hori zation server and client SHOULD mininize use of this grant
type and utilize other grant types whenever possible.

Har dt St andards Track [Page 57]

RFC 6749 QAuth 2.0 COct ober 2012

10.

10.

10.

10.

8. Request Confidentiality

Access tokens, refresh tokens, resource owner passwords, and client
credentials MJUST NOT be transnmitted in the clear. Authorization
codes SHOULD NOT be transmitted in the clear

The "state" and "scope" paraneters SHOULD NOT include sensitive
client or resource owner information in plain text, as they can be
transmtted over insecure channels or stored insecurely.

9. Ensuring Endpoint Authenticity

In order to prevent man-in-the-m ddl e attacks, the authorization
server MUST require the use of TLS with server authentication as
defined by [RFC2818] for any request sent to the authorization and

t oken endpoints. The client MJST validate the authorization server’s
TLS certificate as defined by [RFC6125] and in accordance with its
requirenents for server identity authentication

10. Credential s-Guessing Attacks

The aut horization server MJST prevent attackers from guessing access
t okens, authorization codes, refresh tokens, resource owner
passwords, and client credentials.

The probability of an attacker guessing generated tokens (and other
credentials not intended for handling by end-users) MJST be | ess than
or equal to 27(-128) and SHOULD be | ess than or equal to 2~(-160).

The aut horization server MJST utilize other neans to protect
credential s i ntended for end-user usage.

11. Phishing Attacks

W de depl oynent of this and simlar protocols may cause end-users to
becone inured to the practice of being redirected to websites where
they are asked to enter their passwords. |If end-users are not
careful to verify the authenticity of these websites before entering
their credentials, it will be possible for attackers to exploit this
practice to steal resource owners’ passwords.

Service providers should attenpt to educate end-users about the risks
phi shing attacks pose and shoul d provi de nechani sns that nake it easy
for end-users to confirmthe authenticity of their sites. dient
devel opers shoul d consider the security inplications of how they
interact with the user-agent (e.g., external, enbedded), and the
ability of the end-user to verify the authenticity of the

aut hori zation server.

Har dt St andards Track [Page 58]

RFC 6749 QAuth 2.0 COct ober 2012

10.

To reduce the risk of phishing attacks, the authorization servers
MUST require the use of TLS on every endpoint used for end-user
i nteraction.

12. Cross-Site Request Forgery

Cross-site request forgery (CSRF) is an exploit in which an attacker
causes the user-agent of a victimend-user to follow a malicious UR
(e.g., provided to the user-agent as a nisleading link, imge, or
redirection) to a trusting server (usually established via the
presence of a valid session cookie).

A CSRF attack against the client’s redirection URI allows an attacker
to inject its own authorization code or access token, which can
result in the client using an access token associated with the
attacker’s protected resources rather than the victims (e.g., save
the victinms bank account information to a protected resource
controll ed by the attacker).

The client MUST inplenent CSRF protection for its redirection URI.
This is typically acconplished by requiring any request sent to the
redirection URI endpoint to include a value that binds the request to
the user-agent’s authenticated state (e.g., a hash of the session
cooki e used to authenticate the user-agent). The client SHOULD
utilize the "state" request paraneter to deliver this value to the
aut hori zati on server when naki ng an authorization request.

Once aut horization has been obtained fromthe end-user, the

aut hori zation server redirects the end-user’s user-agent back to the
client with the required binding value contained in the "state"
paraneter. The binding value enables the client to verify the
validity of the request by matching the binding value to the
user-agent’'s authenticated state. The binding val ue used for CSRF
protection MJST contain a non-guessable value (as described in
Section 10.10), and the user-agent’s authenticated state (e.g.
session cookie, HTML5 | ocal storage) MJUST be kept in a location
accessible only to the client and the user-agent (i.e., protected by
sane-origin policy).

A CSRF attack against the authorization server’s authorization
endpoint can result in an attacker obtaining end-user authorization
for a malicious client without involving or alerting the end-user

The aut horization server MJST inplenment CSRF protection for its
aut hori zati on endpoi nt and ensure that a malicious client cannot
obt ai n authorization w thout the awareness and explicit consent of
the resource owner.

Har dt St andards Track [Page 59]

RFC 6749 QAuth 2.0 COct ober 2012

10.

10.

10.

13. dickjacking

In a clickjacking attack, an attacker registers a legitimte client
and then constructs a nmalicious site in which it | oads the

aut hori zati on server’s authorization endpoint web page in a
transparent ifranme overlaid on top of a set of dummy buttons, which
are carefully constructed to be placed directly under inportant
buttons on the authorization page. Wen an end-user clicks a

ni sl eadi ng visible button, the end-user is actually clicking an

i nvisible button on the authorization page (such as an "Authorize"
button). This allows an attacker to trick a resource owner into
granting its client access without the end-user’s know edge.

To prevent this formof attack, native applications SHOULD use
external browsers instead of enbedding browsers within the
application when requesting end-user authorization. For npbst newer
browsers, avoi dance of iframes can be enforced by the authorization
server using the (non-standard) "x-frane-options" header. This
header can have two val ues, "deny" and "saneorigin", which will block
any franming, or framng by sites with a different origin,
respectively. For older browsers, JavaScript frame-busting

techni ques can be used but may not be effective in all browsers.

14. Code Injection and I nput Validation

A code injection attack occurs when an input or otherw se externa
variable is used by an application unsanitized and causes

nmodi fication to the application logic. This rmay allow an attacker to
gain access to the application device or its data, cause denial of
service, or introduce a wide range of nalicious side-effects.

The aut horization server and client MJST sanitize (and validate when
possi bl e) any value received -- in particular, the value of the
"state" and "redirect_uri" paraneters.

15. Open Redirectors

The aut horization server, authorization endpoint, and client
redirecti on endpoi nt can be inproperly configured and operate as open
redirectors. An open redirector is an endpoint using a parameter to
automatically redirect a user-agent to the |ocation specified by the
paraneter value w thout any validation

Open redirectors can be used in phishing attacks, or by an attacker
to get end-users to visit malicious sites by using the URI authority
component of a familiar and trusted destination. |In addition, if the
aut hori zation server allows the client to register only part of the
redirection URI, an attacker can use an open redirector operated by

Har dt St andards Track [Page 60]

RFC 6749 QAuth 2.0 COct ober 2012

10.

the client to construct a redirection URI that will pass the
aut hori zation server validation but will send the authorization code
or access token to an endpoint under the control of the attacker

16. M suse of Access Token to | npersonate Resource Omer in Inplicit
FI ow

For public clients using inplicit flows, this specification does not
provide any nethod for the client to determi ne what client an access
t oken was issued to.

A resource owner may willingly del egate access to a resource by
granting an access token to an attacker’s malicious client. This may
be due to phishing or sonme other pretext. An attacker may al so stea
a token via sone other mechanism An attacker nmay then attenpt to

i npersonate the resource owner by providing the access token to a
legitimate public client.

In the inplicit flow (response_type=token), the attacker can easily
switch the token in the response fromthe authorization server
replacing the real access token with the one previously issued to the
attacker.

Servers conmuni cating with native applications that rely on being
passed an access token in the back channel to identify the user of
the client nay be sinmilarly conprom sed by an attacker creating a
conprom sed application that can inject arbitrary stolen access

t okens.

Any public client that nakes the assunption that only the resource
owner can present it with a valid access token for the resource is
vul nerable to this type of attack.

This type of attack may expose information about the resource owner
at the legitimate client to the attacker (malicious client). This
will also allow the attacker to performoperations at the legitinate
client with the sane perm ssions as the resource owner who originally
granted the access token or authorization code.

Aut henti cating resource owners to clients is out of scope for this
specification. Any specification that uses the authorization process
as a formof del egated end-user authentication to the client (e.g.
third-party sign-in service) MJIST NOT use the inplicit flow w thout
additional security mechani snms that would enable the client to
determine if the access token was issued for its use (e.g., audience-
restricting the access token).

Har dt St andards Track [Page 61]

RFC 6749 QAuth 2.0 COct ober 2012

11.

11.

11.

| ANA Consi derations
1. QAuth Access Token Types Registry
This specification establishes the QAuth Access Token Types registry.

Access token types are registered with a Specification Required

([RFC5226]) after a two-week review period on the
oauth-ext-review@etf.org mailing list, on the advice of one or nore
Desi gnat ed Experts. However, to allow for the allocation of val ues
prior to publication, the Designated Expert(s) nmay approve

regi stration once they are satisfied that such a specification wll
be publi shed.

Regi stration requests nust be sent to the oauth-ext-review@etf.org
mailing list for review and comment, with an appropriate subject
(e.g., "Request for access token type: exanple").

Wthin the review period, the Designated Expert(s) will either
approve or deny the registration request, communicating this decision
to the review list and I ANA. Denials should include an expl anation
and, if applicable, suggestions as to how to nmake the request
successf ul

| ANA nust only accept registry updates fromthe Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

1.1. Registration Tenpl ate

Type nane:
The nane requested (e.g., "exanple").

Addi tional Token Endpoi nt Response Paraneters:
Addi tional response paraneters returned together with the
"access_token" paraneter. New paraneters MJST be separately
registered in the QAuth Paraneters registry as described by
Section 11. 2.

HTTP Aut henticati on Scheme(s):
The HTTP aut henticati on scheme name(s), if any, used to
aut henticate protected resource requests using access tokens of
this type.

Change controller:
For Standards Track RFCs, state "IETF'. For others, give the nane
of the responsible party. Oher details (e.g., postal address,
emai | address, hone page URI) nmay al so be incl uded.

Har dt St andards Track [Page 62]

RFC 6749 QAuth 2.0 COct ober 2012

11.

11.

Speci fication docunment(s):
Ref erence to the docunent(s) that specify the paraneter,
preferably including a URI that can be used to retrieve a copy of
the docunent(s). An indication of the relevant sections may al so
be included but is not required.

2. QAuth Paraneters Registry
This specification establishes the QAuth Paraneters registry.

Addi tional paraneters for inclusion in the authorization endpoint
request, the authorization endpoint response, the token endpoint
request, or the token endpoint response are registered with a

Speci fication Required ([RFC5226]) after a two-week review period on
the oauth-ext-review@etf.org mailing list, on the advice of one or
nore Desi gnated Experts. However, to allow for the allocation of

val ues prior to publication, the Designated Expert(s) nay approve
regi stration once they are satisfied that such a specification wll
be publi shed.

Regi stration requests nust be sent to the oauth-ext-review@etf.org
mailing list for review and comment, with an appropriate subject
(e.g., "Request for paraneter: exanple").

Wthin the review period, the Designated Expert(s) will either
approve or deny the registration request, communicating this decision
to the review list and | ANA. Denials should include an expl anation
and, if applicable, suggestions as to how to nmake the request
successf ul

| ANA nust only accept registry updates fromthe Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

2.1. Registration Tenpl ate

Par anet er nane:
The nane requested (e.g., "exanple").

Par anmet er usage | ocati on:
The | ocation(s) where paraneter can be used. The possible
| ocations are authorization request, authorization response, token
request, or token response.

Change controller:
For Standards Track RFCs, state "IETF'. For others, give the nane
of the responsible party. Oher details (e.g., postal address,
emai | address, hone page URI) nmay al so be incl uded.

Har dt St andards Track [Page 63]

RFC 6749

QAuth 2.0

Speci fication docunment(s):
Ref erence to the docunent(s) that specify the paraneter,

11. 2. 2.

The QAuth Paraneters registry's initial

O O0OO0Oo O O0Oo0Oo

O O0OO0Oo

O O0OO0Oo

O O

O oO0O0Oo

Har dt

preferably including a URI
t he docunent (s).
be included but

is not required.

Initial Registry Contents

Paraneter name: client _id
Par anet er usage | ocation:
Change controller: |ETF

Speci fication docunent(s):

aut hori zati on
RFC 6749

Par anet er name: client_secret

Par anet er usage | ocation: token request
Change controller: |ETF
Speci fication docunent(s): RFC 6749

Par anet er nane: response_type

Par anet er usage | ocation: authorization
Change controller: |ETF
Speci fication docunent(s): RFC 6749

Par aneter nane: redirect_uri

Par anmet er usage | ocation: authorization
Change controller: |ETF
Speci fication docunent(s): RFC 6749
Par amet er nanme: scope

Par anet er usage | ocati on:
response, token request,
Change controller: |ETF
Speci fication docunment (s):

aut hori zati on
t oken response

RFC 6749

Paramet er nanme: state

Par anet er usage | ocati on:
response

Change controller: |ETF
Speci fication docunment (s):

aut hori zati on

RFC 6749

Par anet er nane: code

Par anet er usage | ocati on:
Change controller: |ETF
Speci fication docunment (s):

aut hori zati on

RFC 6749

St andards Track

Cct ober 2012

that can be used to retrieve a copy of
An indication of the relevant sections may al so

contents are:

request, token request
request

request, token request
request, authorization
request, authorization
response, token request

[Page 64]

RFC 6749 QAuth 2.0 COct ober 2012

0 Paraneter name: error_description

0 Paraneter usage |l ocation: authorization response, token response
o Change controller: |ETF

o Specification docunent(s): RFC 6749

o Paraneter nanme: error_uri

o Paraneter usage |ocation: authorization response, token response
o Change controller: |ETF

o Specification docunent(s): RFC 6749

o Paraneter nane: grant_type

o Paraneter usage |ocation: token request

o Change controller: |ETF

o Specification docunent(s): RFC 6749

o Paraneter nane: access_token

o Paraneter usage |ocation: authorization response, token response
o Change controller: |ETF

o Specification docunent(s): RFC 6749

0o Paraneter nane: token_type

o Paraneter usage |ocation: authorization response, token response
o Change controller: |ETF

o Specification docunent(s): RFC 6749

0 Paraneter nane: expires_in

0 Paranmeter usage |l ocation: authorization response, token response
o Change controller: |ETF

o Specification docunent(s): RFC 6749

0o Paranmeter name: usernane

o Paraneter usage |ocation: token request

o Change controller: |ETF

o Specification docunent(s): RFC 6749

o Paraneter name: password

o Paraneter usage |ocation: token request

o Change controller: |ETF

o Specification docunent(s): RFC 6749

o Paraneter nane: refresh_token

o Paraneter usage |ocation: token request, token response

o Change controller: |ETF

o Specification docunent(s): RFC 6749

Har dt St andards Track [Page 65]

RFC 6749 QAuth 2.0 COct ober 2012

11.

11.

3. QAuth Authorization Endpoi nt Response Types Registry

Thi s specification establishes the QAuth Authorizati on Endpoi nt
Response Types registry.

Addi tional response types for use with the authorization endpoint are
registered with a Specification Required ([RFC5226]) after a two-week
review period on the oauth-ext-review@etf.org mailing list, on the
advi ce of one or nore Designated Experts. However, to allow for the
al l ocation of values prior to publication, the Designated Expert(s)
may approve registration once they are satisfied that such a
specification will be published.

Regi stration requests nust be sent to the oauth-ext-review@etf.org
mailing list for review and comment, with an appropriate subject
(e.g., "Request for response type: exanple").

Wthin the review period, the Designated Expert(s) will either
approve or deny the registration request, conmmunicating this decision
to the review list and | ANA. Denials should include an expl anation
and, if applicable, suggestions as to how to nake the request
successf ul

| ANA nust only accept registry updates fromthe Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

3.1. Registration Tenpl ate

Response type nane:
The nane requested (e.g., "exanple").

Change controller:
For Standards Track RFCs, state "IETF'. For others, give the nane
of the responsible party. Oher details (e.g., postal address,
emai | address, hone page URI) nmay al so be incl uded.

Speci fication docunent(s):
Ref erence to the docunent(s) that specify the type, preferably
including a URI that can be used to retrieve a copy of the
docunent (s). An indication of the relevant sections may al so be
i ncluded but is not required.

Har dt St andards Track [Page 66]

RFC 6749 QAuth 2.0 COct ober 2012

11.

11.

3.2. Initial Registry Contents

The QAuth Aut horization Endpoi nt Response Types registry's initial
contents are:

0 Response type nane: code
o Change controller: |ETF
o Specification docunent(s): RFC 6749

0 Response type nanme: token
o Change controller: |ETF
o Specification docunent(s): RFC 6749

4, QAuth Extensions Error Registry
This specification establishes the QAuth Extensions Error registry.

Addi tional error codes used together with other protocol extensions
(i.e., extension grant types, access token types, or extension
paraneters) are registered with a Specification Required ([RFC5226])
after a two-week review period on the oauth-ext-review@etf.org
mailing list, on the advice of one or nore Designated Experts.
However, to allow for the allocation of values prior to publication
the Designated Expert(s) nmay approve registration once they are
satisfied that such a specification will be published.

Regi stration requests nust be sent to the oauth-ext-review@etf.org
mailing list for review and comment, with an appropriate subject
(e.g., "Request for error code: exanple").

Wthin the review period, the Designated Expert(s) will either
approve or deny the registration request, communicating this decision
to the review list and | ANA. Denials should include an expl anation
and, if applicable, suggestions as to how to nmake the request
successf ul

| ANA nust only accept registry updates fromthe Designated Expert(s)
and should direct all requests for registration to the review mailing
list.

Har dt St andards Track [Page 67]

RFC 6749 QAuth 2.0 COct ober 2012

11.4.1. Registration Tenplate

12.

12.

Error nane:
The nane requested (e.g., "example"). Values for the error nane
MJUST NOT include characters outside the set %20-21 / %23-5B /
% 5D- 7E.

Error usage | ocation:
The | ocation(s) where the error can be used. The possible
| ocations are authorization code grant error response
(Section 4.1.2.1), inplicit grant error response
(Section 4.2.2.1), token error response (Section 5.2), or resource
access error response (Section 7.2).

Rel at ed protocol extension:
The nane of the extension grant type, access token type, or
ext ensi on paraneter that the error code is used in conjunction
with.

Change controller:
For Standards Track RFCs, state "IETF'. For others, give the nane
of the responsible party. Oher details (e.g., postal address,
emai | address, hone page URI) nmay al so be incl uded.

Speci fication docunment(s):
Ref erence to the docunent (s) that specify the error code
preferably including a URI that can be used to retrieve a copy of
the docunent(s). An indication of the relevant sections may al so
be included but is not required.

Ref er ences
1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0"
RFC 2246, January 1999.

[RFC2616] Fielding, R, Cettys, J., Mgul, J., Frystyk, H,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HITP/1.1", RFC 2616, June 1999.

[RFC2617] Franks, J., Hallam Baker, P., Hostetler, J., Lawence, S.
Leach, P., Luotonen, A, and L. Stewart, "HITP
Aut henti cati on: Basic and Di gest Access Authentication”
RFC 2617, June 1999.

Har dt St andards Track [Page 68]

RFC 6749 QAuth 2.0 COct ober 2012

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of
| SO 10646", STD 63, RFC 3629, Novenber 2003.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.

[RFC4627] Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627, July 2006.

[RFC4949] Shirey, R, "lInternet Security d ossary, Version 2",
RFC 4949, August 2007.

[RFC5226] Narten, T. and H Alvestrand, "Quidelines for Witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5234] Crocker, D. and P. COverell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domai n-Based Application Service ldentity
within Internet Public Key Infrastructure Using X 509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, March 2011.

[USASCII] Anerican National Standards Institute, "Coded Character
Set -- 7-bit Anerican Standard Code for |nformation
I nterchange”, ANSI X3.4, 1986.

[VBC. REC- ht ml 401- 19991224
Raggett, D., Le Hors, A, and |. Jacobs, "HTM. 4.01
Specification", Wrld Wde Wb Consortium
Recomendati on REC- ht nl 401- 19991224, Decenber 1999,
<ht t p://wwv. W3. or g/ TR/ 1999/ REC- ht m 401-19991224>.

[VBC. REC- xml - 20081126]
Bray, T., Paoli, J., Sperberg-MQeen, C., Miler, E,
and F. Yergeau, "Extensible Markup Language (XM.) 1.0
(Fifth Edition)", Wrld Wde Wb Consortium
Reconmendat i on REC- xmi - 20081126, Novenber 2008,
<htt p: // ww. w3. or g/ TR/ 2008/ REC- xrl - 20081126>.

Har dt St andards Track [Page 69]

RFC 6749

QAuth 2.0 Cct ober 2012

12. 2. Informative References

[CAut h- HTTP- MAC]

Hammer - Lahav, E., Ed., "HTTP Authentication: MAC Access
Aut henti cation", Work in Progress, February 2012.

[OAUt h- SAM_2]

Campbell, B. and C. Mortinore, "SAML 2.0 Bearer Assertion
Profiles for QAuth 2.0", Wrk in Progress, Septenber 2012.

[CAut h- THREATMODEL]

Lodderstedt, T., Ed., Mcdoin, M, and P. Hunt, "QAuth 2.0
Threat Model and Security Considerations", Wrk
in Progress, October 2012.

[CAut h- WRAP]

[RFC5849]

[RFC6750]

Har dt

Hardt, D., Ed., Tom A., Eaton, B., and Y. Goland, "QAuth
Web Resource Authorization Profiles", Wrk in Progress,
January 2010.

Hanmmer - Lahav, E., "The QAuth 1.0 Protocol", RFC 5849,
April 2010.

Jones, M and D. Hardt, "The QAuth 2.0 Authorization
Framewor k: Bearer Token Usage", RFC 6750, Cctober 2012.

St andards Track [Page 70]

RFC 6749 QAuth 2.0 COct ober 2012

Appendi x A Augnent ed Backus- Naur Form (ABNF) Synt ax

This section provides Augnmented Backus-Naur Form (ABNF) syntax
descriptions for the elenments defined in this specification using the
notati on of [RFC5234]. The ABNF below is defined in ternms of Unicode
code points [WBC REC xm -20081126]; these characters are typically
encoded in UTF-8. Elenents are presented in the order first defined.

Sone of the definitions that follow use the "URlI -reference"
definition from[RFC3986].

Sone of the definitions that foll ow use these comon definitions:

VSCHAR = 9%20-7E
NQCHAR = %21 /| %23-5B / %5D-7E
NQSCHAR = U20-21 / 9%&23-5B / 9%5D-7E

UNI CODECHARNOCRLF = %09 /%20- 7E / 9%%80- D7FF /
%% EO000- FFFD / 9%%10000- 10FFFF

(The UNI CODECHARNOCRLF definition is based upon the Char definition
in Section 2.2 of [WBC. REC xnl-20081126], but omitting the Carriage
Return and Li nefeed characters.)
A 1. "client_id" Syntax
The "client _id" elenent is defined in Section 2.3.1:
client-id = *VSCHAR
A 2. "client_secret" Syntax
The "client_secret" elenment is defined in Section 2.3.1:
client-secret = *VSCHAR
A. 3. "response_type" Syntax
The "response type" elenment is defined in Sections 3.1.1 and 8. 4:
response-type response-nane *(SP response-nane)

response-nanme = 1l*response-char
response-char =" " / DIG@T / ALPHA

Har dt St andards Track [Page 71]

RFC 6749 QAuth 2.0 COct ober 2012

A 4. "scope" Syntax
The "scope" elenment is defined in Section 3.3:

scope
scope-t oken

scope-token *(SP scope-token)

1* NQCHAR

A 5. "state" Syntax

The "state" elenent is defined in Sections 4.1.1, 4.1.2, 4.1.2.1,
4,.2.1, 4.2.2, and 4.2.2.1:

state = 1*VSCHAR
A.6. "redirect_uri" Syntax

The "redirect _uri" elenment is defined in Sections 4.1.1, 4.1.3,
and 4.2.1:

redirect-uri = URI -reference
A 7. "error" Syntax

The "error" elenent is defined in Sections 4.1.2.1, 4.2.2.1, 5.2,
7.2, and 8.5:

error = 1* NQSCHAR
A.8. "error_description” Syntax

The "error_description" elenent is defined in Sections 4.1.2.1,

4.2.2.1, 5.2, and 7. 2:
error-description = 1* NQSCHAR

A 9. "error_uri" Syntax

The "error_uri" elenent is defined in Sections 4.1.2.1, 4.2.2.1, 5.2,
and 7. 2:

error-uri = URI -reference

Har dt St andards Track [Page 72]

RFC 6749 QAuth 2.0 COct ober 2012

A. 10. "grant_type" Syntax

The "grant _type" element is defined in Sections 4.1.3, 4.3.2, 4.4.2,
4.5, and 6:

grant-type = grant-nane / URI-reference
grant - nanme = 1*nane-char
nane-char ="-" /["." [" " | DAT / ALPHA
A.11. "code" Syntax
The "code" element is defined in Section 4.1.3:
code = 1*VSCHAR
A.12. "access_token" Syntax
The "access_token" elenent is defined in Sections 4.2.2 and 5.1:
access-token = 1*VSCHAR
A.13. "token_type" Syntax

The "token_type" elenent is defined in Sections 4.2.2, 5.1, and 8. 1:

token-type = type-nane / URI-reference
type-nane = 1*name-char
name-char = "-"/ "." [" " | DIGAT / ALPHA

A 14. "expires_in" Syntax
The "expires_in" elenment is defined in Sections 4.2.2 and 5. 1:
expires-in = 1*DIG T
A. 15. "usernane" Syntax
The "usernanme" elenment is defined in Section 4.3.2:
user name = *UNI CODECHARNOCRLF
A 16. "password" Syntax
The "password" element is defined in Section 4.3.2:

password = *UN CODECHARNOCRLF

Har dt St andards Track [Page 73]

RFC 6749 QAuth 2.0 COct ober 2012

A.17. "refresh_token" Syntax
The "refresh_token" element is defined in Sections 5.1 and 6:
refresh-token = 1*VSCHAR
A.18. Endpoi nt Paraneter Syntax
The syntax for new endpoint paraneters is defined in Section 8.2:

1* nanme- char
ey "/ DIAT [/ ALPHA

par am nane
nanme- char

Appendi x B. Use of application/x-ww-formurlencoded Media Type

At the time of publication of this specification, the
"application/x-ww-formurl encoded" media type was defined in
Section 17.13.4 of [WBC REC htnl 401-19991224] but not registered in
the 1 ANA M ME Media Types registry
(<http://ww.iana.org/assi gnnents/ medi a-types>). Furthernore, that
definition is inconplete, as it does not consider non-US-ASCl
characters.

To address this shortcom ng when generating payl oads using this nedia
type, nanes and val ues MJST be encoded using the UTF-8 character
encodi ng schenme [RFC3629] first; the resulting octet sequence then
needs to be further encoded using the escaping rules defined in

[WBC. REC- ht m 401- 19991224] .

When parsing data froma payload using this nedia type, the names and
val ues resulting fromreversing the nanme/val ue encodi ng consequently
need to be treated as octet sequences, to be decoded using the UTF-8
character encodi ng schene.

For exanple, the value consisting of the six Unicode code points
(1) U+0020 (SPACE), (2) U+0025 (PERCENT SI GN),
(3) U+0026 (AMPERSAND), (4) U+002B (PLUS SI GN),
(5) WO00A3 (POUND SIGN), and (6) W20AC (EURO SIGN) woul d be encoded
into the octet sequence bel ow (using hexadeci mal notation):
20 25 26 2B C2 A3 E2 82 AC
and then represented in the payl oad as:

+925%2692 BYC2YA3 U298 29YAC

Har dt St andards Track [Page 74]

RFC 6749 QAuth 2.0 COct ober 2012

Appendi x C. Acknow edgenent s

The initial QAuth 2.0 protocol specification was edited by David
Recordon, based on two previous publications: the QAuth 1.0 comunity
speci fication [RFC5849], and QAuth WRAP (QAuth Web Resource

Aut hori zation Profiles) [QAuth-WRAP]. FEran Hanmer then edited nany
of the internediate drafts that evolved into this RFC. The Security
Consi derati ons section was drafted by Torsten Lodderstedt, Mark

McGE oin, Phil Hunt, Anthony Nadalin, and John Bradley. The section
on use of the "application/x-ww-formurl encoded" nedia type was
drafted by Julian Reschke. The ABNF section was drafted by M chael

B. Jones.

The QAuth 1.0 community specification was edited by Eran Hamrer and
aut hored by Mark Atwood, Dirk Bal fanz, Darren Bounds, Richard M
Conl an, Bl ai ne Cook, Leah Cul ver, Breno de Medeiros, Brian Eaton,
Kellan Elliott-MCrea, Larry Halff, Eran Hammer, Ben Laurie, Chris
Messi na, John Panzer, Sam Quigley, David Recordon, Eran Sandl er,
Jonat han Sergent, Todd Sieling, Brian Slesinsky, and Andy Snith.

The QAuth WRAP specification was edited by D ck Hardt and authored by
Brian Eaton, Yaron Y. CGoland, Dick Hardt, and Allen Tom

This specification is the work of the QAuth Working G oup, which

i ncl udes dozens of active and dedicated participants. |In particular,
the follow ng individuals contributed ideas, feedback, and wording
that shaped and forned the final specification:

M chael Adanms, Amanda Anganes, Andrew Arnott, Dirk Bal fanz, Aiden
Bel I, John Bradl ey, Marcos Caceres, Brian Canpbell, Scott Cantor,
Bl ai ne Cook, Roger Crew, Leah Culver, Bill de hOra, Andre DeMarre,
Brian Eaton, Wesley Eddy, Wlter Eldering, Brian Ellin, |gor
Faynberg, Ceorge Fletcher, Tim Freeman, Luca Frosini, Evan G| bert,
Yaron Y. CGol and, Brent Gol dman, Kristoffer G onowski, Eran Hamer,
D ck Hardt, Justin Hart, Craig Heath, Phil Hunt, M chael B. Jones,
Terry Jones, John Kenp, Mark Kent, Raffi Krikorian, Chasen Le Hara,
Rasnus Lerdorf, Torsten Lodderstedt, Hui-Lan Lu, Casey Lucas, Paul
Madsen, Al astair Miir, Eve Maler, Janes Manger, Mark Md oin,
Laurence Mao, Wlliam MIls, Chuck Mrtinore, Anthony Nadalin,
Julian Reschke, Justin Richer, Peter Saint-Andre, Nat Sakinura, Rob
Sayre, Marius Scurtescu, Naitik Shah, Luke Shepard, W ad Skvortsov,
Justin Smith, Haibin Song, Niv Steingarten, Christian Stuebner,
Jereny Suriel, Paul Tarjan, Christopher Thonmas, Henry S. Thonpson,
Allen Tom Franklin Tse, N ck Wl ker, Shane Weden, and Skyl ar
Woodwar d.

Har dt St andards Track [Page 75]

RFC 6749 QAuth 2.0 COct ober 2012

Thi s docunent was produced under the chairmanshi p of Bl ai ne Cook,
Pet er Saint-Andre, Hannes Tschofenig, Barry Leiba, and Derek Atkins.
The area directors included Lisa Dusseault, Peter Saint-Andre, and
St ephen Farrell.

Aut hor’ s Addr ess

D ck Hardt (editor)
M crosoft

EMai | : di ck. hardt @mai | . com
URI : http://di ckhardt. org/

Har dt St andards Track [Page 76]

