
Internet Engineering Task Force (IETF) T. Savolainen
Request for Comments: 6731 Nokia
Category: Standards Track J. Kato
ISSN: 2070-1721 NTT
 T. Lemon
 Nominum, Inc.
 December 2012

 Improved Recursive DNS Server Selection for Multi-Interfaced Nodes

Abstract

 A multi-interfaced node is connected to multiple networks, some of
 which might be utilizing private DNS namespaces. A node commonly
 receives recursive DNS server configuration information from all
 connected networks. Some of the recursive DNS servers might have
 information about namespaces other servers do not have. When a
 multi-interfaced node needs to utilize DNS, the node has to choose
 which of the recursive DNS servers to use. This document describes
 DHCPv4 and DHCPv6 options that can be used to configure nodes with
 information required to perform informed recursive DNS server
 selection decisions.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6731.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Savolainen, et al. Standards Track [Page 1]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 4
 2. Private Namespaces and Problems for Multi-Interfaced Nodes . . 4
 2.1. Fully Qualified Domain Names with Limited Scopes 4
 2.2. Network-Interface-Specific IP Addresses 5
 2.3. A Problem Not Fully Solved by the Described Solution . . . 6
 3. Deployment Scenarios . 7
 3.1. CPE Deployment Scenario 7
 3.2. Cellular Network Scenario 7
 3.3. VPN Scenario . 8
 3.4. Dual-Stack Accesses 8
 4. Improved RDNSS Selection 8
 4.1. Procedure for Prioritizing RDNSSes and Handling
 Responses . 9
 4.2. RDNSS Selection DHCPv6 Option 11
 4.3. RDNSS Selection DHCPv4 Option 13
 4.4. Scalability Considerations 15
 4.5. Limitations on Use . 15
 4.6. Coexistence of Various RDNSS Configuration Tools 16
 4.7. Considerations on Follow-Up Queries 17
 4.8. Closing Network Interfaces and Local Caches 17
 5. Example of a Node Behavior 17
 6. Considerations for Network Administrators 19
 7. IANA Considerations . 20
 8. Security Considerations 20
 8.1. Attack Vectors . 20
 8.2. Trust Levels of Network Interfaces 21
 8.3. Importance of Following the Algorithm 21
 9. References . 21
 9.1. Normative References 21
 9.2. Informative References 22
 Appendix A. Possible Alternative Practices for RDNSS Selection . 23
 A.1. Sending Queries Out on Multiple Interfaces in Parallel . . 23
 A.2. Search List Option for DNS Forward Lookup Decisions . . . 23
 A.3. More-Specific Routes for Reverse Lookup Decisions 24
 A.4. Longest Matching Prefix for Reverse Lookup Decisions . . . 24
 Appendix B. DNSSEC and Multiple Answers Validating with
 Different Trust Anchors 24
 Appendix C. Pseudocode for RDNSS Selection 24
 Appendix D. Acknowledgements 29

Savolainen, et al. Standards Track [Page 2]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

1. Introduction

 A multi-interfaced node (MIF node) faces several problems a single-
 homed node does not encounter, as is described in [RFC6418]. This
 document studies in detail the problems private namespaces might
 cause for multi-interfaced nodes and provides a solution. The node
 might be implemented as a host or as a router.

 We start from the premise that network operators sometimes include
 private, but still globally unique, namespaces in the answers they
 provide from Recursive DNS Servers (RDNSSes) and that those private
 namespaces are at least as useful to nodes as the answers from the
 public DNS. When private namespaces are visible for a node, some
 RDNSSes have information other RDNSSes do not have. The node ought
 to be able to query the RDNSS that can resolve the query regardless
 of whether the answer comes from the public DNS or a private
 namespace.

 An example of an application that benefits from multi-interfacing is
 a web browser that commonly accesses many different destinations,
 each of which is available on only one network. The browser
 therefore needs to be able to communicate over different network
 interfaces, depending on the destination it is trying to reach.

 Selection of the correct interface and source address is often
 crucial in the networks using private namespaces. In such
 deployments, the destination’s IP addresses might only be reachable
 on the network interface over which the destination’s name was
 resolved. Henceforth, the solution described in this document is
 assumed to be commonly used in combination with tools for delivering
 additional routing and source and destination address selection
 policies (e.g., [RFC4191] and [RFC3442].

 This document is organized in the following manner. Background
 information about problem descriptions and example deployment
 scenarios are included in Sections 2 and 3. Section 4 contains all
 normative descriptions for DHCP options and node behavior.
 Informative Section 5 illustrates behavior of a node implementing
 functionality described in Section 4. Section 6 contains normative
 guidelines related to creation of private namespaces. The IANA
 considerations are in Section 7. Informational Section 8 summarizes
 identified security considerations.

 Appendix A describes best current practices that are possible with
 tools preceding this document and that are possibilities on networks
 not supporting the solution described in this document. Appendix B
 discusses a scenario where multiple answers are possible to validate,

Savolainen, et al. Standards Track [Page 3]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 but with different trust anchors. Appendix C illustrates with
 pseudocode the functionality described in Section 4.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Private Namespaces and Problems for Multi-Interfaced Nodes

 This section describes two private namespace scenarios related to
 node multi-interfacing for which the procedure described in Section 4
 provides a solution. Additionally, Section 2.3 describes a problem
 for which this document provides only a partial solution.

2.1. Fully Qualified Domain Names with Limited Scopes

 A multi-interfaced node can be connected to one or more networks that
 are using private namespaces. As an example, the node can
 simultaneously open a Wireless LAN (WLAN) connection to the public
 Internet, a cellular connection to an operator network, and a Virtual
 Private Network (VPN) connection to an enterprise network. When an
 application initiates a connection establishment to a Fully Qualified
 Domain Name (FQDN), the node needs to be able to choose the right
 RDNSS for making a successful DNS query. This is illustrated in
 Figure 1. An FQDN for a public name can be resolved with any RDNSS,
 but for an FQDN of the private name of an enterprise’s or operator’s
 service, the node needs to be able to correctly select the right
 RDNSS for the DNS resolution, i.e., do also network interface
 selection already before destination’s IP address is known.

Savolainen, et al. Standards Track [Page 4]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 +---------------+
 | RDNSS with | | Enterprise
 +------+ | public + |----| Intranet
 | | | enterprise’s | |
 | |===== VPN =======| private names | |
 | | +---------------+ +----+
 | MIF | | FW |
 | node | +----+
 | | +---------------+ |
 | |----- WLAN ------| RDNSS with |----| Public
 | | | public names | | Internet
 | | +---------------+ +----+
 | | | FW |
 | | +---------------+ +----+
 | |---- cellular ---| RDNSS with | |
 +------+ | public + | | Operator
 | operator’s |----| Intranet
 | private names | |
 +---------------+

 Figure 1: Private DNS Namespaces Illustrated

2.2. Network-Interface-Specific IP Addresses

 In the second problem, an FQDN is valid and resolvable via different
 network interfaces, but to different and not necessarily globally
 reachable IP addresses, as is illustrated in Figure 2. The node’s
 routing, source, and destination address selection mechanism has to
 ensure the destination’s IP address is only used in combination with
 source IP addresses of the network interface on which the name was
 resolved.

 +--------------------| |
 +------+ IPv6 | RDNSS A |------| IPv6
 | |-- interface 1 --| saying Peer is | |
 | | | at: 2001:0db8:0::1 | |
 | MIF | +--------------------+ +------+
 | node | | Peer |
 | | +--------------------+ +------+
 | | IPv6 | RDNSS B | |
 | |-- interface 2 --| saying Peer is | |
 +------+ | at: 2001:0db8:1::1 |------| IPv6
 +--------------------+ |

 Figure 2: Private DNS Namespaces and Different IP Addresses for an
 FQDN on Interfaces 1 and 2

Savolainen, et al. Standards Track [Page 5]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 A similar situation can happen with IPv6 protocol translation and
 AAAA record synthesis [RFC6147]. A synthetic AAAA record is
 guaranteed to be valid only on the network on which it was
 synthesized. Figure 3 illustrates a scenario where the peer’s IPv4
 address is synthesized into different IPv6 addresses by RDNSSes A and
 B.

 +-------------------| +-------+
 +------+ IPv6 | RDNSS A |----| NAT64 |
 | |-- interface 1 --| saying Peer is | +-------+
 | | | at: A_Pref96:IPv4 | |
 | MIF | +-------------------+ | +------+
 | node | IPv4 +---| Peer |
 | | +-------------------+ | +------+
 | | IPv6 | RDNSS B | |
 | |-- interface 2 --| saying Peer is | +-------+
 +------+ | at: B_Pref96:IPv4 |----| NAT64 |
 +-------------------+ +-------+

 Figure 3: AAAA Synthesis Results in
 Network-Interface-Specific IPv6 Addresses

 It is worth noting that network-specific IP addresses can also cause
 problems for a single-homed node, if the node retains DNS cache
 during movement from one network to another. After the network
 change, a node can have entries in its DNS cache that are no longer
 correct or appropriate for its new network position.

2.3. A Problem Not Fully Solved by the Described Solution

 A more complex scenario is an FQDN, which in addition to possibly
 resolving into network-interface-specific IP addresses, identifies on
 different network interfaces completely different peer entities with
 potentially different sets of service offerings. In an even more
 complex scenario, an FQDN identifies a unique peer entity, but one
 that provides different services on its different network interfaces.
 The solution described in this document is not able to tackle these
 higher-layer issues. In fact, these problems might be solvable only
 by manual user intervention.

 However, when DNS Security (DNSSEC) is used, the DNSSEC validation
 procedure can provide assistance for selecting correct responses for
 some, but not all, use cases. A node might prefer to use the DNS
 answer that validates with the preferred trust anchor.

Savolainen, et al. Standards Track [Page 6]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

3. Deployment Scenarios

 This document has been written with three particular deployment
 scenarios in mind. The first is a Customer Premises Equipment (CPE)
 with two or more uplink Virtual Local Area Network (VLAN)
 connections. The second scenario involves a cellular device with two
 uplink Internet connections: WLAN and cellular. The third scenario
 is for VPNs, where use of a local RDNSS might be preferred for
 latency reasons, but the enterprise’s RDNSS has to be used to resolve
 private names used by the enterprise.

 In this section, we are referring to the RDNSS preference values
 defined in Section 4. The purpose of that is to illustrate when
 administrators might choose to utilize the different preference
 values.

3.1. CPE Deployment Scenario

 A home gateway can have two uplink connections leading to different
 networks, as described in [WITHOUT-IPV6NAT]. In the two-uplink
 scenario, only one uplink connection leads to the Internet, while the
 other uplink connection leads to a private network utilizing private
 namespaces.

 It is desirable that the CPE does not have to send DNS queries over
 both uplink connections, but instead, CPE need only send default
 queries to the RDNSS of the interface leading to the Internet and
 queries related to the private namespace to the RDNSS of the private
 network. This can be configured by setting the RDNSS of the private
 network to know about listed domains and networks, but not to be a
 default RDNSS.

 In this scenario, the legacy hosts can be supported by deploying DNS
 proxy on the CPE and configuring hosts in the LAN to talk to the DNS
 proxy. However, updated hosts would be able to talk directly to the
 correct RDNSS of each uplink ISP’s RDNSS. It is a deployment
 decision whether the updated hosts would be pointed to a DNS proxy or
 to actual RDNSSes.

 Depending on actual deployments, all VLAN connections might be
 considered trusted.

3.2. Cellular Network Scenario

 A cellular device can have both WLAN and cellular network interfaces
 up. In such a case, it is often desirable to use WLAN by default,
 except for the connections that the cellular network operator wants
 to go over the cellular interface. The use of WLAN for DNS queries

Savolainen, et al. Standards Track [Page 7]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 likely improves the power consumption of cellular devices and often
 provides lower latency. The cellular network might utilize private
 names; hence, the cellular device needs to ask for those through the
 cellular interface. This can be configured by setting the RDNSS of
 the cellular network to be of low preference and listing the domains
 and networks related to the cellular network’s private namespaces as
 being available via the cellular network’s RDNSS. This will cause a
 node to send DNS queries by default to the RDNSS of the WLAN
 interface (that is, by default, considered to be of medium
 preference) and queries related to private namespaces to the RDNSS of
 the cellular interface.

 In this scenario, the cellular interface can be considered trusted
 and WLAN oftentimes untrusted.

3.3. VPN Scenario

 Depending on a deployment, there might be interest in using VPN only
 for the traffic destined to a enterprise network. The enterprise
 might be using private namespaces; hence, related DNS queries need to
 be sent over VPN to the enterprise’s RDNSS, while by default, the
 RDNSS of a local access network might be used for all other traffic.
 This can be configured by setting the RDNSS of the VPN interface to
 be of low preference and listing the domains and networks related to
 an enterprise network’s private namespaces being available via the
 RDNSS of the VPN interface. This will cause a node to send DNS
 queries by default directly to the RDNSS of the WLAN interface (that
 is, by default, considered to be of medium preference) and queries
 related to private namespaces to the RDNSS of the VPN interface.

 In this scenario, the VPN interface can be considered trusted and the
 local access network untrusted.

3.4. Dual-Stack Accesses

 In all three scenarios, one or more of the connected networks can
 support both IPv4 and IPv6. In such a case, both or either of DHCPv4
 and DHCPv6 can be used to learn RDNSS selection information.

4. Improved RDNSS Selection

 This section describes DHCP options and a procedure that a (stub/
 proxy) resolver can utilize for improved RDNSS selection in the face
 of private namespaces and multiple simultaneously active network
 interfaces. The procedure is subject to limitations of use as
 described in Section 4.5. The pseudocode in Appendix C illustrates
 how the improved RDNSS selection works.

Savolainen, et al. Standards Track [Page 8]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

4.1. Procedure for Prioritizing RDNSSes and Handling Responses

 A resolver SHALL build a preference list of RDNSSes it will contact
 depending on the query. To build the list in an optimal way, a node
 SHALL request for RDNSS selection information with the DHCP options
 defined in Sections 4.2 and 4.3 before any DNS queries need to be
 made. With help of the received RDNSS selection information, the
 node can determine if any of the available RDNSSes have special
 knowledge about specific domains needed for forward DNS lookups or
 network addresses (later referred as "network") needed for reverse
 DNS lookups.

 A resolver lacking more specific information can assume that all
 information is available from any RDNSS of any network interface.
 The RDNSSes learned by other RDNSS address configuration methods can
 be considered as default RDNSSes, but preference-wise, they MUST be
 handled as medium preference RDNSSes (see also Section 4.6).

 When a DNS query needs to be made, the resolver MUST give highest
 preference to the RDNSSes explicitly known to serve a matching domain
 or network. The resolver MUST take into account differences in trust
 levels (see Section 8.2) of pieces of received RDNSS selection
 information. The resolver MUST prefer RDNSSes of trusted interfaces.
 The RDNSSes of untrusted interfaces can be of highest preference only
 if the trusted interfaces specifically configures low preference
 RDNSSes. The non-exhaustive list of cases in Figure 4 illustrates
 how the different trust levels of received RDNSS selection
 information influence the RDNSS selection logic. In Figure 4,
 "Medium", "High", and "Low" indicate the explicitly configured
 RDNSS’s preference over other RDNSSes. The "Medium" preference is
 also used with RDNSSes for which no explicit preference configuration
 information is available. The "Specific domains" in Figure 4
 indicate the explicitly configured "Domains and networks" private
 namespace information that a particular RDNSS has.

 A resolver MUST prioritize between equally trusted RDNSSes with the
 help of the DHCP option preference field. The resolver MUST NOT
 prioritize less trusted RDNSSes higher than trusted, even in the case
 when a less trusted RDNSS would apparently have additional
 information. In the case of all other things being equal, the
 resolver can make the prioritization decision based on its internal
 preferences.

Savolainen, et al. Standards Track [Page 9]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 Information from | Information from | Resulting RDNSS
 more trusted | less trusted | preference
 interface A | interface B | selection
 --------------------------+------------------------+-----------------
 1. Medium preference | Medium preference | Default:
 default | default | A, then B
 --------------------------+------------------------+-----------------
 2. Medium preference | High preference default| Default:
 default | | A, then B
 | Specific domains | Specific:
 | | A, then B
 --------------------------+------------------------+-----------------
 3. Low preference default | Medium preference | Default:
 | default | B, then A
 --------------------------+------------------------+-----------------
 4. Low preference default | Medium preference | Default:
 | default | B, then A
 Specific domains | | Specific:
 | | A, then B
 --------------------------+------------------------+-----------------

 Figure 4: RDNSS Selection in the Case of Different Trust Levels

 Because DNSSEC provides cryptographic assurance of the integrity of
 DNS data, it is necessary to prefer data that can be validated under
 DNSSEC over data that cannot. There are two ways that a node can
 determine that data is valid under DNSSEC. The first is to perform
 DNSSEC validation itself. The second is to have a secure connection
 to an authenticated RDNSS and to rely on that RDNSS to perform DNSSEC
 validation (signaling that it has done so using the AD bit). DNSSEC
 is necessary to detect forged responses, and without it any DNS
 response could be forged or altered. Unless the DNS responses have
 been validated with DNSSEC, a node cannot make a decision to prefer
 data from any interface with any great assurance.

 A node SHALL send requests to RDNSSes in the order defined by the
 preference list until an acceptable reply is received, all replies
 are received, or a timeout occurs. In the case of a requested name
 matching to a specific domain or network rule accepted from any
 interface, a DNSSEC-aware resolver MUST NOT proceed with a reply that
 cannot be validated using DNSSEC until all RDNSSes on the preference
 list have been contacted or timed out. This protects against
 possible redirection attacks. In the case of the requested name not
 matching to any specific domain or network, the first received
 response from any RDNSS can be considered acceptable. A DNSSEC-aware
 node MAY always contact all RDNSSes in an attempt to receive a
 response that can be validated, but contacting all RDNSSes is not

Savolainen, et al. Standards Track [Page 10]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 mandated for the default case as that would consume excess resources
 in some deployments.

 In the case of a validated NXDOMAIN response being received from an
 RDNSS that can provide answers for the queried name, a node MUST NOT
 accept non-validated replies from other RDNSSes (see Appendix B for
 considerations related to multiple trust anchors).

4.2. RDNSS Selection DHCPv6 Option

 DHCPv6 option described below can be used to inform resolvers what
 RDNSS can be contacted when initiating forward or reverse DNS lookup
 procedures. This option is DNS record type agnostic and applies, for
 example, equally to both A and AAAA queries.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_RDNSS_SELECTION | option-len |
 +-+
 | |
 | DNS-recursive-name-server (IPv6 address) |
 | |
 | |
 +-+
 | Reserved |prf| |
 +-+-+-+-+-+-+-+-+ Domains and networks |
 | (variable length) |
 | |
 +-+

 Figure 5: DHCPv6 Option for Explicit Domain Configuration

 option-code: OPTION_RDNSS_SELECTION (74)

 option-len: Length of the option in octets

 DNS-recursive-name-server: An IPv6 address of RDNSS

 Reserved: Field reserved for the future. MUST be set to zero and
 MUST be ignored on receipt.

Savolainen, et al. Standards Track [Page 11]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 prf: RDNSS preference:

 01 High
 00 Medium
 11 Low
 10 Reserved

 Reserved preference value (10) MUST NOT be sent. On receipt,
 the Reserved value MUST be treated as Medium preference (00).

 Domains and networks: The list of domains for forward DNS lookup and
 networks for reverse DNS lookup about which
 the RDNSS has special knowledge. Field MUST
 be encoded as specified in Section 8 of
 [RFC3315]. A special domain of "." is used to
 indicate capability to resolve global names
 and act as a default RDNSS. Lack of a "."
 domain on the list indicates that the RDNSS
 only has information related to listed domains
 and networks. Networks for reverse mapping
 are encoded as defined for IP6.ARPA [RFC3596]
 or IN-ADDR.ARPA [RFC2317].

 A node SHOULD include the Option Request Option (OPTION_ORO
 [RFC3315]) in a DHCPv6 request with the OPTION_RDNSS_SELECTION option
 code to inform the DHCPv6 server about the support for the improved
 RDNSS selection logic. The DHCPv6 server receiving this information
 can then choose to provision RDNSS addresses only with
 OPTION_RDNSS_SELECTION.

 OPTION_RDNSS_SELECTION contains one or more domains of which the
 related RDNSS has particular knowledge. The option can occur
 multiple times in a single DHCPv6 message, if multiple RDNSSes are to
 be configured. This can be the case, for example, if a network link
 has multiple RDNSSes for reliability purposes.

 The list of networks MUST cover all the domains configured in this
 option. The length of the included networks SHOULD be as long as
 possible to avoid potential collision with information received on
 other option instances or with options received from DHCP servers of
 other network interfaces. Overlapping networks are interpreted so
 that the resolver can use any of the RDNSSes for queries matching the
 networks.

 If OPTION_RDNSS_SELECTION contains an RDNSS address already learned
 from other DHCPv6 servers of the same network and contains new
 domains or networks, the node SHOULD append the information to the
 information received earlier. The node MUST NOT remove previously

Savolainen, et al. Standards Track [Page 12]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 obtained information. However, the node SHOULD NOT extend the
 lifetime of earlier information either. When a conflicting RDNSS
 address is learned from a less trusted interface, the node MUST
 ignore the option.

 Like the RDNSS options of [RFC3646], OPTION_RDNSS_SELECTION MUST NOT
 appear in any other than the following DHCPv6 messages: Solicit,
 Advertise, Request, Renew, Rebind, Information-Request, and Reply.

 The client SHALL periodically refresh information learned with
 OPTION_RDNSS_SELECTION. The information SHALL be refreshed on link-
 state changes, such as those caused by node mobility, and when
 renewing lifetimes of IPv6 addresses configured with DHCPv6.
 Additionally, the DHCPv6 Information Refresh Time Option, as
 specified in [RFC4242], can be used to control the update frequency.

4.3. RDNSS Selection DHCPv4 Option

 The DHCPv4 option described below can be used to inform resolvers
 which RDNSS can be contacted when initiating forward or reverse DNS
 lookup procedures. This option is DNS record type agnostic and
 applies, for example, equally to both A and AAAA queries.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | CODE | Len | Reserved |prf| Primary .. |
 +-+
 | .. DNS-recursive-name-server’s IPv4 address | Secondary .. |
 +-+
 | .. DNS-recursive-name-server’s IPv4 address | |
 +-+ |
 | |
 + Domains and networks |
 | (variable length) |
 | |
 +-+

 Figure 6: DHCPv4 Option for Explicit Domain Configuration

 option-code: RDNSS Selection (146)

 option-len: Length of the option in octets

 Reserved: Field reserved for the future. MUST be set to zero and
 MUST be ignored on receipt.

Savolainen, et al. Standards Track [Page 13]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 prf: RDNSS preference:

 01 High
 00 Medium
 11 Low
 10 Reserved

 Reserved preference value (10) MUST NOT be sent. On receipt,
 the Reserved value MUST be treated as Medium preference (00).

 Primary DNS-recursive-name-server’s IPv4 address: Address of a
 primary RDNSS

 Secondary DNS-recursive-name-server’s IPv4 address: Address of a
 secondary RDNSS
 or 0.0.0.0 if
 not configured

 Domains and networks: The list of domains for forward DNS lookup and
 networks for reverse DNS lookup about which
 the RDNSSes have special knowledge. Field
 MUST be encoded as specified in Section 8 of
 [RFC3315]. A special domain of "." is used to
 indicate capability to resolve global names
 and act as the default RDNSS. Lack of a "."
 domain on the list indicates that RDNSSes only
 have information related to listed domains and
 networks. Networks for reverse mapping are
 encoded as defined for IP6.ARPA [RFC3596] or
 IN-ADDR.ARPA [RFC2317].

 The RDNSS Selection option contains one or more domains of which the
 primary and secondary RDNSSes have particular knowledge. If the
 length of the domains and networks field causes option length to
 exceed the maximum permissible for a single option (255 octets), then
 multiple options MAY be used, as described in "Encoding Long Options
 in the Dynamic Host Configuration Protocol (DHCPv4)" [RFC3396]. When
 multiple options are present, the data portions of all option
 instances are concatenated together.

 The list of networks MUST cover all the domains configured in this
 option. The length of the included networks SHOULD be as long as
 possible to avoid potential collision with information received on
 other option instances or with options received from DHCP servers of
 other network interfaces. Overlapping networks are interpreted so
 that the resolver can use any of the RDNSSes for queries matching the
 networks.

Savolainen, et al. Standards Track [Page 14]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 If the RDNSS Selection option contains an RDNSS address already
 learned from other DHCPv4 servers of the same network and contains
 new domains or networks, the node SHOULD append the information to
 the information received earlier. The node MUST NOT remove
 previously obtained information. However, the node SHOULD NOT extend
 the lifetime of earlier information either. When a conflicting RDNSS
 address is learned from a less trusted interface, the node MUST
 ignore the option.

 The client SHALL periodically refresh information learned with the
 RDNSS Selection option. The information SHALL be refreshed on link-
 state changes, such as those caused by node mobility, and when
 extending the lease of IPv4 addresses configured with DHCPv4.

4.4. Scalability Considerations

 The general size limitations of the DHCP messages limit the number of
 domains and networks that can be carried inside of these RDNSS
 selection options. The DHCP options for RDNSS selection are best
 suited for those deployments where relatively few and carefully
 selected domains and networks are enough.

4.5. Limitations on Use

 The RDNSS selection option SHOULD NOT be enabled by default. (In
 this section, "RDNSS selection option" refers to the DHCPv4 RDNSS
 Selection option and the DHCPv6 OPTION_RDNSS_SELECTION.) The option
 can be used in the following environments:

 1. The RDNSS selection option is delivered across a secure, trusted
 channel.

 2. The RDNSS selection option is not secured, but the client on a
 node does DNSSEC validation.

 3. The RDNSS selection option is not secured, the resolver does
 DNSSEC validation, and the client communicates with the resolver
 configured with the RDNSS selection option over a secure, trusted
 channel.

 4. The IP address of the RDNSS that is being recommended in the
 RDNSS selection option is known and trusted by the client; that
 is, the RDNSS selection option serves not to introduce the client
 to a new RDNSS, but rather to inform it that the RDNSS it has
 already been configured to trust is available to it for resolving
 certain domains.

Savolainen, et al. Standards Track [Page 15]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 As the DHCP by itself cannot tell whether it is using a secure,
 trusted channel, or whether the client on a node is performing DNSSEC
 validation, this option cannot be used without being explicitly
 enabled. The functionality can be enabled for an interface via
 administrative means, such as by provisioning tools or manual
 configuration. Furthermore, the functionality can be automatically
 enabled by a client on a node that knows it is performing DNSSEC
 validation or by a node that is configured or hard-coded to trust
 certain interfaces (see Section 8.2).

4.6. Coexistence of Various RDNSS Configuration Tools

 The DHCPv4 RDNSS Selection option and the DHCPv6
 OPTION_RDNSS_SELECTION are designed to coexist with each other and
 with other tools used for RDNSS address configuration.

 For RDNSS selection purposes, information received from all tools
 MUST be combined together into a single list, as discussed in
 Section 4.1.

 It can happen that DHCPv4 and DHCPv6 are providing conflicting RDNSS
 selection information on the same or on equally trusted interfaces.
 In such a case, DHCPv6 MUST be preferred unless DHCPv4 is utilizing
 additional security frameworks for protecting the messages.

 The RDNSSes learned via tools other than the DHCPv4 RDNSS Selection
 option and the DHCPv6 OPTION_RDNSS_SELECTION MUST be handled as
 default RDNSSes, with medium preference, when building a list of
 RDNSSes to talk to (see Section 4.1).

 The non-exhaustive list of possible other sources for RDNSS address
 configuration are:

 (1) DHCPv6 OPTION_DNS_SERVERS defined in [RFC3646].

 (2) DHCPv4 Domain Server option defined in [RFC2132].

 (3) IPv6 Router Advertisement RDNSS Option defined in [RFC6106].

 When the RDNSS selection option contains a default RDNSS address and
 other sources are providing RNDSS addresses, the resolver MUST make
 the decision about which one to prefer based on the RDNSS preference
 field value. If the RDNSS selection option defines medium
 preference, then the RDNSS from the RDNSS selection option SHALL be
 selected.

 If multiple sources are providing same RDNSS(es) IP address(es), each
 address MUST be added to the RDNSS list only once.

Savolainen, et al. Standards Track [Page 16]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 If a node had indicated support for OPTION_RDNSS_SELECTION in a
 DHCPv6 request, the DHCPv6 server MAY omit sending of
 OPTION_DNS_SERVERS. This enables offloading use case where the
 network administrator wishes to only advertise low preference default
 RDNSSes.

4.7. Considerations on Follow-Up Queries

 Any follow-up queries that are performed on the basis of an answer
 received on an interface MUST continue to use the same interface,
 irrespective of the RDNSS selection settings on any other interface.
 For example, if a node receives a reply with a canonical name (CNAME)
 or delegation name (DNAME), the follow-up queries MUST be sent to
 RDNSS(es) of the same interface, or to the same RDNSS, irrespectively
 of the FQDN received. Otherwise, referrals can fail.

4.8. Closing Network Interfaces and Local Caches

 Cached information related to private namespaces can become obsolete
 after the network interface over which the information was learned is
 closed (Section 2.2) or a new parallel network interface is opened
 that alters RDNSS selection preferences. An implementation SHOULD
 ensure obsolete information is not retained in these events. One
 implementation approach to avoid unwanted/obsolete responses from the
 local cache is to manage per-interface DNS caches or have interface
 information stored in the DNS cache. An alternative approach is to
 perform, possibly selective, DNS cache flushing on interface change
 events.

5. Example of a Node Behavior

 Figure 7 illustrates node behavior when it initializes two network
 interfaces for parallel usage and learns domain and network
 information from DHCPv6 servers.

Savolainen, et al. Standards Track [Page 17]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 Application Node DHCPv6 server DHCPv6 server
 on interface 1 on interface 2
 | | |
 | +-----------+ |
 (1) | | open | |
 | | interface | |
 | +-----------+ |
 | | |
 (2) | |---option REQ-->|
 | |<--option RESP--|
 | | |
 | +-----------+ |
 (3) | | store | |
 | | domains | |
 | +-----------+ |
 | | |
 | +-----------+ |
 (4) | | open | |
 | | interface | |
 | +-----------+ |
 | | | |
 (5) | |---option REQ------------------->|
 | |<--option RESP-------------------| |
 | | | |
 | +----------+ | |
 (6) | | store | | |
 | | domains | | |
 | +----------+ | |
 | | | |

 Figure 7: Illustration of Learning Domains

 Flow explanations:

 1. A node opens its first network interface.

 2. The node obtains domain ’domain1.example.com’ and IPv6 network
 ’0.8.b.d.0.1.0.0.2.ip6.arpa’ for the new interface 1 from the
 DHCPv6 server.

 3. The node stores the learned domains and IPv6 networks for later
 use.

 4. The node opens its second network interface 2.

 5. The node obtains domain ’domain2.example.com’ and IPv6 network
 information, say ’1.8.b.d.0.1.0.0.2.ip6.arpa’ for the new
 interface 2 from the DHCPv6 server.

Savolainen, et al. Standards Track [Page 18]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 6. The node stores the learned domains and networks for later use.

 Figure 8 illustrates how a resolver uses the learned domain
 information. Network information use for reverse lookups is not
 illustrated, but that would be similar to the example in Figure 8.

 Application Node RDNSS RDNSS
 on interface 1 on interface 2
 | | | |
 (1) |--Name REQ-->| | |
 | | | |
 | +----------------+ | |
 (2) | | RDNSS | | |
 | | prioritization | | |
 | +----------------+ | |
 | | | |
 (3) | |------------DNS resolution------>|
 | |<--------------------------------|
 | | | |
 (4) |<--Name resp-| | |
 | | | |

 Figure 8: Example on Choosing Interface Based on Domain

 Flow explanations:

 1. An application makes a request for resolving an FQDN, e.g.,
 ’private.domain2.example.com’.

 2. A node creates list of RDNSSes to contact and uses configured
 RDNSS selection information and stored domain information on
 prioritization decisions.

 3. The node has chosen interface 2, as it was learned earlier from
 DHCPv6 that the interface 2 has domain ’domain2.example.com’.
 The node then resolves the requested name using interface 2’s
 RDNSS to an IPv6 address.

 4. The node replies to the application with the resolved IPv6
 address.

6. Considerations for Network Administrators

 Network administrators deploying private namespaces can assist
 advanced nodes in their RDNSS selection process by providing the
 information described within this document.

Savolainen, et al. Standards Track [Page 19]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 Private namespaces MUST be globally unique in order to keep DNS
 unambiguous and henceforth avoid caching-related issues and
 destination selection problems (see Section 2.3). Exceptions to this
 rule are domains utilized for local name resolution (such as .local).

 Private namespaces MUST only consist of subdomains of domains for
 which the relevant operator provides authoritative name service.
 Thus, subdomains of example.com are permitted in the private
 namespace served by an operator’s RDNSSes only if the same operator
 provides a SOA record for example.com.

 It is RECOMMENDED for administrators utilizing this tool to deploy
 DNSSEC for their zone in order to counter attacks against private
 namespaces.

7. IANA Considerations

 Per this memo, IANA has assigned two new option codes.

 The first option code has been assigned for the DHCPv4 RDNSS
 Selection option (146) from the "BOOTP Vendor Extensions and DHCP
 Options" registry in the group "Dynamic Host Configuration Protocol
 (DHCP) and Bootstrap Protocol (BOOTP) Parameters".

 The second option code is requested to be assigned for the DHCPv6
 OPTION_RDNSS_SELECTION (74) from the "DHCP Option Codes" registry in
 the group "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".

8. Security Considerations

8.1. Attack Vectors

 It is possible that attackers might try to utilize the DHCPv4 RDNSS
 Selection option or the DHCPv6 OPTION_RDNSS_SELECTION option to
 redirect some or all DNS queries sent by a resolver to undesired
 destinations. The purpose of an attack might be denial of service,
 preparation for man-in-the-middle attack, or something akin.

 Attackers might try to lure specific traffic by advertising domains
 and networks from very small to very large scope or simply by trying
 to place the attacker’s RDNSS as the highest preference default
 RDNSS.

 The best countermeasure for nodes is to implement validating DNSSEC-
 aware resolvers. Trusting validation done by an RDNSS is a
 possibility only if a node trusts the RDNSS and can use a secure
 channel for DNS messages.

Savolainen, et al. Standards Track [Page 20]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

8.2. Trust Levels of Network Interfaces

 Trustworthiness of an interface and configuration information
 received over the interface is implementation and/or node deployment
 dependent, and the details of determining that trust are beyond the
 scope of this specification. Trust might, for example, be based on
 the nature of the interface: an authenticated and encrypted VPN, or a
 layer 2 connection to a trusted home network or to a trusted cellular
 network, might be considered trusted, while an unauthenticated and
 unencrypted connection to an unknown visited network would likely be
 considered untrusted.

 In many cases, an implementation might not be able to determine trust
 levels without explicit configuration provided by the user or the
 node’s administrator. Therefore, for example, an implementation
 might not by default trust configuration received even over VPN
 interfaces. In some occasions, standards defining organizations that
 are specific to access network technology might be able to define
 trust levels as part of the system design work.

8.3. Importance of Following the Algorithm

 Section 4 uses normative language for describing a node’s internal
 behavior in order to ensure that nodes will not open up new attack
 vectors by accidental use of RDNSS selection options. During the
 standards work, consensus was that it is safer to not always enable
 this option by default, but only when deemed useful and safe.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, March 1997.

 [RFC2317] Eidnes, H., de Groot, G., and P. Vixie, "Classless IN-
 ADDR.ARPA delegation", BCP 20, RFC 2317, March 1998.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC3396] Lemon, T. and S. Cheshire, "Encoding Long Options in the
 Dynamic Host Configuration Protocol (DHCPv4)", RFC 3396,
 November 2002.

Savolainen, et al. Standards Track [Page 21]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 [RFC3596] Thomson, S., Huitema, C., Ksinant, V., and M. Souissi,
 "DNS Extensions to Support IP Version 6", RFC 3596,
 October 2003.

 [RFC4242] Venaas, S., Chown, T., and B. Volz, "Information Refresh
 Time Option for Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 4242, November 2005.

9.2. Informative References

 [RFC3397] Aboba, B. and S. Cheshire, "Dynamic Host Configuration
 Protocol (DHCP) Domain Search Option", RFC 3397,
 November 2002.

 [RFC3442] Lemon, T., Cheshire, S., and B. Volz, "The Classless
 Static Route Option for Dynamic Host Configuration
 Protocol (DHCP) version 4", RFC 3442, December 2002.

 [RFC3646] Droms, R., "DNS Configuration options for Dynamic Host
 Configuration Protocol for IPv6 (DHCPv6)", RFC 3646,
 December 2003.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, November 2005.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, October 2005.

 [RFC6106] Jeong, J., Park, S., Beloeil, L., and S. Madanapalli,
 "IPv6 Router Advertisement Options for DNS Configuration",
 RFC 6106, November 2010.

 [RFC6147] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
 Beijnum, "DNS64: DNS Extensions for Network Address
 Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
 April 2011.

 [RFC6418] Blanchet, M. and P. Seite, "Multiple Interfaces and
 Provisioning Domains Problem Statement", RFC 6418,
 November 2011.

 [WITHOUT-IPV6NAT]
 Troan, O., Miles, D., Matsushima, S., Okimoto, T., and D.
 Wing, "IPv6 Multihoming without Network Address
 Translation", Work in Progress, February 2012.

Savolainen, et al. Standards Track [Page 22]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

Appendix A. Possible Alternative Practices for RDNSS Selection

 On some private namespace deployments, explicit policies for RDNSS
 selection are not available. This section describes ways for nodes
 to mitigate the problem by sending wide-spread queries and by
 utilizing possibly existing indirect information elements as hints.

A.1. Sending Queries Out on Multiple Interfaces in Parallel

 A possible current practice is to send DNS queries out of multiple
 interfaces and pick up the best out of the received responses. A
 node can implement DNSSEC in order to be able to reject responses
 that cannot be validated. Selection between legitimate answers is
 implementation specific, but replies from trusted RDNSSes are
 preferred.

 A downside of this approach is increased consumption of resources,
 namely, power consumption if an interface, e.g., wireless, has to be
 brought up just for the DNS query that could have been resolved via a
 cheaper interface. Also, load on RDNSSes is increased. However,
 local caching of results mitigates these problems, and a node might
 also learn interfaces that seem to be able to provide ’better’
 responses than others and prefer those, without forgetting that
 fallback is required for cases when the node is connected to more
 than one network using private namespaces.

A.2. Search List Option for DNS Forward Lookup Decisions

 A node can learn the special domains of attached network interfaces
 from IPv6 Router Advertisement DNS Search List Option [RFC6106] or
 DHCP search list options -- DHCPv4 Domain Search Option number 119
 [RFC3397] and DHCPv6 Domain Search List Option number 24 [RFC3646].
 The node behavior is very similar to that illustrated in the example
 in Section 5. While these options are not intended to be used in
 RDNSS selection, they can be used by the nodes as hints for smarter
 RDNSS prioritization purposes in order to increase likelihood of fast
 and successful DNS queries.

 Overloading of existing DNS search list options is not without
 problems: resolvers would obviously use the domains learned from
 search lists for name resolution purposes. This might not be a
 problem in deployments where DNS search list options contain few
 domains like ’example.com, private.example.com’ but can become a
 problem if many domains are configured.

Savolainen, et al. Standards Track [Page 23]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

A.3. More-Specific Routes for Reverse Lookup Decisions

 [RFC4191] defines how more-specific routes can be provisioned for
 nodes. This information is not intended to be used in RDNSS
 selection, but nevertheless, a node can use this information as a
 hint about which interface would be best to try first for reverse
 lookup procedures. An RDNSS configured via the same interface as
 more-specific routes is more likely capable to answer reverse lookup
 questions correctly than an RDNSS of another interface. The
 likelihood of success is possibly higher if an RDNSS address is
 received in the same RA [RFC6106] as the more-specific route
 information.

A.4. Longest Matching Prefix for Reverse Lookup Decisions

 A node can utilize the longest matching prefix approach when deciding
 which RDNSS to contact for reverse lookup purposes. Namely, the node
 can send a DNS query to an RDNSS learned over an interface having a
 longest matching prefix to the address being queried. This approach
 can help in cases where Unique Local Addressing (ULA) [RFC4193]
 addresses are used and when the queried address belongs to a node or
 server within the same network (for example, intranet).

Appendix B. DNSSEC and Multiple Answers Validating with Different Trust
 Anchors

 When validating DNS answers with DNSSEC, a validator might order the
 list of trust anchors it uses to start validation chains, in the
 order of the node’s preferences for those trust anchors. A node
 could use this ability in order to select among alternative DNS
 results from different interfaces. Suppose that a node has a trust
 anchor for the public DNS root and also has a special-purpose trust
 anchor for example.com. An answer is received on interface i1 for
 www.example.com, and the validation for that succeeds by using the
 public trust anchor. Also, an answer is received on interface i2 for
 www.example.com, and the validation for that succeeds by using the
 trust anchor for example.com. In this case, the node has evidence
 for relying on i2 for answers in the example.com zone.

Appendix C. Pseudocode for RDNSS Selection

 This section illustrates the RDNSS selection logic in C-style
 pseudocode. The code is not intended to be usable as such; it is
 only here for illustration purposes.

 The beginning of the whole procedure is a call to "dns_query"
 function with a query and list of RDNSSes given as parameters.

Savolainen, et al. Standards Track [Page 24]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

/* This is a structure that holds all information related to an RDNSS.*/
/* Here we include only the information related for this illustration.*/
struct rdnss
{
 int prf; /* Preference of an RDNSS. */
 int interface; /* Type of an interface RDNSS was learned over. */
 struct d_and_n; /* Domains and networks information for this RDNSS. */
};

int has_special_knowledge(const struct rdnss *rdnss,
 const char *query)
{
/* This function matches the query to the domains and networks
 information of the given RDNSS. The function returns TRUE
 if the query matches the domains and networks; otherwise, FALSE. */

/* The implementation of this matching function
 is left for reader, or rather writer. */

/* return TRUE if query matches rdnss->d_and_n, otherwise FALSE. */
}

const struct rdnss* compare_rdnss_prf(const struct rdnss *rdnss_1,
 const struct rdnss *rdnss_2)
{
/* This function compares preference values of two RDNSSes and
 returns the more preferred RDNSS. The function prefers rdnss_1
 in the case of equal preference values. */

 if (rdnss_1->prf == HIGH_PRF) return rdnss_1;
 if (rdnss_2->prf == HIGH_PRF) return rdnss_2;
 if (rdnss_1->prf == MED_PRF) return rdnss_1;
 if (rdnss_2->prf == MED_PRF) return rdnss_2;
 return rdnss_1;
}

const struct rdnss* compare_rdnss_trust(const struct rdnss *rdnss_1,
 const struct rdnss *rdnss_2)
{
/* This function compares trust of the two given RDNSSes. The trust
 is based on the trust on the interface RDNSS was learned on. */

/* If the interface is the same, the trust is also the same,
 and hence, function will return NULL to indicate lack of
 difference in trust. */

 if (rdnss_1->interface == rdnss_2->interface) return NULL;

Savolainen, et al. Standards Track [Page 25]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

/* Otherwise, implementation-specific rules define which interface
 is considered more secure than the other. The rules shown here
 are only for illustrative purposes and must be overwritten by
 real implementations. */

 if (rdnss_1->interface == IF_VPN) return rdnss_1;
 if (rdnss_2->interface == IF_VPN) return rdnss_2;
 if (rdnss_1->interface == IF_CELLULAR) return rdnss_1;
 if (rdnss_2->interface == IF_CELLULAR) return rdnss_2;
 if (rdnss_1->interface == IF_WLAN) return rdnss_1;
 if (rdnss_2->interface == IF_WLAN) return rdnss_2;

/* Both RDNSSes are from unknown interfaces, so return NULL as
 trust-based comparison is impossible. */
 return NULL;
}

int compare_rdnsses (const struct rdnss *rdnss_1,
 const struct rdnss *rdnss_2,
 const char *query)
{
/* This function compares two RDNSSes and decides which one is more
 preferred for resolving the query. If the rdnss_1 is more
 preferred, the function returns TRUE; otherwise, FALSE. */

 const struct rdnss *more_trusted_rdnss = NULL;
 const struct rdnss *less_trusted_rdnss = NULL;

/* Find out if either RDNSS is more trusted. */
 more_trusted_rdnss = compare_rdnss_trust(rdnss_1, rdnss_2);

/* Check if either was more trusted. */
 if (more_trusted_rdnss)
 {

/* Check which RDNSS was less trusted. */
 less_trusted_rdnss =
 more_trusted_rdnss == rdnss_1 ? rdnss_2 : rdnss_1;

/* If the more trusted interface is not of low preference
 or has special knowledge about the query, or the more
 trusted is more preferred and the less trusted has no special
 information, prefer more trusted. Otherwise, prefer less trusted. */
 if (more_trusted_rdnss->prf != LOW_PRF ||
 has_special_knowledge(more_trusted_rdnss, query) ||
 (compare_rdnss_prf(more_trusted_rdnss, less_trusted_rdnss)
 == more_trusted_rdnss &&
 !has_special_knowledge(less_trusted_rdnss, query)))

Savolainen, et al. Standards Track [Page 26]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 {
/* If the more_trusted_rdnss was rdnss_1, return TRUE. */
 return more_trusted_rdnss == rdnss_1 ? TRUE : FALSE;
 }
 else
 {
/* If the more_trusted_rdnss was rdnss_1, return TRUE. */
 return less_trusted_rdnss == rdnss_1 ? TRUE : FALSE;
 }
 }
 else
 {
/* There is no trust difference between RDNSSes; therefore, prefer the
 RDNSS that has special knowledge. If both have specific knowledge,
 then prefer the rdnss_1. */
 if (has_special_knowledge(rdnss_1, query)) return TRUE;
 if (has_special_knowledge(rdnss_2, query)) return FALSE;

/* Neither had special knowledge. Therefore, return TRUE if
 rdnss_1 is more preferred; otherwise, return FALSE */
 return compare_rdnss_prf(rdnss_1 , rdnss_2)
 == rdnss_1 ? TRUE : FALSE;
 }
}

void bubble_sort_rdnsses(struct rdnss rdnss_list[],
 const int rdnsses,
 const char* query)
{
/* This function implements a bubble sort to arrange
 RDNSSes in rdnss_list into preference order. */

 int i;
 int swapped = 0;
 struct rdnss rdnss_swap;

 do
 {
/* Clear swapped-indicator. */
 swapped = FALSE;

/* Go through the RDNSS list. */
 for (i = 0; i < rdnsses-1; i++)
 {
/* Check if the next two items are in the right order, i.e.,
 more preferred before less preferred. */
 if (compare_rdnsses(&rdnss_list[i],
 &rdnss_list[i+1], query) == FALSE)

Savolainen, et al. Standards Track [Page 27]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 {
/* The order between two was not right, so swap these two RDNSSes. */
 rdnss_swap = rdnss_list[i];
 rdnss_list[i] = rdnss_list[i+1];
 rdnss_list[i+1] = rdnss_swap;
 swapped = TRUE;
 }
 }
 } while (swapped);

/* No more swaps, which means the rdnss_list is now sorted
 into preference order. */
}

struct hostent *dns_query(struct rdnss rdnss_list[],
 const int rdnsses,
 const char* query)
{
/* Perform address resolution for the query. */
 int i;
 struct hostent response;

/* Sort the RDNSSes into preference order. */
/* This is the function with which this pseudocode starts. */
 bubble_sort_rdnsses(&rdnss_list[0], rdnsses, query);

/* Go thourgh all RDNSSes or until valid response is found. */
 for (i = 0; i < rdnsses; i++)
 {

/* Use the highest preference RDNSS first. */
 response = send_and_validate_dns_query(rndss_list[i], query);

/* Check if DNSSEC validation is in use, and if so, validate the
 received response. */
 if (dnssec_in_use)
 {
 response = dnssec_validate(response);

/* If response is validated, use that. Otherwise, proceed to next
 RDNSS. */
 if (response) return response;
 else continue;
 }

/* If acceptable response has been found, return it. */
 if (response) return response;
 }

Savolainen, et al. Standards Track [Page 28]

RFC 6731 RDNSS Selection for MIF Nodes December 2012

 return NULL;
}

Appendix D. Acknowledgements

 The authors would like to thank the following people for their
 valuable feedback and improvement ideas: Mark Andrews, Jari Arkko,
 Marcelo Bagnulo, Brian Carpenter, Stuart Cheshire, Lars Eggert,
 Stephan Farrell, Tomohiro Fujisaki, Brian Haberman, Peter Koch,
 Suresh Krishnan, Murray Kucherawy, Barry Leiba, Edward Lewis, Kurtis
 Lindqvist, Arifumi Matsumoto, Erik Nordmark, Steve Padgett, Fabien
 Rapin, Matthew Ryan, Robert Sparks, Dave Thaler, Sean Turner,
 Margaret Wasserman, Dan Wing, and Dec Wojciech. Ted Lemon and Julien
 Laganier receive special thanks for their contributions to security
 considerations.

Authors’ Addresses

 Teemu Savolainen
 Nokia
 Hermiankatu 12 D
 Tampere FI-33720
 Finland

 EMail: teemu.savolainen@nokia.com

 Jun-ya Kato
 NTT
 9-11, Midori-Cho 3-Chome Musashino-Shi
 Tokyo 180-8585
 Japan

 EMail: kato@syce.net

 Ted Lemon
 Nominum, Inc.
 2000 Seaport Boulevard
 Redwood City, CA 94063
 USA

 Phone: +1 650 381 6000
 EMail: Ted.Lemon@nominum.com

Savolainen, et al. Standards Track [Page 29]

