
Internet Engineering Task Force (IETF) J. Schaad
Request for Comments: 6664 Soaring Hawk Consulting
Category: Informational July 2012
ISSN: 2070-1721

 S/MIME Capabilities for Public Key Definitions

Abstract

 This document defines a set of Secure/Multipurpose Internet Mail
 Extensions (S/MIME) Capability types for ASN.1 encoding for the
 current set of public keys defined by the PKIX working group. This
 facilitates the ability for a requester to specify information on the
 public keys and signature algorithms to be used in responses.
 "Online Certificate Status Protocol Algorithm Agility" (RFC 6277)
 details an example of where this is used.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6664.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Schaad Informational [Page 1]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

Table of Contents

 1. Introduction . 2
 1.1. ASN.1 Notation . 3
 1.2. Requirements Terminology 4
 2. RSA Public Keys . 4
 2.1. Generic RSA Public Keys 4
 2.2. RSASSA-PSS Signature Public Keys 5
 2.3. RSAES-OAEP Key Transport Public Keys 6
 3. Diffie-Hellman Keys . 7
 3.1. DSA Signature Public Key 7
 3.2. DH Key Agreement Keys 8
 4. Elliptic Curve Keys . 8
 4.1. Generic Elliptic Curve Keys 9
 4.2. Elliptic Curve DH Keys 10
 4.3. Elliptic Curve MQV Keys 10
 5. RSASSA-PSS Signature Algorithm Capability 10
 6. Security Considerations 12
 7. References . 13
 7.1. Normative References 13
 7.2. Informative References 13
 Appendix A. 2008 ASN.1 Module 15
 Appendix B. 1988 ASN.1 Module 18
 Appendix C. Future Work . 19

1. Introduction

 In the process of dealing with the Online Certificate Status Protocol
 (OCSP) agility issues in [RFC6277], it was noted that we really
 wanted to describe information to be used in selecting a public key,
 but we did not have any way of doing so. This document fills that
 hole by defining a set of Secure/Multipurpose Internet Mail
 Extensions (S/MIME) Capability types for a small set of public key
 representations.

 S/MIME capabilities were originally defined in [SMIMEv3-MSG] as a way
 for the sender of an S/MIME message to tell the recipient of the
 message the set of encryption algorithms that were supported by the
 sender’s system. In the beginning, the focus was primarily on
 communicating the set of encryption algorithms that were supported by
 the sender. Over time, it was expanded to allow for an S/MIME client
 to state that it supported new features such as the compression data
 type and binary encoded contents. The structure was defined so that
 parameters can be passed in as part of the capability to allow for
 subsets of algorithms to be used. This was used for the RC2
 encryption algorithm, although only two values out of the set of
 values were ever used. The goal of restricting the set of values is
 to allow a client to use a simple binary comparison in order to check

Schaad Informational [Page 2]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 for equality. The client should never need to decode the capability
 and do an element-by-element comparison. Historically, this has not
 been a problem as the vast majority of S/MIME capabilities consist of
 just the algorithm identifier for the algorithm.

 Many people are under the impression that only a single data
 structure can be assigned to an object identifier, but this is not
 the case. As an example, the OID rsaEncryption is used in multiple
 locations for different data. It represents a public key, a key
 transport algorithm (in S/MIME), and was originally used in the
 Public-Key Cryptography Standards (PKCS) #7 specification as a
 signature value identifier (this has since been changed by the S/MIME
 specifications). One of the implications is that when mapping an
 object identifier to a data type structure, the location in the ASN.1
 structure needs to be taken into consideration as well.

1.1. ASN.1 Notation

 The main body of the text is written using snippets of ASN.1 that are
 extracted from the ASN.1 2008 module in Appendix A. ASN.1 2008 is
 used in this document because it directly represents the metadata
 that is not representable in the 1988 version of ASN.1 but instead is
 part of the text. In keeping with the current policy of the PKIX
 working group, the 1988 module along with the text is the normative
 module. In the event of a conflict between the content of the two
 modules, the 1988 module is authoritative.

 When reading this document, it is assumed that you will have a degree
 of familiarity with the basic object module that is presented in
 Section 3 of RFC 5912 [RFC5912]. We use the SMIME-CAPS object in
 this document; it associates two fields together in a single object.

 SMIME-CAPS ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Type OPTIONAL
 }
 WITH SYNTAX { [TYPE &Type] IDENTIFIED BY &id }

 These fields are:

 &id contains an object identifier. When placed in an object set,
 this element is tagged so that no two elements can be placed in
 the set that have the same value in the &id field. Note that this
 is not a restriction saying that only a single object can exist
 with a single object identifier.

Schaad Informational [Page 3]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 &Type optionally contains an ASN.1 type identifier. If the field
 &Type is not defined, then the optional parameters field of the
 AlgorithmIdentifier type would be omitted.

 The class also has a specialized syntax for how to define an object
 in this class. The all uppercase words TYPE IDENTIFIER and BY are
 syntactic sugar to make it easier to read. The square brackets
 define optional pieces of the syntax.

 The ASN.1 syntax permits any field in an object to be referenced in
 another location. This means that if an object called foo has a
 field named &value, the value can be directly referenced as foo.&
 value. This means that any updates to values or types are
 automatically propagated, and we do not need to replicate the data.

1.2. Requirements Terminology

 When capitalized, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

2. RSA Public Keys

 There are currently three different public key object identifiers for
 RSA public keys. These are RSA, RSA Encryption Scheme - Optimal
 Asymmetric Encryption Padding (RSAES-OAEP), and RSA Signature Scheme
 with Appendix - Probabilistic Signature Scheme (RSASSA-PSS).

2.1. Generic RSA Public Keys

 Almost all RSA keys that are contained in certificates today use the
 generic RSA public key format and identifier. This allows for the
 public key to be used both for key transport and for signature
 validation (assuming it is compatible with the bits in the key usage
 extension). The only reason for using one of the more specific
 public key identifiers is if the user wants to restrict the usage of
 the RSA public key to a specific algorithm.

 For the generic RSA public key, the S/MIME capability that is
 advertised is a request for a specific key size to be used. This
 would normally be used for dealing with a request on the key to be
 used for a signature that the client would then verify. In general,
 the user would provide a specific key when a key transport algorithm
 is being considered.

Schaad Informational [Page 4]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 The ASN.1 that is used for the generic RSA public key is defined as
 below:

 scap-pk-rsa SMIME-CAPS ::= {
 TYPE RSAKeyCapabilities
 IDENTIFIED BY pk-rsa.&id
 }

 RSAKeyCapabilities ::= SEQUENCE {
 minKeySize RSAKeySize,
 maxKeySize RSAKeySize OPTIONAL
 }

 RSAKeySize ::= INTEGER (1024 | 2048 | 3072 | 4096 | 7680 |
 8192 | 15360, ...)

 In the above ASN.1, we have defined the following:

 scap-pk-rsa is a new SMIME-CAPS object. This object associates the
 existing object identifier (rsaEncryption) used for the public key
 in certificates (defined in [RFC3279] and [RFC5912]) with a new
 type defined in this document.

 RSAKeyCapabilities carries the set of desired capabilities for an
 RSA key. The fields of this type are:

 minKeySize contains the minimum length of the RSA modulus to be
 used. This field SHOULD NOT contain a value less than 1024.

 maxKeySize contains the maximum length of the RSA modules that
 should be used. If this field is absent, then no maximum
 length is requested/expected. This value is normally selected
 so as not to cause the current code to run unacceptably long
 when processing signatures.

 RSAKeySize provides a set of suggested values to be used. The
 values 1024, 2048, 3072, 7680, and 15360 are from the NIST guide
 on signature sizes [NIST-SIZES] while the others are common powers
 of two that are used. The list is not closed, and other values
 can be used.

2.2. RSASSA-PSS Signature Public Keys

 While one will use the generic RSA public key identifier in a
 certificate most of the time, the RSASSA-PSS identifier can be used
 if the owner of the key desires to restrict the usage of the key to
 just this algorithm. This algorithm does have the ability to place a

Schaad Informational [Page 5]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 set of algorithm parameters in the public key info structure, but
 they have not been included in this location as the same information
 should be carried in the signature S/MIME capabilities instead.

 The ASN.1 that is used for the RSASSA-PSS public key is defined
 below:

 scap-pk-rsaSSA-PSS SMIME-CAPS ::= {
 TYPE RSAKeyCapabilities
 IDENTIFIED BY pk-rsaSSA-PSS.&id
 }

 In the above ASN.1, we have defined the following:

 scap-pk-rsaSSA-PSS is a new SMIME-CAPS object. This object
 associates the existing object identifier (id-RSASSA-PSS) used for
 the public key certificates (defined in [RFC4055] and [RFC5912])
 with type RSAKeyCapabilities.

2.3. RSAES-OAEP Key Transport Public Keys

 While one will use the generic RSA public key identifier in a
 certificate most of the time, the RSAES-OAEP identifier can be used
 if the owner of the key desires to restrict the usage of the key to
 just this algorithm. This algorithm does have the ability to place a
 set of algorithm parameters in the public key info structure, but
 they have not been included in this location as the same information
 should be carried in the key transport S/MIME capabilities instead.

 The ASN.1 that is used for the RSAES-OAEP public key is defined
 below:

 scap-pk-rsaES-OAEP SMIME-CAPS ::= {
 TYPE RSAKeyCapabilities
 IDENTIFIED BY pk-rsaES-OAEP.&id
 }

 In the above ASN.1, we have defined the following:

 scap-pk-rsaES-OAEP is a new SMIME-CAPS object. This object
 associates the existing object identifier (id-RSAES-OAEP) used for
 the public key certificates (defined in [RFC4055] and [RFC5912])
 with type RSAKeyCapabilities.

Schaad Informational [Page 6]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

3. Diffie-Hellman Keys

 There are currently two Diffie-Hellman (DH) public key object
 identifiers. These are DH key agreement and Digital Signature
 Standard (DSA).

3.1. DSA Signature Public Key

 This public key type is used for the validation of DSA signatures.

 The ASN.1 that is used for DSA keys is defined below:

 scap-pk-dsa SMIME-CAPS ::= {
 TYPE DSAKeyCapabilities
 IDENTIFIED BY pk-dsa.&id
 }

 DSAKeyCapabilities ::= CHOICE {
 keySizes [0] SEQUENCE {
 minKeySize DSAKeySize,
 maxKeySize DSAKeySize OPTIONAL,
 maxSizeP [1] INTEGER OPTIONAL,
 maxSizeQ [2] INTEGER OPTIONAL,
 maxSizeG [3] INTEGER OPTIONAL
 },
 keyParams [1] pk-dsa.&Params
 }

 DSAKeySize ::= INTEGER (1024 | 2048 | 3072 | 7680 | 15360)

 In the above ASN.1, we have defined the following:

 scap-pk-dsa is a new SMIME-CAPS object. This object associates the
 existing object identifier (id-dsa) used for the public key in
 certificates (defined in [RFC3279] and [RFC5912]) with a new type
 defined here, DSAKeyCapabilities.

 DSAKeyCapabilities carries the desired set of capabilities for the
 DSA key. The fields of this type are:

 keySizes is used when only a key size is needed to be specified
 and not a specific group. It is expected that this would be
 the most commonly used of the two options. In key sizes, the
 fields are used as follows:

 minKeySize contains the minimum length of the DSA modulus to
 be used.

Schaad Informational [Page 7]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 maxKeySize contains the maximum length of the DSA modules that
 should be used. If this field is absent, then no maximum
 length is requested/expected.

 maxSizeP contains the maximum length of the value p that
 should be used. If this field is absent, then no maximum
 length is imposed.

 maxSizeQ contains the maximum length of the value q that
 should be used. If this field is absent, then no maximum
 length is imposed.

 maxSizeG contains the maximum length of the value g that
 should be used. If this field is absent, then no maximum
 length is imposed.

 keyParams contains the exact set of DSA for the key used to sign
 the message. This field is provided for completeness and to
 match the fields for Elliptic Curve; however, it is expected
 that usage of this field will be extremely rare.

3.2. DH Key Agreement Keys

 This public key type is used with the DH key agreement algorithm.

 The ASN.1 that is used for DH keys is defined below:

 scap-pk-dh SMIME-CAPS ::= {
 TYPE DSAKeyCapabilities
 IDENTIFIED BY pk-dh.&id
 }

 In the above ASN.1, we have defined the following:

 scap-pk-dh is a new SMIME-CAPS object. This object associates the
 existing object identifier (dhpublicnumber) used for the public
 key algorithm in the certificates (defined in [RFC3279] and
 [RFC5912]) with a new type defined above, DSAKeyCapabilities.

4. Elliptic Curve Keys

 There are currently three Elliptic Curve Cryptography (ECC) public
 key object identifiers. These are EC, EC-DH, and Elliptic Curve
 Menezes-Qu-Vanstone (EC-MQV).

Schaad Informational [Page 8]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

4.1. Generic Elliptic Curve Keys

 Almost all ECC keys that are contained in certificates today use the
 generic ECC public key format and identifier. This allows for the
 public key to be used both for key agreement and for signature
 validation (assuming the appropriate bits are in the certificate).
 The only reason for using one of the more specific public key
 identifier is if the user wants to restrict the usage of the ECC
 public key to a specific algorithm.

 For the generic ECC public key, the S/MIME capability that is
 advertised is a request for a specific group to be used.

 The ASN.1 that is used for the generic ECC public key is defined
 below:

 scap-pk-ec SMIME-CAPS ::= {
 TYPE EC-SMimeCaps
 IDENTIFIED BY pk-ec.&id
 }

 EC-SMimeCaps ::= SEQUENCE (SIZE (1..MAX)) OF ECParameters

 In the above ASN.1, we have defined the following:

 scap-pk-ec is a new SMIME-CAPS object. This object associates the
 existing object identifier (id-ecPublicKey) used for the public
 key algorithm in the certificates (defined in [RFC5480] and
 [RFC5912]) with the new type EC-SMimeCaps.

 EC-SMimeCaps carries a sequence of at least one ECParameters
 structure. This allows for multiple curves to be requested in a
 single capability request. A maximum/minimum style of specifying
 sizes is not provided as much greater care is required in
 selecting a specific curve than is needed to create the parameters
 for a DSA/DH key. As specified in [RFC5480], for PKIX-compliant
 certificates, only the namedCurve choice of ECParameters is
 expected to be used.

Schaad Informational [Page 9]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

4.2. Elliptic Curve DH Keys

 This public key type is used with the Elliptic Curve Diffie-Hellman
 key agreement algorithm.

 The ASN.1 that is used for EC-DH keys is defined below:

 scap-pk-ecDH SMIME-CAPS ::= {
 TYPE EC-SMimeCaps
 IDENTIFIED BY pk-ecDH.&id
 }

 In the above ASN.1, we have defined the following:

 scap-pk-ecDH is a new SMIME-CAPS object. This object associates the
 existing object identifier (id-ecDH) used for the public key
 algorithm in the certificate (defined in [RFC5480] and [RFC5912])
 with the same type structure used for public keys.

4.3. Elliptic Curve MQV Keys

 This public key type is used with the Elliptic Curve MQV key
 agreement algorithm.

 The ASN.1 that is used for EC-MQV keys is defined below:

 scap-pk-ecMQV SMIME-CAPS ::= {
 TYPE EC-SMimeCaps
 IDENTIFIED BY pk-ecMQV.&id
 }

 In the above ASN.1, we have defined the following:

 scap-pk-ecMQV is a new SMIME-CAPS object. This object associates
 the existing object identifier (id-ecMQV) used for the public key
 algorithm in the certificate (defined in [RFC5480] and [RFC5912])
 with the same type structure used for public keys.

5. RSASSA-PSS Signature Algorithm Capability

 This document defines a new SMIMECapability for the RSASSA-PSS
 signature algorithm. One already exists in [RFC4055] where the
 parameters field is not used.

 When the S/MIME group defined an S/MIME capability for the RSASSA-PSS
 signature algorithm, it was done in the context of how S/MIME defines
 and uses S/MIME capabilities. When placed in an S/MIME message
 [SMIME-MSG] or in a certificate [RFC4262], it is always placed in a

Schaad Informational [Page 10]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 sequence of capabilities. This means that one could place the
 identifier for RSASSA-PSS in the sequence along with the identifier
 for MD5, SHA-1, and SHA-256. The assumption was then made that one
 could compute the matrix of all answers, and the publisher would
 support all elements in the matrix. This has the possibility that
 the publisher could accidentally publish a point in the matrix that
 is not supported.

 In this situation, there is only a single item that is published.
 This means that we need to publish all of the associated information
 along with the identifier for the signature algorithm in a single
 entity. For this reason, we now define a new parameter type to be
 used as the SMIMECapability type, which contains a hash identifier
 and a mask identifier. The ASN.1 used for this is as follows:

 scap-sa-rsaSSA-PSS SMIME-CAPS ::= {
 TYPE RsaSsa-Pss-sig-caps
 IDENTIFIED BY sa-rsaSSA-PSS.&id
 }

 RsaSsa-Pss-sig-caps ::= SEQUENCE {
 hashAlg SMIMECapability{{ MaskAlgorithmSet }},
 maskAlg SMIMECapability{{ ... }} OPTIONAL,
 trailerField INTEGER DEFAULT 1
 }

 scap-mf-mgf1 SMIME-CAPS ::= {
 TYPE SMIMECapability{{ ... }}
 IDENTIFIED BY id-mgf1
 }

 MaskAlgorithmSet SMIME-CAPS ::= {scap-mf-mgf1, ...}

 In the above ASN.1, we have defined the following:

 scap-sa-rsaSSA-PSS is a new SMIME-CAPS object. This object
 associates the existing object identifier (id-RSASSA-PSS) used for
 the signature algorithm (defined in [RFC4055] and [RFC5912]) with
 the new type RsaSsa-Pss-sig-caps.

 RsaSsa-Pss-sig-caps carries the desired set of capabilities for the
 RSASSA-PSS signature algorithm. The fields of this type are:

 hashAlg contains the S/MIME capability for the hash algorithm we
 are declaring we support with the RSASSA-PSS signature
 algorithm.

Schaad Informational [Page 11]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 maskAlg contains the S/MIME capability for the mask algorithm we
 are declaring we support with the RSASSA-PSS signature
 algorithm.

 trailerField specifies which trailer field algorithm is being
 supported. This MUST be the value 1.

 NOTE: In at least one iteration of the design, we used a sequence of
 hash identifiers and a sequence of masking functions and again made
 the assumption that the entire matrix would be supported. This has
 been removed at this point since the original intent of S/MIME
 capabilities is that one should be able to do a binary comparison of
 the DER encoding of the field and determine a specific capability was
 published. We could return to using the sequence if we wanted to
 lose the ability to do a binary compare but needed to shorten the
 encodings. This does not currently appear to be an issue at this
 point.

6. Security Considerations

 This document provides new fields that can be placed in an S/MIME
 capabilities sequence. There are number of considerations that need
 to be taken into account when doing this.

 As mentioned above, we have defined data structures to be associated
 with object identifiers in cases where an association already exists.
 When either encoding or decoding structures, care needs to be taken
 that the association used is one appropriate for the location in the
 surrounding ASN.1 structure. This means that one needs to make sure
 that only public keys are placed in public key locations, signatures
 are placed in signature locations, and S/MIME capabilities are placed
 in SMIMECapability locations. Failure to do so will create decode
 errors at best and can cause incorrect behavior at worst.

 The more specific the information that is provided in an S/MIME
 Capabilities field, the better the end results are going to be.
 Specifying a signature algorithm means that there are no questions
 for the receiver that the signature algorithm is supported.
 Signature algorithms can be implied by specifying both public key
 algorithms and hash algorithms together. If the list includes RSA
 v1.5, EC-DSA, SHA-1, and SHA-256, the implication is that all four
 values in the cross section are supported by the sender. If the
 sender does not support EC-DSA with SHA-1, this would lead to a
 situation where the recipient uses a signature algorithm that the
 sender does not support. Omitting SHA-1 from the list may lead to
 the problem where both entities support RSA v1.5 with SHA-1 as their
 only common algorithm, but this is no longer discoverable by the
 recipient.

Schaad Informational [Page 12]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 As a general rule, providing more information about the algorithms
 that are supported is preferable. The more choices that are provided
 the recipient, the greater the likelihood that a common algorithm
 with good security can be used by both parties. However, one should
 avoid being exhaustive in providing the list of algorithms to the
 recipient. The greater the number of algorithms that are passed, the
 more difficult it is for a recipient to make intelligent decisions
 about which algorithm to use. This is a more significant problem
 when there are more than two entities involved in the "negotiation"
 of a common algorithm to be used (such as sending an encrypted S/MIME
 message where a common content encryption algorithm is needed). The
 larger the set of algorithms and the more recipients involved, the
 more memory and processing time will be needed in order to complete
 the decision-making process.

 The S/MIME capabilities are defined so that the order of algorithms
 in the sequence is meant to encode a preference order by the sender
 of the sequence. Many entities will ignore the order preference when
 making a decision either by using their own preferred order or using
 a random decision from a matrix.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 3279, April 2002.

 [RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional
 Algorithms and Identifiers for RSA Cryptography for
 use in the Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL)
 Profile", RFC 4055, June 2005.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T.
 Polk, "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

7.2. Informative References

 [NIST-SIZES] Barker, E., Barker, W., Burr, W., Polk, W., and M.
 Smid, "Recommendation for Key Management -- Part 1:
 General", NIST Special Publication 800-57, March 2007.

Schaad Informational [Page 13]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 [RFC4262] Santesson, S., "X.509 Certificate Extension for
 Secure/Multipurpose Internet Mail Extensions (S/MIME)
 Capabilities", RFC 4262, December 2005.

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)",
 RFC 5912, June 2010.

 [RFC6277] Santesson, S. and P. Hallam-Baker, "Online Certificate
 Status Protocol Algorithm Agility", RFC 6277,
 June 2011.

 [SMIME-MSG] Ramsdell, B. and S. Turner, "Secure/Multipurpose
 Internet Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [SMIMEv3-MSG] Ramsdell, B., "S/MIME Version 3 Message
 Specification", RFC 2633, June 1999.

Schaad Informational [Page 14]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

Appendix A. 2008 ASN.1 Module

 This appendix contains a module compatible with the work done to
 update the PKIX ASN.1 modules to recent versions of the ASN.1
 specifications [RFC5912]. This appendix is to be considered
 informational per the current direction of the PKIX working group.

 PUBLIC-KEY-SMIME-CAPABILITIES
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pubKeySMIMECaps-08(78) }
 DEFINITIONS ::=
 BEGIN
 IMPORTS
 SMIME-CAPS, PUBLIC-KEY, SMIMECapability
 FROM AlgorithmInformation-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58)}

 pk-rsa, pk-dsa, pk-dh, pk-ec, pk-ecDH, pk-ecMQV, ECParameters
 FROM PKIXAlgs-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-algorithms2008-02(56) }

 pk-rsaSSA-PSS, pk-rsaES-OAEP, sa-rsaSSA-PSS,
 HashAlgorithms, id-mgf1
 FROM PKIX1-PSS-OAEP-Algorithms-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs-02(54)}
 ;

 --
 -- Define a set containing all of the S/MIME capabilities defined
 -- by this document.
 --

 SMimeCaps SMIME-CAPS ::= {
 PubKeys-SMimeCaps |
 scap-sa-rsaSSA-PSS
 }

 PubKeys-SMimeCaps SMIME-CAPS ::= {
 scap-pk-rsa | scap-pk-rsaSSA-PSS |
 scap-pk-dsa |
 scap-pk-ec | scap-pk-ecDH | scap-pk-ecMQV

Schaad Informational [Page 15]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 }

 --
 -- We defined RSA keys from the modules in RFC 3279 and RFC 4055.
 --

 scap-pk-rsa SMIME-CAPS ::= {
 TYPE RSAKeyCapabilities
 IDENTIFIED BY pk-rsa.&id
 }

 RSAKeyCapabilities ::= SEQUENCE {
 minKeySize RSAKeySize,
 maxKeySize RSAKeySize OPTIONAL
 }

 RSAKeySize ::= INTEGER (1024 | 2048 | 3072 | 4096 | 7680 |
 8192 | 15360, ...)

 scap-pk-rsaES-OAEP SMIME-CAPS ::= {
 TYPE RSAKeyCapabilities
 IDENTIFIED BY pk-rsaES-OAEP.&id
 }

 scap-pk-rsaSSA-PSS SMIME-CAPS ::= {
 TYPE RSAKeyCapabilities
 IDENTIFIED BY pk-rsaSSA-PSS.&id
 }

 scap-sa-rsaSSA-PSS SMIME-CAPS ::= {
 TYPE RsaSsa-Pss-sig-caps
 IDENTIFIED BY sa-rsaSSA-PSS.&id
 }

 RsaSsa-Pss-sig-caps ::= SEQUENCE {
 hashAlg SMIMECapability{{ MaskAlgorithmSet }},
 maskAlg SMIMECapability{{ ... }} OPTIONAL,
 trailerField INTEGER DEFAULT 1
 }

 scap-mf-mgf1 SMIME-CAPS ::= {
 TYPE SMIMECapability{{ ... }}
 IDENTIFIED BY id-mgf1
 }

 MaskAlgorithmSet SMIME-CAPS ::= {scap-mf-mgf1, ...}

Schaad Informational [Page 16]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 --
 -- We define DH/DSA keys from the module in RFC 3279.
 --

 scap-pk-dsa SMIME-CAPS ::= {
 TYPE DSAKeyCapabilities
 IDENTIFIED BY pk-dsa.&id
 }

 DSAKeyCapabilities ::= CHOICE {
 keySizes [0] SEQUENCE {
 minKeySize DSAKeySize,
 maxKeySize DSAKeySize OPTIONAL,
 maxSizeP [1] INTEGER OPTIONAL,
 maxSizeQ [2] INTEGER OPTIONAL,
 maxSizeG [3] INTEGER OPTIONAL
 },
 keyParams [1] pk-dsa.&Params
 }

 DSAKeySize ::= INTEGER (1024 | 2048 | 3072 | 7680 | 15360)

 scap-pk-dh SMIME-CAPS ::= {
 TYPE DSAKeyCapabilities
 IDENTIFIED BY pk-dh.&id
 }

 --
 -- We define Elliptic Curve keys from the module in RFC 3279.
 --

 scap-pk-ec SMIME-CAPS ::= {
 TYPE EC-SMimeCaps
 IDENTIFIED BY pk-ec.&id
 }

 EC-SMimeCaps ::= SEQUENCE (SIZE (1..MAX)) OF ECParameters

 scap-pk-ecDH SMIME-CAPS ::= {
 TYPE EC-SMimeCaps
 IDENTIFIED BY pk-ecDH.&id
 }

 scap-pk-ecMQV SMIME-CAPS ::= {
 TYPE EC-SMimeCaps
 IDENTIFIED BY pk-ecMQV.&id
 }

Schaad Informational [Page 17]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 END

Appendix B. 1988 ASN.1 Module

 This appendix contains the normative ASN.1 module for this document.

 PUBLIC-KEY-SMIME-CAPABILITIES-88
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pubKeySMIMECaps-88(77) }
 DEFINITIONS ::=
 BEGIN
 IMPORTS

 ECParameters
 FROM PKIX1Algorithms2008
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 45 }

 id-mgf1
 FROM PKIX1-PSS-OAEP-Algorithms
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs(33) }

 AlgorithmIdentifier
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit(18) }

 ;

 --
 -- We define RSA keys from the modules in RFC 3279 and RFC 4055.
 --

 RSAKeyCapabilities ::= SEQUENCE {
 minKeySize RSAKeySize,
 maxKeySize RSAKeySize OPTIONAL
 }

 RSAKeySize ::= INTEGER (1024 | 2048 | 3072 | 4096 | 7680 |
 8192 | 15360, ...)

 RsaSsa-Pss-sig-caps ::= SEQUENCE {

Schaad Informational [Page 18]

RFC 6664 S/MIME Capabilities for Public Keys July 2012

 hashAlg AlgorithmIdentifier,
 maskAlg AlgorithmIdentifier OPTIONAL,
 trailerField INTEGER DEFAULT 1
 }

 --
 -- We define DH/DSA keys from the module in RFC 3279.
 --

 DSAKeyCapabilities ::= CHOICE {
 keySizes [0] SEQUENCE {
 minKeySize DSAKeySize,
 maxKeySize DSAKeySize OPTIONAL,
 maxSizeP [1] INTEGER OPTIONAL,
 maxSizeQ [2] INTEGER OPTIONAL,
 maxSizeG [3] INTEGER OPTIONAL
 },
 keyParams [1] pk-dsa.&Params
 }

 DSAKeySize ::= INTEGER (1024 | 2048 | 3072 | 7680 | 15360)

 --
 -- We define Elliptic Curve keys from the module in RFC 3279.
 --

 EC-SMimeCaps ::= SEQUENCE (SIZE (1..MAX)) OF ECParameters

 END

Appendix C. Future Work

 A future revision of [RFC5912] should be done at some point to expand
 the definition of the PUBLIC-KEY class and allow for an
 SMIMECapability to be included in the class definition. This would
 encourage people to think about this as an issue when defining new
 public key structures in the future.

Author’s Address

 Jim Schaad
 Soaring Hawk Consulting

 EMail: ietf@augustcellars.com

Schaad Informational [Page 19]

