
Internet Engineering Task Force (IETF) E. Haleplidis
Request for Comments: 6369 O. Koufopavlou
Category: Informational S. Denazis
ISSN: 2070-1721 University of Patras
 September 2011

 Forwarding and Control Element Separation (ForCES)
 Implementation Experience

Abstract

 The Forwarding and Control Element Separation (ForCES) protocol
 defines a standard communication and control mechanism through which
 a Control Element (CE) can control the behavior of a Forwarding
 Element (FE). This document captures the experience of implementing
 the ForCES protocol and model. Its aim is to help others by
 providing examples and possible strategies for implementing the
 ForCES protocol.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6369.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Haleplidis, et al. Informational [Page 1]

RFC 6369 ForCES Implementation Experience September 2011

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Document Goal . 3
 2. Terminology and Conventions 3
 3. ForCES Architecture . 4
 3.1. Pre-Association Setup - Initial Configuration 5
 3.2. TML . 5
 3.3. Model . 6
 3.3.1. Components . 6
 3.3.2. LFBs . 9
 3.4. Protocol . 10
 3.4.1. TLVs . 10
 3.4.2. Message Deserialization 13
 3.4.3. Message Serialization 15
 4. Development Platforms . 15
 5. Acknowledgements . 16
 6. Security Considerations 16
 7. References . 17
 7.1. Normative References 17
 7.2. Informative References 17

1. Introduction

 Forwarding and Control Element Separation (ForCES) defines an
 architectural framework and associated protocols to standardize
 information exchange between the control plane and the forwarding
 plane in a ForCES Network Element (ForCES NE). [RFC3654] defines the
 ForCES requirements, and [RFC3746] defines the ForCES framework.

 The ForCES protocol works in a master-slave mode in which Forwarding
 Elements (FEs) are slaves and Control Elements (CEs) are masters.
 The protocol includes commands for transport of Logical Functional
 Block (LFB) configuration information, association setup, status, and
 event notifications, etc. The reader is encouraged to read the
 Forwarding and Control Element Separation Protocol [RFC5810] for
 further information.

 [RFC5812] presents a formal way to define FE LFBs using XML. LFB
 configuration components, capabilities, and associated events are
 defined when LFBs are formally created. The LFBs within the
 Forwarding Element (FE) are accordingly controlled in a standardized
 way by the ForCES protocol.

Haleplidis, et al. Informational [Page 2]

RFC 6369 ForCES Implementation Experience September 2011

 The Transport Mapping Layer (TML) transports the protocol messages.
 The TML is where the issues of how to achieve transport-level
 reliability, congestion control, multicast, ordering, etc., are
 handled. It is expected that more than one TML will be standardized.
 The various possible TMLs could vary their implementations based on
 the capabilities of underlying media and transport. However, since
 each TML is standardized, interoperability is guaranteed as long as
 both endpoints support the same TML. All ForCES protocol layer
 implementations must be portable across all TMLs. Although more than
 one TML may be standardized for the ForCES protocol, all ForCES
 implementations must implement the Stream Control Transmission
 Protocol (SCTP) TML [RFC5811].

 The Forwarding and Control Element Separation Applicability Statement
 [RFC6041] captures the applicable areas in which ForCES can be used.

1.1. Document Goal

 This document captures the experience of implementing the ForCES
 protocol and model, and its main goal is to provide alternatives,
 ideas, and proposals as how it can be implemented, not to tell others
 how to implement it.

 Also, this document mentions possible problems and potential choices
 that can be made, in an attempt to help implementors develop their
 own products.

 Additionally, this document assumes that the reader has become
 familiar with the three main ForCES RFCs: the Forwarding and Control
 Element Separation Protocol [RFC5810], the Forwarding and Control
 Element Separation Forwarding Element Model [RFC5812], and the SCTP-
 Based Transport Mapping Layer (TML) for the Forwarding and Control
 Element Separation Protocol [RFC5811].

2. Terminology and Conventions

 The terminology used in this document is the same as in the
 Forwarding and Control Element Separation Protocol [RFC5810]; some of
 the definitions below are copied from that document.

 Control Element (CE): A logical entity that implements the ForCES
 protocol and uses it to instruct one or more FEs on how to process
 packets. CEs handle functionality such as the execution of control
 and signaling protocols.

Haleplidis, et al. Informational [Page 3]

RFC 6369 ForCES Implementation Experience September 2011

 Forwarding Element (FE): A logical entity that implements the ForCES
 protocol. FEs use the underlying hardware to provide per-packet
 processing and handling as directed/controlled by one or more CEs via
 the ForCES protocol.

 LFB (Logical Functional Block): The basic building block that is
 operated on by the ForCES protocol. The LFB is a well-defined,
 logically separable functional block that resides in an FE and is
 controlled by the CE via the ForCES protocol. The LFB may reside at
 the FE’s data path and process packets or may be purely an FE control
 or configuration entity that is operated on by the CE. Note that the
 LFB is a functionally accurate abstraction of the FE’s processing
 capabilities but not a hardware-accurate representation of the FE
 implementation.

 LFB Class and LFB Instance: LFBs are categorized by LFB classes. An
 LFB instance represents an LFB class (or type) existence. There may
 be multiple instances of the same LFB class (or type) in an FE. An
 LFB class is represented by an LFB class ID, and an LFB instance is
 represented by an LFB instance ID. As a result, an LFB class ID
 associated with an LFB instance ID uniquely specifies an LFB
 existence.

 LFB Component: Operational parameters of the LFBs that must be
 visible to the CEs are conceptualized in the FE model as the LFB
 components. The LFB components include, for example, flags, single
 parameter arguments, complex arguments, and tables that the CE can
 read and/or write via the ForCES protocol.

 ForCES Protocol: While there may be multiple protocols used within
 the overall ForCES architecture, the terms "ForCES protocol" and
 "protocol" refer to the Fp reference points in the ForCES framework
 [RFC3746]. This protocol does not apply to CE-to-CE communication,
 FE-to-FE communication, or communication between FE and CE Managers.
 Basically, the ForCES protocol works in a master-slave mode in which
 FEs are slaves and CEs are masters. This document defines the
 specifications for this ForCES protocol.

3. ForCES Architecture

 ForCES has undergone two successful interoperability tests, where
 very few issues were caught and resolved.

 This section discusses the ForCES architecture, implementation
 challenges, and ways to overcome these challenges.

Haleplidis, et al. Informational [Page 4]

RFC 6369 ForCES Implementation Experience September 2011

3.1. Pre-Association Setup - Initial Configuration

 The initial configuration of the FE and the CE is done by the FE
 Manager and the CE Manager, respectively. These entities have not as
 yet been standardized.

 The simplest solution is static configuration files, which play the
 role of the Managers and are read by FEs and CEs.

 For more dynamic solutions, however, it is expected that the Managers
 will be entities that will talk to each other and exchange details
 regarding the associations. Any developer can create any Manager,
 but they should at least be able to exchange the details below.

 From the FE Manager side:

 1. FE Identifiers (FEIDs).

 2. FE IP addresses, if the FEs and CEs will be communicating via
 network.

 3. TML. The TML that will be used. If this is omitted, then SCTP
 must be chosen as default.

 4. TML priority ports. If this is omitted as well, then the CE must
 use the default values from the respective TML RFC.

 From the CE Manager side:

 1. CE Identifiers (CEIDs).

 2. CE IP addresses, if the FEs and CEs will be communicating via
 network.

 3. TML. The TML that will be used. If this is omitted, then SCTP
 must be chosen as default.

 4. TML priority ports. If this is omitted as well, then the FE must
 use the default values from the respective TML RFC.

3.2. TML

 All ForCES implementations must support the SCTP TML. Even if
 another TML will be chosen by the developer, SCTP is mandatory and
 must be supported.

Haleplidis, et al. Informational [Page 5]

RFC 6369 ForCES Implementation Experience September 2011

 There are several issues that should concern a developer for the TML:

 1. Security. TML must be secure according to the respective RFC.
 For SCTP, you have to use IPsec.

 2. Remote connection. While ForCES is meant to be used locally,
 both interoperability tests have proven that ForCES can be
 deployed everywhere that SCTP/IP is available. In both
 interoperability tests, there were connections between Greece and
 China, and the performance was very satisfactory. However, in
 order for the FE and CE to work in a non-local environment, an
 implementor must ensure that the SCTP-TML ports are forwarded to
 the CE and/or FE if they are behind NATs; if there is a firewall,
 it will allow the SCTP ports through. These were identified
 during the first ForCES interoperability test and documented in
 the Implementation Report for Forwarding and Control Element
 Separation [RFC6053].

3.3. Model

 The ForCES model is inherently very dynamic. Using the basic atomic
 data types that are specified in the model, new atomic (single
 valued) and/or compound (structures and arrays) datatypes can be
 built. Thus, developers are free to create their own LFBs. One
 other advantage that the ForCES model provides is inheritance. New
 versions of existing LFBs can be created to suit any extra developer
 requirements.

 The difficulty for a developer is to create an architecture that is
 completely scalable so there is no need to write the same code for
 new LFBs, new components, etc. Developers can just create code for
 the defined atomic values, and new components can then be built based
 on already written code, thus reusing it.

 The model itself provides the key, which is inheritance.

3.3.1. Components

 First, a basic component needs to be created as the mother of all the
 components that has the basic parameters of all the components:

 o The ID of the component.

 o The access rights of the component.

 o If it is an optional component.

 o If it is of variable size.

Haleplidis, et al. Informational [Page 6]

RFC 6369 ForCES Implementation Experience September 2011

 o Minimum data size.

 o Maximum data size.

 If the data size of the component is not variable, then the size is
 either the minimum or the maximum size, as both should have the same
 value.

 Next, some basic functions are in order:

 o A common constructor.

 o A common destructor.

 o Retrieve Component ID.

 o Retrieve access right property.

 o Query if it is an optional component.

 o Get Full Data.

 o Set Full Data.

 o Get Sparse Data.

 o Set Sparse Data.

 o Del Full Data.

 o Del Sparse Data.

 o Get Property.

 o Set Property.

 o Get Value.

 o Set Value.

 o Del Value.

 o Get Data.

 o Clone component.

Haleplidis, et al. Informational [Page 7]

RFC 6369 ForCES Implementation Experience September 2011

 The Get/Set/Del Full Data, Get/Set/Del Sparse Data, and Get/Set
 Property functions handle the respective ForCES commands and return
 the respective TLV, for example, Set Full Data should return a
 RESULT-TLV. The Get Value, Set Value, and Del Value functions are
 called from Get Full/Sparse Data, Set Full/Sparse Data, and Del Full/
 Sparse Data respectively and provide the interface to the actual
 values in the hardware, separating the forces handling logic from the
 interface to the actual values.

 The Get Data function should return the value of the data only, not
 in TLV format.

 The Clone function seems out of place. This function must return a
 new component that has the exact same values and attributes. This
 function is useful in array components as described further below.

 The only requirement is to implement the base atomic data types. Any
 new atomic datatype can be built as a child of a base data type,
 which will inherit all the functions and, if necessary, override
 them.

 The struct component can then be built. A struct component is a
 component by itself but consists of a number of atomic components.
 These atomic components create a static array within the struct. The
 ID of each atomic component is the array’s index. For a struct
 component, the Clone function must create and return an exact copy of
 the struct component with the same static array.

 The most difficult component to be built is the array. The
 difficulty lies in the actual benefit of the model: you have absolute
 freedom over what you build. An array is an array of components. In
 all rows, you have the exact same type of component, either a single
 component or a struct. The struct can have multiple single
 components or a combination of single components, structs, arrays,
 and so on. So, the difficulty lies in how to create a new row, a new
 component by itself. This is where the Clone function is very
 useful. For the array, a mother component that can spawn new
 components exactly like itself is needed. Once a Set command is
 received, the mother component can spawn a new component if the
 targeted row does not exist and add it into the array; with the Set
 Full Data function, the value is set in the recently spawned
 component, as the spawned component knows how the data is created.
 In order to distinguish these spawned components from each other and
 their functionality, some kind of index is required that will also
 reflect how the actual data of the specific component is stored on
 the hardware.

Haleplidis, et al. Informational [Page 8]

RFC 6369 ForCES Implementation Experience September 2011

 Once the basic constructors of all possible components are created,
 then a developer only has to create LFB components or datatypes as a
 child of one of the already-created components, and the only thing
 the developer really needs to add is the three functions of Get
 Value, Set Value, and Del Value of each component, which is platform
 dependent. The rest stays the same.

3.3.2. LFBs

 The same architecture in the components can be used for the LFBs,
 allowing a developer to write LFB handling code only once. The
 parent LFB has some basic attributes:

 o The LFB Class ID.

 o The LFB Instance ID.

 o An Array of Components.

 o An Array of Capabilities.

 o An Array of Events.

 Following are some common functions:

 o Handle Configuration Command.

 o Handle Query Command.

 o Get Class ID.

 o Get Instance ID.

 Once these are created, each LFB can inherit all these from the
 parent, and the only thing it has to do is add the components that
 have already been created.

 An example can be seen in Figure 1. The following code creates a
 part of FEProtocolLFB:

Haleplidis, et al. Informational [Page 9]

RFC 6369 ForCES Implementation Experience September 2011

 //FEID
 cui = new Component_uInt(FEPO_FEID, ACCESS_READ_ONLY, FE_id);
 Components[cui->get_ComponentId()]=cui; //Add component to array list

 //Current FEHB Policy Value
 cub = new Component_uByte(FEPO_FEHBPolicy, ACCESS_READ_WRITE, 0);
 Components[cub->get_ComponentId()]=cub; //Add component to array list

 //FEIDs for BackupCEs Array
 cui = new Component_uInt(0, ACCESS_READ_WRITE, 0);
 ca = new Component_Array(FEPO_BackupCEs, ACCESS_READ_WRITE);
 ca->AddRow(cui, 1);
 ca->AddMotherComponent(cui);
 Components[ca->get_ComponentId()]=ca; //Add component to array list

 Figure 1: Example Code for Creating Part of FEProtocolLFB

 The same concept can be applied to handling LFBs as one FE. An FE is
 a collection of LFBs. Thus, all LFBs can be stored in an array based
 on the LFB’s class id, version, and instance. Then, what is required
 is an LFBHandler that will handle the array of LFBs. A specific LFB,
 for example, can be addressed using the following scheme:

 LFBs[ClassID][Version][InstanceID]

 Note: While an array can be used in components, capabilities, and
 events, a hash table or a similar concept is better suited for
 storing LFBs using the component ID as the hash key with linked lists
 for collision handling, as the created array can have large gaps if
 the values of LFB Class ID vary greatly.

3.4. Protocol

3.4.1. TLVs

 The goal for protocol handling is to create a general and scalable
 architecture that handles all protocol messages instead of something
 implementation specific. There are certain difficulties that have to
 be overcome first.

 Since the model allows a developer to define any LFB required, the
 protocol has been thus created to give the user the freedom to
 configure and query any component, whatever the underlying model.
 While this is a strong point for the protocol itself, one difficulty
 lies with the unknown underlying model and the unlimited number of
 types of messages that can be created, making creating generic code a
 daunting task.

Haleplidis, et al. Informational [Page 10]

RFC 6369 ForCES Implementation Experience September 2011

 Additionally, the protocol also allows two different path approaches
 to LFB components, and the CE or FE must handle both or even a mix of
 them, making a generic decoding of the protocol message difficult.

 Another difficulty also arises from the batching capabilities of the
 protocol. You can have multiple Operations within a message; you can
 select more than one LFB to command and more than one component to
 manipulate.

 A possible solution is again provided by inheritance. There are two
 basic components in a protocol message:

 1. The common header.

 2. The rest of the message.

 The rest of the message is divided in Type-Length-Value (TLV) units
 and, in one case, Index-Length-Value (ILV) units.

 The TLV hierarchy can be seen in Figure 2:

 Common Header
 |
 +---------------+---------------+---------------+
 | | | |
 REDIRECT-TLV LFBselect-TLV ASResult-TLV ASTreason-TLV
 |
 |
 OPER-TLV
 |
 |
 PATH-DATA-TLV ---> Optional KEYINFO-TLV
 |
 +-------------+-------------+-------------+
 | | | |
 SPARSEDATA-TLV RESULT-TLV FULLDATA-TLV PATH-DATA-TLV

 Figure 2: ForCES TLV Hierarchy

 The above figure shows only the basic hierarchical level of TLVs and
 does not show batching. Also, this figure does not show the
 recursion that can occur at the last level of the hierarchy. The
 figure shows one kind of recursion with a PATH-DATA-TLV within a
 PATH-DATA-TLV. A FULLDATA-TLV can be within a FULLDATA-TLV and a
 SPARSEDATA-TLV. The possible combination of TLVs are described in
 detail in the Forwarding and Control Element Separation Protocol
 [RFC5810] as well as the data-packing rules.

Haleplidis, et al. Informational [Page 11]

RFC 6369 ForCES Implementation Experience September 2011

 A TLV’s main attributes are:

 o Type.

 o Length.

 o Data.

 o An array of TLVs.

 The array of TLVs is the next hierarchical level of TLVs nested in
 this TLV.

 A TLV’s common function could be:

 o A basic constructor.

 o A constructor using data from the wire.

 o Add a new TLV for next level.

 o Get the next TLV of next level.

 o Get a specific TLV of next level.

 o Replace a TLV of next level.

 o Get the Data.

 o Get the Length.

 o Set the Data.

 o Set the Length.

 o Set the Type.

 o Serialize the header.

 o Serialize the TLV to be written on the wire.

 All TLVs inherit these functions and attributes and either override
 them or create new where it is required.

Haleplidis, et al. Informational [Page 12]

RFC 6369 ForCES Implementation Experience September 2011

3.4.2. Message Deserialization

 Following is an algorithm for deserializing any protocol message:

 1. Get the message header.

 2. Read the length.

 3. Check the message type to understand what kind of message this
 is.

 4. If the length is larger than the message header, then there is
 data for this message.

 5. A check can be made here regarding the message type and the
 length of the message.

 If the message is a Query or Config type, then there are LFBselect-
 TLVs for this level:

 1. Read the next 2 shorts(type-length). If the type is an
 LFBselect-TLV, then the message is valid.

 2. Read the necessary length for this LFBselect-TLV, and create the
 LFBselect-TLV from the data of the wire.

 3. Add this LFBselect-TLV to the main header array of LFBselect-
 TLVs.

 4. Repeat all above steps until the rest of the message has
 finished.

 The next level of TLVs is OPER-TLVs.

 1. Read the next 2 shorts(type-length). If the type is an OPER-TLV,
 then the message is valid.

 2. Read the necessary length for this OPER-TLV, and create the OPER-
 TLV from the data of the wire.

 3. Add this OPER-TLV to the LFBselect-TLV array of TLVs.

 4. Do this until the rest of the LFBselect-TLV has finished.

 The next level of TLVs is PATH-DATA-TLVs.

 1. Read the next 2 shorts(type-length). If the type is a PATH-DATA-
 TLV, then the message is valid.

Haleplidis, et al. Informational [Page 13]

RFC 6369 ForCES Implementation Experience September 2011

 2. Read the necessary length for this PATH-DATA-TLV, and create the
 PATH-DATA-TLV from the data of the wire.

 3. Add this PATH-DATA-TLV to the OPER-TLV’s array of TLVs.

 4. Do this until the rest of the OPER-TLV is finished.

 Here it gets interesting, as the next level of PATH-DATA-TLVs can be
 one of the following:

 o PATH-DATA-TLVs.

 o FULLDATA-TLV.

 o SPARSEDATA-TLV.

 o RESULT-TLV.

 The solution to this difficulty is recursion. If the next TLV is a
 PATH-DATA-TLV, then the PATH-DATA-TLV that is created uses the same
 kind of deserialization until it reaches a FULLDATA-TLV or
 SPARSEDATA-TLV. There can be only one FULLDATA-TLV or SPARSEDATA-TLV
 within a PATH-DATA-TLV.

 1. Read the next 2 shorts(type-length).

 2. If the Type is a PATH-DATA-TLV, then repeat the previous
 algorithm but add the PATH-DATA-TLV to this PATH-DATA-TLV’s array
 of TLVs.

 3. Do this until the rest of the PATH-DATA-TLV is finished.

 4. If the Type is a FULLDATA-TLV, then create the FULLDATA-TLV from
 the message and add this to the PATH-DATA-TLV’s array of TLVs.

 5. If the Type is a SPARSEDATA-TLV, then create the SPARSEDATA-TLV
 from the message and add this to the PATH-DATA-TLV’s array of
 TLVs.

 6. If the Type is a RESULT-TLV, then create the RESULT-TLV from the
 message and add this to the PATH-DATA-TLV’s array of TLVs.

 If the message is a Query, it must not have any kind of data inside
 the PATH-DATA-TLV.

 If the message is a Query Response, then it must have either a
 RESULT-TLV or a FULLDATA-TLV.

Haleplidis, et al. Informational [Page 14]

RFC 6369 ForCES Implementation Experience September 2011

 If the message is a Config, it must contain either a FULLDATA-TLV or
 a SPARSEDATA-TLV.

 If the message is a Config Response, it must contain a RESULT-TLV.

 More details regarding message validation can be read in Section 7 of
 the Forwarding and Control Element Separation Protocol [RFC5810].

 Note: When deserializing, implementors must take care to ignore
 padding of TLVs as all must be 32-bit aligned. The length value in
 TLVs includes the Type and Length (4 bytes) but does not include
 padding.

3.4.3. Message Serialization

 The same concept can be applied in the message creation process.
 Having the TLVs ready, a developer can go bottom up. All that is
 required is the serialization function that will transform the TLV
 into bytes ready to be transferred on the network.

 For example, for the creation of a simple query from the CE to the
 FE, all the PATH-DATA-TLVs are created. Then they will be serialized
 and inserted into an OPER-TLV, which in turn will be serialized and
 inserted into an LFBselect-TLV. The LFBselect-TLV will then be
 serialized and entered into the Common Header, which will be passed
 to the TML to be transported to the FE.

 Having an array of TLVs inside a TLV that is next in the TLV
 hierarchy allows the developer to insert any number of next-level
 TLVs, thus creating any kind of message.

 Note: When the TLV is serialized to be written on the wire,
 implementors must take care to include padding to TLVs as all must be
 32-bit aligned.

4. Development Platforms

 Any development platform that can support the SCTP TML and the TML of
 the developer’s choosing is available for use.

 Figure 3 provides an initial survey of SCTP support for C/C++ and
 Java at the present time.

Haleplidis, et al. Informational [Page 15]

RFC 6369 ForCES Implementation Experience September 2011

 /-------------+-------------+-------------+-------------\
 |\ Platform | | | |
 | ----------\ | Windows | Linux | Solaris |
 | Language \| | | |
 +-------------+-------------+-------------+-------------+
 | | | | |
 | C/C++ | Supported | Supported | Supported |
 | | | | |
 +-------------+-------------+-------------+-------------+
 | | Limited | | |
 | Java | Third Party | Supported | Supported |
 | | Not from SUN| | |
 \-------------+-------------+-------------+-------------/

 Figure 3: SCTP Support on Operating Systems

 A developer should be aware of some limitations regarding Java
 implementations.

 Java inherently does not support unsigned types. A workaround can be
 found in the creation of classes that do the translation of unsigned
 types to Java types. The problem is that the unsigned long cannot be
 used as-is in the Java platform. The proposed set of classes can be
 found in [JavaUnsignedTypes].

5. Acknowledgements

 The authors would like to thank Adrian Farrel for sponsoring this
 document and Jamal Hadi Salim for discussions that made this document
 better.

6. Security Considerations

 Developers of ForCES FEs and CEs must take the Security
 Considerations of the Forwarding and Control Element Separation
 Framework [RFC3746] and the Forwarding and Control Element Separation
 Protocol [RFC5810] into account.

 Also, as specified in the Security Considerations section of the
 SCTP-Based Transport Mapping Layer (TML) for the Forwarding and
 Control Element Separation Protocol [RFC5811], transport-level
 security has to be ensured by IPsec.

Haleplidis, et al. Informational [Page 16]

RFC 6369 ForCES Implementation Experience September 2011

7. References

7.1. Normative References

 [RFC5810] Doria, A., Hadi Salim, J., Haas, R., Khosravi, H., Wang,
 W., Dong, L., Gopal, R., and J. Halpern, "Forwarding and
 Control Element Separation (ForCES) Protocol
 Specification", RFC 5810, March 2010.

 [RFC5811] Hadi Salim, J. and K. Ogawa, "SCTP-Based Transport Mapping
 Layer (TML) for the Forwarding and Control Element
 Separation (ForCES) Protocol", RFC 5811, March 2010.

 [RFC5812] Halpern, J. and J. Hadi Salim, "Forwarding and Control
 Element Separation (ForCES) Forwarding Element Model",
 RFC 5812, March 2010.

 [RFC6041] Crouch, A., Khosravi, H., Doria, A., Wang, X., and K.
 Ogawa, "Forwarding and Control Element Separation (ForCES)
 Applicability Statement", RFC 6041, October 2010.

 [RFC6053] Haleplidis, E., Ogawa, K., Wang, W., and J. Hadi Salim,
 "Implementation Report for Forwarding and Control Element
 Separation (ForCES)", RFC 6053, November 2010.

7.2. Informative References

 [JavaUnsignedTypes]
 "Java Unsigned Types",
 <http://nam.ece.upatras.gr/index.php?q=node/44>.

 [RFC3654] Khosravi, H. and T. Anderson, "Requirements for Separation
 of IP Control and Forwarding", RFC 3654, November 2003.

 [RFC3746] Yang, L., Dantu, R., Anderson, T., and R. Gopal,
 "Forwarding and Control Element Separation (ForCES)
 Framework", RFC 3746, April 2004.

Haleplidis, et al. Informational [Page 17]

RFC 6369 ForCES Implementation Experience September 2011

Authors’ Addresses

 Evangelos Haleplidis
 University of Patras
 Department of Electrical & Computer Engineering
 Patras 26500
 Greece

 EMail: ehalep@ece.upatras.gr

 Odysseas Koufopavlou
 University of Patras
 Department of Electrical & Computer Engineering
 Patras 26500
 Greece

 EMail: odysseas@ece.upatras.gr

 Spyros Denazis
 University of Patras
 Department of Electrical & Computer Engineering
 Patras 26500
 Greece

 EMail: sdena@upatras.gr

Haleplidis, et al. Informational [Page 18]

