I nt ernet Engi neering Task Force (I ETF) C. Raiciu

Request for Comments: 6356 Uni v. Politehnica of Bucharest
Cat egory: Experi nental M Handly
| SSN: 2070-1721 D. Wschik

Univ. Coll ege London
Cct ober 2011

Coupl ed Congestion Control for Miltipath Transport Protocols
Abstr act

Oten endpoints are connected by nultiple paths, but comunications
are usually restricted to a single path per connection. Resource
usage within the network would be nore efficient were it possible for
these nultiple paths to be used concurrently. Miltipath TCP is a
proposal to achieve nultipath transport in TCP

New congestion control algorithnms are needed for nultipath transport
protocol s such as Multipath TCP, as single path algorithnms have a
series of issues in the nmultipath context. One of the prom nent
problens is that running existing algorithns such as standard TCP

i ndependently on each path would give the nultipath flow nore than
its fair share at a bottleneck Iink traversed by nore than one of its
subflows. Further, it is desirable that a source with nmultiple paths
available will transfer nore traffic using the | east congested of the
pat hs, achieving a property called "resource pooling"” where a bundle
of links effectively behaves like one shared link with bigger
capacity. This would increase the overall efficiency of the network
and also its robustness to failure.

Thi s docunent presents a congestion control algorithmthat couples
the congestion control algorithnms running on different subflows by
linking their increase functions, and dynanmically controls the
overal | aggressiveness of the nultipath flow The result is a
practical algorithmthat is fair to TCP at bottl enecks while noving
traffic away from congested |inks.

Raiciu, et al. Experi ment al [Page 1]

RFC 6356 MPTCP Congestion Control Cct ober 2011

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
publ i shed for exam nation, experinental inplenentation, and
eval uati on.

Thi s docunent defines an Experinmental Protocol for the Internet
comunity. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the | ETF
community. 1t has received public review and has been approved for
publication by the Internet Engineering Steering G oup (IESG. Not
al | docunents approved by the | ESG are a candi date for any |evel of
Internet Standard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6356

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introducti ON ... 3
2. Requirements LangQuUagettt e 5
3. Coupled Congestion Control Algorithm............................ 5
4. Inmplenmentation Considerations 7
4.1. Conputing "alpha" in Practice 7
4.2. Inplenmentation Considerati ons when CAW\D i s
Expressed in Packets 8
B Dl SCUSSI ON .ot e 9
6. Security Considerati OnNSt 10
7. ACKNOW edgemBnt S 11
8. References 11
8.1. Normative References 11
8.2. Informative References 11

Raiciu, et al. Experi ment al [Page 2]

RFC 6356 MPTCP Congestion Control Cct ober 2011

1

I ntroduction

Mul tipath TCP (MPTCP, [MPTCP-MJULTI ADDRESSED]) is a set of extensions
to regular TCP [RFC0793] that allows one TCP connection to be spread
across nmultiple paths. MPTCP distributes |oad through the creation
of separate "subflows" across potentially disjoint paths.

How shoul d congestion control be perforned for nultipath TCP? First,
each subfl ow nmust have its own congestion control state (i.e., cwnd)
so that capacity on that path is matched by offered | oad. The
sinmplest way to achieve this goal is to sinply run standard TCP
congestion control on each subflow. However, this solution is
unsatisfactory as it gives the nultipath flow an unfair share when
the paths taken by its different subflows share a common bottl eneck

Bottl eneck fairness is just one requirenent nultipath congestion
control should nmeet. The follow ng three goals capture the desirable
properties of a practical nultipath congestion control algorithm

0 Goal 1 (Inprove Throughput) A nultipath fl ow should perform at
|l east as well as a single path flow would on the best of the paths
available to it.

0 Goal 2 (Do no harm) A nultipath flow should not take up nore
capacity fromany of the resources shared by its different paths
than if it were a single flow using only one of these paths. This
guarantees it will not unduly harm other fl ows.

0 Coal 3 (Balance congestion) A nmultipath flow should nove as nuch
traffic as possible off its nobst congested paths, subject to
nmeeting the first two goals.

Goals 1 and 2 together ensure fairness at the bottleneck. Goal 3
captures the concept of resource pooling [WSCH K]: if each multipath
flow sends nore data through its |east congested path, the traffic in
the network will nove away from congested areas. This inproves
robust ness and overal |l throughput, anbng other things. The way to
achi eve resource pooling is to effectively "couple" the congestion
control loops for the different subflows.

We propose an algorithmthat couples the additive increase function
of the subflows, and uses unnodified TCP behavior in case of a drop
The algorithmrelies on the traditional TCP nmechani snms to detect
drops, to retransnit data, etc

Raiciu, et al. Experi ment al [Page 3]

RFC 6356 MPTCP Congestion Control Cct ober 2011

Det ecting shared bottlenecks reliably is quite difficult, but is just
one part of a bigger question. This bigger question is how nmuch
bandwi dth a nultipath user should use in total, even if there is no
shared bottl eneck.

The congestion controller ains to set the nultipath flow s aggregate
bandwi dth to be the sane as that of a regular TCP fl ow woul d get on
the best path available to the multipath flow To estimate the
bandwi dth of a regular TCP flow, the nultipath flow estimtes | oss
rates and round-trip tines (RTTs) and conputes the target rate.

Then, it adjusts the overall aggressiveness (paraneter al pha) to
achi eve the desired rate.

Whi | e t he mechani sm above applies always, its effect depends on
whet her the rmultipath TCP fl ow i nfl uences or does not influence the

link loss rates (low versus high statistical multiplexing). |If MPTCP
does not influence link loss rates, MPTCP will get the same
t hroughput as TCP on the best path. In cases with |ow statistica

mul ti pl exi ng, where the nmultipath flow influences the |oss rates on
the path, the nultipath throughput will be strictly higher than that
a single TCP woul d get on any of the paths. In particular, if using
two idle paths, nultipath throughput will be sumof the two paths

t hr oughput .

This algorithmensures bottleneck fairness and fairness in the
broader, network sense. W acknow edge that current TCP fairness
criteria are far fromideal, but a nultipath TCP needs to be

depl oyable in the current Internet. |f needed, new fairness criteria
can be inplenented by the same al gorithm we propose by appropriately
scaling the overall aggressiveness.

It is intended that the algorithm presented here can be applied to
other nmultipath transport protocols, such as alternative nultipath
extensions to TCP, or indeed any other congestion-aware transport
protocols. However, for the purposes of exanple, this docunent wll,
where appropriate, refer to the MPTCP

The design deci sions and eval uati on of the congestion contro
al gorithmare published in [NSDI].

The al gorithm presented here only extends standard TCP congestion
control for nultipath operation. It is foreseeable that other
congestion controllers will be inplenmented for nmultipath transport to
achi eve the bandwi dt h-scaling properties of the newer congestion
control algorithms for regular TCP (such as Conpound TCP and Cubic).

Raiciu, et al. Experi ment al [Page 4]

RFC 6356 MPTCP Congestion Control Cct ober 2011

2.

Requi renment s Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119]

Coupl ed Congestion Control Al gorithm

The al gorithmwe present only applies to the increase phase of the
congesti on avoi dance state specifying how the wi ndow i nfl ates upon
receiving an ACK. The slow start, fast retransmt, and fast recovery
algorithns, as well as the nultiplicative decrease of the congestion
avoi dance state are the sane as in standard TCP [RFC5681] .

Let cwnd_i be the congestion wi ndow on the subflowi. Let cwnd_tota
be the sum of the congestion wi ndows of all subflows in the
connection. Let p_i, rtt_i, and MSS_i be the loss rate, round-trip

tinme (i.e., snoothed round-trip tine estinmate used by TCP), and
maxi mum segnent size on subflowi.

We assume throughout this document that the congestion w ndow is

mai ntai ned in bytes, unless otherw se specified. W briefly describe
the al gorithm for packet-based inplenentations of cwnd in section
Section 4. 2.

Qur proposed "Linked I ncreases" algorithm MJST

0 For each ACK received on subflow i, increase cwnd_i by
al pha * bytes acked * MSS. i bytes_acked * MSS
mn (-----mmmmmmmi e R R) (1)
cwnd_t ot al cwnd_i

The increase fornula (1) takes the m ni mum between the conputed
increase for the nultipath subflow (first argunent to nmin), and the
increase TCP would get in the sane scenario (the second argunent).

In this way, we ensure that any nultipath subflow cannot be nore
aggressive than a TCP flow in the same circunstances, hence achieving
Goal 2 (do no harm.

"al pha" is a paraneter of the algorithmthat describes the
aggressi veness of the nultipath flow To neet Goal 1 (inprove

t hroughput), the value of al pha is chosen such that the aggregate
t hroughput of the multipath flowis equal to the throughput a TCP
flow would get if it ran on the best path.

Raiciu, et al. Experi ment al [Page 5]

RFC 6356 MPTCP Congestion Control Cct ober 2011

To get an idea of what the algorithmis trying to do, let’'s take the
case where all the subflows have the sane round-trip tine and Maxi num
Segrment Size (MsSS). |In this case, the algorithmw Il grow the tota
wi ndow by approxi mately al pha*MSS per RTT. This increase is
distributed to the individual flows according to their instantaneous
wi ndow size. Subflowi wll increase by al pha*cwnd_i/cwnd_total
segnents per RITT.

Note that, as in standard TCP, when cwnd_total is large the increase
may be 0. In this case, the increase MIST be set to 1. W discuss
how to inmplenent this fornula in practice in the next section

We assune inpl enentations use an approach sinmilar to appropriate byte
counting (ABC, [RFC3465]), where the bytes acked variable records the
nunmber of bytes newly acknow edged. |If this is not the case,

byt es_acked SHOULD be set to MSS i.

To conpute cwnd _total, it is an easy mistake to sumup cwnd i across
all subflows: when a flowis in fast retransnit, its cwnd is
typically inflated and no | onger represents the real congestion

wi ndow. The correct behavior is to use the ssthresh (slow start
threshol d) value for flows in fast retransmt when conputing

cwnd_total. To cater to connections that are app limted, the
conput ati on should consider the m ni rum between flight _size i and
cwnd_i, and flight _size i and ssthresh_ i, where appropriate.

The total throughput of a multipath fl ow depends on the val ue of

al pha and the | oss rates, maxi num segnment sizes, and round-trip tines
of its paths. Since we require that the total throughput is no worse
than the throughput a single TCP would get on the best path, it is

i mpossible to choose, a priori, a single value of alpha that achieves
the desired throughput in every occasion. Hence, alpha nust be
conmput ed based on the observed properties of the paths.

The formula to conpute al pha is:
MAX (cwnd i/rtt _i72)

alpha = cwnd_total * -----------mmmia oo (2)
(SUM (cwnd_i/rtt_i))"2

Not e:

MAX (x_i) neans the maxi nrum val ue for any possible value of i

SUM (x_i) means the summation for all possible values of i

Raiciu, et al. Experi ment al [Page 6]

RFC 6356 MPTCP Congestion Control Cct ober 2011

The fornmula (2) is derived by equalizing the rate of the nmultipath
flowwith the rate of a TCP running on the best path, and solving for
al pha.

4. I nplenmentation Considerations

Equation (2) inplies that alpha is a floating point value. This
woul d require performing costly floating point operations whenever an
ACK is received. Further, in many kernels, floating point operations
are disabled. There is an easy way to approxi nate the above

cal cul ations using integer arithnetic.

4.1. Conputing "alpha" in Practice
Let al pha_scale be an integer. Wen conputing al pha, use al pha_scal e
* cwnd_total instead of cwnd_total and do all the operations in

i nteger arithmetic.

Then, scale down the increase per ACK by al pha_scale. The resulting
algorithmis a sinple change from Equation (1):

0 For each ACK received on subflow i, increase cwnd_i by:
al pha * bytes acked * MSS. i bytes_acked * MSS
U e e R D I)
al pha_scale * cwnd_total cwnd_i

The al pha_scal e paraneter denotes the precision we want for conputing
al pha. (Qbserve that the errors in conputing the nunerator or the
denonminator in the fornula for alpha are quite snmall, as the cwnd in
bytes is typically nmuch larger than the RTT (neasured in ns).

Wth these changes, all the operations can be done using integer
arithmetic. W propose al pha_scale be a small power of two, to allow
using faster shift operations instead of nultiplication and division
Qur experiments show that using al pha_scal e=512 works well in a wide
range of scenarios. Increasing al pha_scale increases precision, but
al so increases the risk of overflow when conputing al pha. Using 64-
bit operations would solve this issue. Another optionis to
dynani cal | y adj ust al pha_scal e when conputing al pha; in this way, we
avoi d overfl ow and obtai n maxi num preci si on

It is possible to inplenent the algorithm by cal cul ati ng cwnd_t ot al
on each ack; however, this would be costly especially when the nunber
of subflows is large. To avoid this overhead, the inplenentation MAY
choose to mmintain a new per-connection state variable called
"cwnd_total”. If it does so, the inplenmentation will update the
cwnd_total val ue whenever the individual subflow s w ndows are

Raiciu, et al. Experi ment al [Page 7]

RFC 6356 MPTCP Congestion Control Cct ober 2011

updated. Updating only requires one nore addition or subtraction
operation conpared to the regul ar, per-subflow congestion contro
code, so its performance inpact should be nininal

Computing al pha per ACK is also costly. W propose al pha be a per-
connection variabl e, conputed whenever there is a drop and once per
RTT otherwi se. Mre specifically, |let cwnd_new be the new val ue of
the congestion window after it is inflated or after a drop. Update
alpha only if the quotient of cwnd_i/MSS i differs fromthe quotient
of cwnd_new i/ MSS i.

In certain cases with small RTTs, conputing al pha can still be
expensive. W observe that if RTTs were constant, it is sufficient
to conmpute al pha once per drop, as al pha does not change between
drops (the insight here is that cwnd_i/cwnd_j = constant as |long as
both wi ndows increase). Experinental results show that even if
round-trip tinmes are not constant, using average round-trip tinme per
sawt oot h instead of instantaneous round-trip tine (i.e., TCP's
snoot hed RTT estinmator) gives good precision for conputing al pha.
Hence, it is possible to conpute al pha only once per drop using a
nodi fi ed version of equation (2) where rtt_i is replaced with
rtt_avg_i.

I f using average round-trip tine, rtt_avg i will be conputed by
sanpling the rtt_i whenever the wi ndow can accommpbdate one nore
packet, i.e., when cwnd / MSS < (cwnd+i ncrease)/MSS. The sanples are
averaged once per sawtooth into rtt_avg i. This sanpling ensures
that there is no sanpling bias for |arger w ndows.

G ven cwnd_total and al pha, the congestion control algorithmis run
for each subflow i ndependently, with simlar conplexity to the
standard TCP i ncrease code [RFC5681].

4.2. Inplenentation Considerations when CAW\D i s Expressed in Packets

When the congestion control algorithmmaintains cwnd in packets
rat her than bytes, the al gorithns above nust change to take into
account path MsS.

To conmpute the increase when an ACK is received, the inplenentation
for multipath congestion control is a sinple extension of the
standard TCP code. In standard, TCP cwnd _cnt is an additional state
vari abl e that tracks the nunber of segnents acked since the |ast cwnd
increnent; cwnd is increnmented only when cwnd _cnt > cwnd; then,
cwnd_cnt is set to O.

Raiciu, et al. Experi ment al [Page 8]

RFC 6356 MPTCP Congestion Control Cct ober 2011

In the multipath case, cwnd _cnt i is naintained for each subfl ow as
above, and cwnd_i is increased by 1 when cwnd_cnt_i > nax(al pha_scal e
* cwnd_total / alpha, cwnd_i).

When conputing al pha for packet-based stacks, the errors in conputing
the terns in the denonminator are larger (this is because cwnd is nuch
smal ler and rtt may be conparatively large). Let max be the index of
the subflow used in the nunerator. To reduce errors, it is easiest
to nove rtt_max (once calculated) fromthe nunerator to the
denoni nat or, changi ng equation (2) to obtain the equivalent formula
bel ow.

(4)

al pha = al pha_scale * cwnd_total * ---------cmommmm
(SUM ((rtt_max * cwnd_i) / rtt_i))"2

Note that the calculation of al pha does not take into account path
MSS and is the same for stacks that keep cwnd in bytes or packets.
Wth this formula, the algorithmfor conmputing al pha will nmatch the
rate of TCP on the best path in B/s for byte-oriented stacks, and in
packets/s in packet-based stacks. In practice, MS rarely changes
bet ween paths so this shouldn’'t be a problem

However, it is sinple to derive formul ae all owi ng packet-based stacks
to achieve byte rate fairness (and vice versa) if needed. In
particul ar, for packet-based stacks wanting byte-rate fairness,
equation (4) above changes as follows: cwnd_nax is replaced by
cwnd_nmax * MBS max * MSS nax, while cwnd_i is replaced with cwnd_i *
MBS i .

5. D scussi on

The al gorithm we’ve presented fully achieves Goals 1 and 2, but does
not achieve full resource pooling (Goal 3). Resource pooling
requires that no traffic should be transferred on |inks w th higher
|l oss rates. To achieve perfect resource pooling, one nust couple
both i ncrease and decrease of congestion wi ndows across subflows, as
in [KELLY].

There are a few problens with such a fully coupled controller

First, it will insufficiently probe paths with high loss rates and
will fail to detect free capacity when it becones available. Second,
such controllers tend to exhibit "flappi ness": when the paths have
simlar levels of congestion, the congestion controller will tend to
allocate all the window to one random subflow and al |l ocate zero

Raiciu, et al. Experi ment al [Page 9]

RFC 6356 MPTCP Congestion Control Cct ober 2011

wi ndow to the other subflows. The controller will performrandom
flips between these stable points. This doesn't seemdesirable in
general, and is particularly bad when the achi eved rates depend on
the RTT (as in the current Internet): in such a case, the resulting
rate with fluctuate unpredictably depending on which state the
controller is in, hence violating Goal 1

By only coupling increases our proposal probes high | oss paths,
detecting free capacity quicker. Qur proposal does not suffer from
fl appi ness but al so achi eves | ess resource pooling. The algorithm
will allocate window to the subflows such that p_i * cwnd_i =
constant, for all i. Thus, when the |loss rates of the subflows are
equal, each subflow will get an equal w ndow, renoving fl appi ness.
When the loss rates differ, progressively nore windows will be
allocated to the flowwith the lower loss rate. 1In contrast, perfect
resource pooling requires that all the wi ndow should be allocated on
the path with the lowest | oss rate. Further details can be found in
[NSDI] .

6. Security Considerations

One security concern relates to what we call the traffic-shifting
attack: on-path attackers can drop packets belonging to a nultipath
subflow, which, in turn, nakes the path seem congested and will force
the sender’s congestion controller to avoid that path and push nore
data over alternate subfl ows.

The attacker’s goal is to create congestion on the corresponding
alternative paths. This behavior is entirely feasible but will only
have m nor effects: by design, the coupled congestion controller is
less (or sinmlarly) aggressive on any of its paths than a single TCP
flow. Thus, the biggest effect this attack can have is to make a
mul ti path subflow be as aggressive as a single TCP fl ow

Anot her effect of the traffic-shifting attack is that the new path
can nonitor all the traffic, whereas before it could only see a
subset of traffic. W believe that if privacy is needed, splitting
traffic across multiple paths with MPTCP is not the right solution in
the first place; end-to-end encryption should be used instead.

Besides the traffic-shifting attack nenti oned above, the coupled
congestion control algorithmdefined in this docunent adds no ot her
security considerations to those found in [MPTCP- MULTI ADDRESSED] and
[RFC6181]. Detailed security analysis for the Miltipath TCP protoco
itself is included in [MPTCP- MULTI ADDRESSED] and [RFC6181] .

Raiciu, et al. Experi ment al [Page 10]

RFC 6356 MPTCP Congestion Control Cct ober 2011

7. Acknow edgenents

W thank Christoph Paasch for his suggestions for conputing al pha in
packet - based stacks. The authors are supported by Tril ogy
(http://ww. trilogy-project.org), a research project (ICT-216372)
partially funded by the European Comunity under its Seventh
Framework Program The views expressed here are those of the

aut hor(s) only. The European Comission is not |iable for any use
that may be made of the information in this docunent.

8. Ref er ences
8.1. Normative References

[RFCO793] Postel, J., "Transm ssion Control Protocol", STD 7,
RFC 793, Septenber 1981.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[RFC5681] Al lman, M, Paxson, V., and E. Blanton, "TCP Congestion
Control", RFC 5681, Septenber 2009.

8.2. Informative References
[KELLY] Kelly, F. and T. Voice, "Stability of end-to-end
algorithms for joint routing and rate control", ACM

S| GCOW CCR vol . 35 num 2, pp. 5-12, 2005,
<http://portal.acmorg/citation.cfnPi d=1064415>.

[MPTCP- MULTI ADDRESSED]
Ford, A, Raiciu, C, Handley, M, and O Bonaventure,
"TCP Extensions for Multipath Operation with Miultiple
Addr esses", Work in Progress, July 2011.

[NSDI] Wschik, D, Raiciu, C, Geenhalgh, A, and M Handl ey,
"Design, Inplenentation and Eval uati on of Congestion
Control for Multipath TCP", Usenix NSDI , March 2011, <htt
p: //www. cs. ucl . ac. uk/staff/c.raiciu/files/nptcp-nsdi. pdf>.

[RFC3465] Al lman, M, "TCP Congestion Control with Appropriate Byte
Counting (ABQ)", RFC 3465, February 2003.

[RFC6181] Bagnulo, M, "Threat Analysis for TCP Extensions for

Mul tipath Operation with Miltiple Addresses", RFC 6181,
March 2011.

Raiciu, et al. Experi ment al [Page 11]

RFC 6356 MPTCP Congestion Control Cct ober 2011

[WSCH K] Wschik, D, Handley, M, and M Bagnul o Braun, "The
Resource Pooling Principle", ACM S| GCOMW CCR vol. 38 num
5, pp. 47-52, Cctober 2008,
<http://ccr.sigconmorg/online/files/p47-handl eyAd. pdf >.

Aut hor s’ Addr esses

Costin Raiciu

Uni versity Politehnica of Bucharest
Spl ai ul | ndependentei 313

Buchar est

Romani a

EMai | : costin.raiciu@s.pub.ro

Mar k Handl ey

Uni versity Col | ege London
Cower Street

London WC1E 6BT

UK

EMai | : m handl ey@s. ucl . ac. uk
Danon W schi k

Uni versity Col | ege London
CGCower Street

London WC1E 6BT

UK

EMail : d.w schik@s. ucl. ac. uk

Raiciu, et al. Experi ment al [Page 12]

