I nt ernet Engi neering Task Force (I ETF) M Konu

Request for Comments: 6317 Aalto University
Cat egory: Experi nental T. Henderson
| SSN: 2070- 1721 The Boei ng Conpany

July 2011

Basi ¢ Socket I|nterface Extensions for
the Host ldentity Protocol (H P)

Abst r act

Thi s docunent defines extensions to the current sockets APl for the
Host Identity Protocol (HI P). The extensions focus on the use of
publ i c-key-based identifiers discovered via DNS resolution, but also
define interfaces for manual bindings between Host Identity Tags

(H Ts) and locators. Wth the extensions, the application can al so
support nore rel axed security nodels where comruni cati on can be non-
HI P- based, according to local policies. The extensions in this
docunent are experinmental and provide basic tools for further
experinmentation with policies.

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
publ i shed for exam nation, experinental inplenentation, and
eval uati on.

Thi s docunent defines an Experinmental Protocol for the Internet
comunity. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the | ETF
community. 1t has received public review and has been approved for
publication by the Internet Engineering Steering G oup (IESG. Not
al | docunents approved by the | ESG are a candi date for any |evel of
Internet Standard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6317

Komu & Hender son Experi ment al [Page 1]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Tabl e of Contents

1. Introducti ON ... 3
2. Term N0l OQY ..ot e e 5
3. Name Resol UtiOn ProCeSS e e e 5
3.1. Interaction with the Resolver 5
3.2. Interaction without a Resolver, 6
4. APl Syntax and SEemBNtiCS 7
4.1. Socket Fanmily and Address Structure Extensions 7
4.2. Extensions to Resolver Data Structures 9
4.3. The Use of getsocknanme() and getpeernanme() Functions 12
4. 4. Selection of Source HIT Type 12
4.5, Verification of HIT Type i 13
4.6. Explicit Handling of Locatorso, 14
5. Summary of New Definitions i, 16
6. Security Considerati Ons e 16
7. Contributors e 17
8. ACKNOW edgImENnt S 17
9. References e 17
9.1. Normative References 17
9.2. Informative References i, 18

Komu & Hender son Experi ment al [Page 2]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

1

I ntroduction

Thi s docunent defines the C based sockets Application Programing
Interface (APl) extensions for handling H P-based identifiers
explicitly in H P-aware applications. It is up to the applications,
or high-1level progranm ng | anguages or libraries, to nmanage the
identifiers. The extensions in this docunent are nainly related to
the use case in which a DNS resolution step has occurred prior to the
creation of a new socket, and assunes that the system has cached or
is otherwise able to resolve identifiers to locators (IP addresses).
The DNS extension for H P is described in [RFC5205]. The extensions
al so cover the case in which an application may want to explicitly
provi de suggested locators with the identifiers, including supporting
the opportunistic case in which the system does not know the peer
host identity.

The Host ldentity Protocol (H P) [RFC4423] proposes a new

crypt ographi ¢ nanespace by separating the roles of endpoint
identifiers and | ocators by introducing a new nanmespace to the TCP/IP
stack. Shinmb [RFC5533] is another protocol based on an identity-
locator split. The APIs specified in this docunent are specific to
H P, but have been designed as nuch as possible to not preclude its
use with other protocols. The use of these APIs with other protocols
is, nevertheless, for further study.

The APIs in this docunent are based on Host ldentity Tags (HI Ts) that
are defined as I Pv6 addresses with the Overlay Routable Cryptographic
Hash Identifiers (ORCHI D) prefix [RFC4843]. ORCH Ds are derived from
Host Identifiers using a hash and fitting the result into an |IPv6
address. Such addresses are called H Ts, and they can be

di stingui shed fromother |Pv6 addresses via the ORCH D prefix. Note
that ORCHIDs are presently an experinental allocation by | ANA |f
the ORCHI D allocation were to expire and H T generation were to use a
different prefix in the future, nost users of the APl woul d not be

i npacted, unless they explicitly checked the ORCH D prefix on
returned H Ts. Users who check (for consistency) that H Ts have a
valid ORCH D prefix nmust nonitor the | ANA allocation for ORCH Ds and
adapt their software in case the ORCH D allocation were to be renoved
at a future date.

Applications can observe the HP layer and its identifiers in the
net wor ki ng stacks with varying degrees of visibility. [RFC5338]

di scusses the |l owest levels of visibility in which applications are
conpl etely unaware of the underlying H P layer. Such H P-unaware
applications in some circunstances use Hl P-based identifiers, such as
Local Scope ldentifiers (LSIs) or HI Ts, instead of |IPv4 or |Pv6
addresses and cannot observe the identifier-|ocator bindings.

Komu & Hender son Experi ment al [Page 3]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

This docunent specifies extensions to [RFC3493] to define a new
socket address fanmily, AF HP. Sinmilarly to other address fanilies,
AF_H P can be used as an alias for PF_H P. The extensions also
descri be a new socket address structure for sockets using H Ts
explicitly and describe how the socket calls in [RFC3493] are adapted
or extended as a result.

Some applications nmay accept inconi ng comruni cations from any
identifier. Oher applications nmay initiate outgoing comunications
wi t hout the know edge of the peer identifier in opportunistic node
(Section 4.1.6 of [RFC5201]) by just relying on a peer locator. This
docunent describes how to address both situations using "w |l dcards"
as described in Section 4.1.1.

Thi s docunent references one additional APl docunent [RFC6316] that
defines multihom ng and explicit-locator handling. Mst of the
extensions defined in this docunment can be used i ndependently of the
above docunent.

The identity-locator split introduced by H P introduces sone policy-
rel ated chall enges with datagramoriented sockets, opportunistic
node, and nmanual bindi ngs between H Ts and | ocators. The extensions
in this docunent are of an experinental nature and provide basic
tools for experinenting with policies. Policy-related issues are
left for further experinentation.

To recap, the extensions in this docunent have three goals. The
first goal is to allow H P-aware applications to open sockets to

ot her hosts based on the H Ts al one, presum ng that the underlying
system can resolve the H Ts to addresses used for initial contact.
The second goal is that applications can explicitly initiate

communi cati ons with unknown peer identifiers. The third goal is to
illustrate how H P-aware applications can use the Shim APl [RFC6316]
to manually map locators to HITs.

Thi s docunent was published as experinental because a nunber of its
normati ve references had experinental status. The success of this
experinment can be evaluated by a thorough inplenentation of the APlIs
defi ned.

Komu & Hender son Experi ment al [Page 4]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

2.

3.

Ter m nol ogy

The terns used in this docunent are summarized in Table 1

| Fully Qualified Dormai n Name |
| Host ldentity Protocol |
| Host ldentifier |
| Host ldentity Tag, a 100-bit hash of a public key with

| a 28-bit prefix |
| Local Scope ldentifier, a local, 32-bit descriptor for

| a given public key |
| Routable IPv4d or | Pv6 address used at the | ower |ayers

| Resource Record

Locat or
RR

Table 1
Nane Resol ution Process

This section provides an overview of how the APl can be used. First,
the case in which a resolver is involved in nane resolution is

descri bed, and then the case in which no resolver is involved is
descri bed.

1. Interaction with the Resol ver

Bef ore an application can establish network comuni cations with the
entity naned by a given FQDN or relative hostnane, the application
nmust translate the name into the corresponding identifier(s). DNS-
based hostnane-to-identifier translation is illustrated in Figure 1
The application calls the resolver in step (a) to resolve an FQDN to
one or nore socket addresses within the PF_ H P fanmly. The resolver
in turn, queries the DNSin step (b) to map the FQDN to one or nore
HP RRs with the HHT and H and possi bly the rendezvous server of the
Responder, and also (in parallel or sequentially) to resolve the FQDN
into possibly one or nore A and AAAA records. It should be noted
that the FQDN may map to multiple Host lIdentifiers and | ocators, and
this step may involve nultiple DNS transactions, including queries
for A, AAAA, H, and possibly other resource records. The DNS server
responds with a list of H P resource records in step (c).

Optionally, in step (d), the resolver caches the H T-to-Ilocator
mappi ng with the H P nodule. The resolver converts the H P records
to HTs and returns the HHTs to the application contained in HP
socket address structures in step (e). Depending on the paraneters
for the resolver call, the resolver nmay also return ot her socket

Komu & Hender son Experi ment al [Page 5]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

address structures to the application. Finally, the application
recei ves the socket address structure(s) fromthe resol ver and uses
themin socket calls such as connect() in step (f).

Fom e e - +
I I
I DNS I
I I
Fomem e oo +
N
b. ONAME=EFQDN | | c¢. H P and
| Al AAAA
| v RR(s)
R + a. getaddrinfo(<FQDN>) +---------- +
I R LR >|
| Application | | Resol ver
I | <--mmmmmmme e I I
R + e. <Hl Ts> R +
I I
| | d. HP and
| f. connect(<H T>) | A AAAA
| or any other socket call | RR(s)
v v
Fomm e - + Fomm e - +
I I I
| TCP/IIP | | H P
| Stack | | |
S + S +

Figure 1

In practice, the resolver functionality can be inplenented in
different ways. For exanple, it nmay be inplenented in existing
resolver libraries or as a H P-aware interposing agent.

3.2. Interaction wthout a Resol ver

The extensions in this document focus on the use of the resolver to
map hostnames to H Ts and |l ocators in H P-aware applications. The
resolver may inplicitly associate a HT with the correspondi ng

| ocator(s) by communicating the H T-to-1P mapping to the H P daenon.
However, it is possible that an application operates directly on a
peer HT without interacting with the resolver. 1In such a case, the

Komu & Hender son Experi ment al [Page 6]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

application nay resort to the systemto map the peer HT to an |IP
address. Alternatively, the application can explicitly map the H'T
to an | P address using socket options as specified in Section 4.6.
Ful I support for all of the extensions defined in this docunent
requires a nunber of shim socket options [RFC6316] to be i npl enented
by the system

4. APl Syntax and Senmantics

In this section, we describe the native H P APls using the syntax of
the C programmi ng | anguage. W limt the description to the
interfaces and data structures that are either nodified or conpletely
new, because the native H P APls are otherw se identical to the
sockets APl [PCSI X] .

4.1. Socket Family and Address Structure Extensions

The sockets APl extensions define a new protocol fanmly, PF H P, and
a new address famly, AF HHP. The AF HHP and PF_H P constants are
aliases to each other. These definitions shall be defined as a
result of including <sys/socket.h>.

When the socket () function is called with PF_H P as the first
argunent (donamin), it attenpts to create a socket for HP
communi cation. |If H P is not supported, socket() follows its default
behavior and returns -1, and sets errno to EAFNOSUPPORT.
Fi gure 2 shows the recomended i npl ementation of the socket address
structure for HPin Portable Operating SystemlInterface (PGCSIX)
format.

#i ncl ude <netinet/hip. h>

typedef struct in6_addr hip_hit _t;

struct sockaddr _hip {

uint8 t ship_len
sa_ famly t ship fanily;
i n_port_t shi p_port;
ui nt 32_t shi p_fl ags;
hi p_hit_t ship_hit;
i
Figure 2

Komu & Hender son Experi ment al [Page 7]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

uint8 t ship len: This field defines the length of the structure.
I mpl enentations that do not define this field typically enbed the
information in the following ship_fanmly field.

sa_famly_ t ship famly: This nandatory field identifies the
structure as a sockaddr _hip structure. It overlays the sa famly
field of the sockaddr structure. |Its value nmust be AF H P

in_port_t ship_port: This mandatory field contains the transport
protocol port number. It is handled in the sane way as the sin_port
field of the sockaddr_in structure. The port nunber is stored in
net wor k byte order

uint32 t ship flags: This nandatory bit field contains auxiliary
flags. This docunment does not define any flags. This field is
i ncl uded for future extensions.

hip hit t ship hit: This mandatory field contains the endpoint
identifier. Wen the system passes a sockaddr_hip structure to the
application, the value of this field is set to a valid HT, |Pv4, or
| Pv6 address, as discussed in Section 4.5. \When the application
passes a sockaddr_hip structure to the system this field nust be set
toa HT or a wildcard address as discussed in Section 4.1.1.

Some applications rely on systemlevel access control, either
implicit or explicit (such as the accept filter() function found on
BSD- based systens), but such discussion is out of scope. Oher
applications inplenment access control thenselves by using the H Ts.
Appl i cations operating on sockaddr_hip structures can use nencnp() or
a sinmlar function to conpare the ship_hit fields. It should also be
noted that different connection attenpts between the same two hosts
can result in different H Ts, because a host is allowed to have

mul tiple H Ts.

4.1.1. H P WI dcard Addresses

H P wil dcard addresses are sinilar to | Pv4 and | Pv6 wildcard
addresses. They can be used instead of specific H Ts in the ship_hit
field for local and renpote endpoints in sockets APl calls such as

bi nd(), connect(), sendto(), or sendnsg().

In order to bind to all local IPv4 and | Pv6 addresses and H P HI Ts,
the ship_hit field nust be set to H P_ENDPO NT_ANY. 1In order to bind
to all local H Ts, ship_hit must contain HHP_H T_ANY. To only bind
to all local public HTs, the ship_hit field nust be H P_H T_ANY_PUB.
The value H P_H T_ANY_TMP binds a socket to all |ocal anonynous
identifiers only as specified in [RFC4423]. The system may | abe
anonynous identifiers as such dependi ng on whet her they have been

Komu & Hender son Experi ment al [Page 8]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

published or not. After binding a socket via one of the

H P_H T_ANY_* wi | dcard addresses, the application is guaranteed to
receive only H P-based data flows. Wth the H P_ENDPO NT_ANY

wi | dcard address, the socket accepts H P, |IPv6, and |Pv4-based data
flows.

When a socket is bound or connected via a sockaddr_hip structure,
i.e., the PF_H P protocol famly, the systemreturns only addresses

of the AF_ HIP fanmily, i.e., sockaddr_hip structures, for this socket.
This applies to all functions that provide addresses to the
application, such as accept() or recvfronm(). |If the data flowis

based on H P, the ship_hit field contains the peer's HT. For a
non-H P I Pv6 data flow, the field contains the peer’s |Pv6 address.
For a non-H P I Pv4 data flow, the field contains the peer’'s |Pv4
address in | Pv4-mapped | Pv6 address format as described in

Section 3.7 of [RFC3493]. Section 4.5 describes how the application
can verify the type of address returned by the sockets APl calls.

An application uses the sockets APl as follows to set up a connection
or to send nessages in H P opportunistic node (cf. [RFC5201]).
First, the application associates a socket with at |east one IP
address of the destination peer via setting the

SHI M LOCLI ST_PEER PREF socket option. It then uses outgoing socket
functions such as connect(), sendto(), or sendnsg() with the

H P_ENDPO NT_ANY or HIP_H T_ANY wi |l dcard address in the ship_hit
field of the sockaddr_hip structure. Wth the H P_H T_ANY address,
the underlying systemallows only H P-based data flows with the
correspondi ng socket. For incom ng packets, the system di scards al
non-H P-related traffic arriving at the socket. For outgoing
packets, the systemreturns -1 in the socket call and sets errno to
an appropriate error type when the systemfailed to deliver the
packet over a H P-based data channel. The semantics of using

HI P_ENDPO NT_ANY are the subject of further experinmentation in the
context of opportunistic node. Such use may result in a data flow
either with or without HP

4.2. Extensions to Resolver Data Structures

The H P APl's introduce a new address famly, AF_H P, that H P-aware
applications can use to control the address type returned fromthe
getaddrinfo() function [RFC3493] [PCSI X]. The getaddrinfo() function
uses a data structure called addrinfo in its "hints" and "res"
argunents, which are described in nore detail in the next section

The addrinfo data structure is illustrated in Figure 3.

Komu & Hender son Experi ment al [Page 9]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

#i ncl ude <net db. h>

struct addrinfo {

i nt ai _flags; /* e.g., Al _CANONNAME */

i nt ai _famly; /* e.g., AF_HP */

i nt ai _socktype; /* e.g., SOCK STREAM */

i nt ai _protocol; /* 0 or IPPROTO HIP */

socklen_t ai _addrl en; /* size of *ai _addr */

struct sockaddr *ai _addr; /* sockaddr_hip */

char *ai _canonnare; /* canon. nane of the host */

struct addrinfo *ai _next; /* next endpoint */

i nt ai _efl ags; /* RFC 5014 extension */
i

Fi gure 3

An application resolving with the ai _famly field set to AF_UNSPEC in
the hints argunent nay receive any kind of socket address structures,
i ncludi ng sockaddr _hip. When the application wants to receive only
H Ts contained in sockaddr_hip structures, it should set the

ai _family field to AF_ HHP. Oherw se, the resolver does not return
any sockaddr _hip structures. The resolver returns EAl _FAM LY when
AF_ H P is requested but not supported.

The resol ver ignores the Al _PASSI VE fl ag when the application sets
the fanmily in hints to AF_H P

The system nay have a H P-aware interposing DNS agent as described in
Section 3.2 of [RFC5338]. In such a case, the DNS agent may,
according to local policy, transparently return LSIs or H Ts in
sockaddr _in and sockaddr _in6 structures when available. A H P-aware
application can override this local policy in two ways. First, the
application can set the fanmily to AF_ H P in the hints argunment of
getaddrinfo() when it requests only sockaddr_hip structures. Second,
the application can set the AI_NOHT flag to prevent the resol ver
fromreturning HTs in any kind of data structures.

Wien getaddrinfo() returns resolved outputs in the output "res"
argunent, it sets the family to AF_H P when the related structure is
sockaddr _hi p.

4.2.1. Resolver Usage
A Hl P-aware application creates the sockaddr_hip structures manually

or obtains themfromthe resolver. The explicit configuration of
|l ocators is described in [RFC6316]. This docunent defines

Komu & Hender son Experi ment al [Page 10]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

"aut omat ed" resol ver extensions for the getaddrinfo() resolver

[RFC3493]. Oher resolver calls, such as gethostbynane() and

get servbyname(), are not defined in this docunment. The getaddrinfo()
resolver interface is shown in Figure 4.

#i ncl ude <net db. h>

i nt getaddrinfo(const char *nodenane,
const char *servname
const struct addrinfo *hints,
struct addrinfo **res)

void free_addrinfo(struct addrinfo *res)

Fi gure 4

As described in [RFC3493], the getaddrinfo() function takes nodenane,
servnane, and hints as its input argunments. It places the result of
the query into the res output argunent. The return value is zero on
success, or a non-zero error value on error. The nodenane argunent
specifies the hostname to be resolved; a NULL argunent denotes the

H Ts of the local host. The servnanme paraneter declares the port
nunber to be set in the socket addresses in the res output argumnent.
The nodenane and servnane argunents cannot both be NULL at the sane
time.

The input argunment "hints" acts like a filter that defines the
attributes required fromthe resol ved endpoints. A NULL hints
argunent indicates that any kind of endpoint is acceptable.

The out put argunent "res" is dynamcally allocated by the resol ver
The application frees the res argunent with the free_addrinfo
function. The res argument contains a linked Iist of the resolved
endpoi nts. The linked Iist contains only sockaddr_hip structures
when the input argunment has the fanmily set to AF_H P. \en the
famly is zero, the list contains sockaddr_hip structures before
sockaddr _in and sockaddr i n6 structures.

The resolver can return a H'T that maps to nultiple |locators. The
resol ver may cache the locator mappings with the H P nodule. The H P
nmodul e nmanages the multiple locators according to system policies of
the host. The multihom ng docunment [RFC6316] describes how an
application can override systemdefault policies.

Komu & Hender son Experi ment al [Page 11]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

It should be noted that the application can configure the H'T
explicitly without setting the locator, or the resolver can fail to
resolve any locator. |In this scenario, the application relies on the
systemto map the HIT to an I P address. Wen the systemfails to
provide the mapping, it returns -1 in the called sockets APl function
to the application and sets errno to EADDRNOTAVAI L.

4.3. The Use of getsocknanme() and getpeernane() Functions

The sockaddr _hip structure does not contain a H T when the
application uses the HHP_H T_ANY_* or H P_ENDPO NT_ANY constants. 1In
such a case, the application can discover the |ocal and peer H Ts
usi ng the getsocknane() and getpeernane() functions after the socket
is connected. The functions getsocknane() and getpeernanme() always
out put a sockaddr_hip structure when the famly of the socket is
AF_H P. The application should be prepared to also handle |IPv4 and

| Pv6 addresses in the ship_hit field, as described in Section 4.1, in
the context of the H P_ENDPO NT_ANY const ant

4.4. Selection of Source HT Type

A client-side application can choose its source H' T by, for exanple,
querying all of the local HTs with getaddrinfo() and associ ati ng one
of themw th the socket using bind(). This section describes another
met hod for a client-side application to affect the selection of the
source HI'T type where the application does not call bind()

explicitly. Instead, the application just specifies the preferred
requirenents for the source H T type

The sockets APl for source address sel ection [RFC5014] defines socket
options to allow applications to influence source address sel ection
mechani sms. I n sone cases, H P-aware applications my want to

i nfluence source H T selection, in particular whether an out bound
connection should use a published or anonymous HT. Similar to

| PV6_ADDR PREFERENCES defined in [RFC5014], the socket option

H T_PREFERENCES is defined for H P-based sockets. This socket option
can be used with setsockopt() and getsockopt() calls to set and get
the HT selection preferences affecting a H P-enabl ed socket. The
socket option value (optval) is a 32-bit unsigned integer argunent.
The argunent consists of a nunber of flags where each flag indicates
an address selection preference that nodifies one of the rules in the
default H T selection; these flags are shown in Table 2.

Komu & Hender son Experi ment al [Page 12]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

e S +

| Socket Option | Purpose

T T T +

| H P_PREFER SRC HI T_TMP | Prefer an anonynous H T

| H P_PREFER SRC HIT_PUBLIC | Prefer a public HT

o o e e e e e e e e oo +
Table 2

If the systemis unable to assign the type of H T that is requested,
at HT selection tine, the socket call (connect(), sendto(), or
sendnsg()) will fail, and errno will be set to EINVAL. If the
application tries to set both of the above flags for the sane socket,
this also results in the error ElINVAL.

4.5. Verification of HT Type

An application that uses the H P_ENDPO NT_ANY constant may want to
check whet her the actual conmunication was based on H P or not.

Al so, the application may want to verify whether a HT belonging to
the I ocal host is public or anonynous. The application acconplishes
this using a new function call ed sockaddr _is_srcaddr(), which is
illustrated in Figure 5.

#i ncl ude <netinet/hip. h>

short sockaddr _i s_srcaddr(struct sockaddr *srcaddr
uint64_t flags);

Figure 5

The sockaddr _is_srcaddr() function operates in the sane way as the
inet6_is_srcaddr() function [RFC5014], which can be used to verify
the type of an address belonging to the local host. The difference
is that the sockaddr_is_srcaddr() function handl es sockaddr_hip
structures in addition to sockaddr _in6, and possibly other socket
structures in further extensions. Also, the length of the flags
argunent is 64 bits instead of 32 bits, because the new function
handl es the sane flags as defined in [RFC5014], in addition to two
H P-specific flags, H P_PREFER SRC H T _TMP and

H P_PREFER_SRC HT_PUBLIC. Wth these two flags, the application can
di stingui sh anonynous H Ts from public HI Ts.

When given an AF_I NET6 socket, sockaddr _is_srcaddr() behaves the same
way as the inet6_is_srcaddr() function as described in [RFC5014].
Wth an AF_H P socket, the function returns 1 when the H T contai ned
in the socket address structure corresponds to a valid HT of the

| ocal host and the HI T satisfies the given flags. The function

Komu & Hender son Experi ment al [Page 13]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

returns -1 when the HI T does not belong to the | ocal host or the
flags are not valid. The function returns 0 when the preference
flags are valid but the HH'T does not natch the given flags. The
function also returns 0 on a sockaddr_hip structure containing a
H P_ENDPQO NT_ANY or HI P_H T_ANY_* wil dcard

The sockaddr _is _srcaddr() interface applies only to local H Ts.
Applications can call the function hip_is hit() to verify that the
given hit_hit_t pointer has the HT prefix. The function is
illustrated in Figure 6.

#i ncl ude <netinet/hip. h>
short hip_is_hit(hip_hit_t *hit);
Figure 6

The hip_is _hit() function returns 1 when the given argunent contains
the HT prefix. The function returns -1 on error and sets errno
appropriately. The function returns 0 when the argunment does not
have the H T prefix. The function also returns 0 when the argunent
is a H P_ENDPO NT_ANY or HIP_H T_ANY_* wildcard

4.6. Explicit Handling of Locators

The systemresolver, or the H P nodule, maps H Ts to | ocators
inmplicitly. However, sonme applications may want to specify initial
| ocat or mappings explicitly. In such a case, the application first
creates a socket with AF H P as the domain argunment. Second, the
application may get or set locator information with one of the

foll owi ng shi msocket options as defined in the nultihom ng
extensions in [RFC6316]. The rel ated socket options are sunmari zed
briefly in Table 3.

Komu & Hender son Experi ment al [Page 14]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

SHIM LOC LOCAL_PREF | Get or set the preferred | ocator on the

| local side for the context associated with
| the socket. |
| Get or set the preferred | ocator on the |
| renote side for the context associated with
| the socket. |
SHIM LOCLI ST LOCAL | Get or set a list of locators associated

| with the Iocal Endpoint Identifier (EID). |
| Get or set a list of |locators associated

| with the peer’s EID.

| Set or get the default source |ocator of |
| outgoing |IP packets. |
| Set or get the default destination |ocator

| of outgoing |IP packets. |

SHI M LOCLI ST_PEER
SHI M LOC_LOCAL_SEND

SHI M_LOC_PEER_SEND

Tabl e 3

As an exanpl e of | ocator mappings, a connection-oriented application
creates a H P-based socket and sets the SHI M LOCLI ST_PEER socket
option on the socket. The H P nodul e uses the first address

contained in the option if nultiple addresses are provided. |If the
application provides one or nore addresses in the SH M LOCLI ST _PEER
set sockopt call, the system should not connect to the host via

anot her destination address, in case the application intends to
restrict the range of addresses permissible as a policy choice. The
application can override the default peer locator by setting the

SHI M LOC _PEER PREF socket option if necessary. Finally, the
application provides a specific HT in the ship hit field of the
sockaddr _hip in the connect() systemcall. |If the system cannot
reach the H'T at one of the addresses provided, the outbound sockets
APl functions (connect(), sendnmsg(), etc.) return -1 and set errno to
El NVALI DLOCATOR

Applications may al so choose to associate | ocal addresses with
sockets. The procedures specified in [RFC6316] are followed in this
case.

Anot her use case is to use the opportunistic node when the
destination HHT is specified as a wildcard. The application sets one
or nore destination addresses using the SH M LOCLI ST_PEER socket
option as described earlier in this section, and then calls connect()
with the wildcard HHT. The connect() call returns -1 and sets errno
t o EADDRNOTAVAIL when the application connects to a wildcard w thout
speci fying any destinati on address.

Komu & Hender son Experi ment al [Page 15]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

5.

6.

Appl i cations using datagramoriented sockets can use ancillary data
to control the locators, as described in detail in [RFC6316].

Summary of New Definitions

Tabl e 4 summari zes the new constants and structures defined in this
docunent .

o e e oo Fmm e e a oo +
| Header | Definition |
S o e e e e e e +

<sys/socket. h> AF H P

<sys/socket. h> PF H P

<netinet/in.h> | PPROTO HI P

<neti net/hi p. h> H P_H T_ANY

<netinet/hip.h>	HP_H T_ANY_PUB
<netinet/hip.h>	H P_H T_ANY_TMP

| <netinet/hip.h>| H P_ENDPO NT_ANY |
| <netinet/hip.h>] H P_H T_PREFERENCES

| <netinet/hip.h>] hip_hit_t

| <netdb. h> | AL NOHT

| <netinet/hip.h> | sockaddr_hip

| <netinet/hip.h> | sockaddr_is_srcaddr()
| <netinet/hip.h> | hip_is_hit()

Security Considerations

Thi s docunent describes an APl for HI P and therefore depends on the
nmechani sns defined in the H P protocol suite. Security concerns
associated with HHP itself are specified in [RFC4423], [RFC4843],

[RFC5201], [RFC5205], and [RFC5338].

The H P_ENDPO NT_ANY constant can be used to accept inconing data
flows or create outgoing data flows without H P. The application
shoul d use the sockaddr _is srcaddr() function to validate the type of
connection in order to, for exanple, informthe user of the lack of
H P-based security. The use of the HHP_H T_ANY_* constants is
recommended in security-critical applications and systens.

It should be noted that the wildcards described in this docunent are
not suitable for identifying end hosts. |nstead, applications should
use getsocknane() and getpeernane() as described in Section 4.3 to
identify an end host.

Komu & Hender son Experi ment al [Page 16]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

Future proofing of H Ts was discussed during the design of this API
If H Ts longer than 128 bits are required at the application |ayer
this will require explicit support fromthe applications, because
they can store or cache HITs with their explicit sizes. To support
|l onger HI Ts, further extensions of this APl may define an additiona
flag for getaddrinfo() to generate different kinds of socket address
structures for HP

7. Contributors

Thanks to Jukka Ylital o and Pekka N kander for their original
contributions, time, and effort to the native HHP APls. Thanks to
Yoshifuji H deaki and Stefan Goetz for their contributions to this
docunent .

8. Acknow edgnents

Kristian Slavov, Julien Laganier, Jaakko Kangasharju, M ka Kousa, Jan
Mel en, Andrew McGregor, Sasu Tarkonm, Lars Eggert, Joe Touch, Antti
Jarvi nen, Anthony Joseph, Teenu Koponen, Jari Arkko, Ari Keranen,
Juha-Matti Tapio, Shinta Suginoto, Philip Mtthews, Joaki m Koskel a,
Jeff Ahrenhol z, Tobias Heer, and Gonzal o Camarill o have provided

val uabl e i deas and feedback. Thanks to Nick Stoughton fromthe
Austin group for POSI X-rel ated comments. Thanks al so to the APPS
area fol ks, including Stephane Bortzneyer, Chris Newran, Tony Fi nch,
"der Mouse", and Keith Moore.

9. Ref er ences
9.1. Normative References

[PCSI X] "I EEE Std. 1003.1-2008 Standard for Information
Technol ogy -- Portable Operating System Interface
(PCsI X). Open group Technical Standard: Base
Speci fications, |Issue 7", Septenber 2008,
<htt p: // ww. opengr oup. or g/ austi n>.

[RFC3493] Glligan, R, Thonson, S., Bound, J., MCann, J., and W
St evens, "Basic Socket Interface Extensions for |Pv6",
RFC 3493, February 2003.

[RFC4423] Moskowi tz, R and P. Ni kander, "Host ldentity Protocol
(H P) Architecture", RFC 4423, May 2006.

[RFCA843] Ni kander, P., Laganier, J., and F. Dupont, "An |Pv6

Prefix for Overlay Routable Cryptographic Hash
Identifiers (ORCH D)", RFC 4843, April 2007.

Komu & Hender son Experi ment al [Page 17]

RFC 6317 Basi ¢ APl Extensions for H P July 2011

9. 2.

Aut

[RFC5014] Nordnark, E., Chakrabarti, S., and J. Laganier, "IPv6
Socket APl for Source Address Sel ection", RFC 5014,
Sept enber 2007.

[RFC5201] Moskowi tz, R, N kander, P., Jokela, P., Ed., and T.
Henderson, "Host ldentity Protocol", RFC 5201, Apri
2008.

[RFC5205] Ni kander, P. and J. Laganier, "Host Identity Protoco
(H P) Domai n Nane System (DNS) Extensions", RFC 5205,
April 2008.

[RFC5338] Henderson, T., N kander, P., and M Komu, "Using the Host
Identity Protocol with Legacy Applications", RFC 5338,
Sept enber 2008.

[RFC6316] Komu, M, Bagnulo, M, Slavov, K, and S. Suginoto, Ed.
"Sockets Application ProgramlInterface (APlI) for
Mul ti homi ng Shim', RFC 6316, July 2011

I nformati ve References

[RFC5533] Nordmark, E. and M Bagnul o, "Shin6: Level 3 Miltihom ng
Shim Protocol for |Pv6", RFC 5533, June 2009.

hors’ Addresses

M i ka Komu

Aalto University
Espoo

Fi nl and

Phone: +358505734395

Fax: +358947025014

EMai | : mika@ki.fi

URI: http://cse.aalto.fi/research/groups/dataconmuni cati ons/ peopl e/

Thomas Hender son
The Boei ng Conpany
P. O Box 3707

Seattle, WA
USA
EMai | : thomas. r. hender son@oei ng. com

Komu & Hender son Experi ment al [Page 18]

