
Internet Engineering Task Force (IETF) M. Komu
Request for Comments: 6317 Aalto University
Category: Experimental T. Henderson
ISSN: 2070-1721 The Boeing Company
 July 2011

 Basic Socket Interface Extensions for
 the Host Identity Protocol (HIP)

Abstract

 This document defines extensions to the current sockets API for the
 Host Identity Protocol (HIP). The extensions focus on the use of
 public-key-based identifiers discovered via DNS resolution, but also
 define interfaces for manual bindings between Host Identity Tags
 (HITs) and locators. With the extensions, the application can also
 support more relaxed security models where communication can be non-
 HIP-based, according to local policies. The extensions in this
 document are experimental and provide basic tools for further
 experimentation with policies.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6317.

Komu & Henderson Experimental [Page 1]

RFC 6317 Basic API Extensions for HIP July 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction ..3
 2. Terminology ...5
 3. Name Resolution Process ...5
 3.1. Interaction with the Resolver5
 3.2. Interaction without a Resolver6
 4. API Syntax and Semantics ..7
 4.1. Socket Family and Address Structure Extensions7
 4.2. Extensions to Resolver Data Structures9
 4.3. The Use of getsockname() and getpeername() Functions12
 4.4. Selection of Source HIT Type12
 4.5. Verification of HIT Type13
 4.6. Explicit Handling of Locators14
 5. Summary of New Definitions16
 6. Security Considerations ..16
 7. Contributors ...17
 8. Acknowledgments ..17
 9. References ...17
 9.1. Normative References17
 9.2. Informative References18

Komu & Henderson Experimental [Page 2]

RFC 6317 Basic API Extensions for HIP July 2011

1. Introduction

 This document defines the C-based sockets Application Programming
 Interface (API) extensions for handling HIP-based identifiers
 explicitly in HIP-aware applications. It is up to the applications,
 or high-level programming languages or libraries, to manage the
 identifiers. The extensions in this document are mainly related to
 the use case in which a DNS resolution step has occurred prior to the
 creation of a new socket, and assumes that the system has cached or
 is otherwise able to resolve identifiers to locators (IP addresses).
 The DNS extension for HIP is described in [RFC5205]. The extensions
 also cover the case in which an application may want to explicitly
 provide suggested locators with the identifiers, including supporting
 the opportunistic case in which the system does not know the peer
 host identity.

 The Host Identity Protocol (HIP) [RFC4423] proposes a new
 cryptographic namespace by separating the roles of endpoint
 identifiers and locators by introducing a new namespace to the TCP/IP
 stack. Shim6 [RFC5533] is another protocol based on an identity-
 locator split. The APIs specified in this document are specific to
 HIP, but have been designed as much as possible to not preclude its
 use with other protocols. The use of these APIs with other protocols
 is, nevertheless, for further study.

 The APIs in this document are based on Host Identity Tags (HITs) that
 are defined as IPv6 addresses with the Overlay Routable Cryptographic
 Hash Identifiers (ORCHID) prefix [RFC4843]. ORCHIDs are derived from
 Host Identifiers using a hash and fitting the result into an IPv6
 address. Such addresses are called HITs, and they can be
 distinguished from other IPv6 addresses via the ORCHID prefix. Note
 that ORCHIDs are presently an experimental allocation by IANA. If
 the ORCHID allocation were to expire and HIT generation were to use a
 different prefix in the future, most users of the API would not be
 impacted, unless they explicitly checked the ORCHID prefix on
 returned HITs. Users who check (for consistency) that HITs have a
 valid ORCHID prefix must monitor the IANA allocation for ORCHIDs and
 adapt their software in case the ORCHID allocation were to be removed
 at a future date.

 Applications can observe the HIP layer and its identifiers in the
 networking stacks with varying degrees of visibility. [RFC5338]
 discusses the lowest levels of visibility in which applications are
 completely unaware of the underlying HIP layer. Such HIP-unaware
 applications in some circumstances use HIP-based identifiers, such as
 Local Scope Identifiers (LSIs) or HITs, instead of IPv4 or IPv6
 addresses and cannot observe the identifier-locator bindings.

Komu & Henderson Experimental [Page 3]

RFC 6317 Basic API Extensions for HIP July 2011

 This document specifies extensions to [RFC3493] to define a new
 socket address family, AF_HIP. Similarly to other address families,
 AF_HIP can be used as an alias for PF_HIP. The extensions also
 describe a new socket address structure for sockets using HITs
 explicitly and describe how the socket calls in [RFC3493] are adapted
 or extended as a result.

 Some applications may accept incoming communications from any
 identifier. Other applications may initiate outgoing communications
 without the knowledge of the peer identifier in opportunistic mode
 (Section 4.1.6 of [RFC5201]) by just relying on a peer locator. This
 document describes how to address both situations using "wildcards"
 as described in Section 4.1.1.

 This document references one additional API document [RFC6316] that
 defines multihoming and explicit-locator handling. Most of the
 extensions defined in this document can be used independently of the
 above document.

 The identity-locator split introduced by HIP introduces some policy-
 related challenges with datagram-oriented sockets, opportunistic
 mode, and manual bindings between HITs and locators. The extensions
 in this document are of an experimental nature and provide basic
 tools for experimenting with policies. Policy-related issues are
 left for further experimentation.

 To recap, the extensions in this document have three goals. The
 first goal is to allow HIP-aware applications to open sockets to
 other hosts based on the HITs alone, presuming that the underlying
 system can resolve the HITs to addresses used for initial contact.
 The second goal is that applications can explicitly initiate
 communications with unknown peer identifiers. The third goal is to
 illustrate how HIP-aware applications can use the Shim API [RFC6316]
 to manually map locators to HITs.

 This document was published as experimental because a number of its
 normative references had experimental status. The success of this
 experiment can be evaluated by a thorough implementation of the APIs
 defined.

Komu & Henderson Experimental [Page 4]

RFC 6317 Basic API Extensions for HIP July 2011

2. Terminology

 The terms used in this document are summarized in Table 1.

 +---------+--+
 | Term | Explanation |
 +---------+--+
FQDN	Fully Qualified Domain Name
HIP	Host Identity Protocol
HI	Host Identifier
HIT	Host Identity Tag, a 100-bit hash of a public key with
	a 28-bit prefix
LSI	Local Scope Identifier, a local, 32-bit descriptor for
	a given public key
Locator	Routable IPv4 or IPv6 address used at the lower layers
RR	Resource Record
 +---------+--+

 Table 1

3. Name Resolution Process

 This section provides an overview of how the API can be used. First,
 the case in which a resolver is involved in name resolution is
 described, and then the case in which no resolver is involved is
 described.

3.1. Interaction with the Resolver

 Before an application can establish network communications with the
 entity named by a given FQDN or relative hostname, the application
 must translate the name into the corresponding identifier(s). DNS-
 based hostname-to-identifier translation is illustrated in Figure 1.
 The application calls the resolver in step (a) to resolve an FQDN to
 one or more socket addresses within the PF_HIP family. The resolver,
 in turn, queries the DNS in step (b) to map the FQDN to one or more
 HIP RRs with the HIT and HI and possibly the rendezvous server of the
 Responder, and also (in parallel or sequentially) to resolve the FQDN
 into possibly one or more A and AAAA records. It should be noted
 that the FQDN may map to multiple Host Identifiers and locators, and
 this step may involve multiple DNS transactions, including queries
 for A, AAAA, HI, and possibly other resource records. The DNS server
 responds with a list of HIP resource records in step (c).
 Optionally, in step (d), the resolver caches the HIT-to-locator
 mapping with the HIP module. The resolver converts the HIP records
 to HITs and returns the HITs to the application contained in HIP
 socket address structures in step (e). Depending on the parameters
 for the resolver call, the resolver may also return other socket

Komu & Henderson Experimental [Page 5]

RFC 6317 Basic API Extensions for HIP July 2011

 address structures to the application. Finally, the application
 receives the socket address structure(s) from the resolver and uses
 them in socket calls such as connect() in step (f).

 +----------+
 | |
 | DNS |
 | |
 +----------+
 ^ |
 b. QNAME=FQDN | | c. HIP and
 | | A/AAAA
 | v RR(s)
 +-------------+ a. getaddrinfo(<FQDN>) +----------+
 | |------------------------>| |
 | Application | | Resolver |
 | |<------------------------| |
 +-------------+ e. <HITs> +----------+
 | |
 | | d. HIP and
 | f. connect(<HIT>) | A/AAAA
 | or any other socket call | RR(s)
 v v
 +----------+ +----------+
 | | | |
 | TCP/IP | | HIP |
 | Stack | | |
 +----------+ +----------+

 Figure 1

 In practice, the resolver functionality can be implemented in
 different ways. For example, it may be implemented in existing
 resolver libraries or as a HIP-aware interposing agent.

3.2. Interaction without a Resolver

 The extensions in this document focus on the use of the resolver to
 map hostnames to HITs and locators in HIP-aware applications. The
 resolver may implicitly associate a HIT with the corresponding
 locator(s) by communicating the HIT-to-IP mapping to the HIP daemon.
 However, it is possible that an application operates directly on a
 peer HIT without interacting with the resolver. In such a case, the

Komu & Henderson Experimental [Page 6]

RFC 6317 Basic API Extensions for HIP July 2011

 application may resort to the system to map the peer HIT to an IP
 address. Alternatively, the application can explicitly map the HIT
 to an IP address using socket options as specified in Section 4.6.
 Full support for all of the extensions defined in this document
 requires a number of shim socket options [RFC6316] to be implemented
 by the system.

4. API Syntax and Semantics

 In this section, we describe the native HIP APIs using the syntax of
 the C programming language. We limit the description to the
 interfaces and data structures that are either modified or completely
 new, because the native HIP APIs are otherwise identical to the
 sockets API [POSIX].

4.1. Socket Family and Address Structure Extensions

 The sockets API extensions define a new protocol family, PF_HIP, and
 a new address family, AF_HIP. The AF_HIP and PF_HIP constants are
 aliases to each other. These definitions shall be defined as a
 result of including <sys/socket.h>.

 When the socket() function is called with PF_HIP as the first
 argument (domain), it attempts to create a socket for HIP
 communication. If HIP is not supported, socket() follows its default
 behavior and returns -1, and sets errno to EAFNOSUPPORT.

 Figure 2 shows the recommended implementation of the socket address
 structure for HIP in Portable Operating System Interface (POSIX)
 format.

 #include <netinet/hip.h>

 typedef struct in6_addr hip_hit_t;

 struct sockaddr_hip {
 uint8_t ship_len;
 sa_family_t ship_family;
 in_port_t ship_port;
 uint32_t ship_flags;
 hip_hit_t ship_hit;
 };

 Figure 2

Komu & Henderson Experimental [Page 7]

RFC 6317 Basic API Extensions for HIP July 2011

 uint8_t ship_len: This field defines the length of the structure.
 Implementations that do not define this field typically embed the
 information in the following ship_family field.

 sa_family_t ship_family: This mandatory field identifies the
 structure as a sockaddr_hip structure. It overlays the sa_family
 field of the sockaddr structure. Its value must be AF_HIP.

 in_port_t ship_port: This mandatory field contains the transport
 protocol port number. It is handled in the same way as the sin_port
 field of the sockaddr_in structure. The port number is stored in
 network byte order.

 uint32_t ship_flags: This mandatory bit field contains auxiliary
 flags. This document does not define any flags. This field is
 included for future extensions.

 hip_hit_t ship_hit: This mandatory field contains the endpoint
 identifier. When the system passes a sockaddr_hip structure to the
 application, the value of this field is set to a valid HIT, IPv4, or
 IPv6 address, as discussed in Section 4.5. When the application
 passes a sockaddr_hip structure to the system, this field must be set
 to a HIT or a wildcard address as discussed in Section 4.1.1.

 Some applications rely on system-level access control, either
 implicit or explicit (such as the accept_filter() function found on
 BSD-based systems), but such discussion is out of scope. Other
 applications implement access control themselves by using the HITs.
 Applications operating on sockaddr_hip structures can use memcmp() or
 a similar function to compare the ship_hit fields. It should also be
 noted that different connection attempts between the same two hosts
 can result in different HITs, because a host is allowed to have
 multiple HITs.

4.1.1. HIP Wildcard Addresses

 HIP wildcard addresses are similar to IPv4 and IPv6 wildcard
 addresses. They can be used instead of specific HITs in the ship_hit
 field for local and remote endpoints in sockets API calls such as
 bind(), connect(), sendto(), or sendmsg().

 In order to bind to all local IPv4 and IPv6 addresses and HIP HITs,
 the ship_hit field must be set to HIP_ENDPOINT_ANY. In order to bind
 to all local HITs, ship_hit must contain HIP_HIT_ANY. To only bind
 to all local public HITs, the ship_hit field must be HIP_HIT_ANY_PUB.
 The value HIP_HIT_ANY_TMP binds a socket to all local anonymous
 identifiers only as specified in [RFC4423]. The system may label
 anonymous identifiers as such depending on whether they have been

Komu & Henderson Experimental [Page 8]

RFC 6317 Basic API Extensions for HIP July 2011

 published or not. After binding a socket via one of the
 HIP_HIT_ANY_* wildcard addresses, the application is guaranteed to
 receive only HIP-based data flows. With the HIP_ENDPOINT_ANY
 wildcard address, the socket accepts HIP, IPv6, and IPv4-based data
 flows.

 When a socket is bound or connected via a sockaddr_hip structure,
 i.e., the PF_HIP protocol family, the system returns only addresses
 of the AF_HIP family, i.e., sockaddr_hip structures, for this socket.
 This applies to all functions that provide addresses to the
 application, such as accept() or recvfrom(). If the data flow is
 based on HIP, the ship_hit field contains the peer’s HIT. For a
 non-HIP IPv6 data flow, the field contains the peer’s IPv6 address.
 For a non-HIP IPv4 data flow, the field contains the peer’s IPv4
 address in IPv4-mapped IPv6 address format as described in
 Section 3.7 of [RFC3493]. Section 4.5 describes how the application
 can verify the type of address returned by the sockets API calls.

 An application uses the sockets API as follows to set up a connection
 or to send messages in HIP opportunistic mode (cf. [RFC5201]).
 First, the application associates a socket with at least one IP
 address of the destination peer via setting the
 SHIM_LOCLIST_PEER_PREF socket option. It then uses outgoing socket
 functions such as connect(), sendto(), or sendmsg() with the
 HIP_ENDPOINT_ANY or HIP_HIT_ANY wildcard address in the ship_hit
 field of the sockaddr_hip structure. With the HIP_HIT_ANY address,
 the underlying system allows only HIP-based data flows with the
 corresponding socket. For incoming packets, the system discards all
 non-HIP-related traffic arriving at the socket. For outgoing
 packets, the system returns -1 in the socket call and sets errno to
 an appropriate error type when the system failed to deliver the
 packet over a HIP-based data channel. The semantics of using
 HIP_ENDPOINT_ANY are the subject of further experimentation in the
 context of opportunistic mode. Such use may result in a data flow
 either with or without HIP.

4.2. Extensions to Resolver Data Structures

 The HIP APIs introduce a new address family, AF_HIP, that HIP-aware
 applications can use to control the address type returned from the
 getaddrinfo() function [RFC3493] [POSIX]. The getaddrinfo() function
 uses a data structure called addrinfo in its "hints" and "res"
 arguments, which are described in more detail in the next section.
 The addrinfo data structure is illustrated in Figure 3.

Komu & Henderson Experimental [Page 9]

RFC 6317 Basic API Extensions for HIP July 2011

 #include <netdb.h>

 struct addrinfo {
 int ai_flags; /* e.g., AI_CANONNAME */
 int ai_family; /* e.g., AF_HIP */
 int ai_socktype; /* e.g., SOCK_STREAM */
 int ai_protocol; /* 0 or IPPROTO_HIP */
 socklen_t ai_addrlen; /* size of *ai_addr */
 struct sockaddr *ai_addr; /* sockaddr_hip */
 char *ai_canonname; /* canon. name of the host */
 struct addrinfo *ai_next; /* next endpoint */
 int ai_eflags; /* RFC 5014 extension */
 };

 Figure 3

 An application resolving with the ai_family field set to AF_UNSPEC in
 the hints argument may receive any kind of socket address structures,
 including sockaddr_hip. When the application wants to receive only
 HITs contained in sockaddr_hip structures, it should set the
 ai_family field to AF_HIP. Otherwise, the resolver does not return
 any sockaddr_hip structures. The resolver returns EAI_FAMILY when
 AF_HIP is requested but not supported.

 The resolver ignores the AI_PASSIVE flag when the application sets
 the family in hints to AF_HIP.

 The system may have a HIP-aware interposing DNS agent as described in
 Section 3.2 of [RFC5338]. In such a case, the DNS agent may,
 according to local policy, transparently return LSIs or HITs in
 sockaddr_in and sockaddr_in6 structures when available. A HIP-aware
 application can override this local policy in two ways. First, the
 application can set the family to AF_HIP in the hints argument of
 getaddrinfo() when it requests only sockaddr_hip structures. Second,
 the application can set the AI_NO_HIT flag to prevent the resolver
 from returning HITs in any kind of data structures.

 When getaddrinfo() returns resolved outputs in the output "res"
 argument, it sets the family to AF_HIP when the related structure is
 sockaddr_hip.

4.2.1. Resolver Usage

 A HIP-aware application creates the sockaddr_hip structures manually
 or obtains them from the resolver. The explicit configuration of
 locators is described in [RFC6316]. This document defines

Komu & Henderson Experimental [Page 10]

RFC 6317 Basic API Extensions for HIP July 2011

 "automated" resolver extensions for the getaddrinfo() resolver
 [RFC3493]. Other resolver calls, such as gethostbyname() and
 getservbyname(), are not defined in this document. The getaddrinfo()
 resolver interface is shown in Figure 4.

 #include <netdb.h>

 int getaddrinfo(const char *nodename,
 const char *servname,
 const struct addrinfo *hints,
 struct addrinfo **res)
 void free_addrinfo(struct addrinfo *res)

 Figure 4

 As described in [RFC3493], the getaddrinfo() function takes nodename,
 servname, and hints as its input arguments. It places the result of
 the query into the res output argument. The return value is zero on
 success, or a non-zero error value on error. The nodename argument
 specifies the hostname to be resolved; a NULL argument denotes the
 HITs of the local host. The servname parameter declares the port
 number to be set in the socket addresses in the res output argument.
 The nodename and servname arguments cannot both be NULL at the same
 time.

 The input argument "hints" acts like a filter that defines the
 attributes required from the resolved endpoints. A NULL hints
 argument indicates that any kind of endpoint is acceptable.

 The output argument "res" is dynamically allocated by the resolver.
 The application frees the res argument with the free_addrinfo
 function. The res argument contains a linked list of the resolved
 endpoints. The linked list contains only sockaddr_hip structures
 when the input argument has the family set to AF_HIP. When the
 family is zero, the list contains sockaddr_hip structures before
 sockaddr_in and sockaddr_in6 structures.

 The resolver can return a HIT that maps to multiple locators. The
 resolver may cache the locator mappings with the HIP module. The HIP
 module manages the multiple locators according to system policies of
 the host. The multihoming document [RFC6316] describes how an
 application can override system default policies.

Komu & Henderson Experimental [Page 11]

RFC 6317 Basic API Extensions for HIP July 2011

 It should be noted that the application can configure the HIT
 explicitly without setting the locator, or the resolver can fail to
 resolve any locator. In this scenario, the application relies on the
 system to map the HIT to an IP address. When the system fails to
 provide the mapping, it returns -1 in the called sockets API function
 to the application and sets errno to EADDRNOTAVAIL.

4.3. The Use of getsockname() and getpeername() Functions

 The sockaddr_hip structure does not contain a HIT when the
 application uses the HIP_HIT_ANY_* or HIP_ENDPOINT_ANY constants. In
 such a case, the application can discover the local and peer HITs
 using the getsockname() and getpeername() functions after the socket
 is connected. The functions getsockname() and getpeername() always
 output a sockaddr_hip structure when the family of the socket is
 AF_HIP. The application should be prepared to also handle IPv4 and
 IPv6 addresses in the ship_hit field, as described in Section 4.1, in
 the context of the HIP_ENDPOINT_ANY constant.

4.4. Selection of Source HIT Type

 A client-side application can choose its source HIT by, for example,
 querying all of the local HITs with getaddrinfo() and associating one
 of them with the socket using bind(). This section describes another
 method for a client-side application to affect the selection of the
 source HIT type where the application does not call bind()
 explicitly. Instead, the application just specifies the preferred
 requirements for the source HIT type.

 The sockets API for source address selection [RFC5014] defines socket
 options to allow applications to influence source address selection
 mechanisms. In some cases, HIP-aware applications may want to
 influence source HIT selection, in particular whether an outbound
 connection should use a published or anonymous HIT. Similar to
 IPV6_ADDR_PREFERENCES defined in [RFC5014], the socket option
 HIT_PREFERENCES is defined for HIP-based sockets. This socket option
 can be used with setsockopt() and getsockopt() calls to set and get
 the HIT selection preferences affecting a HIP-enabled socket. The
 socket option value (optval) is a 32-bit unsigned integer argument.
 The argument consists of a number of flags where each flag indicates
 an address selection preference that modifies one of the rules in the
 default HIT selection; these flags are shown in Table 2.

Komu & Henderson Experimental [Page 12]

RFC 6317 Basic API Extensions for HIP July 2011

 +---------------------------+-------------------------+
 | Socket Option | Purpose |
 +---------------------------+-------------------------+
 | HIP_PREFER_SRC_HIT_TMP | Prefer an anonymous HIT |
 | HIP_PREFER_SRC_HIT_PUBLIC | Prefer a public HIT |
 +---------------------------+-------------------------+

 Table 2

 If the system is unable to assign the type of HIT that is requested,
 at HIT selection time, the socket call (connect(), sendto(), or
 sendmsg()) will fail, and errno will be set to EINVAL. If the
 application tries to set both of the above flags for the same socket,
 this also results in the error EINVAL.

4.5. Verification of HIT Type

 An application that uses the HIP_ENDPOINT_ANY constant may want to
 check whether the actual communication was based on HIP or not.
 Also, the application may want to verify whether a HIT belonging to
 the local host is public or anonymous. The application accomplishes
 this using a new function called sockaddr_is_srcaddr(), which is
 illustrated in Figure 5.

 #include <netinet/hip.h>

 short sockaddr_is_srcaddr(struct sockaddr *srcaddr,
 uint64_t flags);

 Figure 5

 The sockaddr_is_srcaddr() function operates in the same way as the
 inet6_is_srcaddr() function [RFC5014], which can be used to verify
 the type of an address belonging to the local host. The difference
 is that the sockaddr_is_srcaddr() function handles sockaddr_hip
 structures in addition to sockaddr_in6, and possibly other socket
 structures in further extensions. Also, the length of the flags
 argument is 64 bits instead of 32 bits, because the new function
 handles the same flags as defined in [RFC5014], in addition to two
 HIP-specific flags, HIP_PREFER_SRC_HIT_TMP and
 HIP_PREFER_SRC_HIT_PUBLIC. With these two flags, the application can
 distinguish anonymous HITs from public HITs.

 When given an AF_INET6 socket, sockaddr_is_srcaddr() behaves the same
 way as the inet6_is_srcaddr() function as described in [RFC5014].
 With an AF_HIP socket, the function returns 1 when the HIT contained
 in the socket address structure corresponds to a valid HIT of the
 local host and the HIT satisfies the given flags. The function

Komu & Henderson Experimental [Page 13]

RFC 6317 Basic API Extensions for HIP July 2011

 returns -1 when the HIT does not belong to the local host or the
 flags are not valid. The function returns 0 when the preference
 flags are valid but the HIT does not match the given flags. The
 function also returns 0 on a sockaddr_hip structure containing a
 HIP_ENDPOINT_ANY or HIP_HIT_ANY_* wildcard.

 The sockaddr_is_srcaddr() interface applies only to local HITs.
 Applications can call the function hip_is_hit() to verify that the
 given hit_hit_t pointer has the HIT prefix. The function is
 illustrated in Figure 6.

 #include <netinet/hip.h>

 short hip_is_hit(hip_hit_t *hit);

 Figure 6

 The hip_is_hit() function returns 1 when the given argument contains
 the HIT prefix. The function returns -1 on error and sets errno
 appropriately. The function returns 0 when the argument does not
 have the HIT prefix. The function also returns 0 when the argument
 is a HIP_ENDPOINT_ANY or HIP_HIT_ANY_* wildcard.

4.6. Explicit Handling of Locators

 The system resolver, or the HIP module, maps HITs to locators
 implicitly. However, some applications may want to specify initial
 locator mappings explicitly. In such a case, the application first
 creates a socket with AF_HIP as the domain argument. Second, the
 application may get or set locator information with one of the
 following shim socket options as defined in the multihoming
 extensions in [RFC6316]. The related socket options are summarized
 briefly in Table 3.

Komu & Henderson Experimental [Page 14]

RFC 6317 Basic API Extensions for HIP July 2011

 +---------------------+---+
 | optname | description |
 +---------------------+---+
SHIM_LOC_LOCAL_PREF	Get or set the preferred locator on the
	local side for the context associated with
	the socket.
SHIM_LOC_PEER_PREF	Get or set the preferred locator on the
	remote side for the context associated with
	the socket.
SHIM_LOCLIST_LOCAL	Get or set a list of locators associated
	with the local Endpoint Identifier (EID).
SHIM_LOCLIST_PEER	Get or set a list of locators associated
	with the peer’s EID.
SHIM_LOC_LOCAL_SEND	Set or get the default source locator of
	outgoing IP packets.
SHIM_LOC_PEER_SEND	Set or get the default destination locator
	of outgoing IP packets.
 +---------------------+---+

 Table 3

 As an example of locator mappings, a connection-oriented application
 creates a HIP-based socket and sets the SHIM_LOCLIST_PEER socket
 option on the socket. The HIP module uses the first address
 contained in the option if multiple addresses are provided. If the
 application provides one or more addresses in the SHIM_LOCLIST_PEER
 setsockopt call, the system should not connect to the host via
 another destination address, in case the application intends to
 restrict the range of addresses permissible as a policy choice. The
 application can override the default peer locator by setting the
 SHIM_LOC_PEER_PREF socket option if necessary. Finally, the
 application provides a specific HIT in the ship_hit field of the
 sockaddr_hip in the connect() system call. If the system cannot
 reach the HIT at one of the addresses provided, the outbound sockets
 API functions (connect(), sendmsg(), etc.) return -1 and set errno to
 EINVALIDLOCATOR.

 Applications may also choose to associate local addresses with
 sockets. The procedures specified in [RFC6316] are followed in this
 case.

 Another use case is to use the opportunistic mode when the
 destination HIT is specified as a wildcard. The application sets one
 or more destination addresses using the SHIM_LOCLIST_PEER socket
 option as described earlier in this section, and then calls connect()
 with the wildcard HIT. The connect() call returns -1 and sets errno
 to EADDRNOTAVAIL when the application connects to a wildcard without
 specifying any destination address.

Komu & Henderson Experimental [Page 15]

RFC 6317 Basic API Extensions for HIP July 2011

 Applications using datagram-oriented sockets can use ancillary data
 to control the locators, as described in detail in [RFC6316].

5. Summary of New Definitions

 Table 4 summarizes the new constants and structures defined in this
 document.

 +-----------------+-----------------------+
 | Header | Definition |
 +-----------------+-----------------------+
 | <sys/socket.h> | AF_HIP |
 | <sys/socket.h> | PF_HIP |
 | <netinet/in.h> | IPPROTO_HIP |
 | <netinet/hip.h> | HIP_HIT_ANY |
 | <netinet/hip.h> | HIP_HIT_ANY_PUB |
 | <netinet/hip.h> | HIP_HIT_ANY_TMP |
 | <netinet/hip.h> | HIP_ENDPOINT_ANY |
 | <netinet/hip.h> | HIP_HIT_PREFERENCES |
 | <netinet/hip.h> | hip_hit_t |
 | <netdb.h> | AI_NO_HIT |
 | <netinet/hip.h> | sockaddr_hip |
 | <netinet/hip.h> | sockaddr_is_srcaddr() |
 | <netinet/hip.h> | hip_is_hit() |
 +-----------------+-----------------------+

 Table 4

6. Security Considerations

 This document describes an API for HIP and therefore depends on the
 mechanisms defined in the HIP protocol suite. Security concerns
 associated with HIP itself are specified in [RFC4423], [RFC4843],
 [RFC5201], [RFC5205], and [RFC5338].

 The HIP_ENDPOINT_ANY constant can be used to accept incoming data
 flows or create outgoing data flows without HIP. The application
 should use the sockaddr_is_srcaddr() function to validate the type of
 connection in order to, for example, inform the user of the lack of
 HIP-based security. The use of the HIP_HIT_ANY_* constants is
 recommended in security-critical applications and systems.

 It should be noted that the wildcards described in this document are
 not suitable for identifying end hosts. Instead, applications should
 use getsockname() and getpeername() as described in Section 4.3 to
 identify an end host.

Komu & Henderson Experimental [Page 16]

RFC 6317 Basic API Extensions for HIP July 2011

 Future proofing of HITs was discussed during the design of this API.
 If HITs longer than 128 bits are required at the application layer,
 this will require explicit support from the applications, because
 they can store or cache HITs with their explicit sizes. To support
 longer HITs, further extensions of this API may define an additional
 flag for getaddrinfo() to generate different kinds of socket address
 structures for HIP.

7. Contributors

 Thanks to Jukka Ylitalo and Pekka Nikander for their original
 contributions, time, and effort to the native HIP APIs. Thanks to
 Yoshifuji Hideaki and Stefan Goetz for their contributions to this
 document.

8. Acknowledgments

 Kristian Slavov, Julien Laganier, Jaakko Kangasharju, Mika Kousa, Jan
 Melen, Andrew McGregor, Sasu Tarkoma, Lars Eggert, Joe Touch, Antti
 Jarvinen, Anthony Joseph, Teemu Koponen, Jari Arkko, Ari Keranen,
 Juha-Matti Tapio, Shinta Sugimoto, Philip Matthews, Joakim Koskela,
 Jeff Ahrenholz, Tobias Heer, and Gonzalo Camarillo have provided
 valuable ideas and feedback. Thanks to Nick Stoughton from the
 Austin group for POSIX-related comments. Thanks also to the APPS
 area folks, including Stephane Bortzmeyer, Chris Newman, Tony Finch,
 "der Mouse", and Keith Moore.

9. References

9.1. Normative References

 [POSIX] "IEEE Std. 1003.1-2008 Standard for Information
 Technology -- Portable Operating System Interface
 (POSIX). Open group Technical Standard: Base
 Specifications, Issue 7", September 2008,
 <http://www.opengroup.org/austin>.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",
 RFC 3493, February 2003.

 [RFC4423] Moskowitz, R. and P. Nikander, "Host Identity Protocol
 (HIP) Architecture", RFC 4423, May 2006.

 [RFC4843] Nikander, P., Laganier, J., and F. Dupont, "An IPv6
 Prefix for Overlay Routable Cryptographic Hash
 Identifiers (ORCHID)", RFC 4843, April 2007.

Komu & Henderson Experimental [Page 17]

RFC 6317 Basic API Extensions for HIP July 2011

 [RFC5014] Nordmark, E., Chakrabarti, S., and J. Laganier, "IPv6
 Socket API for Source Address Selection", RFC 5014,
 September 2007.

 [RFC5201] Moskowitz, R., Nikander, P., Jokela, P., Ed., and T.
 Henderson, "Host Identity Protocol", RFC 5201, April
 2008.

 [RFC5205] Nikander, P. and J. Laganier, "Host Identity Protocol
 (HIP) Domain Name System (DNS) Extensions", RFC 5205,
 April 2008.

 [RFC5338] Henderson, T., Nikander, P., and M. Komu, "Using the Host
 Identity Protocol with Legacy Applications", RFC 5338,
 September 2008.

 [RFC6316] Komu, M., Bagnulo, M., Slavov, K., and S. Sugimoto, Ed.,
 "Sockets Application Program Interface (API) for
 Multihoming Shim", RFC 6316, July 2011.

9.2. Informative References

 [RFC5533] Nordmark, E. and M. Bagnulo, "Shim6: Level 3 Multihoming
 Shim Protocol for IPv6", RFC 5533, June 2009.

Authors’ Addresses

 Miika Komu
 Aalto University
 Espoo
 Finland

 Phone: +358505734395
 Fax: +358947025014
 EMail: miika@iki.fi
 URI: http://cse.aalto.fi/research/groups/datacommunications/people/

 Thomas Henderson
 The Boeing Company
 P.O. Box 3707
 Seattle, WA
 USA

 EMail: thomas.r.henderson@boeing.com

Komu & Henderson Experimental [Page 18]

