
Internet Research Task Force (IRTF) W. Eddy
Request for Comments: 6256 MTI Systems
Category: Informational E. Davies
ISSN: 2070-1721 Folly Consulting
 May 2011

 Using Self-Delimiting Numeric Values in Protocols

Abstract

 Self-Delimiting Numeric Values (SDNVs) have recently been introduced
 as a field type in proposed Delay-Tolerant Networking protocols.
 SDNVs encode an arbitrary-length non-negative integer or arbitrary-
 length bitstring with minimum overhead. They are intended to provide
 protocol flexibility without sacrificing economy and to assist in
 future-proofing protocols under development. This document describes
 formats and algorithms for SDNV encoding and decoding, along with
 notes on implementation and usage. This document is a product of the
 Delay-Tolerant Networking Research Group and has been reviewed by
 that group. No objections to its publication as an RFC were raised.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Research Task Force
 (IRTF). The IRTF publishes the results of Internet-related research
 and development activities. These results might not be suitable for
 deployment. This RFC represents the consensus of the Delay-Tolerant
 Networking Research Group of the Internet Research Task Force (IRTF).
 Documents approved for publication by the IRSG are not a candidate
 for any level of Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6256.

Eddy & Davies Informational [Page 1]

RFC 6256 Using SDNVs May 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

 1. Introduction ..2
 1.1. Problems with Fixed-Value Fields3
 1.2. SDNVs for DTN Protocols4
 1.3. SDNV Usage ...5
 2. Definition of SDNVs ...6
 3. Basic Algorithms ..8
 3.1. Encoding Algorithm ...8
 3.2. Decoding Algorithm ...9
 3.3. Limitations of Implementations10
 4. Comparison to Alternatives10
 5. Security Considerations ..13
 6. Acknowledgements ...13
 7. Informative References ...14
 Appendix A. SDNV Python Source Code15

1. Introduction

 This document is a product of the Internet Research Task Force (IRTF)
 Delay-Tolerant Networking (DTN) Research Group (DTNRG). The document
 has received review and support within the DTNRG, as discussed in the
 Acknowledgements section of this document.

 This document begins by describing the drawbacks of using fixed-width
 protocol fields. It then provides some background on the Self-
 Delimiting Numeric Values (SDNVs) proposed for use in DTN protocols,
 and motivates their potential applicability in other networking
 protocols. The DTNRG has created SDNVs to meet the challenges it
 attempts to solve, and it has been noted that SDNVs closely resemble
 certain constructs within ASN.1 and even older ITU protocols, so the
 problems are not new or unique to DTN. SDNVs focus strictly on
 numeric values or bitstrings, while other mechanisms have been
 developed for encoding more complex data structures, such as ASN.1

Eddy & Davies Informational [Page 2]

RFC 6256 Using SDNVs May 2011

 encoding rules and Haverty’s Message Services Data Transmission
 Protocol (MSDTP) [RFC0713]. Because of this focus, SDNVs can be
 quickly implemented with only a small amount of code.

 SDNVs are tersely defined in both the Bundle Protocol [RFC5050] and
 Licklider Transmission Protocol (LTP) [RFC5326] specifications, due
 to the flow of document production in the DTNRG. This document
 clarifies and further explains the motivations and engineering
 decisions behind SDNVs.

1.1. Problems with Fixed-Value Fields

 Protocol designers commonly face an optimization problem in
 determining the proper size for header fields. There is a strong
 desire to keep fields as small as possible, in order to reduce the
 protocol’s overhead and also allow for fast processing. Since
 protocols can be used for many years (even decades) after they are
 designed, and networking technology has tended to change rapidly, it
 is not uncommon for the use, deployment, or performance of a
 particular protocol to be limited or infringed upon by the length of
 some header field being too short. Two well-known examples of this
 phenomenon are the TCP-advertised receive window and the IPv4 address
 length.

 TCP segments contain an advertised receive window field that is fixed
 at 16 bits [RFC0793], encoding a maximum value of around 65
 kilobytes. The purpose of this value is to provide flow control, by
 allowing a receiver to specify how many sent bytes its peer can have
 outstanding (unacknowledged) at any time, thus allowing the receiver
 to limit its buffer size. As network speeds have grown by several
 orders of magnitude since TCP’s inception, the combination of the 65
 kilobyte maximum advertised window and long round-trip times
 prevented TCP senders from being able to achieve the high throughput
 that the underlying network supported. This limitation was remedied
 through the use of the Window Scale option [RFC1323], which provides
 a multiplier for the advertised window field. However, the Window
 Scale multiplier is fixed for the duration of the connection,
 requires support from each end of a TCP connection, and limits the
 precision of the advertised receive window, so this is certainly a
 less-than-ideal solution. Because of the field width limit in the
 original design however, the Window Scale is necessary for TCP to
 reach high sending rates.

 An IPv4 address is fixed at 32 bits [RFC0791] (as a historical note,
 an early version of the IP header format specification in [IEN21]
 used variable-length addresses in multiples of 8 bits up to 120
 bits). Due to the way that subnetting and assignment of address
 blocks was performed, the number of IPv4 addresses has been seen as a

Eddy & Davies Informational [Page 3]

RFC 6256 Using SDNVs May 2011

 limit to the growth of the Internet [Hain05]. Two divergent paths to
 solve this problem have been the use of Network Address Translators
 (NATs) and the development of IPv6. NATs have caused a number of
 other issues and problems [RFC2993], leading to increased complexity
 and fragility, as well as forcing workarounds to be engineered for
 many other protocols to function within a NATed environment. The
 IPv6 solution’s transitional work has been underway for several
 years, but has still only just begun to have visible impact on the
 global Internet.

 Of course, in both the case of the TCP receive window and IPv4
 address length, the field size chosen by the designers seemed like a
 good idea at the time. The fields were more than big enough for the
 originally perceived usage of the protocols, and yet were small
 enough to allow the headers to remain compact and relatively easy and
 efficient to parse on machines of the time. The fixed sizes that
 were defined represented a trade-off between the scalability of the
 protocol versus the overhead and efficiency of processing. In both
 cases, these engineering decisions turned out to be painfully
 restrictive in the longer term.

1.2. SDNVs for DTN Protocols

 In specifications for the DTN Bundle Protocol (BP) [RFC5050] and
 Licklider Transmission Protocol (LTP) [RFC5326], SDNVs have been used
 for several fields including identifiers, payload/header lengths, and
 serial (sequence) numbers. SDNVs were developed for use in these
 types of fields, to avoid sending more bytes than needed, as well as
 avoiding fixed sizes that may not end up being appropriate. For
 example, since LTP is intended primarily for use in long-delay
 interplanetary communications [RFC5325], where links may be fairly
 low in capacity, it is desirable to avoid the header overhead of
 routinely sending a 64-bit field where a 16-bit field would suffice.
 Since many of the nodes implementing LTP are expected to be beyond
 the current range of human spaceflight, upgrading their on-board LTP
 implementations to use longer values if the defined fields are found
 to be too short would also be problematic. Furthermore, extensions
 similar in mechanism to TCP’s Window Scale option are unsuitable for
 use in DTN protocols since, due to high delays, DTN protocols must
 avoid handshaking and configuration parameter negotiation to the
 greatest extent possible. All of these reasons make the choice of
 SDNVs for use in DTN protocols attractive.

Eddy & Davies Informational [Page 4]

RFC 6256 Using SDNVs May 2011

1.3. SDNV Usage

 In short, an SDNV is simply a way of representing non-negative
 integers (both positive integers of arbitrary magnitude and 0),
 without expending much unnecessary space. This definition allows
 SDNVs to represent many common protocol header fields, such as:

 o Random identification fields as used in the IPsec Security
 Parameters Index or in IP headers for fragment reassembly (Note:
 the 16-bit IP ID field for fragment reassembly was recently found
 to be too short in some environments [RFC4963]).

 o Sequence numbers as in TCP or the Stream Control Transmission
 Protocol (SCTP).

 o Values used in cryptographic algorithms such as RSA keys, Diffie-
 Hellman key agreement, or coordinates of points on elliptic
 curves.

 o Message lengths as used in file transfer protocols.

 o Nonces and cookies.

 As any bitfield can be interpreted as an unsigned integer, SDNVs can
 also encode arbitrary-length bitfields, including bitfields
 representing signed integers or other data types; however, this
 document assumes SDNV encoding and decoding in terms of unsigned
 integers. Implementations may differ in the interface that they
 provide to SDNV encoding and decoding functions, in terms of whether
 the values are numeric, bitfields, etc.; this detail does not alter
 the representation or algorithms described in this document.

 The use of SDNVs rather than fixed-length fields gives protocol
 designers the ability to ameliorate the consequences of making
 difficult-to-reverse field-sizing decisions, as the SDNV format grows
 and shrinks depending on the particular value encoded. SDNVs do not
 necessarily provide optimal encodings for values of any particular
 length; however, they allow protocol designers to avoid potential
 blunders in assigning fixed lengths and remove the complexity
 involved with either negotiating field lengths or constructing
 protocol extensions. However, if SDNVs are used to encode bitfields,
 it is essential that the sender and receiver have a consistent
 interpretation of the decoded value. This is discussed further in
 Section 2.

 To our knowledge, at this time, no IETF transport or network-layer
 protocol designed for use outside of the DTN domain has proposed to
 use SDNVs; however, there is no inherent reason not to use SDNVs more

Eddy & Davies Informational [Page 5]

RFC 6256 Using SDNVs May 2011

 broadly in the future. The two examples cited here, of fields that
 have proven too small in general Internet protocols, are only a small
 sampling of the much larger set of similar instances that the authors
 can think of. Outside the Internet protocols, within ASN.1 and
 previous ITU protocols, constructs very similar to SDNVs have been
 used for many years due to engineering concerns very similar to those
 facing the DTNRG.

 Many protocols use a Type-Length-Value method for encoding variable-
 length fields (e.g., TCP’s options format or many of the fields in
 the Internet Key Exchange Protocol version 2 (IKEv2)). An SDNV is
 equivalent to combining the length and value portions of this type of
 field, with the overhead of the length portion amortized out over the
 bytes of the value. The penalty paid for this in an SDNV may be
 several extra bytes for long values (e.g., 1024-bit RSA keys). See
 Section 4 for further discussion and a comparison.

 As is shown in later sections, for large values, the current SDNV
 scheme is fairly inefficient in terms of space (1/8 of the bits are
 overhead) and not particularly easy to encode/decode in comparison to
 alternatives. The best use of SDNVs may often be to define the
 Length field of a TLV structure to be an SDNV whose value is the
 length of the TLV’s Value field. In this way, one can avoid forcing
 large numbers from being directly encoded as an SDNV, yet retain the
 extensibility that using SDNVs grants.

2. Definition of SDNVs

 Early in the work of the DTNRG, it was agreed that the properties of
 an SDNV were useful for DTN protocols. The exact SDNV format used by
 the DTNRG evolved somewhat over time before the publication of the
 initial RFCs on LTP and BP. An earlier version (see the initial
 version of LTP Internet Draft [BRF04]) bore a resemblance to the
 ASN.1 [ASN1] Basic Encoding Rules (BER) [X.690] for lengths (Section
 8.1.3 of X.690). The current SDNV format is the one used by ASN.1
 BER for encoding tag identifiers greater than or equal to 31 (Section
 8.1.2.4.2 of X.690). A comparison between the current SDNV format
 and the early SDNV format is made in Section 4.

 The format currently used is very simple. Before encoding, an
 integer is represented as a left-to-right bitstring beginning with
 its most significant bit and ending with its least significant bit.
 If the bitstring’s length is not a multiple of 7, then the string is
 left-padded with zeros. When transmitted, the bits are encoded into
 a series of bytes. The low-order 7 bits of each byte in the encoded
 format are taken left-to-right from the integer’s bitstring

Eddy & Davies Informational [Page 6]

RFC 6256 Using SDNVs May 2011

 representation. The most significant bit of each byte specifies
 whether it is the final byte of the encoded value (when it holds a
 0), or not (when it holds a 1).

 For example:

 o 1 (decimal) is represented by the bitstring "0000001" and encoded
 as the single byte 0x01 (in hexadecimal).

 o 128 is represented by the bitstring "10000001 00000000" and
 encoded as the bytes 0x81 followed by 0x00.

 o Other values can be found in the test vectors of the source code
 in Appendix A.

 To be perfectly clear, and avoid potential interoperability issues
 (as have occurred with ASN.1 BER time values), we explicitly state
 two considerations regarding zero-padding. (1) When encoding SDNVs,
 any leading (most significant) zero bits in the input number might be
 discarded by the SDNV encoder. Protocols that use SDNVs should not
 rely on leading-zeros being retained after encoding and decoding
 operations. (2) When decoding SDNVs, the relevant number of leading
 zeros required to pad up to a machine word or other natural data unit
 might be added. These are put in the most significant positions in
 order to not change the value of the number. Protocols using SDNVs
 should consider situations where lost zero-padding may be
 problematic.

 The issues of zero-padding are particularly relevant where an SDNV is
 being used to represent a bitfield to be transmitted by a protocol.
 The specification of the protocol and any associated IANA registry
 should specify the allocation and usage of bit positions within the
 unencoded field. Unassigned and reserved bits in the unencoded field
 will be treated as zeros by the SDNV encoding prior to transmission.
 Assuming the bit positions are numbered starting from 0 at the least
 significant bit position in the integer representation, then if
 higher-numbered positions in the field contain all zeros, the
 encoding process may not transmit these bits explicitly (e.g., if all
 the bit positions numbered 7 or higher are zeros, then the
 transmitted SDNV can consist of just one octet). On reception, the
 decoding process will treat any untransmitted higher-numbered bits as
 zeros. To ensure correct operation of the protocol, the sender and
 receiver must have a consistent interpretation of the width of the
 bitfield. This can be achieved in various ways:

 o the bitfield width is implicitly defined by the version of the
 protocol in use in the sender and receiver,

Eddy & Davies Informational [Page 7]

RFC 6256 Using SDNVs May 2011

 o sending the width of the bitfield explicitly in a separate item,

 o the higher-numbered bits can be safely ignored by the receiver
 (e.g., because they represent optimizations), or

 o marking the highest-numbered bit by prepending a ’1’ bit to the
 bitfield.

 The protocol specification must record how the consistent
 interpretation is achieved.

 The SDNV encoding technique is also known as Variable Byte Encoding
 (see Section 5.3.1 of [Manning09]) and is equivalent to Base-128
 Elias Gamma Encoding (see Section 5.3.2 of [Manning09] and Section
 3.5 of [Sayood02]). However, the primary motivation for SDNVs is to
 provide an extensible protocol framework rather than optimal data
 compression, which is the motivation behind the other uses of the
 technique. [Manning09] points out that the key feature of this
 encoding is that it is "prefix free" meaning that no code is a prefix
 of any other, which is an alternative way of expressing the self-
 delimiting property.

3. Basic Algorithms

 This section describes some simple algorithms for creating and
 parsing SDNV fields. These may not be the most efficient algorithms
 possible, however, they are easy to read, understand, and implement.
 Appendix A contains Python source code implementing the routines
 described here. The algorithms presented here are convenient for
 converting between an internal data block and serialized data stream
 associated with a transmission device. Other approaches are possible
 with different efficiencies and trade-offs.

3.1. Encoding Algorithm

 There is a very simple algorithm for the encoding operation that
 converts a non-negative integer (value n, of length 1+floor(log n)
 bits) into an SDNV. This algorithm takes n as its only argument and
 returns a string of bytes:

 o (Initial Step) Set a variable X to a byte sharing the least
 significant 7 bits of n, and with 0 in the most significant bit,
 and a variable Y to n, right-shifted by 7 bits.

 o (Recursion Step) If Y == 0, return X. Otherwise, set Z to the
 bitwise-or of 0x80 with the 7 least significant bits of Y, and
 append Z to X. Right-shift Y by 7 bits and repeat the Recursion
 Step.

Eddy & Davies Informational [Page 8]

RFC 6256 Using SDNVs May 2011

 This encoding algorithm has a time complexity of O(log n), since it
 takes a number of steps equal to ceil(n/7), and no additional space
 beyond the size of the result (8/7 log n) is required. One aspect of
 this algorithm is that it assumes strings can be efficiently appended
 to new bytes. One way to implement this is to allocate a buffer for
 the expected length of the result and fill that buffer one byte at a
 time from the right end.

 If, for some reason, an implementation requires an encoded SDNV to be
 some specific length (possibly related to a machine word), any
 leftmost zero-padding included needs to properly set the high-order
 bit in each byte of padding.

3.2. Decoding Algorithm

 Decoding SDNVs is a more difficult operation than encoding them, due
 to the fact that no bound on the resulting value is known until the
 SDNV is parsed, at which point the value itself is already known.
 This means that if space is allocated in advance to hold the value
 that results from decoding an SDNV, in general, it is not known
 whether this space will be large enough until it is 7 bits away from
 being overflowed. However, as specified in Section 3.3, protocols
 using SDNVs must specify the largest number of bits that an
 implementation is expected to handle, which mitigates this problem.

 o (Initial Step) Set the result to 0. Set an index to the first
 byte of the encoded SDNV.

 o (Recursion Step) Shift the result left 7 bits. Add the low-order
 7 bits of the value at the index to the result. If the high-order
 bit under the pointer is a 1, advance the index by one byte within
 the encoded SDNV and repeat the Recursion Step, otherwise return
 the current value of the result.

 This decoding algorithm takes no more additional space than what is
 required for the result (7/8 the length of the SDNV) and the pointer.
 The complication is that before the result can be left-shifted in the
 Recursion Step, an implementation needs to first make sure that this
 will not cause any bits to be lost, and re-allocate a larger piece of
 memory for the result, if required. The pure time complexity is the
 same as for the encoding algorithm given, but if re-allocation is
 needed due to the inability to predict the size of the result,
 decoding may be slower.

 These decoding steps include removal of any leftmost zero-padding
 that might be used by an encoder to create encodings of a certain
 length.

Eddy & Davies Informational [Page 9]

RFC 6256 Using SDNVs May 2011

3.3. Limitations of Implementations

 Because of efficiency considerations or convenience of internal
 representation of decoded integers, implementations may choose to
 limit the number of bits in SDNVs that they will handle. To avoid
 interoperability problems, any protocol that uses SDNVs must specify
 the largest number of bits in an SDNV that an implementation of that
 protocol is expected to handle.

 For example, Section 4.1 of [RFC5050] specifies that implementations
 of the DTN Bundle Protocol are not required to handle SDNVs with more
 than 64 bits in their unencoded value. Accordingly, integer values
 transmitted in SDNVs have an upper limit and SDNV-encoded flag fields
 must be limited to 64 bit positions in any future revisions of the
 protocol unless the restriction is altered.

4. Comparison to Alternatives

 This section compares three alternative ways of implementing the
 concept of SDNVs: (1) the TLV scheme commonly used in the Internet
 family, and many other families of protocols, (2) the old style of
 SDNVs (both the SDNV-8 and SDNV-16) defined in an early stage of
 LTP’s development [BRF04], and (3) the current SDNV format.

 The TLV method uses two fixed-length fields to hold the Type and
 Length elements that then imply the syntax and semantics of the Value
 element. This is only similar to an SDNV in that the value element
 can grow or shrink within the bounds capable of being conveyed by the
 Length field. Two fundamental differences between TLVs and SDNVs are
 that through the Type element, TLVs also contain some notion of what
 their contents are semantically, while SDNVs are simply generic non-
 negative integers, and protocol engineers still have to choose fixed-
 field lengths for the Type and Length fields in the TLV format.

 Some protocols use TLVs where the value conveyed within the Length
 field needs to be decoded into the actual length of the Value field.
 This may be accomplished through simple multiplication, left-
 shifting, or a look-up table. In any case, this tactic limits the
 granularity of the possible Value lengths, and can contribute some
 degree of bloat if Values do not fit neatly within the available
 decoded Lengths.

 In the SDNV format originally used by LTP, parsing the first byte of
 the SDNV told an implementation how much space was required to hold
 the contained value. There were two different types of SDNVs defined
 for different ranges of use. The SDNV-8 type could hold values up to
 127 in a single byte, while the SDNV-16 type could hold values up to
 32,767 in 2 bytes. Both formats could encode values requiring up to

Eddy & Davies Informational [Page 10]

RFC 6256 Using SDNVs May 2011

 N bytes in N+2 bytes, where N<127. The major difference between this
 old SDNV format and the current SDNV format is that the new format is
 not as easily decoded as the old format was, but the new format also
 has absolutely no limitation on its length.

 The advantage in ease of parsing the old format manifests itself in
 two aspects: (1) the size of the value is determinable ahead of time,
 in a way equivalent to parsing a TLV, and (2) the actual value is
 directly encoded and decoded, without shifting and masking bits as is
 required in the new format. For these reasons, the old format
 requires less computational overhead to deal with, but is also very
 limited in that it can only hold a 1024-bit number, at maximum.
 Since according to IETF Best Current Practices, an asymmetric
 cryptography key needed to last for a long term requires using moduli
 of over 1228 bits [RFC3766], this could be seen as a severe
 limitation of the old style of SDNVs, from which the currently used
 style does not suffer.

 Table 1 compares the maximum values that can be encoded into SDNVs of
 various lengths using the old SDNV-8/16 method and the current SDNV
 method. The only place in this table where SDNV-16 is used rather
 than SDNV-8 is in the 2-byte row. Starting with a single byte, the
 two methods are equivalent, but when using 2 bytes, the old method is
 a more compact encoding by one bit. From 3 to 7 bytes of length
 though, the current SDNV format is more compact, since it only
 requires one bit per byte of overhead, whereas the old format used a
 full byte. Thus, at 8 bytes, both schemes are equivalent in
 efficiency since they both use 8 bits of overhead. Up to 129 bytes,
 the old format is more compact than the current one, although after
 this, limit it becomes unusable.

Eddy & Davies Informational [Page 11]

RFC 6256 Using SDNVs May 2011

 +-------+---------------+-------------+---------------+-------------+
Bytes	SDNV-8/16	SDNV	SDNV-8/16	SDNV
	Maximum Value	Maximum	Overhead Bits	Overhead
		Value		Bits
+-------+---------------+-------------+---------------+-------------+				
1	127	127	1	1
2	32,767	16,383	1	2
3	65,535	2,097,151	8	3
4	2^24 - 1	2^28 - 1	8	4
5	2^32 - 1	2^35 - 1	8	5
6	2^40 - 1	2^42 - 1	8	6
7	2^48 - 1	2^49 - 1	8	7
8	2^56 - 1	2^56 - 1	8	8
9	2^64 - 1	2^63 - 1	8	9
10	2^72 - 1	2^70 - 1	8	10
16	2^120 - 1	2^112 - 1	8	16
32	2^248 - 1	2^224 - 1	8	32
64	2^504 - 1	2^448 - 1	8	64
128	2^1016 - 1	2^896 - 1	8	128
129	2^1024 - 1	2^903 - 1	8	129
130	N/A	2^910 - 1	N/A	130
256	N/A	2^1792 - 1	N/A	256
 +-------+---------------+-------------+---------------+-------------+

 Table 1

 Suggested usages of the SDNV format that leverage its strengths and
 limit the effects of its weaknesses are discussed in Section 1.3.

 Another aspect of the comparison between SDNVs and alternatives using
 fixed-length fields is the result of errors in transmission. Bit-
 errors in an SDNV can result in either errors in the decoded value,

Eddy & Davies Informational [Page 12]

RFC 6256 Using SDNVs May 2011

 or parsing errors in subsequent fields of the protocol. In fixed-
 length fields, bit errors always result in errors to the decoded
 value rather than parsing errors in subsequent fields. If the
 decoded values from either type of field encoding (SDNV or fixed-
 length) are used as indexes, offsets, or lengths of further fields in
 the protocol, similar failures result.

5. Security Considerations

 The only security considerations with regard to SDNVs are that code
 that parses SDNVs should have bounds-checking logic and be capable of
 handling cases where an SDNV’s value is beyond the code’s ability to
 parse. These precautions can prevent potential exploits involving
 SDNV decoding routines.

 Stephen Farrell noted that very early definitions of SDNVs also
 allowed negative integers. This was considered a potential security
 hole, since it could expose implementations to underflow attacks
 during SDNV decoding. There is a precedent in that many existing TLV
 decoders map the Length field to a signed integer and are vulnerable
 in this way. An SDNV decoder should be based on unsigned types and
 not have this issue.

6. Acknowledgements

 Scott Burleigh, Manikantan Ramadas, Michael Demmer, Stephen Farrell,
 and other members of the IRTF DTN Research Group contributed to the
 development and usage of SDNVs in DTN protocols. George Jones and
 Keith Scott from Mitre, Lloyd Wood, Gerardo Izquierdo, Joel Halpern,
 Peter TB Brett, Kevin Fall, and Elwyn Davies also contributed useful
 comments on and criticisms of this document. DTNRG last call
 comments on the document were sent to the mailing list by Lloyd Wood,
 Will Ivancic, Jim Wyllie, William Edwards, Hans Kruse, Janico
 Greifenberg, Teemu Karkkainen, Stephen Farrell, and Scott Burleigh.
 Further constructive comments from Dave Crocker, Lachlan Andrew, and
 Michael Welzl were incorporated.

 Work on this document was performed at NASA’s Glenn Research Center,
 in support of the NASA Space Communications Architecture Working
 Group (SCAWG), NASA’s Earth Science Technology Office (ESTO), and the
 FAA/Eurocontrol Future Communications Study (FCS) in the 2005-2007
 time frame, while the editor was an employee of Verizon Federal
 Network Systems.

Eddy & Davies Informational [Page 13]

RFC 6256 Using SDNVs May 2011

7. Informative References

 [ASN1] ITU-T Rec. X.680, "Abstract Syntax Notation One (ASN.1).
 Specification of Basic Notation", ISO/IEC 8824-1:2002,
 2002.

 [BRF04] Burleigh, S., Ramadas, M., and S. Farrell, "Licklider
 Transmission Protocol", Work in Progress, May 2004.

 [Hain05] Hain, T., "A Pragmatic Report on IPv4 Address Space
 Consumption", Internet Protocol Journal Vol. 8, No. 3,
 September 2005.

 [IEN21] Cerf, V. and J. Postel, "Specification of Internetwork
 Transmission Control Program: TCP Version 3", Internet
 Experimental Note 21, January 1978.

 [Manning09] Manning, c., Raghavan, P., and H. Schuetze,
 "Introduction to Information Retrieval", Cambridge
 University Press ISBN-13: 978-0521865715, 2009,
 <http://informationretrieval.org/>.

 [RFC0713] Haverty, J., "MSDTP-Message Services Data Transmission
 Protocol", RFC 713, April 1976.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2993] Hain, T., "Architectural Implications of NAT", RFC 2993,
 November 2000.

 [RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
 Public Keys Used For Exchanging Symmetric Keys", BCP 86,
 RFC 3766, April 2004.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4
 Reassembly Errors at High Data Rates", RFC 4963,
 July 2007.

 [RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol
 Specification", RFC 5050, November 2007.

Eddy & Davies Informational [Page 14]

RFC 6256 Using SDNVs May 2011

 [RFC5325] Burleigh, S., Ramadas, M., and S. Farrell, "Licklider
 Transmission Protocol - Motivation", RFC 5325,
 September 2008.

 [RFC5326] Ramadas, M., Burleigh, S., and S. Farrell, "Licklider
 Transmission Protocol - Specification", RFC 5326,
 September 2008.

 [Sayood02] Sayood, K., "Lossless Data Compression", Academic
 Press ISBN-13: 978-0126208610, December 2002,
 <http://books.google.co.uk/books?id=LjQiGwyabVwC>.

 [X.690] ITU-T Rec. X.690, "Abstract Syntax Notation One (ASN.1).
 Encoding Rules: Specification of Basic Encoding Rules
 (BER), Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)", ISO/IEC 8825-1:2002, 2002.

Eddy & Davies Informational [Page 15]

RFC 6256 Using SDNVs May 2011

Appendix A. SDNV Python Source Code

 # This code may be freely copied. Attribution would be appreciated.
 #
 # sdnv_decode() takes a string argument (s), which is assumed to be
 # an SDNV, and optionally a number (slen) for the maximum number of
 # bytes to parse from the string. The function returns a pair of
 # the non-negative integer n that is the numeric value encoded in
 # the SDNV, and integer that is the distance parsed into the input
 # string. If the slen argument is not given (or is not a non-zero
 # number) then, s is parsed up to the first byte whose high-order
 # bit is 0 -- the length of the SDNV portion of s does not have to
 # be pre-computed by calling code. If the slen argument is given
 # as a non-zero value, then slen bytes of s are parsed. The value
 # for n of -1 is returned for any type of parsing error.
 #
 # NOTE: In python, integers can be of arbitrary size. In other
 # languages, such as C, SDNV-parsing routines should take
 # precautions to avoid overflow (e.g., by using the Gnu MP library,
 # or similar).
 #
 def sdnv_decode(s, slen=0):
 n = long(0)
 for i in range(0, len(s)):
 v = ord(s[i])
 n = n<<7
 n = n + (v & 0x7F)
 if v>>7 == 0:
 slen = i+1
 break
 elif i == len(s)-1 or (slen != 0 and i > slen):
 n = -1 # reached end of input without seeing end of SDNV
 return (n, slen)

 # sdnv_encode() returns the SDNV-encoded string that represents n.
 # An empty string is returned if n is not a non-negative integer
 def sdnv_encode(n):
 r = ""
 # validate input
 if n >= 0 and (type(n) in [type(int(1)), type(long(1))]):
 flag = 0
 done = False
 while not done:
 # encode lowest 7 bits from n
 newbits = n & 0x7F
 n = n>>7
 r = chr(newbits + flag) + r
 if flag == 0:

Eddy & Davies Informational [Page 16]

RFC 6256 Using SDNVs May 2011

 flag = 0x80
 if n == 0:
 done = True
 return r

 # test cases from LTP and BP internet-drafts, only print failures
 def sdnv_test():
 tests = [(0xABC, chr(0x95) + chr(0x3C)),
 (0x1234, chr(0xA4) + chr (0x34)),
 (0x4234, chr(0x81) + chr(0x84) + chr(0x34)),
 (0x7F, chr(0x7F))]

 for tp in tests:
 # test encoding function
 if sdnv_encode(tp[0]) != tp[1]:
 print "sdnv_encode fails on input %s" % hex(tp[0])
 # test decoding function
 if sdnv_decode(tp[1])[0] != tp[0]:
 print "sdnv_decode fails on input %s, giving %s" % \
 (hex(tp[0]), sdnv_decode(tp[1]))

Authors’ Addresses

 Wesley M. Eddy
 MTI Systems
 NASA Glenn Research Center
 MS 500-ASRC; 21000 Brookpark Rd
 Cleveland, OH 44135

 Phone: 216-433-6682
 EMail: wes@mti-systems.com

 Elwyn Davies
 Folly Consulting
 Soham
 UK

 Phone:
 EMail: elwynd@folly.org.uk
 URI:

Eddy & Davies Informational [Page 17]

