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           Using Self-Delimiting Numeric Values in Protocols

Abstract

   Self-Delimiting Numeric Values (SDNVs) have recently been introduced
   as a field type in proposed Delay-Tolerant Networking protocols.
   SDNVs encode an arbitrary-length non-negative integer or arbitrary-
   length bitstring with minimum overhead.  They are intended to provide
   protocol flexibility without sacrificing economy and to assist in
   future-proofing protocols under development.  This document describes
   formats and algorithms for SDNV encoding and decoding, along with
   notes on implementation and usage.  This document is a product of the
   Delay-Tolerant Networking Research Group and has been reviewed by
   that group.  No objections to its publication as an RFC were raised.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Research Task Force
   (IRTF).  The IRTF publishes the results of Internet-related research
   and development activities.  These results might not be suitable for
   deployment.  This RFC represents the consensus of the Delay-Tolerant
   Networking Research Group of the Internet Research Task Force (IRTF).
   Documents approved for publication by the IRSG are not a candidate
   for any level of Internet Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6256.
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1.  Introduction

   This document is a product of the Internet Research Task Force (IRTF)
   Delay-Tolerant Networking (DTN) Research Group (DTNRG).  The document
   has received review and support within the DTNRG, as discussed in the
   Acknowledgements section of this document.

   This document begins by describing the drawbacks of using fixed-width
   protocol fields.  It then provides some background on the Self-
   Delimiting Numeric Values (SDNVs) proposed for use in DTN protocols,
   and motivates their potential applicability in other networking
   protocols.  The DTNRG has created SDNVs to meet the challenges it
   attempts to solve, and it has been noted that SDNVs closely resemble
   certain constructs within ASN.1 and even older ITU protocols, so the
   problems are not new or unique to DTN.  SDNVs focus strictly on
   numeric values or bitstrings, while other mechanisms have been
   developed for encoding more complex data structures, such as ASN.1
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   encoding rules and Haverty’s Message Services Data Transmission
   Protocol (MSDTP) [RFC0713].  Because of this focus, SDNVs can be
   quickly implemented with only a small amount of code.

   SDNVs are tersely defined in both the Bundle Protocol [RFC5050] and
   Licklider Transmission Protocol (LTP) [RFC5326] specifications, due
   to the flow of document production in the DTNRG.  This document
   clarifies and further explains the motivations and engineering
   decisions behind SDNVs.

1.1.  Problems with Fixed-Value Fields

   Protocol designers commonly face an optimization problem in
   determining the proper size for header fields.  There is a strong
   desire to keep fields as small as possible, in order to reduce the
   protocol’s overhead and also allow for fast processing.  Since
   protocols can be used for many years (even decades) after they are
   designed, and networking technology has tended to change rapidly, it
   is not uncommon for the use, deployment, or performance of a
   particular protocol to be limited or infringed upon by the length of
   some header field being too short.  Two well-known examples of this
   phenomenon are the TCP-advertised receive window and the IPv4 address
   length.

   TCP segments contain an advertised receive window field that is fixed
   at 16 bits [RFC0793], encoding a maximum value of around 65
   kilobytes.  The purpose of this value is to provide flow control, by
   allowing a receiver to specify how many sent bytes its peer can have
   outstanding (unacknowledged) at any time, thus allowing the receiver
   to limit its buffer size.  As network speeds have grown by several
   orders of magnitude since TCP’s inception, the combination of the 65
   kilobyte maximum advertised window and long round-trip times
   prevented TCP senders from being able to achieve the high throughput
   that the underlying network supported.  This limitation was remedied
   through the use of the Window Scale option [RFC1323], which provides
   a multiplier for the advertised window field.  However, the Window
   Scale multiplier is fixed for the duration of the connection,
   requires support from each end of a TCP connection, and limits the
   precision of the advertised receive window, so this is certainly a
   less-than-ideal solution.  Because of the field width limit in the
   original design however, the Window Scale is necessary for TCP to
   reach high sending rates.

   An IPv4 address is fixed at 32 bits [RFC0791] (as a historical note,
   an early version of the IP header format specification in [IEN21]
   used variable-length addresses in multiples of 8 bits up to 120
   bits).  Due to the way that subnetting and assignment of address
   blocks was performed, the number of IPv4 addresses has been seen as a
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   limit to the growth of the Internet [Hain05].  Two divergent paths to
   solve this problem have been the use of Network Address Translators
   (NATs) and the development of IPv6.  NATs have caused a number of
   other issues and problems [RFC2993], leading to increased complexity
   and fragility, as well as forcing workarounds to be engineered for
   many other protocols to function within a NATed environment.  The
   IPv6 solution’s transitional work has been underway for several
   years, but has still only just begun to have visible impact on the
   global Internet.

   Of course, in both the case of the TCP receive window and IPv4
   address length, the field size chosen by the designers seemed like a
   good idea at the time.  The fields were more than big enough for the
   originally perceived usage of the protocols, and yet were small
   enough to allow the headers to remain compact and relatively easy and
   efficient to parse on machines of the time.  The fixed sizes that
   were defined represented a trade-off between the scalability of the
   protocol versus the overhead and efficiency of processing.  In both
   cases, these engineering decisions turned out to be painfully
   restrictive in the longer term.

1.2.  SDNVs for DTN Protocols

   In specifications for the DTN Bundle Protocol (BP) [RFC5050] and
   Licklider Transmission Protocol (LTP) [RFC5326], SDNVs have been used
   for several fields including identifiers, payload/header lengths, and
   serial (sequence) numbers.  SDNVs were developed for use in these
   types of fields, to avoid sending more bytes than needed, as well as
   avoiding fixed sizes that may not end up being appropriate.  For
   example, since LTP is intended primarily for use in long-delay
   interplanetary communications [RFC5325], where links may be fairly
   low in capacity, it is desirable to avoid the header overhead of
   routinely sending a 64-bit field where a 16-bit field would suffice.
   Since many of the nodes implementing LTP are expected to be beyond
   the current range of human spaceflight, upgrading their on-board LTP
   implementations to use longer values if the defined fields are found
   to be too short would also be problematic.  Furthermore, extensions
   similar in mechanism to TCP’s Window Scale option are unsuitable for
   use in DTN protocols since, due to high delays, DTN protocols must
   avoid handshaking and configuration parameter negotiation to the
   greatest extent possible.  All of these reasons make the choice of
   SDNVs for use in DTN protocols attractive.
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1.3.  SDNV Usage

   In short, an SDNV is simply a way of representing non-negative
   integers (both positive integers of arbitrary magnitude and 0),
   without expending much unnecessary space.  This definition allows
   SDNVs to represent many common protocol header fields, such as:

   o  Random identification fields as used in the IPsec Security
      Parameters Index or in IP headers for fragment reassembly (Note:
      the 16-bit IP ID field for fragment reassembly was recently found
      to be too short in some environments [RFC4963]).

   o  Sequence numbers as in TCP or the Stream Control Transmission
      Protocol (SCTP).

   o  Values used in cryptographic algorithms such as RSA keys, Diffie-
      Hellman key agreement, or coordinates of points on elliptic
      curves.

   o  Message lengths as used in file transfer protocols.

   o  Nonces and cookies.

   As any bitfield can be interpreted as an unsigned integer, SDNVs can
   also encode arbitrary-length bitfields, including bitfields
   representing signed integers or other data types; however, this
   document assumes SDNV encoding and decoding in terms of unsigned
   integers.  Implementations may differ in the interface that they
   provide to SDNV encoding and decoding functions, in terms of whether
   the values are numeric, bitfields, etc.; this detail does not alter
   the representation or algorithms described in this document.

   The use of SDNVs rather than fixed-length fields gives protocol
   designers the ability to ameliorate the consequences of making
   difficult-to-reverse field-sizing decisions, as the SDNV format grows
   and shrinks depending on the particular value encoded.  SDNVs do not
   necessarily provide optimal encodings for values of any particular
   length; however, they allow protocol designers to avoid potential
   blunders in assigning fixed lengths and remove the complexity
   involved with either negotiating field lengths or constructing
   protocol extensions.  However, if SDNVs are used to encode bitfields,
   it is essential that the sender and receiver have a consistent
   interpretation of the decoded value.  This is discussed further in
   Section 2.

   To our knowledge, at this time, no IETF transport or network-layer
   protocol designed for use outside of the DTN domain has proposed to
   use SDNVs; however, there is no inherent reason not to use SDNVs more
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   broadly in the future.  The two examples cited here, of fields that
   have proven too small in general Internet protocols, are only a small
   sampling of the much larger set of similar instances that the authors
   can think of.  Outside the Internet protocols, within ASN.1 and
   previous ITU protocols, constructs very similar to SDNVs have been
   used for many years due to engineering concerns very similar to those
   facing the DTNRG.

   Many protocols use a Type-Length-Value method for encoding variable-
   length fields (e.g., TCP’s options format or many of the fields in
   the Internet Key Exchange Protocol version 2 (IKEv2)).  An SDNV is
   equivalent to combining the length and value portions of this type of
   field, with the overhead of the length portion amortized out over the
   bytes of the value.  The penalty paid for this in an SDNV may be
   several extra bytes for long values (e.g., 1024-bit RSA keys).  See
   Section 4 for further discussion and a comparison.

   As is shown in later sections, for large values, the current SDNV
   scheme is fairly inefficient in terms of space (1/8 of the bits are
   overhead) and not particularly easy to encode/decode in comparison to
   alternatives.  The best use of SDNVs may often be to define the
   Length field of a TLV structure to be an SDNV whose value is the
   length of the TLV’s Value field.  In this way, one can avoid forcing
   large numbers from being directly encoded as an SDNV, yet retain the
   extensibility that using SDNVs grants.

2.  Definition of SDNVs

   Early in the work of the DTNRG, it was agreed that the properties of
   an SDNV were useful for DTN protocols.  The exact SDNV format used by
   the DTNRG evolved somewhat over time before the publication of the
   initial RFCs on LTP and BP.  An earlier version (see the initial
   version of LTP Internet Draft [BRF04]) bore a resemblance to the
   ASN.1 [ASN1] Basic Encoding Rules (BER) [X.690] for lengths (Section
   8.1.3 of X.690).  The current SDNV format is the one used by ASN.1
   BER for encoding tag identifiers greater than or equal to 31 (Section
   8.1.2.4.2 of X.690).  A comparison between the current SDNV format
   and the early SDNV format is made in Section 4.

   The format currently used is very simple.  Before encoding, an
   integer is represented as a left-to-right bitstring beginning with
   its most significant bit and ending with its least significant bit.
   If the bitstring’s length is not a multiple of 7, then the string is
   left-padded with zeros.  When transmitted, the bits are encoded into
   a series of bytes.  The low-order 7 bits of each byte in the encoded
   format are taken left-to-right from the integer’s bitstring
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   representation.  The most significant bit of each byte specifies
   whether it is the final byte of the encoded value (when it holds a
   0), or not (when it holds a 1).

   For example:

   o  1 (decimal) is represented by the bitstring "0000001" and encoded
      as the single byte 0x01 (in hexadecimal).

   o  128 is represented by the bitstring "10000001 00000000" and
      encoded as the bytes 0x81 followed by 0x00.

   o  Other values can be found in the test vectors of the source code
      in Appendix A.

   To be perfectly clear, and avoid potential interoperability issues
   (as have occurred with ASN.1 BER time values), we explicitly state
   two considerations regarding zero-padding. (1) When encoding SDNVs,
   any leading (most significant) zero bits in the input number might be
   discarded by the SDNV encoder.  Protocols that use SDNVs should not
   rely on leading-zeros being retained after encoding and decoding
   operations. (2) When decoding SDNVs, the relevant number of leading
   zeros required to pad up to a machine word or other natural data unit
   might be added.  These are put in the most significant positions in
   order to not change the value of the number.  Protocols using SDNVs
   should consider situations where lost zero-padding may be
   problematic.

   The issues of zero-padding are particularly relevant where an SDNV is
   being used to represent a bitfield to be transmitted by a protocol.
   The specification of the protocol and any associated IANA registry
   should specify the allocation and usage of bit positions within the
   unencoded field.  Unassigned and reserved bits in the unencoded field
   will be treated as zeros by the SDNV encoding prior to transmission.
   Assuming the bit positions are numbered starting from 0 at the least
   significant bit position in the integer representation, then if
   higher-numbered positions in the field contain all zeros, the
   encoding process may not transmit these bits explicitly (e.g., if all
   the bit positions numbered 7 or higher are zeros, then the
   transmitted SDNV can consist of just one octet).  On reception, the
   decoding process will treat any untransmitted higher-numbered bits as
   zeros.  To ensure correct operation of the protocol, the sender and
   receiver must have a consistent interpretation of the width of the
   bitfield.  This can be achieved in various ways:

   o  the bitfield width is implicitly defined by the version of the
      protocol in use in the sender and receiver,
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   o  sending the width of the bitfield explicitly in a separate item,

   o  the higher-numbered bits can be safely ignored by the receiver
      (e.g., because they represent optimizations), or

   o  marking the highest-numbered bit by prepending a ’1’ bit to the
      bitfield.

   The protocol specification must record how the consistent
   interpretation is achieved.

   The SDNV encoding technique is also known as Variable Byte Encoding
   (see Section 5.3.1 of [Manning09]) and is equivalent to Base-128
   Elias Gamma Encoding (see Section 5.3.2 of [Manning09] and Section
   3.5 of [Sayood02]).  However, the primary motivation for SDNVs is to
   provide an extensible protocol framework rather than optimal data
   compression, which is the motivation behind the other uses of the
   technique.  [Manning09] points out that the key feature of this
   encoding is that it is "prefix free" meaning that no code is a prefix
   of any other, which is an alternative way of expressing the self-
   delimiting property.

3.  Basic Algorithms

   This section describes some simple algorithms for creating and
   parsing SDNV fields.  These may not be the most efficient algorithms
   possible, however, they are easy to read, understand, and implement.
   Appendix A contains Python source code implementing the routines
   described here.  The algorithms presented here are convenient for
   converting between an internal data block and serialized data stream
   associated with a transmission device.  Other approaches are possible
   with different efficiencies and trade-offs.

3.1.  Encoding Algorithm

   There is a very simple algorithm for the encoding operation that
   converts a non-negative integer (value n, of length 1+floor(log n)
   bits) into an SDNV.  This algorithm takes n as its only argument and
   returns a string of bytes:

   o  (Initial Step) Set a variable X to a byte sharing the least
      significant 7 bits of n, and with 0 in the most significant bit,
      and a variable Y to n, right-shifted by 7 bits.

   o  (Recursion Step) If Y == 0, return X.  Otherwise, set Z to the
      bitwise-or of 0x80 with the 7 least significant bits of Y, and
      append Z to X.  Right-shift Y by 7 bits and repeat the Recursion
      Step.
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   This encoding algorithm has a time complexity of O(log n), since it
   takes a number of steps equal to ceil(n/7), and no additional space
   beyond the size of the result (8/7 log n) is required.  One aspect of
   this algorithm is that it assumes strings can be efficiently appended
   to new bytes.  One way to implement this is to allocate a buffer for
   the expected length of the result and fill that buffer one byte at a
   time from the right end.

   If, for some reason, an implementation requires an encoded SDNV to be
   some specific length (possibly related to a machine word), any
   leftmost zero-padding included needs to properly set the high-order
   bit in each byte of padding.

3.2.  Decoding Algorithm

   Decoding SDNVs is a more difficult operation than encoding them, due
   to the fact that no bound on the resulting value is known until the
   SDNV is parsed, at which point the value itself is already known.
   This means that if space is allocated in advance to hold the value
   that results from decoding an SDNV, in general, it is not known
   whether this space will be large enough until it is 7 bits away from
   being overflowed.  However, as specified in Section 3.3, protocols
   using SDNVs must specify the largest number of bits that an
   implementation is expected to handle, which mitigates this problem.

   o  (Initial Step) Set the result to 0.  Set an index to the first
      byte of the encoded SDNV.

   o  (Recursion Step) Shift the result left 7 bits.  Add the low-order
      7 bits of the value at the index to the result.  If the high-order
      bit under the pointer is a 1, advance the index by one byte within
      the encoded SDNV and repeat the Recursion Step, otherwise return
      the current value of the result.

   This decoding algorithm takes no more additional space than what is
   required for the result (7/8 the length of the SDNV) and the pointer.
   The complication is that before the result can be left-shifted in the
   Recursion Step, an implementation needs to first make sure that this
   will not cause any bits to be lost, and re-allocate a larger piece of
   memory for the result, if required.  The pure time complexity is the
   same as for the encoding algorithm given, but if re-allocation is
   needed due to the inability to predict the size of the result,
   decoding may be slower.

   These decoding steps include removal of any leftmost zero-padding
   that might be used by an encoder to create encodings of a certain
   length.
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3.3.  Limitations of Implementations

   Because of efficiency considerations or convenience of internal
   representation of decoded integers, implementations may choose to
   limit the number of bits in SDNVs that they will handle.  To avoid
   interoperability problems, any protocol that uses SDNVs must specify
   the largest number of bits in an SDNV that an implementation of that
   protocol is expected to handle.

   For example, Section 4.1 of [RFC5050] specifies that implementations
   of the DTN Bundle Protocol are not required to handle SDNVs with more
   than 64 bits in their unencoded value.  Accordingly, integer values
   transmitted in SDNVs have an upper limit and SDNV-encoded flag fields
   must be limited to 64 bit positions in any future revisions of the
   protocol unless the restriction is altered.

4.  Comparison to Alternatives

   This section compares three alternative ways of implementing the
   concept of SDNVs: (1) the TLV scheme commonly used in the Internet
   family, and many other families of protocols, (2) the old style of
   SDNVs (both the SDNV-8 and SDNV-16) defined in an early stage of
   LTP’s development [BRF04], and (3) the current SDNV format.

   The TLV method uses two fixed-length fields to hold the Type and
   Length elements that then imply the syntax and semantics of the Value
   element.  This is only similar to an SDNV in that the value element
   can grow or shrink within the bounds capable of being conveyed by the
   Length field.  Two fundamental differences between TLVs and SDNVs are
   that through the Type element, TLVs also contain some notion of what
   their contents are semantically, while SDNVs are simply generic non-
   negative integers, and protocol engineers still have to choose fixed-
   field lengths for the Type and Length fields in the TLV format.

   Some protocols use TLVs where the value conveyed within the Length
   field needs to be decoded into the actual length of the Value field.
   This may be accomplished through simple multiplication, left-
   shifting, or a look-up table.  In any case, this tactic limits the
   granularity of the possible Value lengths, and can contribute some
   degree of bloat if Values do not fit neatly within the available
   decoded Lengths.

   In the SDNV format originally used by LTP, parsing the first byte of
   the SDNV told an implementation how much space was required to hold
   the contained value.  There were two different types of SDNVs defined
   for different ranges of use.  The SDNV-8 type could hold values up to
   127 in a single byte, while the SDNV-16 type could hold values up to
   32,767 in 2 bytes.  Both formats could encode values requiring up to
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   N bytes in N+2 bytes, where N<127.  The major difference between this
   old SDNV format and the current SDNV format is that the new format is
   not as easily decoded as the old format was, but the new format also
   has absolutely no limitation on its length.

   The advantage in ease of parsing the old format manifests itself in
   two aspects: (1) the size of the value is determinable ahead of time,
   in a way equivalent to parsing a TLV, and (2) the actual value is
   directly encoded and decoded, without shifting and masking bits as is
   required in the new format.  For these reasons, the old format
   requires less computational overhead to deal with, but is also very
   limited in that it can only hold a 1024-bit number, at maximum.
   Since according to IETF Best Current Practices, an asymmetric
   cryptography key needed to last for a long term requires using moduli
   of over 1228 bits [RFC3766], this could be seen as a severe
   limitation of the old style of SDNVs, from which the currently used
   style does not suffer.

   Table 1 compares the maximum values that can be encoded into SDNVs of
   various lengths using the old SDNV-8/16 method and the current SDNV
   method.  The only place in this table where SDNV-16 is used rather
   than SDNV-8 is in the 2-byte row.  Starting with a single byte, the
   two methods are equivalent, but when using 2 bytes, the old method is
   a more compact encoding by one bit.  From 3 to 7 bytes of length
   though, the current SDNV format is more compact, since it only
   requires one bit per byte of overhead, whereas the old format used a
   full byte.  Thus, at 8 bytes, both schemes are equivalent in
   efficiency since they both use 8 bits of overhead.  Up to 129 bytes,
   the old format is more compact than the current one, although after
   this, limit it becomes unusable.
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   +-------+---------------+-------------+---------------+-------------+
   | Bytes |   SDNV-8/16   |     SDNV    |   SDNV-8/16   |     SDNV    |
   |       | Maximum Value |   Maximum   | Overhead Bits |   Overhead  |
   |       |               |    Value    |               |     Bits    |
   +-------+---------------+-------------+---------------+-------------+
   |   1   |      127      |     127     |       1       |      1      |
   |       |               |             |               |             |
   |   2   |     32,767    |    16,383   |       1       |      2      |
   |       |               |             |               |             |
   |   3   |     65,535    |  2,097,151  |       8       |      3      |
   |       |               |             |               |             |
   |   4   |    2^24 - 1   |   2^28 - 1  |       8       |      4      |
   |       |               |             |               |             |
   |   5   |    2^32 - 1   |   2^35 - 1  |       8       |      5      |
   |       |               |             |               |             |
   |   6   |    2^40 - 1   |   2^42 - 1  |       8       |      6      |
   |       |               |             |               |             |
   |   7   |    2^48 - 1   |   2^49 - 1  |       8       |      7      |
   |       |               |             |               |             |
   |   8   |    2^56 - 1   |   2^56 - 1  |       8       |      8      |
   |       |               |             |               |             |
   |   9   |    2^64 - 1   |   2^63 - 1  |       8       |      9      |
   |       |               |             |               |             |
   |   10  |    2^72 - 1   |   2^70 - 1  |       8       |      10     |
   |       |               |             |               |             |
   |   16  |   2^120 - 1   |  2^112 - 1  |       8       |      16     |
   |       |               |             |               |             |
   |   32  |   2^248 - 1   |  2^224 - 1  |       8       |      32     |
   |       |               |             |               |             |
   |   64  |   2^504 - 1   |  2^448 - 1  |       8       |      64     |
   |       |               |             |               |             |
   |  128  |   2^1016 - 1  |  2^896 - 1  |       8       |     128     |
   |       |               |             |               |             |
   |  129  |   2^1024 - 1  |  2^903 - 1  |       8       |     129     |
   |       |               |             |               |             |
   |  130  |      N/A      |  2^910 - 1  |      N/A      |     130     |
   |       |               |             |               |             |
   |  256  |      N/A      |  2^1792 - 1 |      N/A      |     256     |
   +-------+---------------+-------------+---------------+-------------+

                                  Table 1

   Suggested usages of the SDNV format that leverage its strengths and
   limit the effects of its weaknesses are discussed in Section 1.3.

   Another aspect of the comparison between SDNVs and alternatives using
   fixed-length fields is the result of errors in transmission.  Bit-
   errors in an SDNV can result in either errors in the decoded value,
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   or parsing errors in subsequent fields of the protocol.  In fixed-
   length fields, bit errors always result in errors to the decoded
   value rather than parsing errors in subsequent fields.  If the
   decoded values from either type of field encoding (SDNV or fixed-
   length) are used as indexes, offsets, or lengths of further fields in
   the protocol, similar failures result.

5.  Security Considerations

   The only security considerations with regard to SDNVs are that code
   that parses SDNVs should have bounds-checking logic and be capable of
   handling cases where an SDNV’s value is beyond the code’s ability to
   parse.  These precautions can prevent potential exploits involving
   SDNV decoding routines.

   Stephen Farrell noted that very early definitions of SDNVs also
   allowed negative integers.  This was considered a potential security
   hole, since it could expose implementations to underflow attacks
   during SDNV decoding.  There is a precedent in that many existing TLV
   decoders map the Length field to a signed integer and are vulnerable
   in this way.  An SDNV decoder should be based on unsigned types and
   not have this issue.
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Appendix A.  SDNV Python Source Code

   #  This code may be freely copied.  Attribution would be appreciated.
   #
   # sdnv_decode() takes a string argument (s), which is assumed to be
   #   an SDNV, and optionally a number (slen) for the maximum number of
   #   bytes to parse from the string.  The function returns a pair of
   #   the non-negative integer n that is the numeric value encoded in
   #   the SDNV, and integer that is the distance parsed into the input
   #   string.  If the slen argument is not given (or is not a non-zero
   #   number) then, s is parsed up to the first byte whose high-order
   #   bit is 0 -- the length of the SDNV portion of s does not have to
   #   be pre-computed by calling code.  If the slen argument is given
   #   as a non-zero value, then slen bytes of s are parsed.  The value
   #   for n of -1 is returned for any type of parsing error.
   #
   # NOTE: In python, integers can be of arbitrary size.  In other
   #   languages, such as C, SDNV-parsing routines should take
   #   precautions to avoid overflow (e.g., by using the Gnu MP library,
   #   or similar).
   #
   def sdnv_decode(s, slen=0):
     n = long(0)
     for i in range(0, len(s)):
       v = ord(s[i])
       n = n<<7
       n = n + (v & 0x7F)
       if v>>7 == 0:
         slen = i+1
         break
       elif i == len(s)-1 or (slen != 0 and i > slen):
         n = -1 # reached end of input without seeing end of SDNV
     return (n, slen)

   # sdnv_encode() returns the SDNV-encoded string that represents n.
   #   An empty string is returned if n is not a non-negative integer
   def sdnv_encode(n):
     r = ""
     # validate input
     if n >= 0 and (type(n) in [type(int(1)), type(long(1))]):
       flag = 0
       done = False
       while not done:
         # encode lowest 7 bits from n
         newbits = n & 0x7F
         n = n>>7
         r = chr(newbits + flag) + r
         if flag == 0:
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           flag = 0x80
         if n == 0:
           done = True
     return r

   # test cases from LTP and BP internet-drafts, only print failures
   def sdnv_test():
     tests = [(0xABC, chr(0x95) + chr(0x3C)),
              (0x1234, chr(0xA4) + chr (0x34)),
              (0x4234, chr(0x81) + chr(0x84) + chr(0x34)),
              (0x7F, chr(0x7F))]

     for tp in tests:
       # test encoding function
       if sdnv_encode(tp[0]) != tp[1]:
         print "sdnv_encode fails on input %s" % hex(tp[0])
       # test decoding function
       if sdnv_decode(tp[1])[0] != tp[0]:
         print "sdnv_decode fails on input %s, giving %s" % \
               (hex(tp[0]), sdnv_decode(tp[1]))
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