
Internet Engineering Task Force (IETF) S. Perreault, Ed.
Request for Comments: 6062 Viagenie
Category: Standards Track J. Rosenberg
ISSN: 2070-1721 jdrosen.net
 November 2010

Traversal Using Relays around NAT (TURN) Extensions for TCP Allocations

Abstract

 This specification defines an extension of Traversal Using Relays
 around NAT (TURN), a relay protocol for Network Address Translator
 (NAT) traversal. This extension allows a TURN client to request TCP
 allocations, and defines new requests and indications for the TURN
 server to open and accept TCP connections with the client’s peers.
 TURN and this extension both purposefully restrict the ways in which
 the relayed address can be used. In particular, it prevents users
 from running general-purpose servers from ports obtained from the
 TURN server.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6062.

Perreault & Rosenberg Standards Track [Page 1]

RFC 6062 TURN TCP November 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions . 3
 3. Overview of Operation . 4
 4. Client Processing . 6
 4.1. Creating an Allocation 6
 4.2. Refreshing an Allocation 7
 4.3. Initiating a Connection 7
 4.4. Receiving a Connection 7
 4.5. Sending and Receiving Data 8
 4.6. Data Connection Maintenance 8
 5. TURN Server Behavior . 8
 5.1. Receiving a TCP Allocate Request 8
 5.2. Receiving a Connect Request 9
 5.3. Receiving a TCP Connection on a Relayed Transport
 Address . 10
 5.4. Receiving a ConnectionBind Request 11
 5.5. Data Connection Maintenance 11
 6. IANA Considerations . 11
 6.1. New STUN Methods . 11
 6.2. New STUN Attributes 12
 6.2.1. CONNECTION-ID . 12
 6.3. New STUN Error Codes 12
 7. Security Considerations 12
 8. Acknowledgements . 12
 9. References . 12
 9.1. Normative References 12
 9.2. Informative References 13

Perreault & Rosenberg Standards Track [Page 2]

RFC 6062 TURN TCP November 2010

1. Introduction

 Traversal Using Relays around NAT (TURN) [RFC5766] is an extension to
 the Session Traversal Utilities for NAT [RFC5389] protocol. TURN
 allows for clients to communicate with a TURN server and ask it to
 allocate ports on one of its host interfaces, and then relay traffic
 between that port and the client itself. TURN, when used in concert
 with STUN and Interactive Connectivity Establishment (ICE) [RFC5245],
 forms a solution for NAT traversal for UDP-based media sessions.

 However, TURN itself does not provide a way for a client to allocate
 a TCP-based port on a TURN server. Such an allocation is needed for
 cases where a TCP-based session is desired with a peer, and NATs
 prevent a direct TCP connection. Examples include application
 sharing between desktop softphones, or transmission of pictures
 during a voice communications session.

 This document defines an extension to TURN that allows a client to
 obtain a TCP allocation. It also allows the client to initiate
 outgoing TCP connections from that allocation to peers and to accept
 incoming TCP connection requests from peers made towards that
 allocation.

 The term "TCP allocation" means a TURN allocation where TCP is used
 as the transport protocol instead of UDP. Such an allocation is
 uniquely identified by its relayed transport address, which consists
 of an IP address and TCP port (defined in [RFC5766]).

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Perreault & Rosenberg Standards Track [Page 3]

RFC 6062 TURN TCP November 2010

3. Overview of Operation

 +--------+
 | |
 | Peer1 |
 / | |
 / | |
 / +--------+
 /
 /
 / Peer Data 1
 /
 +--------+ Control +--------+ /
 | | -------------- | | /
 | Client | Client Data 1 | TURN |
 | | -------------- | Server | \
 | | -------------- | | \
 +--------+ Client Data 2 +--------+ \
 \
 \
 \ +--------+
 \ | |
 Peer Data 2 \ | Peer2 |
 \ | |
 | |
 +--------+

 Figure 1: TURN TCP Model

 The overall model for TURN-TCP is shown in Figure 1. The client will
 have two different types of connections to its TURN server. For each
 allocated relayed transport address, it will have a single control
 connection. Control connections are used to obtain allocations and
 open up new connections. Furthermore, for each connection to a peer,
 the client will have a single connection to its TURN server. These
 connections are called data connections. Consequently, there is a
 data connection from the client to its TURN server (the client data
 connection) and one from the TURN server to a peer (the peer data
 connection). Actual application data is sent on these connections.
 Indeed, after an initial TURN message that binds the client data
 connection to a peer data connection, only application data can be
 sent -- no TURN messaging. This is in contrast to the control
 connection, which only allows TURN messages and not application data.

 To obtain a TCP-based allocation, a client first opens a TCP or TLS
 connection to its TURN server. The client then sends an Allocate
 request over that control connection. That request contains a
 REQUESTED-TRANSPORT attribute, which indicates a TCP-based allocation

Perreault & Rosenberg Standards Track [Page 4]

RFC 6062 TURN TCP November 2010

 is desired. A server that supports this extension will allocate a
 TCP relayed transport address and begin listening for connection
 requests on it. It then returns the allocated relayed transport
 address to the client in the response to the Allocate request. The
 connection on which the Allocate request was sent is the control
 connection.

 If a client wishes to establish a TCP connection to a peer from that
 relayed transport address, it issues a Connect request to the TURN
 server over the control connection. That request contains an XOR-
 PEER-ADDRESS attribute identifying the peer IP address and port
 (i.e., its "transport address") to which a connection is to be made.
 The TURN server attempts to open the TCP connection, and assuming it
 succeeds, then responds to the Connect request with a success
 response. The server also creates a connection identifier associated
 with this connection and passes that connection identifier back to
 the client in the success response. Note that a maximum of one
 connection to a given peer transport address can be established per
 allocation.

 Note: Establishing a relayed connection from the client to a peer
 is done in two steps. First, the allocation is created, and
 second, the connection is established. Combining the two is not
 desirable for NAT traversal. It is expected that, between the
 first and second steps, the client will communicate off-band with
 the peer (e.g., using ICE [RFC5245]) and tell it the relayed
 transport address that the TURN server allocated and from which it
 is about to initiate a connection. The peer can then "get ready":
 open holes in its firewall, try to poke holes in a NAT, attempt a
 TCP simultaneous open, etc.

 In order to actually send data on the new connection or otherwise
 utilize it in any way, the client establishes a new TCP connection to
 its TURN server. Once established, it issues a ConnectionBind
 request to the server over this new connection. That request echoes
 back the connection identifier to the TURN server. The TURN server
 uses it to correlate the two connections. As a consequence, the TCP
 connection to the peer is associated with a TCP connection to the
 client one-to-one. The two connections are now data connections. At
 this point, if the server receives data from the peer, it forwards
 that data towards the client, without any kind of encapsulation. Any
 data received by the TURN server from the client over the client data
 connection is forwarded to the peer, again without encapsulation or
 framing of any kind. Once a connection has been bound using the
 ConnectionBind request, TURN messaging is no longer permitted on the
 connection.

Perreault & Rosenberg Standards Track [Page 5]

RFC 6062 TURN TCP November 2010

 In a similar way, when a peer opens a TCP connection towards the
 relayed transport address, the server checks if there is a permission
 in place for that peer. If there is none, the connection is closed.
 Permissions are created with the CreatePermission request sent over
 the control connection, just as for UDP TURN. If there is a
 permission in place, the TURN server sends to the client a
 ConnectionAttempt Indication over the control connection. That
 indication contains a connection identifier. Once again, the client
 initiates a separate TCP connection to its TURN server, and over that
 connection, issues a ConnectionBind request. Once received, the TURN
 server will begin relaying data back and forth. The server closes
 the peer data connection if no ConnectionBind request is received
 after a timeout.

 If the client closes a client data connection, the corresponding peer
 data connection is closed. If the peer closes a peer data
 connection, the corresponding client data connection is closed. In
 this way, the status of the connection is directly known to the
 client.

 The TURN server will relay the data between the client and peer data
 connections. End-to-end flow control is maintained by the relay
 process: if the relay process is no longer able to write data to the
 destination of the relayed data, the relay process stops reading data
 from the source.

4. Client Processing

4.1. Creating an Allocation

 To create a TCP allocation, a client MUST initiate a new TCP or TLS
 connection to its TURN server, identical to the TCP or TLS procedures
 defined in [RFC5766]. TCP allocations cannot be obtained using a UDP
 association between client and server.

 Once set up, a client MUST send a TURN Allocate request. That
 request MUST contain a REQUESTED-TRANSPORT attribute whose value is
 6, corresponding to TCP.

 The request MUST NOT include a DONT-FRAGMENT, RESERVATION-TOKEN, or
 EVEN-PORT attribute. The corresponding features are specific to UDP-
 based capabilities and are not utilized by TURN-TCP. However, a
 LIFETIME attribute MAY be included, with semantics identical to the
 UDP case.

 The procedures for authentication of the Allocate request and
 processing of success and failure responses are identical to those
 for UDP.

Perreault & Rosenberg Standards Track [Page 6]

RFC 6062 TURN TCP November 2010

 Once a success response is received, the TCP connection to the TURN
 server is called the control connection for that allocation.

4.2. Refreshing an Allocation

 The procedures for refreshing an allocation are identical to those
 for UDP. Note that the Refresh MUST be sent on the control
 connection.

4.3. Initiating a Connection

 To initiate a TCP connection to a peer, a client MUST send a Connect
 request over the control connection for the desired allocation. The
 Connect request MUST include an XOR-PEER-ADDRESS attribute containing
 the transport address of the peer to which a connection is desired.

 If the connection is successfully established, the client will
 receive a success response. That response will contain a
 CONNECTION-ID attribute. The client MUST initiate a new TCP
 connection to the server, utilizing the same destination transport
 address to which the control connection was established. This
 connection MUST be made using a different local transport address.
 Authentication of the client by the server MUST use the same method
 and credentials as for the control connection. Once established, the
 client MUST send a ConnectionBind request over the new connection.
 That request MUST include the CONNECTION-ID attribute, echoed from
 the Connect Success response. When a response to the ConnectionBind
 request is received, if it is a success, the TCP connection on which
 it was sent is called the client data connection corresponding to the
 peer.

 If the result of the Connect request was an Error Response, and the
 response code was 447 (Connection Timeout or Failure), it means that
 the TURN server was unable to connect to the peer. The client MAY
 retry with the same XOR-PEER-ADDRESS attribute, but MUST wait at
 least 10 seconds.

 As with any other request, multiple Connect requests MAY be sent
 simultaneously. However, Connect requests with the same XOR-PEER-
 ADDRESS parameter MUST NOT be sent simultaneously.

4.4. Receiving a Connection

 After an Allocate request is successfully processed by the server,
 the client will start receiving a ConnectionAttempt indication each
 time a peer for which a permission has been installed attempts a new
 connection to the relayed transport address. This indication will
 contain CONNECTION-ID and XOR-PEER-ADDRESS attributes. If the client

Perreault & Rosenberg Standards Track [Page 7]

RFC 6062 TURN TCP November 2010

 wishes to accept this connection, it MUST initiate a new TCP
 connection to the server, utilizing the same destination transport
 address to which the control connection was established. This
 connection MUST be made using a different local transport address.
 Authentication of the client by the server MUST use the same method
 and credentials as for the control connection. Once established, the
 client MUST send a ConnectionBind request over the new connection.
 That request MUST include the CONNECTION-ID attribute, echoed from
 the ConnectionAttempt indication. When a response to the
 ConnectionBind request is received, if it is a success, the TCP
 connection on which it was sent is called the client data connection
 corresponding to the peer.

4.5. Sending and Receiving Data

 Once a client data connection is established, data sent on it by the
 client will be relayed as-is to the peer by the server. Similarly,
 data sent by the peer to the server will be relayed as-is to the
 client over the data connection.

4.6. Data Connection Maintenance

 The client MUST refresh the allocation (corresponding to a data
 connection) using the Refresh request as defined in [RFC5766] for as
 long as it wants to keep the data connection alive.

 When the client wishes to terminate its relayed connection to the
 peer, it closes the data connection to the server.

 Note: No mechanism for keeping alive the NAT bindings (potentially
 on the client data connection as well as on the peer data
 connection) is included. This service is not provided by TURN-
 TCP. If such a feature is deemed necessary, it can be implemented
 higher up the stack, in the application protocol being tunneled
 inside TURN-TCP. Also, TCP keep-alives MAY be used to keep the
 NAT bindings on the client data connection alive.

5. TURN Server Behavior

5.1. Receiving a TCP Allocate Request

 The process is similar to that defined in [RFC5766], Section 6.2,
 with the following exceptions:

 1. If the REQUESTED-TRANSPORT attribute is included and specifies a
 protocol other than UDP or TCP, the server MUST reject the
 request with a 442 (Unsupported Transport Protocol) error. If
 the value is UDP, and if UDP transport is allowed by local

Perreault & Rosenberg Standards Track [Page 8]

RFC 6062 TURN TCP November 2010

 policy, the server MUST continue with the procedures of [RFC5766]
 instead of this document. If the value is UDP, and if UDP
 transport is forbidden by local policy, the server MUST reject
 the request with a 403 (Forbidden) error.

 2. If the client connection transport is not TCP or TLS, the server
 MUST reject the request with a 400 (Bad Request) error.

 3. If the request contains the DONT-FRAGMENT, EVEN-PORT, or
 RESERVATION-TOKEN attribute, the server MUST reject the request
 with a 400 (Bad Request) error.

 4. A TCP relayed transport address MUST be allocated instead of a
 UDP one.

 5. The RESERVATION-TOKEN attribute MUST NOT be present in the
 success response.

 If all checks pass, the server MUST start accepting incoming TCP
 connections on the relayed transport address. Refer to Section 5.3
 for details.

5.2. Receiving a Connect Request

 When the server receives a Connect request, it processes the request
 as follows.

 If the request is received on a TCP connection for which no
 allocation exists, the server MUST return a 437 (Allocation Mismatch)
 error.

 If the server is currently processing a Connect request for this
 allocation with the same XOR-PEER-ADDRESS, it MUST return a 446
 (Connection Already Exists) error.

 If the server has already successfully processed a Connect request
 for this allocation with the same XOR-PEER-ADDRESS, and the resulting
 client and peer data connections are either pending or active, it
 MUST return a 446 (Connection Already Exists) error.

 If the request does not contain an XOR-PEER-ADDRESS attribute, or if
 such attribute is invalid, the server MUST return a 400 (Bad Request)
 error.

 If the new connection is forbidden by local policy, the server MUST
 reject the request with a 403 (Forbidden) error.

Perreault & Rosenberg Standards Track [Page 9]

RFC 6062 TURN TCP November 2010

 Otherwise, the server MUST initiate an outgoing TCP connection. The
 local endpoint is the relayed transport address associated with the
 allocation. The remote endpoint is the one indicated by the XOR-
 PEER-ADDRESS attribute. If the connection attempt fails or times
 out, the server MUST return a 447 (Connection Timeout or Failure)
 error. The timeout value MUST be at least 30 seconds.

 If the connection is successful, it is now called a peer data
 connection. The server MUST buffer any data received from the
 client. The server adjusts its advertised TCP receive window to
 reflect the amount of empty buffer space.

 The server MUST include the CONNECTION-ID attribute in the Connect
 success response. The attribute’s value MUST uniquely identify the
 peer data connection.

 If no ConnectionBind request associated with this peer data
 connection is received after 30 seconds, the peer data connection
 MUST be closed.

5.3. Receiving a TCP Connection on a Relayed Transport Address

 When a server receives an incoming TCP connection on a relayed
 transport address, it processes the request as follows.

 The server MUST accept the connection. If it is not successful,
 nothing is sent to the client over the control connection.

 If the connection is successfully accepted, it is now called a peer
 data connection. The server MUST buffer any data received from the
 peer. The server adjusts its advertised TCP receive window to
 reflect the amount of empty buffer space.

 If no permission for this peer has been installed for this
 allocation, the server MUST close the connection with the peer
 immediately after it has been accepted.

 Otherwise, the server sends a ConnectionAttempt indication to the
 client over the control connection. The indication MUST include an
 XOR-PEER-ADDRESS attribute containing the peer’s transport address,
 as well as a CONNECTION-ID attribute uniquely identifying the peer
 data connection.

 If no ConnectionBind request associated with this peer data
 connection is received after 30 seconds, the peer data connection
 MUST be closed.

Perreault & Rosenberg Standards Track [Page 10]

RFC 6062 TURN TCP November 2010

5.4. Receiving a ConnectionBind Request

 When a server receives a ConnectionBind request, it processes the
 request as follows.

 If the client connection transport is not TCP or TLS, the server MUST
 return a 400 (Bad Request) error.

 If the request does not contain the CONNECTION-ID attribute, or if
 this attribute does not refer to an existing pending connection, the
 server MUST return a 400 (Bad Request) error.

 Otherwise, the client connection is now called a client data
 connection. Data received on it MUST be sent as-is to the associated
 peer data connection.

 Data received on the associated peer data connection MUST be sent
 as-is on this client data connection. This includes data that was
 received after the associated Connect or request was successfully
 processed and before this ConnectionBind request was received.

5.5. Data Connection Maintenance

 If the allocation associated with a data connection expires, the data
 connection MUST be closed.

 When a client data connection is closed, the server MUST close the
 corresponding peer data connection.

 When a peer data connection is closed, the server MUST close the
 corresponding client data connection.

6. IANA Considerations

 This specification defines several new STUN methods, STUN attributes,
 and STUN error codes. IANA added these new protocol elements to the
 Session Traversal Utilities for NAT (STUN) Parameters registry.

6.1. New STUN Methods

 This section lists the codepoints for the new STUN methods defined in
 this specification. See Sections 4 and 5 for the semantics of these
 new methods.

 0x000a : Connect
 0x000b : ConnectionBind
 0x000c : ConnectionAttempt

Perreault & Rosenberg Standards Track [Page 11]

RFC 6062 TURN TCP November 2010

6.2. New STUN Attributes

 This STUN extension defines the following new attributes:

 0x002a : CONNECTION-ID

6.2.1. CONNECTION-ID

 The CONNECTION-ID attribute uniquely identifies a peer data
 connection. It is a 32-bit unsigned integral value.

6.3. New STUN Error Codes

 446 Connection Already Exists
 447 Connection Timeout or Failure

7. Security Considerations

 After a TCP connection is established between the server and a peer,
 and before a ConnectionBind request is received from the client, the
 server buffers all data received from the peer. This protocol
 specification lets the server drop the connection if the buffer size
 is about to exceed a limit defined by local policy. This policy
 should ensure that memory resources are not exceeded. See also
 [RFC4732], Section 2.1.3.

 All the security considerations applicable to STUN [RFC5389] and TURN
 [RFC5766] are applicable to this document as well.

8. Acknowledgements

 Thanks to Rohan Mahy and Philip Matthews for their initial work on
 getting this document started.

 The authors would also like to thank Alfred E. Heggestad, Ari
 Keranen, Marc Petit-Huguenin, Dave Thaler, and Dan Wing for their
 comments and suggestions.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

Perreault & Rosenberg Standards Track [Page 12]

RFC 6062 TURN TCP November 2010

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

9.2. Informative References

 [RFC4732] Handley, M., Rescorla, E., and IAB, "Internet Denial-of-
 Service Considerations", RFC 4732, December 2006.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

Authors’ Addresses

 Simon Perreault (editor)
 Viagenie
 2875 boul. Laurier, suite D2-630
 Quebec, QC G1V 2M2
 Canada

 Phone: +1 418 656 9254
 EMail: simon.perreault@viagenie.ca
 URI: http://www.viagenie.ca

 Jonathan Rosenberg
 jdrosen.net
 Monmouth, NJ
 US

 EMail: jdrosen@jdrosen.net
 URI: http://www.jdrosen.net

Perreault & Rosenberg Standards Track [Page 13]

