
Independent Submission A. Keromytis
Request for Comments: 6042 Columbia University
Category: Informational October 2010
ISSN: 2070-1721

 Transport Layer Security (TLS) Authorization Using KeyNote

Abstract

 This document specifies the use of the KeyNote trust-management
 system as an authorization extension in the Transport Layer Security
 (TLS) Handshake Protocol, according to guidelines in RFC 5878.
 Extensions carried in the client and server hello messages confirm
 that both parties support the desired authorization data types.
 Then, if supported by both the client and the server, KeyNote
 credentials are exchanged in the supplemental data handshake message.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6042.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Keromytis Informational [Page 1]

RFC 6042 TLS Authorization Using KeyNote October 2010

1. Introduction

 This document describes the identifiers necessary to exchange KeyNote
 [KEYNOTE] credential assertions inside a TLS [TLS1.0] [TLS1.1]
 [TLS1.2] exchange. Such credential assertions can authorize the
 client and/or the server to perform certain actions. In most usage
 scenarios, the KeyNote credential assertions will be signed by a
 cryptographic public key [RFC2792]. By using the X.509 key and
 signature encoding [X509KEY], it is possible to add KeyNote-based
 authorization and policy compliance support to the existing,
 unmodified X.509 authentication exchange in TLS.

 A list of KeyNote credentials (e.g., forming a delegation chain) may
 be sent as part of the same payload. Alternatively, a URL [RFC3986]
 pointing to the location of such a list of KeyNote credentials may be
 provided.

 In most scenarios, at least one of these credentials will be issued
 to the public key of the transmitter of the credentials, i.e., said
 public key will appear in the "Licensees" field of at least one
 KeyNote credential assertion. The same public key will generally be
 used by the transmitter of the same credentials to authenticate as
 part of the TLS exchange. The authentication material (e.g.,
 cryptographic public key) that was used by the transmitter to
 authenticate in the TLS exchange will be provided to the KeyNote
 evaluation engine as an "Action Authorizer".

1.1. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. KeyNote Credential Assertion Lists

 The KeyNote Assertion List type definition in the TLS Authorization
 Data Formats registry is:

 keynote_assertion_list(64)

 When the keynote_assertion_list value is present, the authorization
 data is a list of KeyNote credential assertions that conforms to the
 profile in RFC 2704 [KEYNOTE].

Keromytis Informational [Page 2]

RFC 6042 TLS Authorization Using KeyNote October 2010

 A KeyNote assertion list is transmitted inside an
 AuthorizationDataEntry structure as an opaque sequence of
 1 - 2^16-1 bytes:

 opaque KeyNoteAssertionList<1..2^16-1>;

 When KeyNoteAssertionList is used, the field contains an ASCII-
 encoded list of signed KeyNote assertions, as described in RFC 2704
 [KEYNOTE]. The assertions are separated by two "\n" (newline)
 characters. A KeyNote assertion is a structure similar to a public
 key certificate; the main difference is that instead of a binding
 between a name and a public key, KeyNote assertions bind public keys
 to authorization rules that are evaluated by the peer when the sender
 later issues specific requests.

 When making an authorization decision based on a list of KeyNote
 assertions, proper linkage between the KeyNote assertions and the
 public key certificate that is transferred in the TLS Certificate
 message is needed. Receivers of a KeyNote assertion list should
 initialize the ACTION_AUTHORIZER variable to be the sender’s public
 key, which was used to authenticate the TLS exchange. If a different
 authentication mechanism is used, it is the responsibility of the
 credential issuer to issue the appropriate credentials.

3. KeyNote Credential Assertion List URL

 The KeyNote Assertion List URL type definition in the TLS
 Authorization Data Formats registry is:

 keynote_assertion_list_url(65)

 A KeyNote Assertion List URL is transmitted inside an
 AuthorizationDataEntry structure as a URLandHash structure [AUTHZ].

 When the keynote_assertion_list_url value is present, the
 authorization data is a list of KeyNote assertions as described in
 Section 2; however, the KeyNote assertion list is fetched with the
 supplied URL. A one-way hash value is provided to ensure that the
 intended KeyNote credential assertion is obtained.

 Implementations that support keynote_assertion_list_url MUST support
 URLs that employ the HTTP scheme [HTTP]. These implementations MUST
 confirm that the hash value computed on the fetched authorization
 matches the one received in the handshake. Mismatch of the hash
 values SHOULD be treated as though the authorization was not
 provided, which will result in a bad_certificate alert [AUTHZ].

Keromytis Informational [Page 3]

RFC 6042 TLS Authorization Using KeyNote October 2010

 Other schemes may also be supported. When dereferencing these URLs,
 circular dependencies MUST be avoided. Avoiding TLS when
 dereferencing these URLs is one way to avoid circular dependencies.
 Therefore, clients using the HTTP scheme MUST NOT use these TLS
 extensions if the Upgrade mechanism in HTTP [UPGRADE] is used. For
 other schemes, similar care must be taken to avoid using these TLS
 extensions.

4. IANA Considerations

 With this document, IANA has registered two new entries in the TLS
 Authorization Data Formats registry: keynote_assertion_list(64) and
 keynote_assertion_list_url(65). This registry is defined in [AUTHZ].

5. Security Considerations

 There are no security considerations beyond those discussed in
 [KEYNOTE], [RFC2792], and [AUTHZ].

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [TLS1.0] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999.

 [TLS1.1] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [TLS1.2] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [HTTP] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [UPGRADE] Khare, R. and S. Lawrence, "Upgrading to TLS Within
 HTTP/1.1", RFC 2817, May 2000.

 [KEYNOTE] Blaze, M., Feigenbaum, J., Ioannidis, J., and A.
 Keromytis, "The KeyNote Trust-Management System
 Version 2", RFC 2704, September 1999.

 [AUTHZ] Brown, M. and R. Housley, "Transport Layer Security (TLS)
 Authorization Extensions", RFC 5878, May 2010.

Keromytis Informational [Page 4]

RFC 6042 TLS Authorization Using KeyNote October 2010

6.2. Informative References

 [RFC2792] Blaze, M., Ioannidis, J., and A. Keromytis, "DSA and RSA
 Key and Signature Encoding for the KeyNote Trust
 Management System", RFC 2792, March 2000.

 [X509KEY] Keromytis, A., "X.509 Key and Signature Encoding for the
 KeyNote Trust Management System", RFC 5708, January 2010.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

Keromytis Informational [Page 5]

RFC 6042 TLS Authorization Using KeyNote October 2010

Appendix A. Updated TLS Authorization Data Structures

 For clarity, this Appendix shows an updated version of the relevant
 data structures from Section 3.3 in [AUTHZ] with the new entries
 described in this document. The added elements are denoted with two
 asterisks ("**") at the end of the respective lines.

 struct {
 AuthorizationDataEntry authz_data_list<1..2^16-1>;
 } AuthorizationData;

 struct {
 AuthzDataFormat authz_format;
 select (AuthzDataFormat) {
 case x509_attr_cert: X509AttrCert;
 case saml_assertion: SAMLAssertion;
 case x509_attr_cert_url: URLandHash;
 case saml_assertion_url: URLandHash;
 case keynote_assertion_list: KeyNoteAssertionList; **
 case keynote_assertion_list_url: URLandHash; **
 }
 } AuthorizationDataEntry;

 enum {
 x509_attr_cert(0), saml_assertion(1), x509_attr_cert_url(2),
 saml_assertion_url(3),
 keynote_assertion_list(64), keynote_assertion_list_url(65), **
 (255)
 } AuthzDataFormat;

 opaque X509AttrCert<1..2^16-1>;

 opaque SAMLAssertion<1..2^16-1>;

 opaque KeyNoteAssertionList<1..2^16-1>; **

 struct {
 opaque url<1..2^16-1>;
 HashAlgorithm hash_alg;
 select (hash_alg) {
 case md5: MD5Hash;
 case sha1: SHA1Hash;
 case sha224: SHA224Hash;
 case sha256: SHA256Hash;
 case sha384: SHA384Hash;
 case sha512: SHA512Hash;
 } hash;
 } URLandHash;

Keromytis Informational [Page 6]

RFC 6042 TLS Authorization Using KeyNote October 2010

 enum {
 none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
 sha512(6), (255)
 } HashAlgorithm;

 opaque MD5Hash[16];

 opaque SHA1Hash[20];

 opaque SHA224Hash[28];

 opaque SHA256Hash[32];

 opaque SHA384Hash[48];

 opaque SHA512Hash[64];

Author’s Address

 Angelos D. Keromytis
 Department of Computer Science
 Columbia University
 Mail Code 0401
 1214 Amsterdam Avenue
 New York, NY 10027
 USA

 EMail: angelos@cs.columbia.edu

Keromytis Informational [Page 7]

