
Internet Engineering Task Force (IETF) P. Hoyer
Request for Comments: 6030 ActivIdentity
Category: Standards Track M. Pei
ISSN: 2070-1721 VeriSign
 S. Machani
 Diversinet
 October 2010

 Portable Symmetric Key Container (PSKC)

Abstract

 This document specifies a symmetric key format for the transport and
 provisioning of symmetric keys to different types of crypto modules.
 For example, One-Time Password (OTP) shared secrets or symmetric
 cryptographic keys to strong authentication devices. A standard key
 transport format enables enterprises to deploy best-of-breed
 solutions combining components from different vendors into the same
 infrastructure.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6030.

Hoyer, et al. Standards Track [Page 1]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..4
 1.1. Key Words ..4
 1.2. Version Support ..4
 1.3. Namespace Identifiers5
 1.3.1. Defined Identifiers5
 1.3.2. Referenced Identifiers5
 2. Terminology ...6
 3. Portable Key Container Entities Overview and Relationships6
 4. <KeyContainer> Element: The Basics8
 4.1. <Key>: Embedding Keying Material and Key-Related
 Information ..8
 4.2. Key Value Encoding ..10
 4.2.1. AES Key Value Encoding11
 4.2.2. Triple-DES Key Value Encoding11
 4.3. Transmission of Supplementary Information12
 4.3.1. <DeviceInfo> Element: Unique Device
 Identification13
 4.3.2. <CryptoModuleInfo> Element: CryptoModule
 Identification15
 4.3.3. <UserId> Element: User Identification15
 4.3.4. <AlgorithmParameters> Element:
 Supplementary Information for OTP and CR Algorithms 15
 4.4. Transmission of Key Derivation Values17
 5. Key Policy ...19
 5.1. PIN Algorithm Definition23
 6. Key Protection Methods ...23
 6.1. Encryption Based on Pre-Shared Keys24
 6.1.1. MAC Method ...26
 6.2. Encryption Based on Passphrase-Based Keys27
 6.3. Encryption Based on Asymmetric Keys29

Hoyer, et al. Standards Track [Page 2]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 6.4. Padding of Encrypted Values for Non-Padded
 Encryption Algorithms31
 7. Digital Signature ..31
 8. Bulk Provisioning ..33
 9. Extensibility ..35
 10. PSKC Algorithm Profile ..36
 10.1. HOTP ...36
 10.2. PIN ..37
 11. XML Schema ..38
 12. IANA Considerations ...44
 12.1. Content-Type Registration for ’application/pskc+xml’44
 12.2. XML Schema Registration45
 12.3. URN Sub-Namespace Registration46
 12.4. PSKC Algorithm Profile Registry46
 12.5. PSKC Version Registry47
 12.6. Key Usage Registry47
 13. Security Considerations48
 13.1. PSKC Confidentiality49
 13.2. PSKC Integrity ...50
 13.3. PSKC Authenticity ..50
 14. Contributors ..50
 15. Acknowledgements ..50
 16. References ..51
 16.1. Normative References51
 16.2. Informative References52
 Appendix A. Use Cases ..54
 A.1. Online Use Cases ..54
 A.1.1. Transport of Keys from Server to Cryptographic
 Module ..54
 A.1.2. Transport of Keys from Cryptographic Module to
 Cryptographic Module54
 A.1.3. Transport of Keys from Cryptographic Module to
 Server ..55
 A.1.4. Server-to-Server Bulk Import/Export of Keys55
 A.2. Offline Use Cases ...55
 A.2.1. Server-to-Server Bulk Import/Export of Keys55
 Appendix B. Requirements ...56

Hoyer, et al. Standards Track [Page 3]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

1. Introduction

 With the increasing use of symmetric-key-based systems, such as
 encryption of data at rest or systems used for strong authentication,
 such as those based on One-Time Password (OTP) and Challenge/Response
 (CR) mechanisms, there is a need for vendor interoperability and a
 standard format for importing and exporting (provisioning) symmetric
 keys. For instance, traditionally, vendors of authentication servers
 and service providers have used proprietary formats for importing and
 exporting these keys into their systems, thus making it hard to use
 tokens from two different vendors.

 This document defines a standardized XML-based key container, called
 Portable Symmetric Key Container (PSKC), for transporting symmetric
 keys and key-related metadata. The document also specifies the
 information elements that are required when the symmetric key is
 utilized for specific purposes, such as the initial counter in the
 HMAC-Based One-Time Password (HOTP) [HOTP] algorithm. It also
 creates an IANA registry for algorithm profiles where algorithms,
 their metadata and PSKC transmission profile can be recorded for a
 centralized, standardized reference.

1.1. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Version Support

 There is a provision made in the syntax for an explicit version
 number. Only version "1.0" is currently specified.

 The numbering scheme for PSKC versions is "<major>.<minor>". The
 major and minor numbers MUST be treated as separate integers and each
 number MAY be incremented higher than a single digit. Thus, "PSKC
 2.4" would be a lower version than "PSKC 2.13", which in turn would
 be lower than "PSKC 12.3". Leading zeros (e.g., "PSKC 6.01") MUST be
 ignored by recipients and MUST NOT be sent.

 The major version number should be incremented only if the message
 format (e.g., element structure) has changed so dramatically that an
 older version implementation would not be able to interoperate with a
 newer version. The minor version number indicates new capabilities,
 and it MUST be ignored by an entity with a smaller minor version
 number but used for informational purposes by the entity with the
 larger minor version number.

Hoyer, et al. Standards Track [Page 4]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

1.3. Namespace Identifiers

 This document uses Uniform Resource Identifiers (URIs) [RFC3986] to
 identify resources, algorithms, and semantics.

1.3.1. Defined Identifiers

 The XML namespace [XMLNS] URI for Version 1.0 of PSKC is:

 "urn:ietf:params:xml:ns:keyprov:pskc"

 References to qualified elements in the PSKC schema defined in this
 specification and used in the example use the prefix "pskc" (defined
 as xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"). It is
 RECOMMENDED to use this namespace in implementations.

1.3.2. Referenced Identifiers

 The PSKC syntax presented in this document relies on algorithm
 identifiers and elements defined in the XML Signature [XMLDSIG]
 namespace:

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 References to the XML Signature namespace are represented by the
 prefix "ds".

 PSKC also relies on algorithm identifiers and elements defined in the
 XML Encryption [XMLENC] namespace:

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

 References to the XML Encryption namespace are represented by the
 prefix "xenc".

 When protecting keys in transport with passphrase-based keys, PSKC
 also relies on the derived key element defined in the XML Encryption
 Version 1.1 [XMLENC11] namespace:

 xmlns:xenc11="http://www.w3.org/2009/xmlenc11#"

 References to the XML Encryption Version 1.1 namespace are
 represented by the prefix "xenc11".

 When protecting keys in transport with passphrase-based keys, PSKC
 also relies on algorithm identifiers and elements defined in the PKCS
 #5 [PKCS5] namespace:

Hoyer, et al. Standards Track [Page 5]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 xmlns:pkcs5=
 "http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5v2-0#"

 References to the PKCS #5 namespace are represented by the prefix
 "pkcs5".

2. Terminology

 NOTE: In subsequent sections of the document, we highlight
 mandatory XML elements and attributes. Optional elements and
 attributes are not explicitly indicated, i.e., if it does not say
 mandatory, it is optional.

3. Portable Key Container Entities Overview and Relationships

 The portable key container is based on an XML schema definition and
 contains the following main conceptual entities:

 1. KeyContainer entity - representing the container that carries a
 number of KeyPackage entities. A valid container MUST carry at
 least one KeyPackage entity.

 2. KeyPackage entity - representing the package of at most one key
 and its related provisioning endpoint or current usage endpoint,
 such as a physical or virtual device and a specific CryptoModule.

 3. DeviceInfo entity - representing the information about the device
 and criteria to identify uniquely the device.

 4. CryptoModuleInfo entity - representing the information about the
 CryptoModule where the keys reside or to which they are
 provisioned.

 5. Key entity - representing the key transported or provisioned.

 6. Data entity - representing a list of metadata related to the key,
 where the element name is the name of the metadata and its
 associated value is either in encrypted (for example, for <Data>
 element <Secret>) or plaintext (for example, the <Data> element
 <Counter>) form.

 Figure 1 shows the high-level structure of the PSKC data elements.

Hoyer, et al. Standards Track [Page 6]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 | KeyContainer |
 |---------------|
 | EncryptionKey |
 | Signature |
 | ... |

 |
 |
 /|\ 1..n
 ---------------- ----------------
 | KeyPackage | 0..1| DeviceInfo |
 |--------------|--------|--------------|
 | |-- | SerialNumber |
 ---------------- | | Manufacturer |
 | | | |
 | | ----------------
 /|\ 0..1 |
 ---------------- | --------------------
 | Key | | 0..1| CryptoModuleInfo |
 |--------------| -----|------------------|
 | Id | | Id |
 | Algorithm | |.... |
 | UserId | --------------------
 | Policy |
 | |

 |
 |
 /|\ 0..n
 --------------------------------------- - -
 | | |
 ------------------ ---------------- -------- - -
 | Data:Secret | | Data:Counter | | Data:other
 |----------------| |--------------| |-- - -
 | EncryptedValue | | PlainValue |
 | ValueMAC | ----------------

 Figure 1: PSKC Data Elements Relationship Diagram

 The following sections describe in detail all the entities and
 related XML schema elements and attributes.

Hoyer, et al. Standards Track [Page 7]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

4. <KeyContainer> Element: The Basics

 In its most basic form, a PSKC document uses the top-level element
 <KeyContainer> and a single <KeyPackage> element to carry key
 information.

 The following example shows a simple PSKC document. We will use it
 to describe the structure of the <KeyContainer> element and its child
 elements.

 <?xml version="1.0" encoding="UTF-8"?>
 <KeyContainer Version="1.0"
 Id="exampleID1"
 xmlns="urn:ietf:params:xml:ns:keyprov:pskc">
 <KeyPackage>
 <Key Id="12345678"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Issuer-A</Issuer>
 <Data>
 <Secret>
 <PlainValue>MTIzNA==
 </PlainValue>
 </Secret>
 </Data>
 </Key>
 </KeyPackage>
 </KeyContainer>

 Figure 2: Basic PSKC Key Container Example

 The attributes of the <KeyContainer> element have the following
 semantics:

 ’Version’: The ’Version’ attribute is used to identify the version
 of the PSKC schema version. This specification defines the
 initial version ("1.0") of the PSKC schema. This attribute MUST
 be included.

 ’Id’: The ’Id’ attribute carries a unique identifier for the
 container. As such, it helps to identify a specific key container
 in cases in which multiple containers are embedded in larger XML
 documents.

4.1. <Key>: Embedding Keying Material and Key-Related Information

 The following attributes of the <Key> element MUST be included at a
 minimum:

Hoyer, et al. Standards Track [Page 8]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 ’Id’: This attribute carries a unique identifier for the symmetric
 key in the context of key provisioning exchanges between two
 parties. This means that if PSKC is used in multiple interactions
 between a sending and receiving party, using different containers
 referencing the same keys, the ’Id’ attribute of <Key> MUST use
 the same value (e.g., after initial provisioning, if a system
 wants to update key metadata values in the other system, the value
 of the ’Id’ attribute of the <Key> where the metadata is to be
 updated MUST be the same of the original ’Id’ attribute value
 provisioned). The identifier is defined as a string of
 alphanumeric characters.

 ’Algorithm’: This attribute contains a unique identifier for the
 PSKC algorithm profile. This profile associates specific
 semantics to the elements and attributes contained in the <Key>
 element. This document describes profiles for open standards
 algorithms in Section 10. Additional profiles are defined in the
 following informative document: [PSKC-ALGORITHM-PROFILES].

 The <Key> element has a number of optional child elements. An
 initial set is described below:

 <Issuer>: This element represents the name of the party that issued
 the key. For example, a bank "Foobar Bank, Inc." issuing hardware
 tokens to their retail banking users may set this element to
 ’Foobar Bank, Inc.’.

 <FriendlyName>: A human-readable name for the secret key for easier
 reference. This element serves informational purposes only. This
 element is a language-dependent string; hence, it SHOULD have an
 attribute xml:lang="xx" where xx is the language identifier as
 specified in [RFC5646]. If no xml:lang attribute is present,
 implementations MUST assume the language to be English as defined
 by setting the attribute value to ’en’ (e.g., xml:lang="en").

 <AlgorithmParameters>: This element carries parameters that
 influence the result of the algorithmic computation, for example,
 response truncation and format in OTP and CR algorithms. A more
 detailed discussion of the element can be found in Section 4.3.4.

 <Data>: This element carries data about and related to the key. The
 following child elements are defined for the <Data> element:

 <Secret>: This element carries the value of the key itself in a
 binary representation. Please see Section 4.2 for more details
 on Key Value Encoding.

Hoyer, et al. Standards Track [Page 9]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <Counter>: This element contains the event counter for event-
 based OTP algorithms.

 <Time>: This element contains the time for time-based OTP
 algorithms. (If time intervals are used, this element carries
 the number of time intervals passed from a specific start
 point, normally it is algorithm dependent).

 <TimeInterval>: This element carries the time interval value for
 time-based OTP algorithms in seconds (a typical value for this
 would be 30, indicating a time interval of 30 seconds).

 <TimeDrift>: This element contains the device clock drift value
 for time-based OTP algorithms. The integer value (positive or
 negative drift) that indicates the number of time intervals
 that a validation server has established the device clock
 drifted after the last successful authentication. So, for
 example, if the last successful authentication established a
 device time value of 8 intervals from a specific start date but
 the validation server determines the time value at 9 intervals,
 the server SHOULD record the drift as -1.

 All the elements listed above (and those defined in the future)
 obey a simple structure in that they MUST support child elements
 to convey the data value in either plaintext or encrypted format:

 Plaintext: The <PlainValue> element carries a plaintext value
 that is typed, for example, to xs:integer.

 Encrypted: The <EncryptedValue> element carries an encrypted
 value.

 ValueMAC: The <ValueMAC> element is populated with a Message
 Authentication Code (MAC) generated from the encrypted value in
 case the encryption algorithm does not support integrity
 checks. The example shown in Figure 2 illustrates the usage of
 the <Data> element with two child elements, namely <Secret> and
 <Counter>. Both elements carry a plaintext value within the
 <PlainValue> child element.

4.2. Key Value Encoding

 Two parties receiving the same key value OCTET STRING, resulting in
 decoding the xs:base64Binary, inside the <PlainValue> or
 <EncryptedValue> elements, must make use of the key in exactly the
 same way in order to interoperate. To ensure that, it is necessary
 to define a correspondence between the OCTET STRING and the notation
 in the standard algorithm description that defines how the key is

Hoyer, et al. Standards Track [Page 10]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 used. The next sections establish that correspondence for the AES
 algorithm [FIPS197] and the Triple Data Encryption Algorithm (TDEA or
 Triple DES) [SP800-67]. Unless otherwise specified for a specific
 algorithm, the OCTET STRING encoding MUST follow the AES Key Value
 Encoding.

4.2.1. AES Key Value Encoding

 [FIPS197], Section 5.2, titled "Key Expansion", uses the input key as
 an array of bytes indexed starting at 0. The first octet of the
 OCTET STRING SHALL become the key byte in the AES, labeled index 0 in
 [FIPS197]; the succeeding octets of the OCTET STRING SHALL become key
 bytes in AES, in increasing index order.

 Proper parsing and key load of the contents of the OCTET STRING for
 AES SHALL be determined by using the following value for the
 <PlainValue> element (binaryBase64-encoded) to generate and match the
 key expansion test vectors in [FIPS197], Appendix A, for AES

 Cipher Key: 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

 ...
 <PlainValue>K34VFiiu0qar9xWICc9PPA==</PlainValue>
 ...

4.2.2. Triple-DES Key Value Encoding

 A Triple-DES key consists of three keys for the cryptographic engine
 (Key1, Key2, and Key3) that are each 64 bits (56 key bits and 8
 parity bits); the three keys are also collectively referred to as a
 key bundle [SP800-67]. A key bundle may employ either two or three
 independent keys. When only two independent keys are employed
 (called two-key Triple DES), the same value is used for Key1 and
 Key3.

 Each key in a Triple-DES key bundle is expanded into a key schedule
 according to a procedure defined in [SP800-67], Appendix A. That
 procedure numbers the bits in the key from 1 to 64, with number 1
 being the leftmost, or most significant bit (MSB). The first octet
 of the OCTET STRING SHALL be bits 1 through 8 of Key1 with bit 1
 being the MSB. The second octet of the OCTET STRING SHALL be bits 9
 through 16 of Key1, and so forth, so that the trailing octet of the
 OCTET STRING SHALL be bits 57 through 64 of Key3 (or Key2 for two-key
 Triple DES).

Hoyer, et al. Standards Track [Page 11]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 Proper parsing and key load of the contents of the OCTET STRING for
 Triple DES SHALL be determined by using the following <PlainValue>
 element (binaryBase64-encoded) to generate and match the key
 expansion test vectors in [SP800-67], Appendix B, for the key bundle:

 Key1 = 0123456789ABCDEF

 Key2 = 23456789ABCDEF01

 Key3 = 456789ABCDEF0123

 ...
 <PlainValue>ASNFZ4mrze8jRWeJq83vAUVniavN7wEj</PlainValue>
 ...

4.3. Transmission of Supplementary Information

 A PSKC document can contain a number of additional information
 regarding device identification, cryptographic module identification,
 user identification, and parameters for usage with OTP and CR
 algorithms. The following example, see Figure 3, is used as a
 reference for the subsequent sub-sections.

Hoyer, et al. Standards Track [Page 12]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <?xml version="1.0" encoding="UTF-8"?>
 <KeyContainer Version="1.0"
 Id="exampleID1"
 xmlns="urn:ietf:params:xml:ns:keyprov:pskc">
 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>Manufacturer</Manufacturer>
 <SerialNo>987654321</SerialNo>
 <UserId>DC=example-bank,DC=net</UserId>
 </DeviceInfo>
 <CryptoModuleInfo>
 <Id>CM_ID_001</Id>
 </CryptoModuleInfo>
 <Key Id="12345678"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Issuer</Issuer>
 <AlgorithmParameters>
 <ResponseFormat Length="8" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <Data>
 <Secret>
 <PlainValue>MTIzNDU2Nzg5MDEyMzQ1Njc4OTA=
 </PlainValue>
 </Secret>
 <Counter>
 <PlainValue>0</PlainValue>
 </Counter>
 </Data>
 <UserId>UID=jsmith,DC=example-bank,DC=net</UserId>
 </Key>
 </KeyPackage>
 </KeyContainer>

 Figure 3: PSKC Key Container Example with Supplementary Data

4.3.1. <DeviceInfo> Element: Unique Device Identification

 The <DeviceInfo> element uniquely identifies the device to which the
 <KeyPackage> is provisioned. Since devices can come in different
 form factors, such as hardware tokens, smart-cards, soft tokens in a
 mobile phone, or as a PC, this element allows different child element
 combinations to be used. When combined, the values of the child
 elements MUST uniquely identify the device. For example, for
 hardware tokens, the combination of <SerialNo> and <Manufacturer>
 elements uniquely identifies a device, but the <SerialNo> element
 alone is insufficient since two different token manufacturers might
 issue devices with the same serial number (similar to the Issuer
 Distinguished Name and serial number of a certificate).

Hoyer, et al. Standards Track [Page 13]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 The <DeviceInfo> element has the following child elements:

 <Manufacturer>: This element indicates the manufacturer of the
 device. Values for the <Manufacturer> element MUST be taken from
 either [OATHMAN] prefixes (i.e., the left column) or from the IANA
 Private Enterprise Number Registry [IANAPENREG], using the
 Organization value. When the value is taken from [OATHMAN],
 "oath." MUST be prepended to the value (e.g., "oath.<prefix value
 from [OATHMAN]>"). When the value is taken from [IANAPENREG],
 "iana." MUST be prepended to the value (e.g., "iana.<Organization
 value from [IANAPENREG]>").

 <SerialNo>: This element contains the serial number of the device.

 <Model>: This element describes the model of the device (e.g., one-
 button-HOTP-token-V1).

 <IssueNo>: This element contains the issue number in case there are
 devices with the same serial number so that they can be
 distinguished by different issue numbers.

 <DeviceBinding>: This element allows a provisioning server to ensure
 that the key is going to be loaded into the device for which the
 key provisioning request was approved. The device is bound to the
 request using a device identifier, e.g., an International Mobile
 Equipment Identity (IMEI) for the phone, or an identifier for a
 class of identifiers, e.g., those for which the keys are protected
 by a Trusted Platform Module (TPM).

 <StartDate> and <ExpiryDate>: These two elements indicate the start
 and end date of a device (such as the one on a payment card, used
 when issue numbers are not printed on cards). The date MUST be
 expressed as a dateTime value in "canonical representation"
 [W3C.REC-xmlschema-2-20041028]. Implementations SHOULD NOT rely
 on time resolution finer than milliseconds and MUST NOT generate
 time instants that specify leap seconds. Keys that reside on the
 device SHOULD only be used when the current date is after the
 <StartDate> and before the <ExpiryDate>. Note that usage
 enforcement of the keys with respect to the dates MAY only happen
 on the validation server, as some devices such as smart cards do
 not have an internal clock. Systems thus SHOULD NOT rely upon the
 device to enforce key usage date restrictions.

 Depending on the device type, certain child elements of the
 <DeviceInfo> element MUST be included in order to uniquely identify a
 device. This document does not enumerate the different device types
 and therefore does not list the elements that are mandatory for each
 type of device.

Hoyer, et al. Standards Track [Page 14]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

4.3.2. <CryptoModuleInfo> Element: CryptoModule Identification

 The <CryptoModuleInfo> element identifies the cryptographic module to
 which the symmetric keys are or have been provisioned. This allows
 the identification of the specific cases where a device MAY contain
 more than one crypto module (e.g., a PC hosting a TPM and a connected
 token).

 The <CryptoModuleInfo> element has a single child element that MUST
 be included:

 <Id>: This element carries a unique identifier for the CryptoModule
 and is implementation specific. As such, it helps to identify a
 specific CryptoModule to which the key is being or was
 provisioned.

4.3.3. <UserId> Element: User Identification

 The <UserId> element identifies the user of a distinguished name, as
 defined in [RFC4514], for example, UID=jsmith,DC=example,DC=net.

 Although the syntax of the user identifier is defined, there are no
 semantics associated with this element, i.e., there are no checks
 enforcing that only a specific user can use this key. As such, this
 element is for informational purposes only.

 This element may appear in two places, namely as a child element of
 the <Key> element, where it indicates the user with whom the key is
 associated, and as a child element of the <DeviceInfo> element, where
 it indicates the user with whom the device is associated.

4.3.4. <AlgorithmParameters> Element: Supplementary Information for OTP
 and CR Algorithms

 The <AlgorithmParameters> element is a child element of the <Key>
 element, and this document defines three child elements: <Suite>,
 <ChallengeFormat>, and <ResponseFormat>.

 <Suite>:

 The optional <Suite> element defines additional characteristics of
 the algorithm used, which are algorithm specific. For example, in
 an HMAC-based (Hashed MAC) OTP algorithm, it could designate the
 strength of the hash algorithm used (SHA1, SHA256, etc.). Please
 refer to the algorithm profile section, Section 10, for the exact
 semantics of the value for each algorithm profile.

Hoyer, et al. Standards Track [Page 15]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <ChallengeFormat>:

 The <ChallengeFormat> element defines the characteristics of the
 challenge in a CR usage scenario whereby the following attributes
 are defined:

 ’Encoding’: This attribute, which MUST be included, defines the
 encoding of the challenge accepted by the device and MUST be
 one of the following values:

 DECIMAL: Only numerical digits

 HEXADECIMAL: Hexadecimal response

 ALPHANUMERIC: All letters and numbers (case sensitive)

 BASE64: Base-64 encoded, as defined in Section 4 of [RFC4648]

 BINARY: Binary data

 ’CheckDigit’: This attribute indicates whether a device needs to
 check the appended Luhn check digit, as defined in
 [ISOIEC7812], contained in a challenge. This is only valid if
 the ’Encoding’ attribute is set to ’DECIMAL’. A value of TRUE
 indicates that the device will check the appended Luhn check
 digit in a provided challenge. A value of FALSE indicates that
 the device will not check the appended Luhn check digit in the
 challenge.

 ’Min’: This attribute defines the minimum size of the challenge
 accepted by the device for CR mode and MUST be included. If
 the ’Encoding’ attribute is set to ’DECIMAL’, ’HEXADECIMAL’, or
 ’ALPHANUMERIC’, this value indicates the minimum number of
 digits/characters. If the ’Encoding’ attribute is set to
 ’BASE64’ or ’BINARY’, this value indicates the minimum number
 of bytes of the unencoded value.

 ’Max’: This attribute defines the maximum size of the challenge
 accepted by the device for CR mode and MUST be included. If
 the ’Encoding’ attribute is set to ’DECIMAL’, ’HEXADECIMAL’, or
 ’ALPHANUMERIC’, this value indicates the maximum number of
 digits/characters. If the ’Encoding’ attribute is set to
 ’BASE64’ or ’BINARY’, this value indicates the maximum number
 of bytes of the unencoded value.

Hoyer, et al. Standards Track [Page 16]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <ResponseFormat>:

 The <ResponseFormat> element defines the characteristics of the
 result of a computation and defines the format of the OTP or the
 response to a challenge. For cases in which the key is a PIN
 value, this element contains the format of the PIN itself (e.g.,
 DECIMAL, length 4 for a 4-digit PIN). The following attributes
 are defined:

 ’Encoding’: This attribute defines the encoding of the response
 generated by the device, it MUST be included and MUST be one of
 the following values: DECIMAL, HEXADECIMAL, ALPHANUMERIC,
 BASE64, or BINARY.

 ’CheckDigit’: This attribute indicates whether the device needs
 to append a Luhn check digit, as defined in [ISOIEC7812], to
 the response. This is only valid if the ’Encoding’ attribute
 is set to ’DECIMAL’. If the value is TRUE, then the device
 will append a Luhn check digit to the response. If the value
 is FALSE, then the device will not append a Luhn check digit to
 the response.

 ’Length’: This attribute defines the length of the response
 generated by the device and MUST be included. If the
 ’Encoding’ attribute is set to ’DECIMAL’, ’HEXADECIMAL’, or
 ALPHANUMERIC, this value indicates the number of digits/
 characters. If the ’Encoding’ attribute is set to ’BASE64’ or
 ’BINARY’, this value indicates the number of bytes of the
 unencoded value.

4.4. Transmission of Key Derivation Values

 <KeyProfileId> element, which is a child element of the <Key>
 element, carries a unique identifier used between the sending and
 receiving parties to establish a set of key attribute values that are
 not transmitted within the container but are agreed upon between the
 two parties out of band. This element will then represent the unique
 reference to a set of key attribute values. (For example, a smart
 card application personalization profile id related to specific
 attribute values present on a smart card application that have
 influence when computing a response).

 For example, in the case of MasterCard’s Chip Authentication Program
 [CAP], the sending and the receiving party would agree that
 KeyProfileId=’1’ represents a certain set of values (e.g., Internet
 Authentication Flag (IAF) set to a specific value). During
 transmission of the <KeyContainer>, these values would not be
 transmitted as key attributes but would only be referred to via the

Hoyer, et al. Standards Track [Page 17]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <KeyProfileId> element set to the specific agreed-upon profile (in
 this case ’1’). The receiving party can then associate all relevant
 key attributes contained in the profile that was agreed upon out of
 band with the imported keys. Often, this methodology is used between
 a manufacturing service, run by company A, and the validation
 service, run by company B, to avoid repeated transmission of the same
 set of key attribute values.

 The <KeyReference> element contains a reference to an external key to
 be used with a key derivation scheme. In this case, the parent <Key>
 element will not contain the <Secret> subelement of <Data>, in which
 the key value (secret) is transported; only the reference to the
 external master key is transported (e.g., a PKCS #11 key label).

 <?xml version="1.0" encoding="UTF-8"?>
 <KeyContainer Version="1.0" Id="exampleID1"
 xmlns="urn:ietf:params:xml:ns:keyprov:pskc">
 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>Manufacturer</Manufacturer>
 <SerialNo>987654321</SerialNo>
 </DeviceInfo>
 <CryptoModuleInfo>
 <Id>CM_ID_001</Id>
 </CryptoModuleInfo>
 <Key Id="12345678"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Issuer</Issuer>
 <AlgorithmParameters>
 <ResponseFormat Length="8" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <KeyProfileId>keyProfile1</KeyProfileId>
 <KeyReference>MasterKeyLabel
 </KeyReference>
 <Data>
 <Counter>
 <PlainValue>0</PlainValue>
 </Counter>
 </Data>
 <Policy>
 <KeyUsage>OTP</KeyUsage>
 </Policy>
 </Key>
 </KeyPackage>
 </KeyContainer>

 Figure 4: Example of a PSKC Document Transmitting an HOTP Key via Key
 Derivation Values

Hoyer, et al. Standards Track [Page 18]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 The key value will be derived using the value of the <SerialNo>
 element, values agreed upon between the sending and the receiving
 parties and identified by the <KeyProfile> ’keyProfile1’, and an
 externally agreed-upon key referenced by the label ’MasterKeyLabel’.

5. Key Policy

 This section illustrates the functionality of the <Policy> element
 within PSKC, which allows a key usage and key PIN protection policy
 to be attached to a specific key and its related metadata. This
 element is a child element of the <Key> element.

 If the <Policy> element contains child elements or values within
 elements/attributes that are not understood by the recipient of the
 PSKC document, then the recipient MUST assume that key usage is not
 permitted. This statement ensures that the lack of understanding of
 certain extensions does not lead to unintended key usage.

 We will start our description with an example that expands the
 example shown in Figure 3.

 <?xml version="1.0" encoding="UTF-8"?>
 <KeyContainer
 Version="1.0" Id="exampleID1"
 xmlns="urn:ietf:params:xml:ns:keyprov:pskc">
 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>Manufacturer</Manufacturer>
 <SerialNo>987654321</SerialNo>
 </DeviceInfo>
 <CryptoModuleInfo>
 <Id>CM_ID_001</Id>
 </CryptoModuleInfo>
 <Key Id="12345678"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Issuer</Issuer>
 <AlgorithmParameters>
 <ResponseFormat Length="8" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <Data>
 <Secret>
 <PlainValue>MTIzNDU2Nzg5MDEyMzQ1Njc4OTA=
 </PlainValue>
 </Secret>
 <Counter>
 <PlainValue>0</PlainValue>

Hoyer, et al. Standards Track [Page 19]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 </Counter>
 </Data>
 <Policy>
 <PINPolicy MinLength="4" MaxLength="4"
 PINKeyId="123456781" PINEncoding="DECIMAL"
 PINUsageMode="Local"/>
 <KeyUsage>OTP</KeyUsage>
 </Policy>
 </Key>
 </KeyPackage>
 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>Manufacturer</Manufacturer>
 <SerialNo>987654321</SerialNo>
 </DeviceInfo>
 <CryptoModuleInfo>
 <Id>CM_ID_001</Id>
 </CryptoModuleInfo>
 <Key Id="123456781"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:pin">
 <Issuer>Issuer</Issuer>
 <AlgorithmParameters>
 <ResponseFormat Length="4" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <Data>
 <Secret>
 <PlainValue>MTIzNA==</PlainValue>
 </Secret>
 </Data>
 </Key>
 </KeyPackage>
 </KeyContainer>

 Figure 5: Non-Encrypted HOTP Secret Key Protected by PIN

 This document defines the following <Policy> child elements:

 <StartDate> and <ExpiryDate>: These two elements denote the validity
 period of a key. It MUST be ensured that the key is only used
 between the start and the end date (inclusive). The date MUST be
 expressed as a dateTime value in "canonical representation"
 [W3C.REC-xmlschema-2-20041028]. Implementations SHOULD NOT rely
 on time resolution finer than milliseconds and MUST NOT generate
 time instants that specify leap seconds. When this element is
 absent, the current time is assumed as the start time.

Hoyer, et al. Standards Track [Page 20]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <NumberOfTransactions>: The value in this element indicates the
 maximum number of times a key carried within the PSKC document can
 be used by an application after having received it. When this
 element is omitted, there is no restriction regarding the number
 of times a key can be used.

 <KeyUsage>: The <KeyUsage> element puts constraints on the intended
 usage of the key. The recipient of the PSKC document MUST enforce
 the key usage. Currently, the following tokens are registered by
 this document:

 OTP: The key MUST only be used for OTP generation.

 CR: The key MUST only be used for Challenge/Response purposes.

 Encrypt: The key MUST only be used for data encryption purposes.

 Integrity: The key MUST only be used to generate a keyed message
 digest for data integrity or authentication purposes.

 Verify: The key MUST only be used to verify a keyed message
 digest for data integrity or authentication purposes (this is
 the opposite key usage of ’Integrity’).

 Unlock: The key MUST only be used for an inverse Challenge/
 Response in the case where a user has locked the device by
 entering a wrong PIN too many times (for devices with PIN-input
 capability).

 Decrypt: The key MUST only be used for data decryption purposes.

 KeyWrap: The key MUST only be used for key wrap purposes.

 Unwrap: The key MUST only be used for key unwrap purposes.

 Derive: The key MUST only be used with a key derivation function
 to derive a new key (see also Section 8.2.4 of [NIST800-57]).

 Generate: The key MUST only be used to generate a new key based
 on a random number and the previous value of the key (see also
 Section 8.1.5.2.1 of [NIST800-57]).

 The element MAY also be repeated to allow several key usages to be
 expressed. When this element is absent, no key usage constraint
 is assumed, i.e., the key MAY be utilized for every usage.

Hoyer, et al. Standards Track [Page 21]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <PINPolicy>: The <PINPolicy> element allows policy about the PIN
 usage to be associated with the key. The following attributes are
 specified:

 ’PINKeyId’: This attribute carries the unique ’Id’ attribute vale
 of the <Key> element held within this <KeyContainer> that
 contains the value of the PIN that protects the key.

 ’PINUsageMode’: This mandatory attribute indicates the way the
 PIN is used during the usage of the key. The following values
 are defined:

 Local: This value indicates that the PIN is checked locally on
 the device before allowing the key to be used in executing
 the algorithm.

 Prepend: This value indicates that the PIN is prepended to the
 algorithm response; hence, it MUST be checked by the party
 validating the response.

 Append: This value indicates that the PIN is appended to the
 algorithm response; hence, it MUST be checked by the party
 validating the response.

 Algorithmic: This value indicates that the PIN is used as part
 of the algorithm computation.

 ’MaxFailedAttempts’: This attribute indicates the maximum number
 of times the PIN may be entered wrongly before it MUST NOT be
 possible to use the key anymore (typical reasonable values are
 in the positive integer range of at least 2 and no more than
 10).

 ’MinLength’: This attribute indicates the minimum length of a PIN
 that can be set to protect the associated key. It MUST NOT be
 possible to set a PIN shorter than this value. If the
 ’PINFormat’ attribute is set to ’DECIMAL’, ’HEXADECIMAL’, or
 ’ALPHANUMERIC’, this value indicates the number of digits/
 characters. If the ’PINFormat’ attribute is set to ’BASE64’ or
 ’BINARY’, this value indicates the number of bytes of the
 unencoded value.

 ’MaxLength’: This attribute indicates the maximum length of a PIN
 that can be set to protect this key. It MUST NOT be possible
 to set a PIN longer than this value. If the ’PINFormat’
 attribute is set to ’DECIMAL’, ’HEXADECIMAL’, or
 ’ALPHANUMERIC’, this value indicates the number of digits/

Hoyer, et al. Standards Track [Page 22]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 characters. If the ’PINFormat’ attribute is set to ’BASE64’ or
 ’BINARY’, this value indicates the number of bytes of the
 unencoded value.

 ’PINEncoding’: This attribute indicates the encoding of the PIN
 and MUST be one of the values: DECIMAL, HEXADECIMAL,
 ALPHANUMERIC, BASE64, or BINARY.

 If the ’PinUsageMode’ attribute is set to ’Local’, then the device
 MUST enforce the restriction indicated in the ’MaxFailedAttempts’,
 ’MinLength’, ’MaxLength’, and ’PINEncoding’ attributes; otherwise,
 it MUST be enforced on the server side.

5.1. PIN Algorithm Definition

 The PIN algorithm is defined as:

 boolean = comparePIN(K,P)

 Where:

 ’K’ is the stored symmetric credential (PIN) in binary format.

 ’P’ is the proposed PIN to be compared in binary format.

 The function comparePIN is a straight octet comparison of K and P.
 Such a comparison MUST yield a value of TRUE (credentials matched)
 when the octet length of K is the same as the octet length of P and
 all octets comprising K are the same as the octets comprising P.

6. Key Protection Methods

 With the functionality described in the previous sections,
 information related to keys had to be transmitted in cleartext. With
 the help of the <EncryptionKey> element, which is a child element of
 the <KeyContainer> element, it is possible to encrypt keys and
 associated information. The level of encryption is applied to the
 value of individual elements and the applied encryption algorithm
 MUST be the same for all encrypted elements. Keys are protected
 using the following methods: pre-shared keys, passphrase-based keys,
 and asymmetric keys. When encryption algorithms are used that make
 use of Initialization Vectors (IVs), for example, AES-128-CBC, a
 random IV value MUST be generated for each value to be encrypted and
 it MUST be prepended to the resulting encrypted value as specified in
 [XMLENC].

Hoyer, et al. Standards Track [Page 23]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

6.1. Encryption Based on Pre-Shared Keys

 Figure 6 shows an example that illustrates the encryption of the
 content of the <Secret> element using AES-128-CBC and PKCS #5
 Padding. The plaintext value of <Secret> is
 ’3132333435363738393031323334353637383930’. The name of the pre-
 shared secret is "Pre-shared-key", as set in the <KeyName> element
 (which is a child element of the <EncryptionKey> element). The value
 of the encryption key used is ’12345678901234567890123456789012’.

 The IV for the MAC key is ’11223344556677889900112233445566’, and the
 IV for the HOTP key is ’000102030405060708090a0b0c0d0e0f’.

 As AES-128-CBC does not provide integrity checks, a keyed MAC is
 applied to the encrypted value using a MAC key and a MAC algorithm as
 declared in the <MACMethod> element (in our example,
 "http://www.w3.org/2000/09/xmldsig#hmac-sha1" is used as the
 algorithm and the value of the MAC key is randomly generated, in our
 case ’1122334455667788990011223344556677889900’, and encrypted with
 the above encryption key). The result of the keyed-MAC computation
 is placed in the <ValueMAC> child element of <Secret>.

 <?xml version="1.0" encoding="UTF-8"?>
 <KeyContainer Version="1.0"
 xmlns="urn:ietf:params:xml:ns:keyprov:pskc"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionKey>
 <ds:KeyName>Pre-shared-key</ds:KeyName>
 </EncryptionKey>
 <MACMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1">
 <MACKey>
 <xenc:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <xenc:CipherData>
 <xenc:CipherValue>
 ESIzRFVmd4iZABEiM0RVZgKn6WjLaTC1sbeBMSvIhRejN9vJa2BOlSaMrR7I5wSX
 </xenc:CipherValue>
 </xenc:CipherData>
 </MACKey>
 </MACMethod>
 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>Manufacturer</Manufacturer>
 <SerialNo>987654321</SerialNo>
 </DeviceInfo>
 <CryptoModuleInfo>

Hoyer, et al. Standards Track [Page 24]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <Id>CM_ID_001</Id>
 </CryptoModuleInfo>
 <Key Id="12345678"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Issuer</Issuer>
 <AlgorithmParameters>
 <ResponseFormat Length="8" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <Data>
 <Secret>
 <EncryptedValue>
 <xenc:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <xenc:CipherData>
 <xenc:CipherValue>
 AAECAwQFBgcICQoLDA0OD+cIHItlB3Wra1DUpxVvOx2lef1VmNPCMl8jwZqIUqGv
 </xenc:CipherValue>
 </xenc:CipherData>
 </EncryptedValue>
 <ValueMAC>Su+NvtQfmvfJzF6bmQiJqoLRExc=
 </ValueMAC>
 </Secret>
 <Counter>
 <PlainValue>0</PlainValue>
 </Counter>
 </Data>
 </Key>
 </KeyPackage>
 </KeyContainer>

 Figure 6: AES-128-CBC Encrypted Pre-Shared Secret Key with HMAC-SHA1

 When protecting the payload with pre-shared keys, implementations
 MUST set the name of the specific pre-shared key in the <KeyName>
 element inside the <EncryptionKey> element. When the encryption
 method uses a CBC mode that requires an explicit initialization
 vector (IV), the IV MUST be passed by prepending it to the encrypted
 value.

 For systems implementing PSKC, it is RECOMMENDED to support
 AES-128-CBC (with the URI of
 http://www.w3.org/2001/04/xmlenc#aes128-cbc) and KW-AES128 (with the
 URI of http://www.w3.org/2001/04/xmlenc#kw-aes128). Please note that
 KW-AES128 requires that the key to be protected must be a multiple of
 8 bytes in length. Hence, if keys of a different length have to be
 protected, then the usage of the key-wrap algorithm with padding, as
 described in [RFC5649] is RECOMMENDED. Some of the encryption
 algorithms that can optionally be implemented are:

Hoyer, et al. Standards Track [Page 25]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 Algorithm | Uniform Resource Locator (URL)
 ---------------+---
 AES192-CBC | http://www.w3.org/2001/04/xmlenc#aes192-cbc
 AES256-CBC | http://www.w3.org/2001/04/xmlenc#aes256-cbc
 TripleDES-CBC | http://www.w3.org/2001/04/xmlenc#tripledes-cbc
 Camellia128 | http://www.w3.org/2001/04/xmldsig-more#camellia128
 Camellia192 | http://www.w3.org/2001/04/xmldsig-more#camellia192
 Camellia256 | http://www.w3.org/2001/04/xmldsig-more#camellia256
 KW-AES128 | http://www.w3.org/2001/04/xmlenc#kw-aes128
 KW-AES192 | http://www.w3.org/2001/04/xmlenc#kw-aes192
 KW-AES256 | http://www.w3.org/2001/04/xmlenc#kw-aes256
 KW-TripleDES | http://www.w3.org/2001/04/xmlenc#kw-tripledes
 KW-Camellia128 | http://www.w3.org/2001/04/xmldsig-more#kw-camellia128
 KW-Camellia192 | http://www.w3.org/2001/04/xmldsig-more#kw-camellia192
 KW-Camellia256 | http://www.w3.org/2001/04/xmldsig-more#kw-camellia256

6.1.1. MAC Method

 When algorithms without integrity checks are used, such as AES-128-
 CBC, a keyed-MAC value MUST be placed in the <ValueMAC> element of
 the <Data> element. In this case, the MAC algorithm type MUST be set
 in the <MACMethod> element of the <KeyContainer> element. The MAC
 key MUST be a randomly generated key by the sender, be pre-agreed
 upon between the receiver and the sender, or be set by the
 application protocol that carries the PSKC document. It is
 RECOMMENDED that the sender generate a random MAC key. When the
 sender generates such a random MAC key, the MAC key material MUST be
 encrypted with the same encryption key specified in <EncryptionKey>
 element of the key container. The encryption method and encrypted
 value MUST be set in the <EncryptionMethod> element and the
 <CipherData> element, respectively, of the <MACKey> element in the
 <MACMethod> element. The <MACKeyReference> element of the
 <MACMethod> element MAY be used to indicate a pre-shared MAC key or a
 provisioning protocol derived MAC key. For systems implementing
 PSKC, it is RECOMMENDED to implement the HMAC-SHA1 (with the URI of
 ’http://www.w3.org/2000/09/xmldsig#hmac-sha1’). Some of the MAC
 algorithms that can optionally be implemented are:

 Algorithm | Uniform Resource Locator (URL)
 ---------------+---
 HMAC-SHA224 | http://www.w3.org/2001/04/xmldsig-more#hmac-sha224
 HMAC-SHA256 | http://www.w3.org/2001/04/xmldsig-more#hmac-sha256
 HMAC-SHA384 | http://www.w3.org/2001/04/xmldsig-more#hmac-sha384
 HMAC-SHA512 | http://www.w3.org/2001/04/xmldsig-more#hmac-sha512

Hoyer, et al. Standards Track [Page 26]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

6.2. Encryption Based on Passphrase-Based Keys

 Figure 7 shows an example that illustrates the encryption of the
 content of the <Secret> element using passphrase-based key derivation
 (PBKDF2) to derive the encryption key as defined in [PKCS5]. When
 using passphrase-based key derivation, the <DerivedKey> element
 defined in XML Encryption Version 1.1 [XMLENC11] MUST be used to
 specify the passphrased-based key. A <DerivedKey> element is set as
 the child element of <EncryptionKey> element of the key container.

 The <DerivedKey> element is used to specify the key derivation
 function and related parameters. The encryption algorithm, in this
 example, AES-128-CBC (URI
 ’http://www.w3.org/2001/04/xmlenc#aes128-cbc’), MUST be set in the
 ’Algorithm’ attribute of <EncryptionMethod> element used inside the
 encrypted data elements.

 When PBKDF2 is used, the ’Algorithm’ attribute of the <xenc11:
 KeyDerivationMethod> element MUST be set to the URI
 ’http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbkdf2’. The
 <xenc11:KeyDerivationMethod> element MUST include the <PBKDF2-params>
 child element to indicate the PBKDF2 parameters, such as salt and
 iteration count.

 When the encryption method uses a CBC mode that uses an explicit
 initialization vector (IV) other than a derived one, the IV MUST be
 passed by prepending it to the encrypted value.

 In the example below, the following data is used.

 Password: qwerty

 Salt: 0x123eff3c4a72129c

 Iteration Count: 1000

 MAC Key: 0xbdaab8d648e850d25a3289364f7d7eaaf53ce581

 OTP Secret: 12345678901234567890

 The derived encryption key is "0x651e63cd57008476af1ff6422cd02e41".
 The initialization vector (IV) is
 "0xa13be8f92db69ec992d99fd1b5ca05f0". This key is also used to
 encrypt the randomly chosen MAC key. A different IV can be used, say
 "0xd864d39cbc0cdc8e1ee483b9164b9fa0", in the example. The encryption
 with algorithm "AES-128-CBC" follows the specification defined in
 [XMLENC].

Hoyer, et al. Standards Track [Page 27]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <?xml version="1.0" encoding="UTF-8"?>
 <pskc:KeyContainer
 xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
 xmlns:xenc11="http://www.w3.org/2009/xmlenc11#"
 xmlns:pkcs5=
 "http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5v2-0#"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" Version="1.0">
 <pskc:EncryptionKey>
 <xenc11:DerivedKey>
 <xenc11:KeyDerivationMethod
 Algorithm=
 "http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5v2-0#pbkdf2">
 <pkcs5:PBKDF2-params>
 <Salt>
 <Specified>Ej7/PEpyEpw=</Specified>
 </Salt>
 <IterationCount>1000</IterationCount>
 <KeyLength>16</KeyLength>
 <PRF/>
 </pkcs5:PBKDF2-params>
 </xenc11:KeyDerivationMethod>
 <xenc:ReferenceList>
 <xenc:DataReference URI="#ED"/>
 </xenc:ReferenceList>
 <xenc11:MasterKeyName>My Password 1</xenc11:MasterKeyName>
 </xenc11:DerivedKey>
 </pskc:EncryptionKey>
 <pskc:MACMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1">
 <pskc:MACKey>
 <xenc:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <xenc:CipherData>
 <xenc:CipherValue>
 2GTTnLwM3I4e5IO5FkufoOEiOhNj91fhKRQBtBJYluUDsPOLTfUvoU2dStyOwYZx
 </xenc:CipherValue>
 </xenc:CipherData>
 </pskc:MACKey>
 </pskc:MACMethod>
 <pskc:KeyPackage>
 <pskc:DeviceInfo>
 <pskc:Manufacturer>TokenVendorAcme</pskc:Manufacturer>
 <pskc:SerialNo>987654321</pskc:SerialNo>
 </pskc:DeviceInfo>
 <pskc:CryptoModuleInfo>
 <pskc:Id>CM_ID_001</pskc:Id>
 </pskc:CryptoModuleInfo>
 <pskc:Key Algorithm=

Hoyer, et al. Standards Track [Page 28]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 "urn:ietf:params:xml:ns:keyprov:pskc:hotp" Id="123456">
 <pskc:Issuer>Example-Issuer</pskc:Issuer>
 <pskc:AlgorithmParameters>
 <pskc:ResponseFormat Length="8" Encoding="DECIMAL"/>
 </pskc:AlgorithmParameters>
 <pskc:Data>
 <pskc:Secret>
 <pskc:EncryptedValue Id="ED">
 <xenc:EncryptionMethod
 Algorithm=
 "http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <xenc:CipherData>
 <xenc:CipherValue>
 oTvo+S22nsmS2Z/RtcoF8Hfh+jzMe0RkiafpoDpnoZTjPYZu6V+A4aEn032yCr4f
 </xenc:CipherValue>
 </xenc:CipherData>
 </pskc:EncryptedValue>
 <pskc:ValueMAC>LP6xMvjtypbfT9PdkJhBZ+D6O4w=
 </pskc:ValueMAC>
 </pskc:Secret>
 </pskc:Data>
 </pskc:Key>
 </pskc:KeyPackage>
 </pskc:KeyContainer>

 Figure 7: Example of a PSKC Document Using Encryption Based on
 Passphrase-Based Keys

6.3. Encryption Based on Asymmetric Keys

 When using asymmetric keys to encrypt child elements of the <Data>
 element, information about the certificate being used MUST be stated
 in the <X509Data> element, which is a child element of the
 <EncryptionKey> element. The encryption algorithm MUST be indicated
 in the ’Algorithm’ attribute of the <EncryptionMethod> element. In
 the example shown in Figure 8, the algorithm is set to
 ’http://www.w3.org/2001/04/xmlenc#rsa_1_5’.

 <?xml version="1.0" encoding="UTF-8" ?>
 <KeyContainer
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns="urn:ietf:params:xml:ns:keyprov:pskc"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
 id="KC0001"
 Version="1.0">
 <EncryptionKey>
 <ds:X509Data>

Hoyer, et al. Standards Track [Page 29]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <ds:X509Certificate>MIIB5zCCAVCgAwIBAgIESZp/vDANBgkqhkiG9w0BAQUFADA4M
 Q0wCwYDVQQKEwRJRVRGMRMwEQYDVQQLEwpLZXlQcm92IFdHMRIwEAYDVQQDEwlQU0tDIF
 Rlc3QwHhcNMDkwMjE3MDkxMzMyWhcNMTEwMjE3MDkxMzMyWjA4MQ0wCwYDVQQKEwRJRVR
 GMRMwEQYDVQQLEwpLZXlQcm92IFdHMRIwEAYDVQQDEwlQU0tDIFRlc3QwgZ8wDQYJKoZI
 hvcNAQEBBQADgY0AMIGJAoGBALCWLDa2ItYJ6su80hd1gL4cggQYdyyKK17btt/aS6Q/e
 DsKjsPyFIODsxeKVV/uA3wLT4jQJM5euKJXkDajzGGOy92+ypfzTX4zDJMkh61SZwlHNJ
 xBKilAM5aW7C+BQ0RvCxvdYtzx2LTdB+X/KMEBA7uIYxLfXH2Mnub3WIh1AgMBAAEwDQY
 JKoZIhvcNAQEFBQADgYEAe875m84sYUJ8qPeZ+NG7REgTvlHTmoCdoByU0LBBLotUKuqf
 rnRuXJRMeZXaaEGmzY1kLonVjQGzjAkU4dJ+RPmiDlYuHLZS41Pg6VMwY+03lhk6I5A/w
 4rnqdkmwZX/NgXg06alnc2pBsXWhL4O7nk0S2ZrLMsQZ6HcsXgdmHo=
 </ds:X509Certificate>
 </ds:X509Data>
 </EncryptionKey>
 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>TokenVendorAcme</Manufacturer>
 <SerialNo>987654321</SerialNo>
 </DeviceInfo>
 <Key
 Id="MBK000000001"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Example-Issuer</Issuer>
 <AlgorithmParameters>
 <ResponseFormat Length="6" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <Data>
 <Secret>
 <EncryptedValue>
 <xenc:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa_1_5"/>
 <xenc:CipherData>
 <xenc:CipherValue>hJ+fvpoMPMO9BYpK2rdyQYGIxiATYHTHC7e/sPLKYo5/r1v+4
 xTYG3gJolCWuVMydJ7Ta0GaiBPHcWa8ctCVYmHKfSz5fdeV5nqbZApe6dofTqhRwZK6
 Yx4ufevi91cjN2vBpSxYafvN3c3+xIgk0EnTV4iVPRCR0rBwyfFrPc4=
 </xenc:CipherValue>
 </xenc:CipherData>
 </EncryptedValue>
 </Secret>
 <Counter>
 <PlainValue>0</PlainValue>
 </Counter>
 </Data>
 </Key>
 </KeyPackage>
 </KeyContainer>

 Figure 8: Example of a PSKC Document Using Encryption Based on
 Asymmetric Keys

Hoyer, et al. Standards Track [Page 30]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 For systems implementing PSKC, it is RECOMMENDED to implement the
 RSA-1.5 algorithm, identified by the URI
 ’http://www.w3.org/2001/04/xmlenc#rsa-1_5’.

 Some of the asymmetric encryption algorithms that can optionally be
 implemented are:

 Algorithm | Uniform Resource Locator (URL)
 ------------------+---
 RSA-OAEP-MGF1P | http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

6.4. Padding of Encrypted Values for Non-Padded Encryption Algorithms

 Padding of encrypted values (for example, the key secret value) is
 required when key protection algorithms are used that do not support
 embedded padding and the value to be encrypted is not a multiple of
 the encryption algorithm cipher block length.

 For example, when transmitting an HOTP key (20 bytes long) protected
 with the AES algorithm in CBC mode (8-byte block cipher), padding is
 required since its length is not a multiple of the 8-byte block
 length.

 In these cases, for systems implementing PSKC, it is RECOMMENDED to
 pad the value before encryption using PKCS #5 padding as described in
 [PKCS5].

7. Digital Signature

 PSKC allows a digital signature to be added to the XML document, as a
 child element of the <KeyContainer> element. The description of the
 XML digital signature can be found in [XMLDSIG].

 <?xml version="1.0" encoding="UTF-8"?>
 <KeyContainer
 xmlns="urn:ietf:params:xml:ns:keyprov:pskc"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
 Version="1.0">
 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>TokenVendorAcme</Manufacturer>
 <SerialNo>0755225266</SerialNo>
 </DeviceInfo>
 <Key Id="123"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Example-Issuer</Issuer>
 <AlgorithmParameters>

Hoyer, et al. Standards Track [Page 31]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <ResponseFormat Length="6" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <Data>
 <Secret>
 <PlainValue>
 MTIzNDU2Nzg5MDEyMzQ1Njc4OTA=
 </PlainValue>
 </Secret>
 <Counter>
 <PlainValue>0</PlainValue>
 </Counter>
 </Data>
 </Key>
 </KeyPackage>
 <Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#Device">
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>
 j6lwx3rvEPO0vKtMup4NbeVu8nk=
 </ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 j6lwx3rvEPO0vKtMup4NbeVu8nk=
 </ds:SignatureValue>
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509IssuerSerial>
 <ds:X509IssuerName>
 CN=Example.com,C=US
 </ds:X509IssuerName>
 <ds:X509SerialNumber>
 12345678
 </ds:X509SerialNumber>
 </ds:X509IssuerSerial>
 </ds:X509Data>
 </ds:KeyInfo>
 </Signature>
 </KeyContainer>

 Figure 9: Digital Signature Example

Hoyer, et al. Standards Track [Page 32]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

8. Bulk Provisioning

 The functionality of bulk provisioning can be accomplished by
 repeating the <KeyPackage> element multiple times within the
 <KeyContainer> element, indicating that multiple keys are provided to
 different devices or cryptographic modules. The <EncryptionKey>
 element then applies to all <KeyPackage> elements. When provisioning
 multiple keys to the same device, the <KeyPackage> element is
 repeated, but the enclosed <DeviceInfo> element will contain the same
 sub-elements that uniquely identify the single device (for example,
 the keys for the device identified by SerialNo=’9999999’ in the
 example below).

 Figure 10 shows an example utilizing these capabilities.

 <?xml version="1.0" encoding="UTF-8"?>
 <KeyContainer Version="1.0"
 xmlns="urn:ietf:params:xml:ns:keyprov:pskc">
 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>TokenVendorAcme</Manufacturer>
 <SerialNo>654321</SerialNo>
 </DeviceInfo>
 <Key Id="1"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Issuer</Issuer>
 <AlgorithmParameters>
 <ResponseFormat Length="8" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <Data>
 <Secret>
 <PlainValue>
 MTIzNDU2Nzg5MDEyMzQ1Njc4OTA=
 </PlainValue>
 </Secret>
 <Counter>
 <PlainValue>0</PlainValue>
 </Counter>
 </Data>
 <Policy>
 <StartDate>2006-05-01T00:00:00Z</StartDate>
 <ExpiryDate>2006-05-31T00:00:00Z</ExpiryDate>
 </Policy>
 </Key>
 </KeyPackage>

Hoyer, et al. Standards Track [Page 33]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>TokenVendorAcme</Manufacturer>
 <SerialNo>123456</SerialNo>
 </DeviceInfo>
 <Key Id="2"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Issuer</Issuer>
 <AlgorithmParameters>
 <ResponseFormat Length="8" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <Data>
 <Secret>
 <PlainValue>
 MTIzNDU2Nzg5MDEyMzQ1Njc4OTA=
 </PlainValue>
 </Secret>
 <Counter>
 <PlainValue>0</PlainValue>
 </Counter>
 </Data>
 <Policy>
 <StartDate>2006-05-01T00:00:00Z</StartDate>
 <ExpiryDate>2006-05-31T00:00:00Z</ExpiryDate>
 </Policy>
 </Key>
 </KeyPackage>
 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>TokenVendorAcme</Manufacturer>
 <SerialNo>9999999</SerialNo>
 </DeviceInfo>
 <Key Id="3"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Issuer</Issuer>
 <AlgorithmParameters>
 <ResponseFormat Length="8" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <Data>
 <Secret>
 <PlainValue>
 MTIzNDU2Nzg5MDEyMzQ1Njc4OTA=
 </PlainValue>
 </Secret>
 <Counter>
 <PlainValue>0</PlainValue>
 </Counter>
 </Data>

Hoyer, et al. Standards Track [Page 34]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <Policy>
 <StartDate>2006-03-01T00:00:00Z</StartDate>
 <ExpiryDate>2006-03-31T00:00:00Z</ExpiryDate>
 </Policy>
 </Key>
 </KeyPackage>
 <KeyPackage>
 <DeviceInfo>
 <Manufacturer>TokenVendorAcme</Manufacturer>
 <SerialNo>9999999</SerialNo>
 </DeviceInfo>
 <Key Id="4"
 Algorithm="urn:ietf:params:xml:ns:keyprov:pskc:hotp">
 <Issuer>Issuer</Issuer>
 <AlgorithmParameters>
 <ResponseFormat Length="8" Encoding="DECIMAL"/>
 </AlgorithmParameters>
 <Data>
 <Secret>
 <PlainValue>
 MTIzNDU2Nzg5MDEyMzQ1Njc4OTA=
 </PlainValue>
 </Secret>
 <Counter>
 <PlainValue>0</PlainValue>
 </Counter>
 </Data>
 <Policy>
 <StartDate>2006-04-01T00:00:00Z</StartDate>
 <ExpiryDate>2006-04-30T00:00:00Z</ExpiryDate>
 </Policy>
 </Key>
 </KeyPackage>
 </KeyContainer>

 Figure 10: Bulk Provisioning Example

9. Extensibility

 This section lists a few common extension points provided by PSKC:

 New PSKC Version: Whenever it is necessary to define a new version
 of this document, a new version number has to be allocated to
 refer to the new specification. The version number is carried
 inside the ’Version’ attribute, as described in Section 4, the
 numbering scheme MUST follow Section 1.2, and rules for
 extensibility are defined in Section 12.

Hoyer, et al. Standards Track [Page 35]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 New XML Elements: The usage of the XML schema and the available
 extension points allows new XML elements to be added. Depending
 on the type of XML element, different ways for extensibility are
 offered. In some places, the <Extensions> element can be used and
 elsewhere the "<xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>" XML extension point is
 utilized.

 New XML Attributes: The XML schema allows new XML attributes to be
 added where XML extension points have been defined (see "<xs:
 anyAttribute namespace="##other"/>" in Section 11).

 New PSKC Algorithm Profiles: This document defines two PSKC
 algorithm profiles, see Section 10. The following informational
 document describes additional profiles [PSKC-ALGORITHM-PROFILES].
 Further PSKC algorithm profiles can be registered as described in
 Section 12.4.

 Algorithm URIs: Section 6 defines how keys and related data can be
 protected. A number of algorithms can be used. New algorithms
 can be used by pointing to a new algorithm URI.

 Policy: Section 5 defines policies that can be attached to a key and
 keying-related data. The <Policy> element is one such item that
 allows implementers to restrict the use of the key to certain
 functions, such as "OTP usage only". Further values may be
 registered as described in Section 12.

10. PSKC Algorithm Profile

10.1. HOTP

 Common Name: HOTP

 Class: OTP

 URI: urn:ietf:params:xml:ns:keyprov:pskc:hotp

 Algorithm Definition: [HOTP]

 Identifier Definition: (this RFC)

 Registrant Contact: IESG

 Deprecated: FALSE

Hoyer, et al. Standards Track [Page 36]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 Profiling:

 The <KeyPackage> element MUST be present and the
 <ResponseFormat> element, which is a child element of the
 <AlgorithmParameters> element, MUST be used to indicate the OTP
 length and the value format.

 The <Counter> element (see Section 4.1) MUST be provided as
 metadata for the key.

 The following additional constraints apply:

 + The value of the <Secret> element MUST contain key material
 with a length of at least 16 octets (128 bits), if it is
 present.

 + The <ResponseFormat> element MUST have the ’Format’
 attribute set to "DECIMAL", and the ’Length’ attribute MUST
 indicate a length value between 6 and 9 (inclusive).

 + The <PINPolicy> element MAY be present, but the
 ’PINUsageMode’ attribute cannot be set to "Algorithmic".

 An example can be found in Figure 3.

10.2. PIN

 Common Name: PIN

 Class: Symmetric static credential comparison

 URI: urn:ietf:params:xml:ns:keyprov:pskc:pin

 Algorithm Definition: (this RFC) Section 5.1

 Identifier Definition (this RFC)

 Registrant Contact: IESG

 Deprecated: FALSE

 Profiling:

 The <Usage> element MAY be present, but no attribute of the
 <Usage> element is required. The <ResponseFormat> element MAY
 be used to indicate the PIN value format.

Hoyer, et al. Standards Track [Page 37]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 The <Secret> element (see Section 4.1) MUST be provided.

 See the example in Figure 5

11. XML Schema

 This section defines the XML schema for PSKC.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
 targetNamespace="urn:ietf:params:xml:ns:keyprov:pskc"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#"
 schemaLocation=
"http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
 xmldsig-core-schema.xsd"/>
 <xs:import namespace="http://www.w3.org/2001/04/xmlenc#"
 schemaLocation=
"http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/xenc-schema.xsd"/>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"/>
 <xs:complexType name="KeyContainerType">
 <xs:sequence>
 <xs:element name="EncryptionKey"
 type="ds:KeyInfoType" minOccurs="0"/>
 <xs:element name="MACMethod"
 type="pskc:MACMethodType" minOccurs="0"/>
 <xs:element name="KeyPackage"
 type="pskc:KeyPackageType" maxOccurs="unbounded"/>
 <xs:element name="Signature"
 type="ds:SignatureType" minOccurs="0"/>
 <xs:element name="Extensions"
 type="pskc:ExtensionsType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Version"
 type="pskc:VersionType" use="required"/>
 <xs:attribute name="Id"
 type="xs:ID" use="optional"/>
 </xs:complexType>
 <xs:simpleType name="VersionType" final="restriction">
 <xs:restriction base="xs:string">
 <xs:pattern value="\d{1,2}\.\d{1,3}"/>
 </xs:restriction>

Hoyer, et al. Standards Track [Page 38]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 </xs:simpleType>
 <xs:complexType name="KeyType">
 <xs:sequence>
 <xs:element name="Issuer"
 type="xs:string" minOccurs="0"/>
 <xs:element name="AlgorithmParameters"
 type="pskc:AlgorithmParametersType"
 minOccurs="0"/>
 <xs:element name="KeyProfileId"
 type="xs:string" minOccurs="0"/>
 <xs:element name="KeyReference"
 type="xs:string" minOccurs="0"/>
 <xs:element name="FriendlyName"
 type="xs:string" minOccurs="0"/>
 <xs:element name="Data"
 type="pskc:KeyDataType" minOccurs="0"/>
 <xs:element name="UserId"
 type="xs:string" minOccurs="0"/>
 <xs:element name="Policy"
 type="pskc:PolicyType" minOccurs="0"/>
 <xs:element name="Extensions"
 type="pskc:ExtensionsType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Id"
 type="xs:string" use="required"/>
 <xs:attribute name="Algorithm"
 type="pskc:KeyAlgorithmType" use="optional"/>
 </xs:complexType>
 <xs:complexType name="PolicyType">
 <xs:sequence>
 <xs:element name="StartDate"
 type="xs:dateTime" minOccurs="0"/>
 <xs:element name="ExpiryDate"
 type="xs:dateTime" minOccurs="0"/>
 <xs:element name="PINPolicy"
 type="pskc:PINPolicyType" minOccurs="0"/>
 <xs:element name="KeyUsage"
 type="pskc:KeyUsageType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="NumberOfTransactions"
 type="xs:nonNegativeInteger" minOccurs="0"/>
 <xs:any namespace="##other"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="KeyDataType">
 <xs:sequence>

Hoyer, et al. Standards Track [Page 39]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <xs:element name="Secret"
 type="pskc:binaryDataType" minOccurs="0"/>
 <xs:element name="Counter"
 type="pskc:longDataType" minOccurs="0"/>
 <xs:element name="Time"
 type="pskc:intDataType" minOccurs="0"/>
 <xs:element name="TimeInterval"
 type="pskc:intDataType" minOccurs="0"/>
 <xs:element name="TimeDrift"
 type="pskc:intDataType" minOccurs="0"/>
 <xs:any namespace="##other"
 processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="binaryDataType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="PlainValue"
 type="xs:base64Binary"/>
 <xs:element name="EncryptedValue"
 type="xenc:EncryptedDataType"/>
 </xs:choice>
 <xs:element name="ValueMAC"
 type="xs:base64Binary" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="intDataType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="PlainValue" type="xs:int"/>
 <xs:element name="EncryptedValue"
 type="xenc:EncryptedDataType"/>
 </xs:choice>
 <xs:element name="ValueMAC"
 type="xs:base64Binary" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="stringDataType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="PlainValue" type="xs:string"/>
 <xs:element name="EncryptedValue"
 type="xenc:EncryptedDataType"/>
 </xs:choice>
 <xs:element name="ValueMAC"
 type="xs:base64Binary" minOccurs="0"/>
 </xs:sequence>

Hoyer, et al. Standards Track [Page 40]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 </xs:complexType>
 <xs:complexType name="longDataType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="PlainValue" type="xs:long"/>
 <xs:element name="EncryptedValue"
 type="xenc:EncryptedDataType"/>
 </xs:choice>
 <xs:element name="ValueMAC"
 type="xs:base64Binary" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="PINPolicyType">
 <xs:attribute name="PINKeyId"
 type="xs:string" use="optional"/>
 <xs:attribute name="PINUsageMode"
 type="pskc:PINUsageModeType"/>
 <xs:attribute name="MaxFailedAttempts"
 type="xs:unsignedInt" use="optional"/>
 <xs:attribute name="MinLength"
 type="xs:unsignedInt" use="optional"/>
 <xs:attribute name="MaxLength"
 type="xs:unsignedInt" use="optional"/>
 <xs:attribute name="PINEncoding"
 type="pskc:ValueFormatType" use="optional"/>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:simpleType name="PINUsageModeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Local"/>
 <xs:enumeration value="Prepend"/>
 <xs:enumeration value="Append"/>
 <xs:enumeration value="Algorithmic"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="KeyUsageType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="OTP"/>
 <xs:enumeration value="CR"/>
 <xs:enumeration value="Encrypt"/>
 <xs:enumeration value="Integrity"/>
 <xs:enumeration value="Verify"/>
 <xs:enumeration value="Unlock"/>
 <xs:enumeration value="Decrypt"/>
 <xs:enumeration value="KeyWrap"/>
 <xs:enumeration value="Unwrap"/>
 <xs:enumeration value="Derive"/>
 <xs:enumeration value="Generate"/>

Hoyer, et al. Standards Track [Page 41]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="DeviceInfoType">
 <xs:sequence>
 <xs:element name="Manufacturer"
 type="xs:string" minOccurs="0"/>
 <xs:element name="SerialNo"
 type="xs:string" minOccurs="0"/>
 <xs:element name="Model"
 type="xs:string" minOccurs="0"/>
 <xs:element name="IssueNo"
 type="xs:string" minOccurs="0"/>
 <xs:element name="DeviceBinding"
 type="xs:string" minOccurs="0"/>
 <xs:element name="StartDate"
 type="xs:dateTime" minOccurs="0"/>
 <xs:element name="ExpiryDate"
 type="xs:dateTime" minOccurs="0"/>
 <xs:element name="UserId"
 type="xs:string" minOccurs="0"/>
 <xs:element name="Extensions"
 type="pskc:ExtensionsType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="CryptoModuleInfoType">
 <xs:sequence>
 <xs:element name="Id" type="xs:string"/>
 <xs:element name="Extensions"
 type="pskc:ExtensionsType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="KeyPackageType">
 <xs:sequence>
 <xs:element name="DeviceInfo"
 type="pskc:DeviceInfoType" minOccurs="0"/>
 <xs:element name="CryptoModuleInfo"
 type="pskc:CryptoModuleInfoType" minOccurs="0"/>
 <xs:element name="Key"
 type="pskc:KeyType" minOccurs="0"/>
 <xs:element name="Extensions"
 type="pskc:ExtensionsType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="AlgorithmParametersType">
 <xs:choice>

Hoyer, et al. Standards Track [Page 42]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 <xs:element name="Suite" type="xs:string" minOccurs="0"/>
 <xs:element name="ChallengeFormat" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="Encoding"
 type="pskc:ValueFormatType"
 use="required"/>
 <xs:attribute name="Min"
 type="xs:unsignedInt" use="required"/>
 <xs:attribute name="Max"
 type="xs:unsignedInt" use="required"/>
 <xs:attribute name="CheckDigits"
 type="xs:boolean" default="false"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="ResponseFormat" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="Encoding"
 type="pskc:ValueFormatType"
 use="required"/>
 <xs:attribute name="Length"
 type="xs:unsignedInt" use="required"/>
 <xs:attribute name="CheckDigits"
 type="xs:boolean" default="false"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Extensions"
 type="pskc:ExtensionsType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="ExtensionsType">
 <xs:sequence>
 <xs:any namespace="##other"
 processContents="lax" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="definition"
 type="xs:anyURI" use="optional"/>
 </xs:complexType>
 <xs:simpleType name="KeyAlgorithmType">
 <xs:restriction base="xs:anyURI"/>
 </xs:simpleType>
 <xs:simpleType name="ValueFormatType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="DECIMAL"/>
 <xs:enumeration value="HEXADECIMAL"/>
 <xs:enumeration value="ALPHANUMERIC"/>
 <xs:enumeration value="BASE64"/>
 <xs:enumeration value="BINARY"/>

Hoyer, et al. Standards Track [Page 43]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="MACMethodType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="MACKey"
 type="xenc:EncryptedDataType" minOccurs="0"/>
 <xs:element name="MACKeyReference"
 type="xs:string" minOccurs="0"/>
 </xs:choice>
 <xs:any namespace="##other"
 processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Algorithm" type="xs:anyURI" use="required"/>
 </xs:complexType>
 <xs:element name="KeyContainer"
 type="pskc:KeyContainerType"/>
</xs:schema>

12. IANA Considerations

12.1. Content-Type Registration for ’application/pskc+xml’

 This specification contains the registration of a new media type
 according to the procedures of RFC 4288 [RFC4288] and guidelines in
 RFC 3023 [RFC3023].

 MIME media type name: application

 MIME subtype name: pskc+xml

 Required parameters: There is no required parameter.

 Optional parameters: charset

 Indicates the character encoding of enclosed XML.

 Encoding considerations: Uses XML, which can employ 8-bit
 characters, depending on the character encoding used. See RFC
 3023 [RFC3023], Section 3.2.

 Security considerations: Please refer to Section 13 of RFC 6030.

 Interoperability considerations: None

Hoyer, et al. Standards Track [Page 44]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 Published specification: RFC 6030.

 Applications which use this media type: This media type is being
 used as a symmetric key container format for transport and
 provisioning of symmetric keys (One-Time Password (OTP) shared
 secrets or symmetric cryptographic keys) to different types of
 strong authentication devices. As such, it is used for key
 provisioning systems.

 Additional information:

 Magic Number: None

 File Extension: .pskcxml

 Macintosh file type code: ’TEXT’

 Personal and email address to contact for further information:
 Philip Hoyer, Philip.Hoyer@actividentity.com

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: This specification is a work item of the IETF KEYPROV
 working group, with mailing list address <keyprov@ietf.org>.

 Change controller: The IESG <iesg@ietf.org>

12.2. XML Schema Registration

 This section registers an XML schema as per the guidelines in
 [RFC3688].

 URI: urn:ietf:params:xml:schema:keyprov:pskc

 Registrant Contact: IETF KEYPROV Working Group, Philip Hoyer
 (Philip.Hoyer@actividentity.com).

 XML Schema: The XML schema to be registered is contained in
 Section 11. Its first line is

 <?xml version="1.0" encoding="UTF-8"?>

 and its last line is

 </xs:schema>

Hoyer, et al. Standards Track [Page 45]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

12.3. URN Sub-Namespace Registration

 This section registers a new XML namespace,
 "urn:ietf:params:xml:ns:keyprov:pskc", per the guidelines in
 [RFC3688].

 URI: urn:ietf:params:xml:ns:keyprov:pskc

 Registrant Contact: IETF KEYPROV Working Group, Philip Hoyer
 (Philip.Hoyer@actividentity.com).

 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>PSKC Namespace</title>
 </head>
 <body>
 <h1>Namespace for PSKC</h1>
 <h2>urn:ietf:params:xml:ns:keyprov:pskc</h2>
 <p>See
 RFC 6030.</p>
 </body>
 </html>
 END

12.4. PSKC Algorithm Profile Registry

 IANA has created a registry for PSKC algorithm profiles in accordance
 with the principles set out in RFC 5226 [RFC5226].

 As part of this registry, IANA maintains the following information:

 Common Name: The name by which the PSKC algorithm profile is
 generally referred.

 Class: The type of PSKC algorithm profile registry entry being
 created, such as encryption, Message Authentication Code (MAC),
 One-Time Password (OTP), Digest.

Hoyer, et al. Standards Track [Page 46]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 URI: The URI to be used to identify the profile.

 Identifier Definition: IANA will add a pointer to the specification
 containing information about the PSKC algorithm profile
 registration.

 Algorithm Definition: A reference to the stable document in which
 the algorithm being used with the PSKC is defined.

 Registrant Contact: Contact information about the party submitting
 the registration request.

 Deprecated: TRUE if this entry has been deprecated based on expert
 approval and SHOULD not be used in any new implementations.
 Otherwise, FALSE.

 PSKC Profiling: Information about PSKC XML elements and attributes
 being used (or not) with this specific profile of PSKC.

 PSKC algorithm profile identifier registrations are to be subject to
 Specification Required as per RFC 5226 [RFC5226]. Updates can be
 provided based on expert approval only. Based on expert approval, it
 is possible to mark entries as "deprecated". A designated expert
 will be appointed by the IESG.

 IANA has added two initial values to the registry based on the
 algorithm profiles described in Section 10.

12.5. PSKC Version Registry

 IANA has created a registry for PSKC version numbers. The registry
 has the following structure:

 PSKC Version | Specification
 +---------------------------+----------------
 | 1.0 | RFC 6030

 Standards action is required to define new versions of PSKC. It is
 not envisioned to deprecate, delete, or modify existing PSKC
 versions.

12.6. Key Usage Registry

 IANA has created a registry for key usage. A description of the
 <KeyUsage> element can be found in Section 5.

Hoyer, et al. Standards Track [Page 47]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 As part of this registry IANA will maintain the following
 information:

 Key Usage: The identifier of the Key Usage.

 Specification: IANA will add a pointer to the specification
 containing information about the semantics of a new Key Usage
 registration.

 Deprecated: TRUE if this entry has been deprecated based on expert
 approval and SHOULD not be used in any new implementations.
 Otherwise, FALSE.

 IANA has added these initial values to the registry:

 Key Usage | Specification | Deprecated
 +---------------+------------------------------+-----------
 | OTP | [Section 5 of this document] | FALSE
 | CR | [Section 5 of this document] | FALSE
 | Encrypt | [Section 5 of this document] | FALSE
 | Integrity | [Section 5 of this document] | FALSE
 | Verify | [Section 5 of this document] | FALSE
 | Unlock | [Section 5 of this document] | FALSE
 | Decrypt | [Section 5 of this document] | FALSE
 | KeyWrap | [Section 5 of this document] | FALSE
 | Unwrap | [Section 5 of this document] | FALSE
 | Derive | [Section 5 of this document] | FALSE
 | Generate | [Section 5 of this document] | FALSE
 +---------------+------------------------------+-----------

 Key Usage Registry registrations are to be subject to Specification
 Required as per RFC 5226 [RFC5226]. Expert Review is required to
 define new Key Usage values. Updates can be provided based on expert
 approval only. Based on expert approval, it is possible to mark
 entries as "deprecated". A designated expert will be appointed by
 the IESG.

13. Security Considerations

 The portable symmetric key container (PSKC) carries sensitive
 information (e.g., cryptographic keys) and may be transported across
 the boundaries of one secure perimeter to another. For example, a
 container residing within the secure perimeter of a back-end
 provisioning server in a secure room may be transported across the
 Internet to an end-user device attached to a personal computer. This
 means that special care MUST be taken to ensure the confidentiality,
 integrity, and authenticity of the information contained within.

Hoyer, et al. Standards Track [Page 48]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

13.1. PSKC Confidentiality

 By design, the container allows two main approaches to guaranteeing
 the confidentiality of the information it contains while transported.

 First, the container key data payload may be encrypted.

 In this case, no transport layer security is required. However,
 standard security best practices apply when selecting the strength of
 the cryptographic algorithm for key data payload encryption. A
 symmetric cryptographic cipher SHOULD be used -- the longer the
 cryptographic key, the stronger the protection. Please see
 Section 6.1 for recommendations of key data payload protection using
 symmetric cryptographic ciphers. In cases where the exchange of key
 encryption keys between the sender and the receiver is not possible,
 asymmetric encryption of the key data payload may be employed, see
 Section 6.3. Similar to symmetric key cryptography, the stronger the
 asymmetric key, the more secure the protection.

 If the key data payload is encrypted with a method that uses one of
 the password-based encryption methods (PBE methods) detailed in
 Section 6.2, the key data payload may be subjected to password
 dictionary attacks to break the encryption password and recover the
 information. Standard security best practices for selection of
 strong encryption passwords apply.

 Additionally, it is strongly RECOMMENDED that practical
 implementations use PBESalt and PBEIterationCount when PBE encryption
 is used. A different PBESalt value per PSKC SHOULD be used for best
 protection.

 The second approach to protecting the confidentiality of the key data
 is based on using lower-layer security mechanisms (e.g., [TLS],
 [IPsec]). The secure connection established between the source
 secure perimeter (the provisioning server from the example above) and
 the target perimeter (the device attached to the end-user computer)
 utilizes encryption to protect the messages that travel across that
 connection. No key data payload encryption is required in this mode.
 Secure connections that encrypt and digest each message provide an
 extra measure of security.

 Because of the fact that the plaintext PSKC is protected only by the
 transport layer security, practical implementation MUST ensure
 protection against man-in-the-middle attacks. Authenticating the
 secure channel endpoints is critically important for eliminating
 intruders that may compromise the confidentiality of the PSKC.

Hoyer, et al. Standards Track [Page 49]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

13.2. PSKC Integrity

 The PSKC provides means to guarantee the integrity of the information
 it contains through the use of digital signatures. It is RECOMMENDED
 that for best security practices, the digital signature of the
 container encompasses the entire PSKC. This provides assurances for
 the integrity of all attributes. It also allows verification of the
 integrity of a given PSKC even after the container is delivered
 through the communication channel to the target perimeter and channel
 message integrity check is no longer possible.

13.3. PSKC Authenticity

 The digital signature of the PSKC is the primary way of showing its
 authenticity. The recipient of the container SHOULD use the public
 key associated with the signature to assert the authenticity of the
 sender by tracing it back to a pre-loaded public key or certificate.
 Note that the digital signature of the PSKC can be checked even after
 the container has been delivered through the secure channel of
 communication.

 Authenticity guarantee may be provided by [TLS] or [IPsec]. However,
 no authenticity verification is possible once the container is
 delivered at the recipient end. Since the TLS endpoints could differ
 from the key provisioning endpoints, this solution is weaker than the
 previous solution that relies on a digital signature of the PSKC.

14. Contributors

 We would like Hannes Tschofenig for his text contributions to this
 document.

15. Acknowledgements

 The authors of this document would like to thank the following people
 for their feedback: Apostol Vassilev, Shuh Chang, Jon Martinson,
 Siddhart Bajaj, Stu Vaeth, Kevin Lewis, Philip Hallam-Baker, Andrea
 Doherty, Magnus Nystrom, Tim Moses, Anders Rundgren, Sean Turner, and
 especially Robert Philpott.

 We would like to thank Sean Turner for his review in January 2009.
 We would also like to thank Anders Rundgren for triggering the
 discussion regarding to the selection of encryption algorithms
 (KW-AES-128 vs. AES-128-CBC) and his input on the keyed message
 digest computation.

Hoyer, et al. Standards Track [Page 50]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 This work is based on earlier work by the members of OATH (Initiative
 for Open AuTHentication), see [OATH], to specify a format that can be
 freely distributed to the technical community.

16. References

16.1. Normative References

 [FIPS197] National Institute of Standards, "FIPS Pub 197: Advanced
 Encryption Standard (AES)", November 2001.

 [HOTP] M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., and
 O. Ranen, "HOTP: An HMAC-Based One-Time Password
 Algorithm", RFC 4226, December 2005.

 [IANAPENREG]
 IANA, "Private Enterprise Numbers", <http://www.iana.org>.

 [ISOIEC7812]
 ISO, "ISO/IEC 7812-1:2006 Identification cards --
 Identification of issuers -- Part 1: Numbering system",
 October 2006, <http://www.iso.org/iso/iso_catalogue/
 catalogue_tc/catalogue_detail.htm?csnumber=39698>.

 [OATHMAN] OATH, "List of OATH Manufacturer Prefixes (omp)",
 April 2009,
 <http://www.openauthentication.org/oath-id/prefixes/>.

 [PKCS5] RSA Laboratories, "PKCS #5: Password-Based Cryptography
 Standard", Version 2.0, March 1999,
 <http://www.rsasecurity.com/rsalabs/pkcs/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288, December 2005.

 [RFC4514] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): String Representation of Distinguished Names",
 RFC 4514, June 2006.

Hoyer, et al. Standards Track [Page 51]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

 [RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm", RFC 5649,
 September 2009.

 [SP800-67]
 National Institute of Standards, "NIST Special Publication
 800-67 Version 1.1: Recommendation for the Triple Data
 Encryption Algorithm (TDEA) Block Cipher", NIST Special
 Publication 800-67, May 2008.

 [W3C.REC-xmlschema-2-20041028]
 Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

 [XMLDSIG] Solo, D., Reagle, J., and D. Eastlake, "XML-Signature
 Syntax and Processing", World Wide Web Consortium
 FirstEdition REC-xmldsig-core-20020212, February 2002,
 <http://www.w3.org/TR/2002/REC-xmldsig-core-20020212>.

 [XMLENC] Eastlake, D., "XML Encryption Syntax and Processing.",
 W3C Recommendation, December 2002,
 <http://www.w3.org/TR/xmlenc-core/>.

 [XMLENC11]
 Reagle, J. and D. Eastlake, "XML Encryption Syntax and
 Processing Version 1.1", World Wide Web Consortium WD WD-
 xmlenc-core1-20090730, July 2009,
 <http://www.w3.org/TR/2009/WD-xmlenc-core1-20090730>.

16.2. Informative References

 [CAP] MasterCard International, "Chip Authentication Program
 Functional Architecture", September 2004.

 [IPsec] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

Hoyer, et al. Standards Track [Page 52]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 [NIST800-57]
 Barker, E., Barker, W., Burr, W., Polk, W., and M. Smid,
 "NIST Special Publication 800-57, Recommendation for Key
 Management Part 1: General (Revised)", NIST Special
 Publication 800-57, March 2007.

 [OATH] "Initiative for Open AuTHentication",
 <http://www.openauthentication.org>.

 [PSKC-ALGORITHM-PROFILES]
 Hoyer, P., Pei, M., Machani, S., and A. Doherty,
 "Additional Portable Symmetric Key Container (PSKC)
 Algorithm Profiles", Work in Progress, May 2010.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [TLS] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [XMLNS] Hollander, D., Bray, T., and A. Layman, "Namespaces in
 XML", World Wide Web Consortium FirstEdition REC-xml-
 names-19990114, January 1999,
 <http://www.w3.org/TR/1999/REC-xml-names-19990114>.

Hoyer, et al. Standards Track [Page 53]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

Appendix A. Use Cases

 This section describes a comprehensive list of use cases that
 inspired the development of this specification. These requirements
 were used to derive the primary requirement that drove the design.
 These requirements are covered in the next section.

 These use cases also help in understanding the applicability of this
 specification to real-world situations.

A.1. Online Use Cases

 This section describes the use cases related to provisioning the keys
 using an online provisioning protocol.

A.1.1. Transport of Keys from Server to Cryptographic Module

 For example, a mobile device user wants to obtain a symmetric key for
 use with a cryptographic module on the device. The cryptographic
 module from vendor A initiates the provisioning process against a
 provisioning system from vendor B using a standards-based
 provisioning protocol. The provisioning entity delivers one or more
 keys in a standard format that can be processed by the mobile device.

 For example, in a variation of the above, instead of the user’s
 mobile phone, a key is provisioned in the user’s soft token
 application on a laptop using a network-based online protocol. As
 before, the provisioning system delivers a key in a standard format
 that can be processed by the soft token on the PC.

 For example, the end user or the key issuer wants to update or
 configure an existing key in the cryptographic module and requests a
 replacement key container. The container may or may not include a
 new key and may include new or updated key attributes such as a new
 counter value in HOTP key case, a modified response format or length,
 a new friendly name, etc.

A.1.2. Transport of Keys from Cryptographic Module to Cryptographic
 Module

 For example, a user wants to transport a key from one cryptographic
 module to another. There may be two cryptographic modules, one on a
 computer and one on a mobile phone, and the user wants to transport a
 key from the computer to the mobile phone. The user can export the
 key and related data in a standard format for input into the other
 cryptographic module.

Hoyer, et al. Standards Track [Page 54]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

A.1.3. Transport of Keys from Cryptographic Module to Server

 For example, a user wants to activate and use a new key and related
 data against a validation system that is not aware of this key. This
 key may be embedded in the cryptographic module (e.g., a Secure
 Digital (SD) card, USB drive) that the user has purchased at the
 local electronics retailer. Along with the cryptographic module, the
 user may get the key on a CD or a floppy in a standard format. The
 user can now upload via a secure online channel or import this key
 and related data into the new validation system and start using the
 key.

A.1.4. Server-to-Server Bulk Import/Export of Keys

 From time to time, a key management system may be required to import
 or export keys in bulk from one entity to another.

 For example, instead of importing keys from a manufacturer using a
 file, a validation server may download the keys using an online
 protocol. The keys can be downloaded in a standard format that can
 be processed by a validation system.

 For example, in a variation of the above, an Over-The-Air (OTA) key
 provisioning gateway that provisions keys to mobile phones may obtain
 key material from a key issuer using an online protocol. The keys
 are delivered in a standard format that can be processed by the key
 provisioning gateway and subsequently sent to the mobile phone of the
 end user.

A.2. Offline Use Cases

 This section describes the use cases relating to offline transport of
 keys from one system to another, using some form of export and import
 model.

A.2.1. Server-to-Server Bulk Import/Export of Keys

 For example, cryptographic modules, such as OTP authentication
 tokens, may have their symmetric keys initialized during the
 manufacturing process in bulk, requiring copies of the keys and
 algorithm data to be loaded into the authentication system through a
 file on portable media. The manufacturer provides the keys and
 related data in the form of a file containing records in standard
 format, typically on a CD. Note that the token manufacturer and the
 vendor for the validation system may be the same or different. Some
 crypto modules will allow local PIN management (the device will have
 a PIN pad); hence, random initial PINs set at manufacturing should be
 transmitted together with the respective keys they protect.

Hoyer, et al. Standards Track [Page 55]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 For example, an enterprise wants to port keys and related data from
 an existing validation system A into a different validation system B.
 The existing validation system provides the enterprise with a
 functionality that enables export of keys and related data (e.g., for
 OTP authentication tokens) in a standard format. Since the OTP
 tokens are in the standard format, the enterprise can import the
 token records into the new validation system B and start using the
 existing tokens. Note that the vendors for the two validation
 systems may be the same or different.

Appendix B. Requirements

 This section outlines the most relevant requirements that are the
 basis of this work. Several of the requirements were derived from
 use cases described above.

 R1: The format MUST support the transport of multiple types of
 symmetric keys and related attributes for algorithms including
 HOTP, other OTP, Challenge/Response, etc.

 R2: The format MUST handle the symmetric key itself as well of
 attributes that are typically associated with symmetric keys.
 Some of these attributes may be

 * Unique Key Identifier

 * Issuer information

 * Algorithm ID

 * Algorithm mode

 * Issuer Name

 * Key friendly name

 * Event counter value (moving factor for OTP algorithms)

 * Time value

 R3: The format SHOULD support both offline and online scenarios.
 That is, it should be serializable to a file as well as it
 should be possible to use this format in online provisioning
 protocols.

 R4: The format SHOULD allow bulk representation of symmetric keys.

Hoyer, et al. Standards Track [Page 56]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

 R5: The format SHOULD allow bulk representation of PINs related to
 specific keys.

 R6: The format SHOULD be portable to various platforms.
 Furthermore, it SHOULD be computationally efficient to process.

 R7: The format MUST provide an appropriate level of security in
 terms of data encryption and data integrity.

 R8: For online scenarios, the format SHOULD NOT rely on transport
 layer security (e.g., Secure Socket Layer/Transport Layer
 Security (SSL/TLS)) for core security requirements.

 R9: The format SHOULD be extensible. It SHOULD enable extension
 points allowing vendors to specify additional attributes in the
 future.

 R10: The format SHOULD allow for distribution of key derivation data
 without the actual symmetric key itself. This is to support
 symmetric key management schemes that rely on key derivation
 algorithms based on a pre-placed master key. The key
 derivation data typically consists of a reference to the key,
 rather than the key value itself.

 R11: The format SHOULD allow for additional life cycle management
 operations such as counter resynchronization. Such processes
 require confidentiality between client and server, thus could
 use a common secure container format, without the transfer of
 key material.

 R12: The format MUST support the use of pre-shared symmetric keys to
 ensure confidentiality of sensitive data elements.

 R13: The format MUST support a password-based encryption (PBE)
 [PKCS5] scheme to ensure security of sensitive data elements.
 This is a widely used method for various provisioning
 scenarios.

 R14: The format SHOULD support asymmetric encryption algorithms such
 as RSA to ensure end-to-end security of sensitive data
 elements. This is to support scenarios where a pre-set shared
 key encryption key is difficult to use.

Hoyer, et al. Standards Track [Page 57]

RFC 6030 Portable Symmetric Key Container (PSKC) October 2010

Authors’ Addresses

 Philip Hoyer
 ActivIdentity, Inc.
 117 Waterloo Road
 London, SE1 8UL
 UK

 Phone: +44 (0) 20 7960 0220
 EMail: phoyer@actividentity.com

 Mingliang Pei
 VeriSign, Inc.
 487 E. Middlefield Road
 Mountain View, CA 94043
 USA

 Phone: +1 650 426 5173
 EMail: mpei@verisign.com

 Salah Machani
 Diversinet, Inc.
 2225 Sheppard Avenue East
 Suite 1801
 Toronto, Ontario M2J 5C2
 Canada

 Phone: +1 416 756 2324 Ext. 321
 EMail: smachani@diversinet.com

Hoyer, et al. Standards Track [Page 58]

