
Internet Engineering Task Force (IETF) C. Wallace
Request for Comments: 6025 Cygnacom Solutions
Category: Informational C. Gardiner
ISSN: 2070-1721 BBN Technologies
 October 2010

 ASN.1 Translation

Abstract

 Abstract Syntax Notation One (ASN.1) is widely used throughout the
 IETF Security Area and has been for many years. Some specifications
 were written using a now deprecated version of ASN.1 and some were
 written using the current version of ASN.1. Not all ASN.1 compilers
 support both older and current syntax. This document is intended to
 provide guidance to specification authors and to implementers
 converting ASN.1 modules from one version of ASN.1 to another version
 without causing changes to the "bits on the wire". This document
 does not provide a comprehensive tutorial of any version of ASN.1.
 Instead, it addresses ASN.1 features that are used in IETF Security
 Area specifications with a focus on items that vary with the ASN.1
 version.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6025.

Wallace & Gardiner Informational [Page 1]

RFC 6025 ASN.1 Translation October 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. ASN.1 Design Elements . 3
 2.1. Open Types . 3
 2.1.1. ANY DEFINED BY . 4
 2.1.2. OCTET STRINGs and BIT STRINGs 5
 2.1.3. Information Object Classes 5
 2.2. Constraints . 8
 2.2.1. Simple Table Constraints 8
 2.2.2. Component Relation Constraints 9
 2.2.3. Content Constraints 11
 2.3. Parameterization . 12
 2.4. Versioning and Extensibility 13
 2.4.1. Extension Markers 14
 2.4.2. Version Brackets 14
 3. Character Set Differences 15
 4. ASN.1 Translation . 16
 4.1. Downgrading from X.68x to X.208 16
 4.2. Upgrading from X.208 to X.68x 16
 5. Security Considerations 17
 6. References . 18
 6.1. Normative References 18
 6.2. Informative References 18

Wallace & Gardiner Informational [Page 2]

RFC 6025 ASN.1 Translation October 2010

1. Introduction

 This document is intended to serve as a tutorial for converting ASN.1
 modules written using [CCITT.X208.1988] to [CCITT.X680.2002], or vice
 versa. Preparation of this document was motivated by [RFC5911] and
 [RFC5912], which provide updated ASN.1 modules for a number of RFCs.

 The intent of this specification is to assist with translation of
 ASN.1 from one version to another without resulting in any changes to
 the encoded results when using the Basic Encoding Rules or
 Distinguished Encoding Rules [CCITT.X209.1988] [CCITT.X690.2002].
 Other encoding rules were not considered.

 Transforming a new ASN.1 module to an older ASN.1 module can be
 performed in a fairly mechanical manner; much of the transformation
 consists of deleting new constructs. Transforming an older ASN.1
 module to a newer ASN.1 module can also be done fairly mechanically,
 if one does not wish to move many of the constraints that are
 contained in the prose into the ASN.1 module. If the constraints are
 to be added, then the conversion can be a complex process.

1.1. Terminology

 This document addresses two different versions of ASN.1. The old
 (1988) version was defined in a single document (X.208) and the newer
 (1998, 2002) version is defined in a series of documents (X.680,
 X.681, X.682, and X.683). For convenience, the series of documents
 is henceforth referred to as X.68x. Specific documents from the
 series are referenced by name where appropriate.

2. ASN.1 Design Elements

 When translating an ASN.1 module from X.208 syntax to X.68x syntax,
 or vice versa, many definitions do not require or benefit from
 change. Review of the original ASN.1 modules updated by [RFC5911]
 and [RFC5912] and the revised modules included in those documents
 indicates that most changes can be sorted into one of a few
 categories. This section describes these categories.

2.1. Open Types

 Protocols often feature flexible designs that enable other (later)
 specifications to define the syntax and semantics of some features.
 For example, [RFC5280] includes the definition of the Extension
 structure. There are many instances of extensions defined in other
 specifications. Several mechanisms to accommodate this practice are
 available in X.208, X.68x, or both, as described below.

Wallace & Gardiner Informational [Page 3]

RFC 6025 ASN.1 Translation October 2010

2.1.1. ANY DEFINED BY

 X.208 defines the ANY DEFINED BY production for specifying open
 types. This typically appears in a SEQUENCE along with an OBJECT
 IDENTIFIER that indicates the type of object that is encoded. The
 ContentInfo structure, shown below from [RFC5652], uses ANY DEFINED
 BY along with an OBJECT IDENTIFIER field to identify and convey
 arbitrary types of data. Each content type to be wrapped in a
 ContentInfo is assigned a unique OBJECT IDENTIFIER, such as the
 id-signedData shown below. However, X.208 does not provide a formal
 means for establishing a relationship between a type and the type
 identifier. Any associations are done in the comments of the module
 and/or the text of the associated document.

 -- from RFC 5652
 ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content [0] EXPLICIT ANY DEFINED BY contentType }

 ContentType ::= OBJECT IDENTIFIER

 id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

 ANY DEFINED BY may also appear using an INTEGER to indicate the type
 of object that is encoded, as shown in the following example from
 [RFC5280].

 -- from RFC 5280
 ExtensionAttribute ::= SEQUENCE {
 extension-attribute-type [0] IMPLICIT INTEGER
 (0..ub-extension-attributes),
 extension-attribute-value [1]
 ANY DEFINED BY extension-attribute-type }

 Though the usage of ANY DEFINED BY was deprecated in 1994, it appears
 in some active specifications. The AttributeValue definition in
 [RFC5280] uses ANY with a DEFINED BY comment to bind the value to a
 type identifier field.

 -- from RFC 5280
 AttributeTypeAndValue ::= SEQUENCE {
 type AttributeType,
 value AttributeValue }

 AttributeType ::= OBJECT IDENTIFIER

 AttributeValue ::= ANY -- DEFINED BY AttributeType

Wallace & Gardiner Informational [Page 4]

RFC 6025 ASN.1 Translation October 2010

2.1.2. OCTET STRINGs and BIT STRINGs

 Both X.208 and X.68x allow open types to be implemented using OCTET
 STRINGs and BIT STRINGs as containers. The definitions of Extension
 and SubjectPublicKeyInfo in [RFC5280] demonstrate the usage of OCTET
 STRING and BIT STRING, respectively, to convey information that is
 further defined using ASN.1.

 -- from RFC 5280
 Extension ::= SEQUENCE {
 extnID OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING
 -- contains the DER encoding of an ASN.1 value
 -- corresponding to the extension type identified
 -- by extnID
 }

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }

 In both cases, the prose of the specification describes that the
 adjacent OBJECT IDENTIFIER value indicates the type of structure
 within the value of the primitive OCTET STRING or BIT STRING type.
 For example, where an extnID field contains the value
 id-ce-basicConstraints, the extnValue field contains an encoded
 BasicConstraints as the value of the OCTET STRING, as shown in the
 dump of an encoded extension below.

 Tag Length Value
 30 15: SEQUENCE {
 06 3: OBJECT IDENTIFIER basicConstraints (2 5 29 19)
 01 1: BOOLEAN TRUE
 04 5: OCTET STRING, encapsulates {
 30 3: SEQUENCE {
 01 1: BOOLEAN TRUE
 : }
 : }
 : }

2.1.3. Information Object Classes

 Information object classes are defined in [CCITT.X681.2002]. Object
 classes allow protocol designers to relate pieces of data that are in
 some way associated. In the most generic of terms, an Information
 Object class can be thought of as a database schema, with Information
 Object Sets being instances of the databases.

Wallace & Gardiner Informational [Page 5]

RFC 6025 ASN.1 Translation October 2010

 Unlike type definitions, object classes with the same structure are
 not equivalent. Thus, if you have:

 FOO ::= TYPE-IDENTIFIER

 BAR ::= TYPE-IDENTIFIER

 FOO and BAR are not interchangeable.

 TYPE-IDENTIFIER is one of the predefined information object classes
 in Annex A of [CCITT.X681.2002]. This provides for a simple mapping
 from an OBJECT IDENTIFIER to a data type. The tag UNIQUE on &id
 means that this value may appear only once in an Information Object
 Set; however, multiple objects can be defined with the same &id
 value.

 [RFC5911] uses the TYPE-IDENTIFIER construction to update the
 definition of ContentInfo, as shown below.

 -- TYPE-IDENTIFIER definition from X.681
 TYPE-IDENTIFIER ::= CLASS
 {
 &id OBJECT IDENTIFIER UNIQUE,
 &Type
 }
 WITH SYNTAX {&Type IDENTIFIED BY &id}

 -- from updated RFC 5652 module in [RFC5911]
 CONTENT-TYPE ::= TYPE-IDENTIFIER
 ContentType ::= CONTENT-TYPE.&id

 ContentInfo ::= SEQUENCE {
 contentType CONTENT-TYPE.
 &id({ContentSet}),
 content [0] EXPLICIT CONTENT-TYPE.
 &Type({ContentSet}{@contentType})}

 ContentSet CONTENT-TYPE ::= {
 -- Define the set of content types to be recognized.
 ct-Data | ct-SignedData | ct-EncryptedData | ct-EnvelopedData |
 ct-AuthenticatedData | ct-DigestedData, ... }

 -- other CONTENT-TYPE instances not shown for brevity
 ct-SignedData CONTENT-TYPE ::=
 { SignedData IDENTIFIED BY id-signedData}

Wallace & Gardiner Informational [Page 6]

RFC 6025 ASN.1 Translation October 2010

 This example illustrates the following:

 o Definition of an information object class: TYPE-IDENTIFIER and
 CONTENT-TYPE are information object classes.

 o Definition of an information object, or an instance of an
 information object class: ct-SignedData is an information object.

 o Definition of an information object set: ContentSet is an
 information object set.

 o Usage of an information object: The definition of ContentInfo uses
 information from the CONTENT-TYPE information object class.

 o Defining constraints using an object set: Both the contentType and
 content fields are constrained by ContentSet.

 As noted above, TYPE-IDENTIFIER simply associates an OBJECT
 IDENTIFIER with an arbitrary data type. CONTENT-TYPE is a TYPE-
 IDENTIFIER. The WITH SYNTAX component allows for a more natural
 language expression of information object definitions.

 ct-SignedData is the name of an information object that associated
 the identifier id-signedData with the data type SignedData. It is an
 instance of the CONTENT-TYPE information object class. The &Type
 field is assigned the value SignedData, and the &id field is assigned
 the value id-signedData. The example above uses the syntax provided
 by the WITH SYNTAX component of the TYPE-IDENTIFIER definition. An
 equivalent definition that does not use the provided syntax is as
 follows:

 ct-SignedData CONTENT-TYPE ::=
 {
 &id id-signedData,
 &Type SignedData
 }

 ContentSet is the name of a set of information objects derived from
 the CONTENT-TYPE information object class. The set contains six
 information objects and is extensible, as indicated by the ellipsis
 (see Section 2.4, "Versioning and Extensibility").

 ContentInfo is defined using type information from an information
 object, i.e., the type of the contentType field is that of the &id
 field from CONTENT-TYPE. An equivalent definition is as follows:

 ContentType ::= OBJECT IDENTIFIER

Wallace & Gardiner Informational [Page 7]

RFC 6025 ASN.1 Translation October 2010

 Both fields in ContentInfo are constrained. The contentType field is
 constrained using a simple table constraint that restricts the values
 to those from the corresponding field of the objects in ContentSet.
 The content field is constrained using a component relationship
 constraint. Constraints are discussed in the next section.

2.2. Constraints

 The X.68x versions of the ASN.1 specifications introduced the ability
 to use the object information sets as part of the constraint on the
 values that a field can take. Simple table constraints are used to
 restrict the set of values that can occur in a field. Component
 relation constraints allow for the restriction of a field based on
 contents of other fields in the type.

2.2.1. Simple Table Constraints

 Simple table constraints are widely used in [RFC5911] and [RFC5912]
 to limit implementer options (although the constraints are almost
 always followed by or include extensibility markers, which make the
 parameters serve as information not as limitations). Table
 constraints are defined in [CCITT.X682.2002].

 Some ASN.1 compilers have the ability to use the simple table
 constraint to check that a field contains one of the legal values.

 The following example from [RFC5911] demonstrates using table
 constraints to clarify the intended usage of a particular field. The
 parameters indicate the types of attributes that are typically found
 in the signedAttrs and unsignedAttrs fields. In this example, the
 object sets are disjoint but this is not required. For example, in
 [RFC5912], there is some overlap between the CertExtensions and
 CrlExtensions sets.

 -- from updated RFC 5652 module in [RFC5911]
 SignerInfo ::= SEQUENCE {
 version CMSVersion,
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] IMPLICIT Attributes
 {{UnsignedAttributes}} OPTIONAL }

 SignedAttributes ::= Attributes {{ SignedAttributesSet }}

Wallace & Gardiner Informational [Page 8]

RFC 6025 ASN.1 Translation October 2010

 SignedAttributesSet ATTRIBUTE ::=
 { aa-signingTime | aa-messageDigest | aa-contentType, ... }

 UnsignedAttributes ATTRIBUTE ::= { aa-countersignature, ... }

2.2.2. Component Relation Constraints

 Component relation constraints are often used to bind the type field
 of an open type to the identifier field. Using the binding in this
 way allows a compiler to immediately decode the associated type when
 the containing structure is defined. The following example from
 [RFC2560] as updated in [RFC5912] demonstrates this usage.

 -- from updated RFC 2560 module in [RFC5912]
 RESPONSE ::= TYPE-IDENTIFIER

 ResponseSet RESPONSE ::= {basicResponse, ...}

 ResponseBytes ::= SEQUENCE {
 responseType RESPONSE.
 &id ({ResponseSet}),
 response OCTET STRING (CONTAINING RESPONSE.
 &Type({ResponseSet}{@responseType}))}

 In this example, the response field is constrained to contain a type
 identified by the responseType field. The controlling field is
 identified using atNotation, e.g., "@responseType". atNotation can be
 defined relative to the outermost SEQUENCE, SET, or CHOICE or
 relative to the field with which the atNotation is associated. When
 there is no ’.’ immediately after the ’@’, the field appears as a
 member of the outermost SEQUENCE, SET, or CHOICE. When there is a
 ’.’ immediately after the ’@’, each ’.’ represents a SEQUENCE, SET,
 or CHOICE starting with the SEQUENCE, SET, or CHOICE that contains
 the field with which the atNotation is associated. For example,
 ResponseBytes could have been written as shown below. In this case,
 the syntax is very similar since the innermost and outermost
 SEQUENCE, SET, or CHOICE are the same.

 ResponseBytes ::= SEQUENCE {
 responseType RESPONSE.
 &id ({ResponseSet}),
 response OCTET STRING (CONTAINING RESPONSE.
 &Type({ResponseSet}{@.responseType}))}

 The TaggedRequest example from [RFC5912] provides an example where
 the outermost and innermost SEQUENCE, SET, or CHOICE are different.
 Relative to the atNotation included in the definition of the

Wallace & Gardiner Informational [Page 9]

RFC 6025 ASN.1 Translation October 2010

 requestMessageValue field, the outermost SEQUENCE, SET, or CHOICE is
 TaggedRequest, and the innermost is the SEQUENCE used to define the
 orm field.

 TaggedRequest ::= CHOICE {
 tcr [0] TaggedCertificationRequest,
 crm [1] CertReqMsg,
 orm [2] SEQUENCE {
 bodyPartID BodyPartID,
 requestMessageType OTHER-REQUEST.&id({OtherRequests}),
 requestMessageValue OTHER-REQUEST.&Type({OtherRequests}
 {@.requestMessageType})
 }
 }

 When referencing a field using atNotation, the definition of the
 field must be included within the outermost SEQUENCE, SET, or CHOICE.
 References to fields within structures that are defined separately
 are not allowed. For example, the following example includes invalid
 atNotation in the definition of the signature field within the SIGNED
 parameterized type.

 AlgorithmIdentifier{ALGORITHM-TYPE, ALGORITHM-TYPE:AlgorithmSet} ::=
 SEQUENCE {
 algorithm ALGORITHM-TYPE.&id({AlgorithmSet}),
 parameters ALGORITHM-TYPE.
 &Params({AlgorithmSet}{@algorithm}) OPTIONAL
 }

 -- example containing invalid atNotation
 SIGNED{ToBeSigned} ::= SEQUENCE {
 toBeSigned ToBeSigned,
 algorithmIdentifier AlgorithmIdentifier
 { SIGNATURE-ALGORITHM, {...}}
 },
 signature BIT STRING (CONTAINING SIGNATURE-ALGORITHM.&Value(
 {SignatureAlgorithms}
 {@algorithmIdentifier.algorithm}))
 }

 Alternatively, the above example could be written with correct
 atNotation as follows, with the definition of the algorithm field
 included within ToBeSigned.

Wallace & Gardiner Informational [Page 10]

RFC 6025 ASN.1 Translation October 2010

 SIGNED{ToBeSigned} ::= SEQUENCE {
 toBeSigned ToBeSigned,
 algorithmIdentifier SEQUENCE {
 algorithm SIGNATURE-ALGORITHM.
 &id({SignatureAlgorithms}),
 parameters SIGNATURE-ALGORITHM.
 &Params({SignatureAlgorithms}
 {@algorithmIdentifier.algorithm})
 },
 signature BIT STRING (CONTAINING SIGNATURE-ALGORITHM.&Value(
 {SignatureAlgorithms}
 {@algorithmIdentifier.algorithm}))
 }

 In the above example, the outermost SEQUENCE, SET, or CHOICE relative
 to the parameters field is the SIGNED parameterized type. The
 innermost structure is the SEQUENCE used as the type for the
 algorithmIdentifier field. The atNotation for the parameters field
 could be expressed using any of the following representations:

 @algorithmIdentifier.algorithm

 @.algorithm

 The atNotation for the signature field has only one representation.

2.2.3. Content Constraints

 Open types implemented as OCTET STRINGs or BIT STRINGs can be
 constrained using the contents constraints syntax defined in
 [CCITT.X682.2002]. Below are the revised definitions from [RFC5911]
 and [RFC5912]. These show usage of OCTET STRING and BIT STRING along
 with constrained sets of identifiers. The Extension definition uses
 a content constraint that requires the value of the OCTET STRING to
 be an encoding of the type associated with the information object
 selected from the ExtensionSet object set using the value of the
 extnID field. For reasons described in Section 2.2.2, "Component
 Relation Constraints", the SubjectPublicKeyInfo definition relies on
 prose to bind the BIT STRING to the type identifier because it is not
 possible to express a content constraint that includes a component
 relationship constraint to bind the type value within the algorithm
 field to the subjectPublicKey field.

Wallace & Gardiner Informational [Page 11]

RFC 6025 ASN.1 Translation October 2010

 -- from updated RFC 5280 module in [RFC5912]
 Extension{EXTENSION:ExtensionSet} ::= SEQUENCE {
 extnID EXTENSION.&id({ExtensionSet}),
 critical BOOLEAN
 -- (EXTENSION.&Critical({ExtensionSet}{@extnID}))
 DEFAULT FALSE,
 extnValue OCTET STRING (CONTAINING
 EXTENSION.&ExtnType({ExtensionSet}{@extnID}))
 -- contains the DER encoding of the ASN.1 value
 -- corresponding to the extension type identified
 -- by extnID
 }

 SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier{PUBLIC-KEY,
 {PublicKeyAlgorithms}},
 subjectPublicKey BIT STRING
 }

2.3. Parameterization

 Parameterization is defined in [CCITT.X683.2002] and can also be used
 to define new types in a way similar to the macro notation described
 in Annex A of X.208. The following example from [RFC5912] shows this
 usage. The toBeSigned field takes the type passed as a parameter.

 -- from [RFC5912]
 SIGNED{ToBeSigned} ::= SEQUENCE {
 toBeSigned ToBeSigned,
 algorithm AlgorithmIdentifier{SIGNATURE-ALGORITHM,
 {SignatureAlgorithms}},
 signature BIT STRING
 }

 -- from updated RFC5280 module in [RFC5912]
 Certificate ::= SIGNED{TBSCertificate}

 Parameters need not be simple types. The following example
 demonstrates the usage of an information object class and an
 information object set as parameters. The first parameter in the
 definition of AlgorithmIdentifier is an information object class.
 Information object classes used for this parameter must have &id and
 &Params fields, which determine the type of the algorithm and
 parameters fields. Other fields may be present in the information
 object class, but they are not used by the definition of
 AlgorithmIdentifier, as demonstrated by the SIGNATURE-ALGORITHM class

Wallace & Gardiner Informational [Page 12]

RFC 6025 ASN.1 Translation October 2010

 shown below. The second parameter is an information object set that
 is used to constrain the values that appear in the algorithm and
 parameters fields.

 -- from [RFC5912]
 AlgorithmIdentifier{ALGORITHM-TYPE, ALGORITHM-TYPE:AlgorithmSet}
 ::= SEQUENCE
 {
 algorithm ALGORITHM-TYPE.&id({AlgorithmSet}),
 parameters ALGORITHM-TYPE.&Params
 ({AlgorithmSet}{@algorithm}) OPTIONAL
 }

 SIGNATURE-ALGORITHM ::= CLASS {
 &id OBJECT IDENTIFIER,
 &Params OPTIONAL,
 &Value OPTIONAL,
 ¶mPresence ParamOptions DEFAULT absent,
 &HashSet DIGEST-ALGORITHM OPTIONAL,
 &PublicKeySet PUBLIC-KEY OPTIONAL,
 &smimeCaps SMIME-CAPS OPTIONAL
 } WITH SYNTAX {
 IDENTIFIER &id
 [VALUE &Value]
 [PARAMS [TYPE &Params] ARE ¶mPresence]
 [HASHES &HashSet]
 [PUBLIC KEYS &PublicKeySet]
 [SMIME CAPS &smimeCaps]
 }

 -- from updated RFC 2560 module in [RFC5912]
 BasicOCSPResponse ::= SEQUENCE {
 tbsResponseData ResponseData,
 signatureAlgorithm AlgorithmIdentifier{SIGNATURE-ALGORITHM,
 {sa-dsaWithSHA1 | sa-rsaWithSHA1 |
 sa-rsaWithMD5 | sa-rsaWithMD2, ...}},
 signature BIT STRING,
 certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL
 }

2.4. Versioning and Extensibility

 Specifications are often revised and ASN.1 modules updated to include
 new components. [CCITT.X681.2002] provides two mechanisms useful in
 supporting extensibility: extension markers and version brackets.

Wallace & Gardiner Informational [Page 13]

RFC 6025 ASN.1 Translation October 2010

2.4.1. Extension Markers

 An extension marker is represented by an ellipsis (i.e., three
 adjacent periods). Extension markers are included in specifications
 at points where the protocol designer anticipates future changes.
 This can also be achieved by including EXTENSIBILITY IMPLIED in the
 ASN.1 module definition. EXTENSIBILITY IMPLIED is the equivalent to
 including an extension marker in each type defined in the ASN.1
 module. Extensibility markers are used throughout [RFC5911] and
 [RFC5912] where object sets are defined. In other instances, the
 updated modules retroactively added extension markers where fields
 were added to an earlier version by an update, as shown in the
 CertificateChoices example below.

 Examples:

 -- from updated RFC 3370 module in [RFC5911]
 KeyAgreementAlgs KEY-AGREE ::= { kaa-esdh | kaa-ssdh, ...}

 -- from updated RFC 5652 module in [RFC5911]
 CertificateChoices ::= CHOICE {
 certificate Certificate,
 extendedCertificate [0] IMPLICIT ExtendedCertificate,
 -- Obsolete
 ...,
 [[3: v1AttrCert [1] IMPLICIT AttributeCertificateV1]],
 -- Obsolete
 [[4: v2AttrCert [2] IMPLICIT AttributeCertificateV2]],
 [[5: other [3] IMPLICIT OtherCertificateFormat]]
 }

 Protocol designers should use extension markers within definitions
 that are likely to change. For example, extensibility markers should
 be used when enumerating error values.

2.4.2. Version Brackets

 Version brackets can be used to indicate features that are available
 in later versions of an ASN.1 module but not in earlier versions.
 [RFC5912] added version brackets to the definition of TBSCertificate
 to illustrate the addition of the issuerUniqueID, subjectUniqueID,
 and extensions fields, as shown below.

Wallace & Gardiner Informational [Page 14]

RFC 6025 ASN.1 Translation October 2010

 -- from updated RFC 5280 module in [RFC5912]
 TBSCertificate ::= SEQUENCE {
 version [0] Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier{SIGNATURE-ALGORITHM,
 {SignatureAlgorithms}},
 issuer Name,
 validity Validity,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 ... ,
 [[2: -- If present, version MUST be v2
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL
]],
 [[3: -- If present, version MUST be v3 --
 extensions [3] ExtensionSet{{CertExtensions}} OPTIONAL
]], ... }

3. Character Set Differences

 X.68s uses a character set that is a superset of the character set
 defined in X.208. The character set defined in X.208 includes the
 following:

 A to Z

 a to z

 0 to 9

 :=,{}<.

 ()[]-’"

 The character set in X.68x additionally includes the following:

 !&*/;>@^_|

 The > and | characters can also be used in X.208 syntax in macro
 definitions.

Wallace & Gardiner Informational [Page 15]

RFC 6025 ASN.1 Translation October 2010

4. ASN.1 Translation

4.1. Downgrading from X.68x to X.208

 At a minimum, downgrading an ASN.1 module from X.68x syntax to X.208
 requires the removal of features not supported by X.208. As
 indicated above, the features most commonly used in IETF Security
 Area ASN.1 modules are information object classes (and object sets),
 content constraints, parameterization, extension markers, and version
 brackets. Extension markers and version brackets can simply be
 deleted (or commented out). The definitions for information object
 classes and object sets can also be deleted or commented out, as
 these will not be used. The following checklist can be used in most
 cases:

 o Remove all Information Set Class, Information Set Object, and
 Information Set Object Set definitions and imports from the file.

 o Replace all fixed Type Information Set Class element references
 with the fixed type. (That is, replace FOO.&id with OBJECT
 IDENTIFIER.)

 o Delete all simple constraints.

 o Delete all CONTAINING statements.

 o Replace all variable Type Information Set Class element references
 with either ANY or ANY DEFINED BY statements.

 o Remove version and extension markers.

 o Manually enforce all instances of parameterized types.

4.2. Upgrading from X.208 to X.68x

 The amount of change associated with upgrading from X.208 syntax to
 X.68x syntax is dependent on the reasons for changing and personal
 style. A minimalist approach could consist of altering any
 deprecated features, most commonly ANY DEFINED BY, and adding any
 necessary extensibility markers. A more comprehensive approach may
 include the introduction of constraints, parameterization,
 versioning, extensibility, etc.

Wallace & Gardiner Informational [Page 16]

RFC 6025 ASN.1 Translation October 2010

 The following checklist can be used when upgrading a module without
 introducing constraints:

 Use TYPE-IDENTIFIER.&Type for "ANY".

 Use TYPE-IDENTIFIER.&Type for "ANY DEFINED BY ...".

 When constraints are introduced during an upgrade, additional steps
 are necessary:

 1. Identify each unique class that should be defined based on what
 types of things exist.

 2. Define an Information Object Class for each of the classes above
 with the appropriate elements.

 3. Define all of the appropriate Information Object Sets based on
 the classes defined in step 2 along with the different places
 that they should be used.

 4. Replace ANY by the appropriate class and variable type element.

 5. Replace ANY DEFINED BY with the appropriate variable type element
 and the components constraint. Replace the element used in the
 constraint with the appropriate fixed type element and simple
 constraint.

 6. Add any simple constraints as appropriate.

 7. Define any objects and fill in elements for object sets as
 appropriate.

5. Security Considerations

 Where a module is downgraded from X.68x syntax to X.208 there is loss
 of potential automated enforcement of constraints expressed by the
 author of the module being downgraded. These constraints should be
 captured in prose or ASN.1 comments and enforced through other means,
 as necessary.

 Depending on the feature set of the ASN.1 compiler being used, the
 code to enforce and use constraints may be generated automatically or
 may require the programmer to do this independently. It is the
 responsibility of the programmer to ensure that the constraints on
 the ASN.1 expressed either in prose or in the ASN.1 module are
 actually enforced.

Wallace & Gardiner Informational [Page 17]

RFC 6025 ASN.1 Translation October 2010

6. References

6.1. Normative References

 [CCITT.X208.1988] International Telephone and Telegraph Consultative
 Committee, "Specification of Abstract Syntax
 Notation One (ASN.1)", CCITT Recommendation X.208,
 November 1988.

 [CCITT.X680.2002] International Telephone and Telegraph Consultative
 Committee, "Abstract Syntax Notation One (ASN.1):
 Specification of basic notation",
 CCITT Recommendation X.680, July 2002.

 [CCITT.X681.2002] International Telephone and Telegraph Consultative
 Committee, "Abstract Syntax Notation One (ASN.1):
 Information object specification",
 CCITT Recommendation X.681, July 2002.

 [CCITT.X682.2002] International Telephone and Telegraph Consultative
 Committee, "Abstract Syntax Notation One (ASN.1):
 Constraint specification", CCITT Recommendation
 X.682, July 2002.

 [CCITT.X683.2002] International Telephone and Telegraph Consultative
 Committee, "Abstract Syntax Notation One (ASN.1):
 Parameterization of ASN.1 specifications",
 CCITT Recommendation X.683, July 2002.

6.2. Informative References

 [CCITT.X209.1988] International Telephone and Telegraph Consultative
 Committee, "Specification of Basic Encoding Rules
 for Abstract Syntax Notation One (ASN.1)",
 CCITT Recommendation X.209, 1988.

 [CCITT.X690.2002] International Telephone and Telegraph Consultative
 Committee, "ASN.1 encoding rules: Specification of
 basic encoding Rules (BER), Canonical encoding
 rules (CER) and Distinguished encoding rules
 (DER)", CCITT Recommendation X.690, July 2002.

 [RFC2560] Myers, M., Ankney, R., Malpani, A., Galperin, S.,
 and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol
 - OCSP", RFC 2560, June 1999.

Wallace & Gardiner Informational [Page 18]

RFC 6025 ASN.1 Translation October 2010

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen,
 S., Housley, R., and W. Polk, "Internet X.509
 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile",
 RFC 5280, May 2008.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)",
 STD 70, RFC 5652, September 2009.

 [RFC5911] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
 Cryptographic Message Syntax (CMS) and S/MIME",
 RFC 5911, June 2010.

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
 the Public Key Infrastructure Using X.509 (PKIX)",
 RFC 5912, June 2010.

Authors’ Addresses

 Carl Wallace
 Cygnacom Solutions
 Suite 5400
 7925 Jones Branch Drive
 McLean, VA 22102

 EMail: cwallace@cygnacom.com

 Charles Gardiner
 BBN Technologies
 10 Moulton Street
 Cambridge, MA 02138

 EMail: gardiner@bbn.com

Wallace & Gardiner Informational [Page 19]

