
Internet Engineering Task Force (IETF) C. Shen
Request for Comments: 5979 H. Schulzrinne
Category: Experimental Columbia U.
ISSN: 2070-1721 S. Lee
 Samsung
 J. Bang
 Samsung AIT
 March 2011

 NSIS Operation over IP Tunnels

Abstract

 NSIS Quality of Service (QoS) signaling enables applications to
 perform QoS reservation along a data flow path. When the data flow
 path contains IP tunnel segments, NSIS QoS signaling has no effect
 within those tunnel segments. Therefore, the resulting tunnel
 segments could become the weakest QoS link and invalidate the QoS
 efforts in the rest of the end-to-end path. The problem with NSIS
 signaling within the tunnel is caused by the tunnel encapsulation
 that masks packets’ original IP header fields. Those original IP
 header fields are needed to intercept NSIS signaling messages and
 classify QoS data packets. This document defines a solution to this
 problem by mapping end-to-end QoS session requests to corresponding
 QoS sessions in the tunnel, thus extending the end-to-end QoS
 signaling into the IP tunnel segments.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are a candidate for any level of
 Internet Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5979.

Shen, et al. Experimental [Page 1]

RFC 5979 NSIS Operation over IP Tunnels March 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Shen, et al. Experimental [Page 2]

RFC 5979 NSIS Operation over IP Tunnels March 2011

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Problem Statement . 6
 3.1. IP Tunneling Protocols 6
 3.2. NSIS QoS Signaling in the Presence of IP Tunnels 7
 4. Design Overview . 10
 4.1. Design Requirements 10
 4.2. Overall Design Approach 11
 4.3. Tunnel Flow ID for Different IP Tunneling Protocols . . . 13
 5. NSIS Operation over Tunnels with Preconfigured QoS Sessions . 14
 5.1. Sender-initiated Reservation 14
 5.2. Receiver-Initiated Reservation 15
 6. NSIS Operation over Tunnels with Dynamically Created QoS
 Sessions . 16
 6.1. Sender-Initiated Reservation 17
 6.2. Receiver-Initiated Reservation 19
 7. NSIS-Tunnel Signaling Capability Discovery 22
 8. IANA Considerations . 23
 9. Security Considerations 24
 10. Acknowledgments . 24
 11. References . 25
 11.1. Normative References 25
 11.2. Informative References 25

1. Introduction

 IP tunneling [RFC1853] [RFC2003] is a technique that allows a packet
 to be encapsulated and carried as payload within an IP packet. The
 resulting encapsulated packet is called an IP tunnel packet, and the
 packet being tunneled is called the original packet. In typical
 scenarios, IP tunneling is used to exert explicit forwarding path
 control (e.g., in Mobile IP [RFC5944]), implement secure IP data
 delivery (e.g., in IPsec [RFC4301]), and help packet routing in IP
 networks of different characteristics (e.g., between IPv6 and IPv4
 networks [RFC4213]). Section 3.1 summarizes a list of common IP
 tunneling protocols.

 This document considers the situation when the packet being tunneled
 contains a Next Step In Signaling (NSIS) [RFC4080] packet. NSIS is
 an IP signaling architecture consisting of a Generic Internet
 Signaling Transport (GIST) [RFC5971] sub-layer for signaling
 transport, and an NSIS Signaling Layer Protocol (NSLP) sub-layer
 customizable for different applications. We focus on the Quality of
 Service (QoS) NSLP [RFC5974] which provides functionalities that
 extend those of the earlier RSVP [RFC2205] signaling. In this
 document, the terms "NSIS" and "NSIS QoS" are used interchangeably.

Shen, et al. Experimental [Page 3]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 Without additional efforts, NSIS signaling does not work within IP
 tunnel segments of a signaling path. The reason is that tunnel
 encapsulation masks the original packet including its header and
 payload. However, information from the original packet is required
 both for NSIS peer node discovery and for QoS data flow packet
 classification. Without access to information from the original
 packet, an IP tunnel acts as an NSIS-unaware virtual link in the end-
 to-end NSIS signaling path.

 This document defines a mechanism to extend end-to-end NSIS signaling
 for QoS reservation into IP tunnels. The NSIS-aware IP tunnel
 endpoints that support this mechanism are called NSIS-tunnel-aware
 endpoints. There are two main operation modes. On one hand, if the
 tunnel already has preconfigured QoS sessions, the NSIS-tunnel-aware
 endpoints map end-to-end QoS signaling requests directly to existing
 tunnel sessions as long as there are enough tunnel session resources;
 on the other hand, if no preconfigured tunnel QoS sessions are
 available, the NSIS-tunnel-aware endpoints dynamically initiate and
 maintain tunnel QoS sessions that are then associated with the
 corresponding end-to-end QoS sessions. Note that whether or not the
 tunnel preconfigures QoS sessions, and which preconfigured tunnel QoS
 sessions a particular end-to-end QoS signaling request should be
 mapped to are policy issues that are out of scope of this document.

 The rest of this document is organized as follows. Section 2 defines
 terminology. Section 3 presents the problem statement including
 common IP tunneling protocols and existing behavior of NSIS QoS
 signaling over IP tunnels. Section 4 introduces the design
 requirements and overall approach of our mechanism. More details
 about how NSIS QoS signaling operates with tunnels that use
 preconfigured QoS and dynamic QoS signaling are provided in Sections
 5 and 6. Section 7 describes a method to automatically discover
 whether a tunnel endpoint node supports the NSIS-tunnel
 interoperation mechanism defined in this document. Section 8
 discusses IANA considerations, and Section 9 considers security.

2. Terminology

 This document uses terminology defined in [RFC2473], [RFC5971], and
 [RFC5974]. In addition, the following terms are used:

 IP Tunnel: A tunnel that is configured as a virtual link between two
 IP nodes and on which the encapsulating protocol is IP.

 Tunnel IP Header: The IP header prepended to the original packet
 during encapsulation. It specifies the tunnel endpoints as source
 and destination.

Shen, et al. Experimental [Page 4]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 Tunnel-Specific Header: The header fields inserted by the
 encapsulation mechanism after the tunnel IP header and before the
 original packet. These headers may or may not exist depending on
 the specific tunnel mechanism used. An example of such header
 fields is the Encapsulation Security Payload (ESP) header for
 IPsec [RFC4301] tunneling mode.

 Tunnel Intermediate Node (Tmid): A node that resides in the middle
 of the forwarding path between the tunnel entry-point node and the
 tunnel exit-point node.

 Flow Identifier (Flow ID): The set of header fields that is used to
 identify a data flow. For example, it may include flow sender and
 receiver addresses, and protocol and port numbers.

 End-to-End QoS Signaling: The signaling process that manipulates the
 QoS control information in the end-to-end path from the flow
 sender to the flow receiver. When the end-to-end flow path
 contains tunnel segments, this document uses end-to-end QoS
 signaling to refer to the QoS signaling outside the tunnel
 segments. This document uses "end-to-end QoS signaling" and "end-
 to-end signaling" interchangeably.

 Tunnel QoS Signaling: The signaling process that manipulates the QoS
 control information in the path inside a tunnel, between the
 tunnel entry-point and the tunnel exit-point nodes. This document
 uses "tunnel QoS signaling" and "tunnel signaling"
 interchangeably.

 NSIS-Aware Node: A node that supports NSIS signaling.

 NSIS-Aware Tunnel Endpoint Node: A tunnel endpoint node that is also
 an NSIS node.

 NSIS-Tunnel-Aware Endpoint Node: An NSIS-aware tunnel endpoint node
 that also supports the mechanism for NSIS operating over IP
 tunnels defined in this document.

Shen, et al. Experimental [Page 5]

RFC 5979 NSIS Operation over IP Tunnels March 2011

3. Problem Statement

3.1. IP Tunneling Protocols

 Tunnel from node B to node D
 <---------------------->
 Tunnel Tunnel Tunnel
 Entry-Point Intermediate Exit-Point
 Node Node Node
 +-+ +-+ +-+ +-+ +-+
 |A|-->--//-->--|B|=====>====|C|===//==>===|D|-->--//-->--|E|
 +-+ +-+ +-+ +-+ +-+
 Original Original
 Packet Packet
 Source Destination
 Node Node

 Figure 1: IP Tunnel

 The following description about IP tunneling is derived from
 [RFC2473] and adapted for both IPv4 and IPv6.

 IP tunneling (Figure 1) is a technique for establishing a "virtual
 link" between two IP nodes for transmitting data packets as payloads
 of IP packets. From the point of view of the two nodes, this
 "virtual link", called an IP tunnel, appears as a point-to-point link
 on which IP acts like a link-layer protocol. The two IP nodes play
 specific roles. One node encapsulates original packets received from
 other nodes or from itself and forwards the resulting tunnel packets
 through the tunnel. The other node decapsulates the received tunnel
 packets and forwards the resulting original packets towards their
 destinations, possibly itself. The encapsulating node is called the
 tunnel entry-point node (Tentry), and it is the source of the tunnel
 packets. The decapsulating node is called the tunnel exit-point node
 (Texit), and it is the destination of the tunnel packets.

 An IP tunnel is a unidirectional mechanism - the tunnel packet flow
 takes place in one direction between the IP tunnel entry-point and
 exit-point nodes. Bidirectional tunneling is achieved by combining
 two unidirectional mechanisms, that is, configuring two tunnels, each
 in opposite direction to the other -- the entry-point node of one
 tunnel is the exit-point node of the other tunnel.

 Figure 2 illustrates the original packet and the resulting tunnel
 packet. In a tunnel packet, the original packet is encapsulated
 within the tunnel header. The tunnel header contains two components,
 the tunnel IP header and other tunnel-specific headers. The tunnel
 IP header specifies the tunnel entry-point node as the IP source

Shen, et al. Experimental [Page 6]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 address and the tunnel exit-point node as the IP destination address,
 causing the tunnel packet to be forwarded in the tunnel. The tunnel-
 specific header between the tunnel IP header and the original packet
 is optional, depending on the tunneling protocol in use.

 +----------------------------------//-----+
 | Original | |
 | | Original Packet Payload |
 | Header | |
 +----------------------------------//-----+
 < Original Packet >
 |
 v
 < Tunnel Headers > < Original Packet >
 +---------+-----------+-------------------------//--------------+
Tunnel	Tunnel-	
IP	Specific	Original Packet
Header	Header	
 +---------+-----------+-------------------------//--------------+
 < Tunnel IP Packet >

 Figure 2: IP Tunnel Encapsulation

 Commonly used IP tunneling protocols include Generic Routing
 Encapsulation (GRE) [RFC1701][RFC2784], Generic Routing Encapsulation
 over IPv4 Networks (GREIPv4) [RFC1702] and IP Encapsulation within IP
 (IPv4INIPv4) [RFC1853][RFC2003], Minimal Encapsulation within IP
 (MINENC) [RFC2004], IPv6 over IPv4 Tunneling (IPv6INIPv4) [RFC4213],
 Generic Packet Tunneling in IPv6 Specification (IPv6GEN) [RFC2473]
 and IPsec tunneling mode [RFC4301] [RFC4303]. Among these tunneling
 protocols, the tunnel headers in IPv4INIPv4, IPv6INIPv4, and IPv6GEN
 contain only a tunnel IP header, and no tunnel-specific header. All
 the other tunneling protocols have a tunnel header consisting of both
 a tunnel IP header and a tunnel-specific header. The tunnel-specific
 header is the GRE header for GRE and GREIPv4, the minimum
 encapsulation header for MINENC, and the ESP header for IPsec
 tunneling mode. As will be discussed in Section 4.3, some of the
 tunnel-specific headers may be used to identify a flow in the tunnel
 and facilitate NSIS operating over IP tunnels.

3.2. NSIS QoS Signaling in the Presence of IP Tunnels

 Typically, applications use NSIS QoS signaling to reserve resources
 for a flow along the flow path. NSIS QoS signaling can be initiated
 by either the flow sender or flow receiver. Figure 3 shows an
 example scenario with five NSIS nodes, including flow sender node A,
 flow receiver node E, and intermediate NSIS nodes B, C, and D. Nodes
 that are not NSIS QoS capable are not shown.

Shen, et al. Experimental [Page 7]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 NSIS QoS NSIS QoS NSIS QoS NSIS QoS NSIS QoS
 Node Node Node Node Node
 +-+ +-+ +-+ +-+ +-+
 |A|-->--//-->--|B|----->----|C|---//-->---|D|-->--//-->--|E|
 +-+ +-+ +-+ +-+ +-+
 Flow Flow
 Sender Receiver
 Node Node

 Figure 3: Example Scenario of NSIS QoS Signaling

 Figure 4 illustrates a sender-initiated signaling sequence in the
 scenario of Figure 3. Sender node A sends a RESERVE message towards
 receiver node E. The RESERVE message gets forwarded by intermediate
 NSIS Nodes B, C, and D and finally reaches receiver node E. Receiver
 node E then sends back a RESPONSE message confirming the QoS
 reservation, again through the previous intermediate NSIS nodes in
 the flow path.

 There are two important aspects in the above signaling process that
 are worth mentioning. First, the flow sender does not initially know
 exactly which intermediate nodes are NSIS-aware and should be
 involved in the signaling process for a flow from node A to node E.
 Discovery of those nodes (namely, nodes B, C, and D) is accomplished
 by a separate NSIS peer discovery process (not shown above; see
 [RFC5971]). The NSIS peer discovery messages contain special IP
 header and payload formats or include a Router Alert Option (RAO)
 [RFC2113] [RFC2711]. The special formats of NSIS discovery messages
 allow nodes B, C, and D to intercept the messages and subsequently
 insert themselves into the signaling path for the flow in question.
 After formation of the signaling path, all signaling messages
 corresponding to this flow will be passed to these nodes for
 processing. Other nodes that are not NSIS-aware simply forward all
 signaling messages, as they would any other IP packets that do not
 require additional handling.

Shen, et al. Experimental [Page 8]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 Node A Node B Node C Node D Node E
 | | | | |
 | RESERVE | | | |
 +------------->| | | |
 | | RESERVE | | |
 | +------------->| | |
 | | | RESERVE | |
 | | +------------->| |
 | | | | RESERVE |
 | | | +------------->|
 | | | | RESPONSE |
 | | | |<-------------+
 | | | RESPONSE | |
 | | |<-------------+ |
 | | RESPONSE | | |
 | |<-------------+ | |
 | RESPONSE | | | |
 |<-------------+ | | |
 | | | | |
 | | | | |

 Figure 4: Sender-Initiated NSIS QoS Signaling

 Second, the goal of QoS signaling is to install control information
 to give QoS treatment for the flow being signaled. Basic QoS control
 information includes the data Flow ID for packet classification and
 the type of QoS treatment those packets are entitled to. The Flow ID
 contains a set of header fields such as flow sender and receiver
 addresses, and protocol and port numbers.

 Now consider Figure 5 where nodes B, C, and D are endpoints and
 intermediate nodes of an IP tunnel. During the signaling path
 discovery process, node B can still intercept and process NSIS peer
 discovery messages if it recognizes them before performing tunnel
 encapsulation; node D can identify NSIS peer discovery messages after
 performing tunnel decapsulation. A tunnel intermediate node such as
 node C, however, only sees the tunnel header of the packets and will
 not be able to identify the original NSIS peer discovery message or
 insert itself in the flow signaling path. Furthermore, the Flow ID
 of the original flow is based on IP header fields of the original
 packet. Those fields are also hidden in the payload of the tunnel
 packet. So, there is no way node C can classify packets belonging to
 that flow in the tunnel.

Shen, et al. Experimental [Page 9]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 Tunnel from node B to node D
 <---------------------->
 Tunnel Tunnel Tunnel
 Entry-Point Intermediate Exit-Point
 NSIS QoS NSIS QoS NSIS QoS NSIS QoS NSIS QoS
 Node Node Node Node Node
 +-+ +-+ +-+ +-+ +-+
 |A|-->--//-->--|B|=====>====|C|===//==>===|D|-->--//-->--|E|
 +-+ +-+ +-+ +-+ +-+
 Flow Flow
 Sender Receiver
 Node Node

 Figure 5: Example Scenario of NSIS QoS Signaling with IP Tunnel

 In summary, an IP tunnel segment normally appears like a QoS-unaware
 virtual link. Since the best QoS of an end-to-end path is judged
 based on its weakest segment, we need a mechanism to extend NSIS into
 the IP tunnel segments, which should allow the tunnel intermediate
 nodes to intercept original NSIS signaling messages and classify
 original data flow packets in the presence of tunnel encapsulation.

4. Design Overview

4.1. Design Requirements

 We identify the following design requirements for NSIS operating over
 IP tunnels.

 o The mechanism should work with all common IP tunneling protocols
 listed in Section 3.1.

 o Some IP tunnels maintain preconfigured QoS sessions inside the
 tunnel. The mechanism should work for IP tunnels both with and
 without preconfigured tunnel QoS sessions.

 o The mechanism should minimize the required upgrade to existing
 infrastructure in order to facilitate its deployment.
 Specifically, we should limit the necessary upgrade to the tunnel
 endpoints.

 o The mechanism should provide a method for one NSIS-tunnel-aware
 endpoint to discover whether the other endpoint is also NSIS-
 tunnel-aware, when necessary.

 o The mechanism should learn from the design experience of previous
 related work on RSVP over IP tunnels (RSVP-TUNNEL) [RFC2746],
 while also addressing the following major differences of NSIS from

Shen, et al. Experimental [Page 10]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 RSVP. First, NSIS is designed as a generic framework to
 accommodate various signaling application needs, and therefore is
 split into a signaling transport layer and a signaling application
 layer; RSVP does not have a layer split and is designed only for
 QoS signaling. Second, NSIS QoS NSLP allows both sender-initiated
 and receiver-initiated reservations; RSVP only supports receiver-
 initiated reservations. Third, NSIS deals only with unicast; RSVP
 also supports multicast. Fourth, NSIS integrates a new SESSION-ID
 feature which is different from the session identification concept
 in RSVP.

4.2. Overall Design Approach

 The overall design of this NSIS signaling and IP tunnel interworking
 mechanism draws similar concepts from RSVP-TUNNEL [RFC2746], but is
 tailored and extended for NSIS operation.

 Since we only consider unidirectional flows, to accommodate flows in
 both directions of a tunnel, we require both tunnel entry-point and
 tunnel exit-point to be NSIS-tunnel-aware. An NSIS-tunnel-aware
 endpoint knows whether the other tunnel endpoint is NSIS-tunnel-aware
 either through preconfiguration or through an NSIS-tunnel capability
 discovery mechanism defined in Section 7.

 Tunnel endpoints need to always intercept NSIS peer discovery
 messages and insert themselves into the NSIS signaling path so they
 can receive all NSIS signaling messages and coordinate their
 interaction with tunnel QoS.

 To facilitate QoS handling in the tunnel, an end-to-end QoS session
 is mapped to a tunnel QoS session, either preconfigured or
 dynamically created. The tunnel session uses a tunnel Flow ID based
 on information available in the tunnel headers, thus allowing tunnel
 intermediate nodes to classify flow packets correctly.

 For tunnels that maintain preconfigured QoS sessions, upon receiving
 a request to reserve resources for an end-to-end session, the tunnel
 endpoint maps the end-to-end QoS session to an existing tunnel
 session. To simplify the design, the mapping decision is always made
 by the tunnel entry-point, regardless of whether the end-to-end
 session uses sender-initiated or receiver-initiated NSIS signaling
 mode. The details about which end-to-end session can be mapped to
 which preconfigured tunnel session depend on policy mechanisms
 outside the scope of this document.

 For tunnels that do not maintain preconfigured QoS sessions, the
 NSIS-tunnel-aware endpoints dynamically create and manage a
 corresponding tunnel QoS session for the end-to-end session. Since

Shen, et al. Experimental [Page 11]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 the initiation mode of both QoS sessions can be sender-initiated or
 receiver-initiated, to simplify the design, we require that the
 initiation mode of the tunnel QoS session follows that of the end-to-
 end QoS session. In other words, the end-to-end QoS session and its
 corresponding tunnel QoS session are either both sender-initiated or
 both receiver-initiated. To keep the handling mechanism consistent
 with the case for tunnels with preconfigured QoS sessions, the tunnel
 entry-point always initiates the mapping between the tunnel session
 and the end-to-end session.

 As the mapping initiator, the tunnel entry-point records the
 association between the end-to-end session and its corresponding
 tunnel session, both in tunnels with and without preconfigured QoS
 sessions. This association serves two purposes, one for the
 signaling plane and the other for the data plane. For the signaling
 plane, the association enables the tunnel entry-point to coordinate
 necessary interactions between the end-to-end and the tunnel QoS
 sessions, such as QoS adjustment in sender-initiated reservations.
 For the data plane, the association allows the tunnel entry-point to
 correctly encapsulate data flow packets according to the chosen
 tunnel Flow ID. Since the tunnel Flow ID uses header fields that are
 visible inside the tunnel, the tunnel intermediate nodes can classify
 the data flow packets and apply appropriate QoS treatment.

 In addition to the tunnel entry-point recording the association
 between the end-to-end session and its corresponding tunnel session,
 the tunnel exit-point also needs to maintain the same association for
 similar reasons. For the signaling plane, this association at the
 tunnel exit-point enables the interaction of the end-to-end and the
 tunnel QoS session such as QoS adjustment in receiver-initiated
 reservations. For the data plane, this association tells the tunnel
 exit-point that the relevant data flow packets need to be
 decapsulated according to the corresponding tunnel Flow ID.

 In tunnels with preconfigured QoS sessions, the tunnel exit-point may
 also learn about the mapping information between the corresponding
 tunnel and end-to-end QoS sessions through preconfiguration as well.
 In tunnels without preconfigured QoS sessions, the tunnel exit-point
 knows the mapping between the corresponding tunnel and end-to-end QoS
 sessions through the NSIS signaling process that creates the tunnel
 QoS sessions inside the tunnel, with the help of appropriate QoS NSLP
 session-binding and message-binding mechanisms.

 One problem for NSIS operating over IP tunnels that dynamically
 create QoS sessions is that it involves two signaling sequences. The
 outcome of the tunnel signaling session directly affects the outcome
 of the end-to-end signaling session. Since the two signaling
 sessions overlap in time, there are circumstances when a tunnel

Shen, et al. Experimental [Page 12]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 endpoint has to decide whether it should proceed with the end-to-end
 signaling session while it is still waiting for results of the tunnel
 session. This problem can be addressed in two ways, namely
 sequential mode and parallel mode. In sequential mode, end-to-end
 signaling pauses while it is waiting for results of tunnel signaling,
 and resumes upon receipt of the tunnel signaling outcome. In
 parallel mode, end-to-end signaling continues outside the tunnel
 while tunnel signaling is still in process and its outcome is
 unknown. The parallel mode may lead to reduced signaling delays if
 the QoS resources in the tunnel path are sufficient compared to the
 rest of the end-to-end path. If the QoS resources in the tunnel path
 are more constraint than the rest of the end-to-end path, however,
 the parallel mode may lead to wasted end-to-end signaling or may
 necessitate renegotiation after the tunnel signaling outcome becomes
 available. In those cases, the signaling flow of the parallel mode
 also tends to be complicated. This document adopts a sequential mode
 approach for the two signaling sequences.

4.3. Tunnel Flow ID for Different IP Tunneling Protocols

 A tunnel Flow ID identifies the end-to-end flow for packet
 classification within the tunnel. The tunnel Flow ID is based on a
 set of tunnel header fields. Different tunnel Flow IDs can be chosen
 for different tunneling mechanisms in order to minimize the
 classification overhead. This document specifies the following Flow
 ID formats for the respective tunneling protocols.

 o For IPv6 tunneling protocols (IPv6GEN), the tunnel Flow ID
 consists of the tunnel entry-point IPv6 address and the tunnel
 exit-point IPv6 address plus a unique IPv6 flow label [RFC3697].

 o For IPsec tunnel mode (IPsec), the tunnel Flow ID contains the
 tunnel entry-point IP address and the tunnel exit-point IP address
 plus the Security Parameter Index (SPI).

 o For all other tunneling protocols (GRE, GREIPv4, IPv4INIPv4,
 MINENC, IPv6INIPv4), the tunnel entry-point inserts an additional
 UDP header between the tunnel header and the original packet. The
 Flow ID consists of the tunnel entry-point and tunnel exit-point
 IP addresses and the source port number in the additional UDP
 header. The source port number is dynamically chosen by the
 tunnel entry-point and conveyed to the tunnel exit-point. In
 these cases, it is especially important that the tunnel exit-point
 understands the additional UDP encapsulation, and therefore can
 correctly decapsulate both the normal tunnel header and the
 additional UDP header. In other words, both tunnel endpoints need
 to be NSIS-tunnel-aware.

Shen, et al. Experimental [Page 13]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 The above recommendations about choosing the tunnel Flow ID apply to
 dynamically created QoS tunnel sessions. For preconfigured QoS
 tunnel sessions, the corresponding Flow ID is determined by the
 configuration mechanism itself. For example, if the tunnel QoS is
 Diffserv based, the Diffserv Code Point (DSCP) field value may be
 used to identify the corresponding tunnel session.

5. NSIS Operation over Tunnels with Preconfigured QoS Sessions

 When tunnel QoS is managed by preconfigured QoS sessions, both the
 tunnel entry-point and tunnel exit-point need to be configured with
 information about the Flow ID of the tunnel QoS session. This allows
 the tunnel endpoints to correctly perform matching encapsulating and
 decapsulating operations. The procedures of NSIS operating over
 tunnels with preconfigured QoS sessions depend on whether the end-to-
 end NSIS signaling is sender-initiated or receiver-initiated. But in
 both cases, it is the tunnel entry-point that first creates the
 mapping between a tunnel session and an end-to-end session.

5.1. Sender-initiated Reservation

 Figure 6 illustrates the signaling sequence when end-to-end signaling
 outside the tunnel is sender-initiated. Upon receiving a RESERVE
 message from the sender, Tentry checks the tunnel QoS configuration,
 determines whether and how this end-to-end session can be mapped to a
 preconfigured tunnel session. The mapping criteria are part of the
 preconfiguration and outside the scope of this document. Tentry then
 tunnels the RESERVE message to Texit. Texit forwards the RESERVE
 message to the receiver. The receiver replies with a RESPONSE
 message that arrives at Texit, Tentry, and finally the sender. If
 the RESPONSE message that Tentry receives confirms that the overall
 signaling is successful, Tentry starts to encapsulate all incoming
 packets of the data flow using the tunnel Flow ID corresponding to
 the mapped tunnel session. Texit knows how to decapsulate the tunnel
 packets because it recognizes the mapped tunnel Flow ID based on
 information supplied during tunnel session preconfiguration.

Shen, et al. Experimental [Page 14]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 Sender Tentry Tmid Texit Receiver

 | | | | |
 | RESERVE | | | |
 +------------->| | | |
 | | RESERVE | | |
 | +---------------------------->| |
 | | | | RESERVE |
 | | | +------------->|
 | | | | RESPONSE |
 | | | |<-------------+
 | | RESPONSE | | |
 | |<----------------------------+ |
 | RESPONSE | | | |
 |<-------------+ | | |
 | | | | |
 | | | | |

 Figure 6: Sender-Initiated End-to-End Session with Preconfigured
 Tunnel QoS Sessions

5.2. Receiver-Initiated Reservation

 Figure 7 shows the signaling sequence when end-to-end signaling
 outside the tunnel is receiver-initiated. Upon receiving the first
 end-to-end Query message, Tentry examines the tunnel QoS
 configuration, then updates and tunnels the Query message to Texit.
 Texit decapsulates the QUERY message, processes it, and forwards it
 toward the receiver. The receiver sends back a RESERVE message
 passing through Texit and arriving at Tentry. Tentry decides on
 whether and how the QoS request for this end-to-end session can be
 mapped to a preconfigured tunnel session based on criteria outside
 the scope of this document. Then, Tentry forwards the RESERVE
 message towards the sender. The signaling continues until a RESPONSE
 message arrives at Tentry, Texit, and finally the receiver. If the
 RESPONSE message that Tentry receives confirms that the overall
 signaling is successful, Tentry starts to encapsulate all incoming
 packets of the data flow using the tunnel Flow ID corresponding to
 the mapped tunnel session. Similarly, Texit knows how to decapsulate
 the tunnel packets because it recognizes the mapped tunnel Flow ID
 based on information supplied during tunnel session preconfiguration.

 Since separate tunnel QoS signaling is not involved in preconfigured
 QoS tunnels, Figures 6 and 7 make the tunnel look like a single
 virtual link. The signaling path simply skips all tunnel
 intermediate nodes. However, both Tentry and Texit need to deploy
 the NSIS-tunnel-related functionalities described above, including
 acting on the end-to-end NSIS signaling messages based on tunnel QoS

Shen, et al. Experimental [Page 15]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 status, mapping end-to-end and tunnel QoS sessions, and correctly
 encapsulating and decapsulating tunnel packets according to the
 tunnel protocol and the configured tunnel Flow ID.

 Sender Tentry Tmid Texit Receiver

 | | | | |
 | QUERY | | | |
 +------------->| | | |
 | | QUERY | | |
 | +---------------------------->| |
 | | | | QUERY |
 | | | +------------->|
 | | | | RESERVE |
 | | | |<-------------+
 | | RESERVE | | |
 | |<----------------------------+ |
 | RESERVE | | | |
 |<-------------+ | | |
 | RESPONSE | | | |
 +------------->| | | |
 | | RESPONSE | | |
 | +---------------------------->| |
 | | | | RESPONSE |
 | | | +------------->|
 | | | | |
 | | | | |

 Figure 7: Receiver-Initiated End-to-End Session with Preconfigured
 Tunnel QoS Sessions

6. NSIS Operation over Tunnels with Dynamically Created QoS Sessions

 When there are no preconfigured tunnel QoS sessions, a tunnel can
 apply the same NSIS QoS signaling mechanism used for the end-to-end
 path to manage the QoS inside the tunnel. The tunnel NSIS signaling
 involves only those NSIS nodes in the tunnel forwarding path. The
 Flow IDs for the tunnel signaling are based on tunnel header fields.
 NSIS peer discovery messages inside the tunnel distinguish themselves
 using the tunnel header fields, which solves the problem for tunnel
 intermediate NSIS nodes to intercept signaling messages.

 When tunnel endpoints dynamically create tunnel QoS sessions, the
 initiation mode of the tunnel session always follows the initiation
 mode of the end-to-end session. Specifically, when the end-to-end
 session is sender-initiated, the tunnel session should also be
 sender-initiated; when the end-to-end session is receiver-initiated,
 the tunnel session should also be receiver-initiated.

Shen, et al. Experimental [Page 16]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 The tunnel entry-point conveys the corresponding tunnel Flow ID
 associated with an end-to-end session to the tunnel exit-point during
 the tunnel signaling process. The tunnel entry-point also informs
 the exit-point of the binding between the corresponding tunnel
 session and end-to-end session through the BOUND_SESSION_ID QoS NSLP
 message object. The reservation message dependencies between the
 tunnel session and end-to-end session are resolved using the MSG-ID
 and BOUND-MSG-ID objects of the QoS NSLP message binding mechanism.

6.1. Sender-Initiated Reservation

 Figure 8 shows the typical messaging sequence of how NSIS operates
 over IP tunnels when both the end-to-end session and tunnel session
 are sender-initiated. Tunnel signaling messages are distinguished
 from end-to-end messages by a prime symbol after the message name.
 The sender first sends an end-to-end RESERVE message (1) that arrives
 at Tentry. Tentry chooses the tunnel Flow ID, creates the tunnel
 session, and associates the end-to-end session with the tunnel
 session. Tentry then sends a tunnel RESERVE’ message (2) matching
 the request of the end-to-end session towards Texit to reserve tunnel
 resources. This RESERVE’ message (2) includes a MSG-ID object that
 contains a randomly generated 128-bit MSG-ID. Meanwhile, Tentry
 inserts a BOUND-MSG-ID object containing the same MSG-ID as well as a
 BOUND-SESSION-ID object containing the SESSION-ID of the tunnel
 session into the original RESERVE message, and sends this RESERVE
 message (3) towards Texit using normal tunnel encapsulation. The
 Message_Binding_Type flags of both the MSG-ID and BOUND-MSG-ID
 objects in the RESERVE’ and RESERVE messages (2, 3) are SET,
 indicating a bidirectional binding. The tunnel RESERVE’ message (2)
 is processed hop-by-hop inside the tunnel for the flow identified by
 the chosen tunnel Flow ID, while the end-to-end RESERVE message (3)
 passes through the tunnel intermediate nodes (Tmid) just like other
 tunneled packets. These two messages could arrive at Texit in
 different orders, and the reaction of Texit in these different
 situations should combine the tunnel QoS message processing rules
 with the QoS NSLP processing principles for message binding
 [RFC5974], as illustrated below.

 The first possibility is shown in the example messaging flow of
 Figure 8, where the tunnel RESERVE’ message (2), also known as the
 triggering message in QoS NSLP message binding terms, arrives first.
 Since the message binding is bidirectional, Texit records the MSG-ID
 of the RESERVE’ message (2), enqueues it and starts a MsgIDWait timer
 waiting for the end-to-end RESERVE message (3), also known as the
 bound signaling message in QoS NSLP message binding terms. The timer

Shen, et al. Experimental [Page 17]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 Sender Tentry Tmid Texit Receiver

 | | | | |
 | RESERVE(1) | | | |
 +------------->| | | |
 | | RESERVE’(2) | | |
 | +=============>| | |
 | | | RESERVE’(2) | |
 | | +=============>| |
 | | RESERVE(3) | |
 | +---------------------------->| |
 | | | RESPONSE’(4) | |
 | | |<=============+ |
 | | RESPONSE’(4) | | |
 | |<=============+ | |
 | | | | RESERVE(5) |
 | | | +------------->|
 | | | | RESPONSE(6) |
 | | | |<-------------+
 | | RESPONSE(6) | | |
 | |<----------------------------+ |
 | RESPONSE(6) | | | |
 |<-------------+ | | |
 | | | | |
 | | | | |

 (1,5): RESERVE w/o BOUND-MSG-ID and BOUND-SESSION-ID
 (2): RESERVE’ w/ MSG-ID
 (3): RESERVE w/ BOUND-MSG-ID and BOUND-SESSION-ID

 Figure 8: Sender-Initiated Reservation for Both End-to-End and Tunnel
 Signaling

 value is set to the default retransmission timeout period
 QOSNSLP_REQUEST_RETRY. When the end-to-end RESERVE message (3)
 arrives, Texit notices that there is an existing stored MSG-ID which
 matches the MSG-ID in the BOUND-MSG-ID object of the incoming RESERVE
 message (3). Therefore, the message binding condition has been
 satisfied. Texit resumes processing of the tunnel RESERVE’ message
 (2), creates the reservation state for the tunnel session, and sends
 a tunnel RESPONSE’ message (4) to Tentry. At the same time, Texit
 checks the BOUND-SESSION-ID object of the end-to-end RESERVE message
 (3) and records the binding of the corresponding tunnel session with
 the end-to-end session. Texit also updates the end-to-end RESERVE
 message based on the result of the tunnel session reservation,
 removes its tunnel BOUND-SESSION-ID and BOUND-MSG-ID object and
 forwards the end-to-end RESERVE message (5) along the path towards

Shen, et al. Experimental [Page 18]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 the receiver. When the receiver receives the end-to-end RESERVE
 message (5), it sends an end-to-end RESPONSE message (6) back to the
 sender.

 The second possibility is that the end-to-end RESERVE message arrives
 before the tunnel RESERVE’ message at Texit. In that case, Texit
 notices a BOUND-SESSION-ID object and a BOUND-MSG-ID object in the
 end-to-end RESERVE message, but realizes that the tunnel session does
 not exist yet. So, Texit enqueues the RESERVE message and starts a
 MsgIDWait timer. The timer value is set to the default
 retransmission timeout period QOSNSLP_REQUEST_RETRY. When the
 corresponding tunnel RESERVE’ message arrives with a MSG-ID matching
 that of the outstanding BOUND-MSG-ID object, the message binding
 condition is satisfied. Texit sends a tunnel RESPONSE’ message back
 to Tentry and updates the end-to-end RESERVE message by incorporating
 the result of the tunnel session reservation, as well as removing the
 tunnel BOUND-SESSION-ID and BOUND-MSG-ID objects. Texit then
 forwards the end-to-end RESERVE message along the path towards the
 receiver. When the receiver receives the end-to-end RESERVE message,
 it sends an end-to-end RESPONSE message back to the sender.

 Yet another possibility is that the tunnel RESERVE’ message arrives
 at Texit first, but the end-to-end RESERVE message never arrives. In
 that case, the MsgIDWait timer for the queued tunnel RESERVE’ message
 will expire. Texit should then send a tunnel RESPONSE’ message back
 to Tentry indicating a reservation error has occurred, and discard
 the tunnel RESERVE’ message. The last possibility is that the end-
 to-end RESERVE message arrives at Texit first, but the tunnel
 RESERVE’ message never arrives. In that case, the MsgIDWait timer
 for the queued end-to-end RESERVE message will expire. Texit should
 then treat this situation as a local reservation failure, and
 according to [RFC5974], Texit as a stateful QoS NSLP should generate
 an end-to-end RESPONSE message indicating RESERVE error to the
 sender.

 Once the end-to-end and the tunnel QoS session have both been
 successfully created and associated, the tunnel endpoints Tentry and
 Texit coordinate the signaling between the two sessions and make sure
 that adjustment or teardown of either session may trigger similar
 actions for the other session as necessary, by invoking appropriate
 signaling messages.

6.2. Receiver-Initiated Reservation

 Figure 9 shows the typical messaging sequence of how NSIS signaling
 operates over IP tunnels when both end-to-end and tunnel sessions are
 receiver-initiated. Upon receiving an end-to-end QUERY message (1)
 from the sender, Tentry chooses the tunnel Flow ID and sends a tunnel

Shen, et al. Experimental [Page 19]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 Sender Tentry Tmid Texit Receiver

 | | | | |
 | QUERY(1) | | | |
 +------------->| | | |
 | | QUERY’(2) | | |
 | +=============>| | |
 | | | QUERY’(2) | |
 | | +=============>| |
 | | | RESPONSE’(3) | |
 | | |<=============+ |
 | | RESPONSE’(3) | | |
 | |<=============+ | |
 | | QUERY(4) | |
 | +---------------------------->| |
 | | | | QUERY(5) |
 | | | +------------->|
 | | | | RESERVE(6) |
 | | | |<-------------+
 | | | RESERVE’(7) | |
 | | |<=============+ |
 | | RESERVE’(7) | | |
 | |<=============+ | |
 | | RESERVE(8) | |
 | |<----------------------------+ |
 | | RESPONSE’(9) | | |
 | +=============>| | |
 | | | RESPONSE’(9) | |
 | | +=============>| |
 | RESERVE(10) | | | |
 |<-------------+ | | |
 | RESPONSE(11) | | | |
 +------------->| | | |
 | | RESPONSE(11) | | |
 | +---------------------------->| |
 | | | | RESPONSE(11) |
 | | | +------------->|
 | | | | |
 | | | | |
 (1), (5): QUERY w/ RESERVE-INIT
 (2): QUERY’ w/ RII
 (4): QUERY w/ RESERVE-INIT and BOUND-SESSION-ID
 (6), (10): RESERVE w/o BOUND-SESSION-ID
 (7): RESERVE’ w/ MSG-ID
 (8): RESERVE w/ BOUND-MSG-ID and BOUND-SESSION-ID

 Figure 9: Receiver-Initiated Reservation for Both End-to-end and
 Tunnel Signaling

Shen, et al. Experimental [Page 20]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 QUERY’ message (2) matching the request of the end-to-end session
 towards Texit. This tunnel QUERY’ message (2) is meant to discover
 QoS characteristics of the tunnel path, rather than initiate an
 actual reservation. Therefore, it includes a Request Identification
 Information (RII) object but does not set the RESERVE-INIT flag. The
 tunnel QUERY’ message (2) is processed hop-by-hop inside the tunnel
 for the flow identified by the tunnel Flow ID. When Texit receives
 this tunnel QUERY’ message (2), it replies with a corresponding
 tunnel RESPONSE’ message (3) containing the tunnel path
 characteristics. After receiving the tunnel RESPONSE’ message (3),
 Tentry creates the tunnel session, generates an outgoing end-to-end
 QUERY message (4) considering the tunnel path characteristics,
 appends a tunnel BOUND-SESSION-ID object containing the tunnel
 SESSION-ID, and sends it toward Texit using normal tunnel
 encapsulation. The end-to-end QUERY message (4) passes along tunnel
 intermediate nodes like other tunneled packets. Upon receiving this
 end-to-end QUERY message (4), Texit notices the tunnel session
 binding, creates the tunnel session state, removes the tunnel BOUND-
 SESSION-ID object, and forwards the end-to-end QUERY message (5)
 further along the path.

 The end-to-end QUERY message (5) arrives at the receiver and triggers
 a RESERVE message (6). When Texit receives the RESERVE message (6),
 it notices that the session is bound to a receiver-initiated tunnel
 session. Therefore, Texit triggers a RESERVE’ message (7) toward
 Tentry for the tunnel session reservation. This tunnel RESERVE’
 message (7) includes a randomly generated 128-bit MSG-ID. Meanwhile,
 Texit inserts a BOUND-MSG-ID object containing the same MSG-ID and a
 BOUND-SESSION-ID object containing the tunnel SESSION-ID into the
 end-to-end RESERVE message (8), and sends it towards Tentry using
 normal tunnel encapsulation. The Message_Binding_Type flags of the
 MSG-ID and BOUND-MSG-ID objects in the RESERVE’ and RESERVE messages
 (7,8) are SET, indicating a bidirectional binding.

 At Tentry, the tunnel RESERVE’ message (7) and the end-to-end RESERVE
 message (8) could arrive in either order. In a typical case shown in
 Figure 9, the tunnel RESERVE’ message (7) arrives first. Tentry then
 records the MSG-ID of the tunnel RESERVE’ message (7) and starts a
 MsgIDWait timer. When the end-to-end RESERVE message (8) with the
 BOUND-MSG-ID object containing the same MSG-ID arrives, the message
 binding condition is satisfied. Tentry resumes processing of the
 tunnel RESERVE’ message (7), creates the reservation state for the
 tunnel session, and sends a tunnel RESPONSE’ message (9) to Texit.
 At the same time, Tentry creates the outgoing end-to-end RESERVE
 message (10) by incorporating results of the tunnel session
 reservation and removing the BOUND-SESSION-ID and BOUND-MSG-ID

Shen, et al. Experimental [Page 21]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 objects, and forwards it along the path towards the sender. When the
 sender receives the end-to-end RESERVE message (10), it sends an end-
 to-end RESPONSE message (11) back to the receiver.

 If the end-to-end RESERVE message arrives before the tunnel RESERVE’
 message at Tentry, or either of the two messages fails to arrive at
 Tentry, the processing rules at Tentry are similar to those of Texit
 in the situation discussed in Section 6.1.

 Once the end-to-end and the tunnel QoS session have both been
 successfully created and associated, the tunnel endpoints Tentry and
 Texit coordinate the signaling between the two sessions and make sure
 that adjustment or teardown of either session can trigger similar
 actions for the other session as necessary, by invoking appropriate
 signaling messages.

7. NSIS-Tunnel Signaling Capability Discovery

 The mechanism of NSIS operating over IP tunnels requires the
 coordination of both tunnel endpoints in tasks such as special
 encapsulation and decapsulation of data flow packets according to the
 chosen tunnel Flow ID, as well as the possible creation and
 adjustment of the end-to-end and tunnel QoS sessions. Therefore, one
 NSIS-tunnel-aware endpoint needs to know that the other tunnel
 endpoint is also NSIS-tunnel-aware before initiating this mechanism
 of NSIS operating over IP tunnels. In some cases, especially for IP
 tunnels with preconfigured QoS sessions, an NSIS-tunnel-aware
 endpoint can learn about whether the other tunnel endpoint is also
 NSIS-tunnel-aware through preconfiguration. In other cases where
 such preconfiguration is not available, the initiating NSIS-tunnel-
 aware endpoint may dynamically discover the other tunnel endpoint’s
 capability through a QoS NSLP NODE_CAPABILITY_TUNNEL object defined
 in this section.

 The NODE_CAPABILITY_TUNNEL object is a zero-length object with a
 standard NSLP object header as shown in Figure 10.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |A|B|r|r| Type |r|r|r|r| Length |
 +-+

 Figure 10: NODE_CAPABILITY_TUNNEL Object Format

 Type: NODE_CAPABILITY_TUNNEL (0x015) from the shared NSLP object type
 space

Shen, et al. Experimental [Page 22]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 Length: 0

 The bits marked ’A’ and ’B’ define the desired behavior for objects
 whose Type field is not recognized. If a node does not recognize the
 NODE_CAPABILITY_TUNNEL object, the desired behavior is "Forward".
 That is, the object must be retained unchanged and forwarded as a
 result of message processing. This is satisfied by setting ’AB’ to
 ’10’.

 The ’r’ bit stands for ’reserved’.

 The NODE_CAPABILITY_TUNNEL object is included in a tunnel QUERY’ or
 RESERVE’ message by a tunnel endpoint that needs to learn about the
 other endpoint’s capability for NSIS tunnel handling. If the
 receiving tunnel endpoint is indeed NSIS-tunnel-aware, it recognizes
 this object and knows that the sending endpoint is NSIS-tunnel-aware.
 The receiving tunnel endpoint places the same object in a tunnel
 RESPONSE’ message to inform the sending endpoint that it is also
 NSIS-tunnel-aware. The use of the NODE_CAPABILITY_TUNNEL object in
 the cases of sender-initiated reservation and receiver-initiated
 reservation are as follows.

 First, assume that the end-to-end session is sender-initiated as in
 Figure 8, and the NSIS-tunnel-aware Tentry wants to discover the NSIS
 tunnel capability of Texit. After receiving the first end-to-end
 RESERVE message (1), Tentry inserts an RII object and a
 NODE_CAPABILITY_TUNNEL object into the tunnel RESERVE’ message (2)
 and sends it to Texit. If Texit is NSIS-tunnel-aware, it learns from
 the NODE_CAPABILITY_TUNNEL object that Tentry is also NSIS-tunnel-
 aware and includes the same object into the tunnel RESPONSE’ message
 (4) sent back to Tentry.

 Second, assume that the end-to-end session is receiver-initiated as
 in Figure 9, and the NSIS-tunnel-aware Tentry wants to discover the
 NSIS tunnel capability of Texit. Upon receiving the first end-to-end
 QUERY message (1), Tentry inserts an RII object and a
 NODE_CAPABILITY_TUNNEL object in the tunnel QUERY’ message (2) and
 sends it toward Texit. If Texit is NSIS-tunnel-aware, it learns from
 the NODE_CAPABILITY_TUNNEL object that Tentry is also NSIS-tunnel-
 aware and includes the same object tunnel RESPONSE’ message (3) sent
 to Tentry.

8. IANA Considerations

 This document defines a new object type called NODE_CAPABILITY_TUNNEL
 for QoS NSLP. Its Type value (0x015) has been assigned by IANA. The
 object format and the setting of the extensibility bits are defined
 in Section 7.

Shen, et al. Experimental [Page 23]

RFC 5979 NSIS Operation over IP Tunnels March 2011

9. Security Considerations

 This NSIS and IP tunnel interoperation mechanism has two IPsec-
 related security implications. First, NSIS messages may require per-
 hop processing within the IPsec tunnel, and that is potentially
 incompatible with IPsec. A similar problem exists for RSVP
 interacting with IPsec, when the Router Alert option is used
 (Appendix A.1 of RFC 4302 [RFC4302]). If this mechanism is indeed
 used for NSIS and IPsec tunnels, a so-called covert channel could
 exist where someone can create spurious NSIS signaling flows within
 the protected network in order to create signaling in the outside
 network, which then someone else is monitoring. For highly secure
 networks, this would be seen as a way to smuggle information out of
 the network, and therefore this channel will need to be rate-limited.
 A similar covert channel rate-limit problem exists for using
 Differentiated Services (DS) or Explicit Congestion Notification
 (ECN) fields with IPsec (Section 5.1.2 of RFC 4301 [RFC4301]).

 Second, since the NSIS-tunnel-aware endpoint is responsible for
 adapting changes between the NSIS signaling both inside and outside
 the tunnel, there could be additional risks for an IPsec endpoint
 that is also an NSIS-tunnel-aware endpoint. For example, security
 vulnerability (e.g., buffer overflow) on the NSIS stack of that IPsec
 tunnel endpoint may be exposed to the unprotected outside network.
 Nevertheless, it should also be noted that if any node along the
 signaling path is compromised, the whole end-to-end QoS signaling
 could be affected, whether or not the end-to-end path includes an
 IPsec tunnel.

 Several other documents discuss security issues for NSIS. General
 threats for NSIS can be found in [RFC4081]. Security considerations
 for NSIS NTLP and QoS NSLP are discussed in [RFC5971] and [RFC5974],
 respectively.

10. Acknowledgments

 The authors would like to thank Roland Bless, Francis Dupont, Lars
 Eggert, Adrian Farrel, Russ Housley, Georgios Karagiannis, Jukka
 Manner, Martin Rohricht, Peter Saint-Andre, Martin Stiemerling,
 Hannes Tschofenig, and other members of the NSIS working group for
 comments. Thanks to Yaron Sheffer for pointing out the IPsec-related
 security considerations.

Shen, et al. Experimental [Page 24]

RFC 5979 NSIS Operation over IP Tunnels March 2011

11. References

11.1. Normative References

 [RFC2113] Katz, D., "IP Router Alert Option", RFC 2113,
 February 1997.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, December 1998.

 [RFC2711] Partridge, C. and A. Jackson, "IPv6 Router Alert Option",
 RFC 2711, October 1999.

 [RFC2746] Terzis, A., Krawczyk, J., Wroclawski, J., and L. Zhang,
 "RSVP Operation Over IP Tunnels", RFC 2746, January 2000.

 [RFC3697] Rajahalme, J., Conta, A., Carpenter, B., and S. Deering,
 "IPv6 Flow Label Specification", RFC 3697, March 2004.

 [RFC4080] Hancock, R., Karagiannis, G., Loughney, J., and S. Van den
 Bosch, "Next Steps in Signaling (NSIS): Framework",
 RFC 4080, June 2005.

 [RFC4081] Tschofenig, H. and D. Kroeselberg, "Security Threats for
 Next Steps in Signaling (NSIS)", RFC 4081, June 2005.

 [RFC5971] Schulzrinne, H. and R. Hancock, "GIST: General Internet
 Signalling Transport", RFC 5971, October 2010.

 [RFC5974] Manner, J., Karagiannis, G., and A. McDonald, "NSIS
 Signaling Layer Protocol (NSLP) for Quality-of-Service
 Signaling", RFC 5974, October 2010.

11.2. Informative References

 [RFC1701] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
 Routing Encapsulation (GRE)", RFC 1701, October 1994.

 [RFC1702] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
 Routing Encapsulation over IPv4 networks", RFC 1702,
 October 1994.

 [RFC1853] Simpson, W., "IP in IP Tunneling", RFC 1853, October 1995.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

Shen, et al. Experimental [Page 25]

RFC 5979 NSIS Operation over IP Tunnels March 2011

 [RFC2004] Perkins, C., "Minimal Encapsulation within IP", RFC 2004,
 October 1996.

 [RFC2205] Braden, B., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, September 1997.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 March 2000.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, December 2005.

 [RFC5944] Perkins, C., Ed., "IP Mobility Support for IPv4, Revised",
 RFC 5944, November 2010.

Shen, et al. Experimental [Page 26]

RFC 5979 NSIS Operation over IP Tunnels March 2011

Authors’ Addresses

 Charles Shen
 Columbia University
 Department of Computer Science
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027
 USA

 Phone: +1 212 854 3109
 EMail: charles@cs.columbia.edu

 Henning Schulzrinne
 Columbia University
 Department of Computer Science
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027
 USA

 Phone: +1 212 939 7004
 EMail: hgs@cs.columbia.edu

 Sung-Hyuck Lee
 Convergence Technologies & Standardization Lab
 Samsung Information System America, INC.
 95 West Plumeria Drive
 San Jose, CA 95134
 USA

 Phone: 1-408-544-5809
 EMail: sung1.lee@samsung.com

 Jong Ho Bang
 SAMSUNG Advanced Institute of Technology
 San 14-1, Nongseo-ri, Giheung-eup
 Yongin-si, Gyeonggi-do 449-712
 South Korea

 Phone: +82 31 280 9585
 EMail: jh0278.bang@samsung.com

Shen, et al. Experimental [Page 27]

