
Network Working Group E. Taft
Request for Comments: 596 PARC-MAXC
NIC: 15372 8 December 1973

 Second Thoughts on Telnet Go-Ahead

INTRODUCTION

 In this RFC we present objections to the requirement that hosts
 implement the Telnet Go-Ahead (GA) command, as specified in the
 Telnet Protocol Specification (NIC #15372). The thrust of these
 objections is in three major directions:

 1. The GA mechanism is esthetically unappealing, both to myself
 and to many other people I have talked to. I shall attempt to
 describe why this is so.

 2. As specified in the Protocol, GA will not, in general, work;
 i.e. it will not serve its intended purpose unless hosts make
 various unwarranted assumptions about how other hosts operate.

 3. GA is impossible for most hosts to implement correctly in all
 cases. This is certainly true of the PDP-10 operating systems
 with which I am familiar (10/50 and Tenex).

 The purpose of this RFC is to advocate either complete removal of the
 GA mechanism or relegating it to the status of a negotiated option
 whose default state is that it be suppressed.

TERMINOLOGY

 "Half-duplex" is a two-way communication discipline in which
 transmission takes place in only one direction at a time and the
 receiving party is constrained not to transmit until the transmitting
 party has explicitly given up control of the communication path
 ("turned the line around").

 This definition is distinct from a common (but incorrect) use of the
 terms "half-duplex" and "full-duplex" to designate local and remote
 character echoing.

 "Reverse break" is a means by which a computer connected to a
 terminal by a half-duplex path may regain control of the path for
 further typeout after previously having relinquished it.

Taft [Page 1]

RFC 596 Second Thoughts on Telnet Go-Ahead December 1973

 This is the complement of the "break" or "attention" mechanism,
 implemented by all half-duplex terminals, by means of which the user
 may gain control of the line while it is in use by the computer.

ESTHETIC OBJECTIONS TO GA

 One assumption that permeates the Telnet Protocol specification (and
 is explicitly stated on Page 7) is that the "normal" mode of
 communication between computers and terminals is half-duplex, line-
 at-a-time. While historically this is partially true, it is also
 clear, both within the ARPA Network community and elsewhere, that the
 trend is toward highly interactive man-machine communication systems
 which are difficult to implement under half-duplex communication
 disciplines.

 The GA mechanism is an attempt to solve a specific problem, that of
 switching control between computer and user in a subset of those
 hosts utilizing IBM 2741 or equivalent terminals. I say "a subset"
 because in fact the problem arises only in the case of TIPs from
 2741s (with reverse break); from what experience I have had, I think
 the TIP does a very good job of turning the line around at the right
 moments. (I am told this is also the case at Multics).

 Given the trend toward more interactive communication, and given the
 fact that terminals on the Network requiring a Go-Ahead mechanism are
 a distinct minority of all terminals, I think we should be reluctant
 to burden our protocols with kludges that are so clearly a concession
 to obsolete design.

 I have little doubt that before long somebody (if not IBM) will
 produce a full-duplex 2741-like terminal (indeed, perhaps it has
 already been done). There is an obvious need for a terminal with
 Selectric quality keyboard and hard-copy better suited to
 interactive applications (i.e. full-duplex).

 As a more practical consideration, it makes little sense to have the
 default state of the GA option be the one that benefits the least
 number of hosts and terminals.

 There is no question that most parties to Telnet communication
 will immediately negotiate to suppress GA. To do otherwise will
 double the amount of network traffic generated by character-at-a-
 time typein, and will increase it by a non-negligible amount even
 for a line-at-a-time typein.

 It strikes me as worthwhile to minimize the number of such
 "necessary" option negotiations, especially in view of the large
 number of TIPs and mini-hosts on the Network. Many such hosts

Taft [Page 2]

RFC 596 Second Thoughts on Telnet Go-Ahead December 1973

 must, due to resource constraints, implement only a limited subset
 of the available options. It follows, then, that the default
 state of all options should be the one most hosts will be willing
 to use.

WHY GA WON’T WORK

 We now show that a server process’s being "blocked on input" (as
 specified in the Protocol) is not itself a sufficient condition for
 sending out GA.

 This is due to the fact that the user Telnet has no control over the
 packaging of a "line" of information sent to the server; rather, this
 is a function of the NCP, which must observe constraints such as
 allocation and buffering. Consider the following example:

 A user types a line of text, which is buffered by his host’s user
 Telnet until he signals end-of-line. His keyboard then becomes
 locked (this being the behavior of half-duplex terminals while the
 computer has control of the line), and stays locked in
 anticipation of the server’s eventual response and subsequent GA
 command.

 The user Telnet transmits this text line over the connection;
 however, due to insufficient allocation or other conditions, the
 text actually gets packaged up and sent as two or more separate
 messages, which arrive at the server host in the correct order but
 separated by some amount of time.

 The server Telnet passes the contents of the first message to the
 appropriate process, which reads the partial text line and
 immediately blocks for further input. At this moment (assuming
 the second message hasn’t arrived yet), the server telnet, in
 accordance with the Protocol, sends back a GA command.

 The rest of the text then arrives in response, the server process
 may generate a large volume of output. Meanwhile, however, the GA
 command has caused the user’s keyboard to become unlocked and
 computer output thereby blocked. Hence we have a deadlock, which
 will be resolved only when the user recognizes what has happened
 and (manually) gives control back to the computer.

 Of course, this particular problem is avoided if the Telnet protocol
 is modified to specify that the server Telnet will transmit GA only
 if the server process is blocked for input AND the most recent
 character passed to that process was end-of-line.

Taft [Page 3]

RFC 596 Second Thoughts on Telnet Go-Ahead December 1973

 I claim that this solution is bad in principle because it assumes
 too much knowledge on the part of the serving host as to what
 constitutes "end-of-line" in the using host.

 Furthermore, the Protocol explicitly (and quite rightly) specifies
 that the user Telnet should provide some means by which a user may
 signal that all buffered text should be transmitted immediately,
 without its being terminated by end-of-line.

 One must conclude, then, that in general the server Telnet has no
 precise way of knowing when it should send GA commands.

IMPLEMENTATION PROBLEMS

 The foregoing analysis illustrates the problems that arise with the
 GA mechanism in communication between servers and users whose normal
 mode of operation is half-duplex, line-at-a-time. When we turn to
 hosts that provide full-duplex service, such as the PDP-10s and many
 other hosts on the Network, the problems are much more severe.

 This is particularly true of operating system such as Tenex that
 exercise such tight control over terminal behavior that they
 prefer to operate in server echoing, character-at-a-time mode.
 This will probably become less necessary as protocols such as
 Remote Controlled transmission and Echoing Option come into
 general use, enabling servers to regulate echoing and break
 character classes in user Telnets.

 Even in hosts such as 10/50 systems that provide reasonable service
 to line-at-a-time users for most subsystems (e.g. excluding DDT and
 TECO), GA is impossible to implement correctly. This is true for
 several reasons.

 First, there are a number of subsystems that never block for terminal
 input but rather poll for it or accept it on an interrupt basis. In
 the absence of typein, such processes go on to do other tasks,
 possibly generating terminal output.

 Processes of this sort come immediately to mind. The user telnet,
 FTP, and RJE programs are implemented in this fashion by almost
 all hosts. 10/50 has a subsystem called OPSER, used to control
 multiple independent subjobs from a single terminal.

 Since these programs never block for input, GA commands will never
 be sent by the server Telnet in such cases even though the
 processes are prepared to accept terminal input at any time.

Taft [Page 4]

RFC 596 Second Thoughts on Telnet Go-Ahead December 1973

 Second, there is not necessarily a one-to-one relationship between
 processes and terminals, as seems to be assumed by the Telnet
 Protocol specification.

 For example, in Tenex one process may be blocked for terminal
 input while another process is generating output to the same
 terminal. (Such processes are typically parallel forks of the
 same job).

 Third, there is the possibility of inter-terminal links, such as are
 provided in many systems.

 By this I do not mean special Telnet connections established
 between a pair of NVTs for the express purpose of terminal-to-
 terminal communication, as is suggested on page 9 of the Protocol
 specification. Rather, I am referring to facilities such as the
 Tenex LINK facility, in which any number and any mixture of local
 and Network terminals and processes may have their input and
 output streams linked together in arbitrarily complex ways.
 Clearly the GA mechanism will fall flat on its face in this case.

 Also, the notion that one user of an inter-terminal link should
 have to "manually signal that it is time for a GA to be sent over
 the Telnet connection" in order to unblock another user’s keyboard
 offends me to no end.

 Finally, most systems provide means by which system personnel and
 processes may broadcast important messages to all terminals (e.g.
 SEND ALL in 10/50, NOTIFY in Tenex). Clearly such asynchronous
 messages will be blocked by a half-duplex terminal that has been
 irrevocably placed in the typein state by a previous GA.

 This strikes me as such an obvious problem that I am forced to
 wonder how half-duplex hosts handle it even for their local
 terminals.

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Mirsad Todorovac 5/98]

Taft [Page 5]

