
Internet Engineering Task Force (IETF) A. Niemi
Request for Comments: 5839 Nokia
Category: Standards Track D. Willis, Ed.
ISSN: 2070-1721 Softarmor Systems
 May 2010

 An Extension to Session Initiation Protocol (SIP) Events
 for Conditional Event Notification

Abstract

 The Session Initiation Protocol (SIP) events framework enables
 receiving asynchronous notification of various events from other SIP
 user agents. This framework defines the procedures for creating,
 refreshing, and terminating subscriptions, as well as fetching and
 periodic polling of resource state. These procedures provide no
 tools to avoid replaying event notifications that have already been
 received by a user agent. This memo defines an extension to SIP
 events that allows the subscriber to condition the subscription
 request to whether the state has changed since the previous
 notification was received. When such a condition is true, either the
 body of a resulting event notification or the entire notification
 message is suppressed.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5839.

Niemi & Willis Standards Track [Page 1]

RFC 5839 Entity-Tags for SIP Events May 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Niemi & Willis Standards Track [Page 2]

RFC 5839 Entity-Tags for SIP Events May 2010

Table of Contents

 1. Introduction . 4
 1.1. Document Conventions 5
 1.2. Terminology . 5
 2. Motivations and Background 5
 2.1. Overview . 5
 2.2. Problem Description 5
 2.3. Requirements . 6
 3. Overview of Operation . 7
 4. Resource Model for Entity-Tags 10
 5. Subscriber Behavior . 12
 5.1. Detecting Support for Conditional Notification 13
 5.2. Generating SUBSCRIBE Requests 13
 5.3. Receiving NOTIFY Requests 14
 5.4. Polling or Fetching Resource State 15
 5.5. Resuming a Subscription 17
 5.6. Refreshing a Subscription 18
 5.7. Terminating a Subscription 18
 5.8. Handling Transient Errors 19
 6. Notifier Behavior . 20
 6.1. Generating Entity-tags 20
 6.2. Suppressing NOTIFY Bodies 20
 6.3. Suppressing NOTIFY Requests 21
 6.4. State Differentials 21
 6.5. List Subscriptions . 22
 7. Protocol Element Definitions 22
 7.1. 204 (No Notification) Response Code 22
 7.2. Suppress-If-Match Header Field 22
 7.3. Grammar . 22
 8. IANA Considerations . 23
 8.1. 204 (No Notification) Response Code 23
 8.2. Suppress-If-Match Header Field 23
 9. Security Considerations 24
 10. Acknowledgments . 24
 11. References . 24
 11.1. Normative References 24
 11.2. Informative References 24

Niemi & Willis Standards Track [Page 3]

RFC 5839 Entity-Tags for SIP Events May 2010

1. Introduction

 The Session Initiation Protocol (SIP) events framework provides an
 extensible facility for requesting notification of certain events
 from other SIP user agents. This framework includes procedures for
 creating, refreshing, and terminating subscriptions, as well as the
 possibility to fetch or periodically poll the event resource.

 Several instantiations of this framework, called event packages have
 been defined, e.g., for presence [RFC3856], message waiting
 indications [RFC3842], and registrations [RFC3680].

 By default, every SUBSCRIBE request generates a NOTIFY request
 containing the latest event state. Typically, a SUBSCRIBE request is
 issued by the subscriber whenever it needs a subscription to be
 installed, periodically refreshed, or terminated. Once the
 subscription has been installed, the majority of the NOTIFYs
 generated by the subscription refreshes are superfluous; the
 subscriber usually is in possession of the event state already,
 except in the unlikely case where a state change exactly coincides
 with the periodic subscription refresh. In most cases, the final
 event state generated upon terminating the subscription similarly
 contains resource state that the subscriber already has.

 Fetching or polling of resource state behaves in a similarly
 suboptimal way in cases where the state has not changed since the
 previous poll occurred. In general, the problem lies with the
 inability to persist state across a SUBSCRIBE request.

 This memo defines an extension to optimize the SIP events framework.
 This extension allows a notifier to tag notifications (called entity-
 tags hereafter) and the subscriber to condition its subsequent
 SUBSCRIBE requests for actual changes since a notification carrying
 that entity-tag was issued. The solution is similar to conditional
 requests defined in the Hypertext Transfer Protocol (HTTP) [RFC2616],
 and follows the mechanism already defined for the PUBLISH [RFC3903]
 method for issuing conditional event publications.

 This memo is structured as follows. Section 2 explains the
 background, motivations, and requirements for the work; Section 3
 gives a general overview of the mechanism; Section 4 explains the
 underlying model for resources and entities as they apply to
 conditional notification; Section 5 defines the subscriber behavior;
 Section 6 defines the notifier behavior; Section 7 includes the
 protocol element definitions; Section 8 includes the IANA
 considerations; and Section 9 includes the security considerations.

Niemi & Willis Standards Track [Page 4]

RFC 5839 Entity-Tags for SIP Events May 2010

1.1. Document Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119] and indicate requirement levels for compliant
 implementations.

1.2. Terminology

 In addition to the terminology introduced in [RFC3261], [RFC3265],
 and [RFC3903], this specification uses these additional terms to
 describe the objects of conditional notification:

 resource
 An object identified by a URI whose resource state can be accessed
 using the SIP Event Notification framework. There is a single
 authoritative notifier responsible for communicating the resource
 state.

 entity
 The representation of resource state. An entity consists of the
 state data carried in the body of a NOTIFY message, as well as
 related meta-data in the message header. There may be many
 versions of an entity, one current and the others stale. Each
 version of an entity is identified by an entity-tag, which is
 guaranteed to be unique across all versions of all entities for a
 resource and event package.

2. Motivations and Background

2.1. Overview

 A SUBSCRIBE request creates a subscription with a finite lifetime.
 This lifetime is negotiated using the Expires header field, and
 unless the subscription is refreshed by the subscriber before the
 expiration is met, the subscription is terminated. The frequency of
 these subscription refreshes depends on the event package, and
 typically ranges from minutes to hours.

2.2. Problem Description

 The SIP events framework does not include different protocol methods
 for initiating and terminating of subscriptions, subscription
 refreshes, and fetches inside and outside of the SIP dialog. The
 SUBSCRIBE method is overloaded to perform all of these functions.
 The difference between a fetch that does not create a (lasting)
 subscription and a SUBSCRIBE that creates one is in the Expires

Niemi & Willis Standards Track [Page 5]

RFC 5839 Entity-Tags for SIP Events May 2010

 header field value of the SUBSCRIBE; a zero-expiry SUBSCRIBE only
 generates a single NOTIFY, after which the subscription immediately
 terminates. Lasting subscriptions typically have relatively short
 expiry periods, requiring periodic sending of new SUBSCRIBE requests
 in order to refresh the subscription.

 Each new SUBSCRIBE request generates a NOTIFY request containing the
 latest resource state. Even if the state has not changed, it is sent
 again in response to each poll or subscription refresh. This is very
 similar to the HTTP [RFC2616] problem of repeated GET operations on a
 resource. HTTP solves the problem using conditional requests. The
 server versions each entity with an entity-tag that identifies a
 specific instance of that entity. Clients making GET requests can
 then include the entity-tag for the version of the entity that they
 believe to be current in an "If-None-Match" header field. The server
 can compare this entity-tag to the entity it believes to be current
 and suppress resending the entity in the response if the server
 believes the client’s version matches. In other words, the server
 doesn’t resend information that the client has already received.

 The SIP PUBLISH [RFC3903] method uses a similar mechanism, where a
 refresh of a publication is done by reference to its assigned entity-
 tag, instead of retransmitting the event state each time the
 publication expiration is extended.

2.3. Requirements

 As a summary, here is the required functionality to solve the
 presented issues:

 REQ1: It must be possible to suppress the NOTIFY request (or at a
 minimum, the event body therein) if the subscriber is already
 in possession of (or has previously received and discarded)
 the latest event state of the resource.

 REQ2: This mechanism must apply to initial subscriptions in which
 the subscriber is attempting to resume an earlier
 subscription that has been paused.

 REQ3: This mechanism must apply to refreshing a subscription.

 REQ4: This mechanism must apply to terminating a subscription
 (i.e., an unsubscribe).

 REQ5: This mechanism must apply to fetching or polling of resource
 state.

Niemi & Willis Standards Track [Page 6]

RFC 5839 Entity-Tags for SIP Events May 2010

3. Overview of Operation

 Whenever a subscriber initiates a subscription, it issues a SUBSCRIBE
 request. The SUBSCRIBE request is sent, routed, and processed by the
 notifier normally, i.e., according to the Session Initiation Protocol
 [RFC3261] and SIP-Specific Event Notification [RFC3265].

 If the notifier receiving the SUBSCRIBE request supports conditional
 subscriptions, it generates an entity-tag for the current entity, and
 includes it in a SIP-ETag header field of the NOTIFY request. The
 entity-tag is unique across all versions of all entities for a
 resource and event package. See Section 4 for more on this.

 Entity-tags are independent of subscriptions. This allows
 notifications generated to a fetch or a poll to have valid entity-
 tags even across subsequent fetches or polls.

 The subscriber will store the entity-tag received in the notification
 along with the resource state. It can then later use this entity-tag
 to make a SUBSCRIBE contain a condition in the form of a "Suppress-
 If-Match" header field. Unlike the "If-Match" condition in a PUBLISH
 [RFC3903] request, which applies to whether the PUBLISH succeeds or
 returns an error, this condition applies to the stream of
 notifications that are sent after the SUBSCRIBE request has been
 processed.

 The Suppress-If-Match header field contains the last entity-tag seen
 by the subscriber. This condition, if true, instructs the notifier
 to suppress either the body of a subsequent notification, or the
 entire notification.

 The condition is evaluated by matching the value of the header field
 against the entity-tag of the entity that would normally be sent in
 the associated NOTIFY message. There is also a wildcard entity-tag
 with a special value of "*" that always matches.

Niemi & Willis Standards Track [Page 7]

RFC 5839 Entity-Tags for SIP Events May 2010

 Subscriber Notifier
 ---------- --------

 (1) SUBSCRIBE -------->
 Expires: 3600
 <-------- (2) 200 (or 202)

 <-------- (3) NOTIFY
 Subscription-State: active
 SIP-ETag: ffee2
 (4) 200 -------->

 ... time passes ...

 (5) SUBSCRIBE --------> \ if "ffee2"
 Suppress-If-Match: ffee2 | matches
 Expires: 3600 | local
 | entity-tag
 |
 <-------- (6) 204 / then

 ... time passes and resource state (entity) changes...

 <-------- (7) NOTIFY
 Subscription-State: active
 SIP-ETag: ca89a
 (8) 200 -------->

 ... time passes ...

 (9) SUBSCRIBE --------> \ if "ca89"
 Suppress-If-Match: ca89a | matches
 Expires: 0 | local
 | entity-tag
 |
 <-------- (10) 204 / then

 Figure 1: Example Message Flow

 Figure 1 describes a typical message flow for conditional
 notification:

 (1) The subscriber initiates a subscription by sending a SUBSCRIBE
 request for a resource.

Niemi & Willis Standards Track [Page 8]

RFC 5839 Entity-Tags for SIP Events May 2010

 (2) After proper authentication and authorization, the notifier
 accepts the subscription.

 (3) The notifier then immediately sends the initial event
 notification, including a unique entity-tag in a SIP-ETag
 header field.

 (4) The subscriber accepts the notification and stores the entity-
 tag value along with the resource state.

 (5) Later, the subscriber refreshes the subscription, and includes
 an entity-tag in a Suppress-If-Match header field.

 (6) The notifier evaluates the condition by matching its local
 entity-tag value for the resource against the value of the
 Suppress-If-Match header field. If the condition evaluates to
 true, the notifier informs the subscriber that the notification
 will not be sent.

 (7) At some point, the state of the resource changes, e.g., the
 presence status of a user changes from online to busy. This
 triggers an event notification with a new value in the SIP-ETag
 header field.

 (8) The subscriber accepts the notification and stores the new
 entity-tag along with the resource state.

 (9) After a while, the subscriber decides to terminate the
 subscription. It adds a condition for Suppress-If-Match, and
 includes the entity-tag it received in the previous NOTIFY.

 (10) The notifier evaluates the condition by matching its entity-tag
 for the resource against the value of the Suppress-If-Match
 header field. If the condition evaluates to true, the notifier
 informs the subscriber that no notification will be sent. This
 concludes the subscription.

 The benefit of using conditional notification in this example is in
 the reduction of the number of NOTIFY requests the subscriber can
 expect to receive. Each event notification that the subscriber has
 already seen is suppressed by the notifier. This example illustrates
 only one use case for the mechanism; the same principles can be used
 to optimize the flow of messages related to other event notification
 use cases.

Niemi & Willis Standards Track [Page 9]

RFC 5839 Entity-Tags for SIP Events May 2010

4. Resource Model for Entity-Tags

 The key to understanding how conditional notification works is
 understanding the underlying resource model of event notification.
 In general, this model is similar to the resource model of HTTP with
 some key differences. This section explains in detail the model as
 it applies to SIP events. Figure 2 illustrates the model.

 +-----+
 | |
 . . | URI |
 . Represen . | |
 . tation . +-----+
 . . |*
 |
 . |
 . V
 . +----------+ +---------+
 composition | |* | Event |
 +------<>| Resource |----------->| Package |<----.
 | | | | | |
 | +----------+ +----.----+ |
 | /_\ |
 |* | classification
 +--------+ | |
 | | .----------------.------’ |
 | Entity | | | |
 | | | | |*
 +--------+ +----------+ +------------+ +----------+
 ^ | | | | | |
 | | Presence | | Conference | | Template |
 | | | | | | |
 |1..* +----------+ +------------+ +----.-----+
 +---------+ /_\
 | | |
 | Version | |
 | | +---------+
 +---------+ | Watcher |
 |1 | Info |
 | | |
 V +---------+
 +---------+
 | Entity- |
 | Tag |
 | |
 +---------+

 Figure 2: Resource Model Diagram

Niemi & Willis Standards Track [Page 10]

RFC 5839 Entity-Tags for SIP Events May 2010

 For a given event package, there is a single authoritative agent
 responsible for zero or more resources. That is, even for a
 distributed agent, the resource state is uniform across all
 instances. The resource itself can be a list of resources [RFC4662].
 Conditional notification for list subscriptions is addressed in
 Section 6.5.

 A resource is identified by zero or more URIs, which can be SIP URIs,
 pres URIs [RFC3859], or similar. Subscribers use this URI to
 subscribe to the resource for certain types of events, identified by
 the event package.

 With a successful subscription, a subscriber receives event
 notifications that communicate the resource state and the changes
 thereto. Each event notification carries a representation of the
 current resource state. This representation is influenced by many
 factors, e.g., authorization and filtering rules, and the event
 composition rules of the notifier.

 This representation is realized in an "entity". Each resource may be
 associated with zero or more entities. For example, there may be
 multiple subscribers to the presence information of a single user (a
 resource), and each subscriber may have a different filtered view of
 that resource, producing one entity per subscriber. However, each
 entity is associated with one and only one resource; there is no
 "compositing" of resources at the entity level. Resources may
 themselves be made up of information from other resources (be
 "composite resources"), but this does not change the one-resource-
 per-entity rule.

 An entity consists of the data carried in the body of a NOTIFY
 message and related meta-data in the message header. Whenever the
 data in the body or any of the meta-data changes, the notifier MUST
 produce a new entity-tag. This meta-data MUST include, but is not
 limited to the following SIP header fields defined in the Session
 Initiation Protocol [RFC3261] and SIP Specific Event Notification
 [RFC3265]:

 1. Content-Disposition

 2. Content-Encoding

 3. Content-Language

 4. Content-Length

 5. Content-Type

Niemi & Willis Standards Track [Page 11]

RFC 5839 Entity-Tags for SIP Events May 2010

 6. Event

 Note that the Subscription-State is explicitly not part of the
 entity. In the future, event packages may define additional fields
 that implementations need to consider as part of the entity.

 An entity has one or more versions of which only one is current and
 all others stale. Each version has an entity-tag, which uniquely
 identifies it across all versions of all entities pertaining to a
 single resource and event package.

 Note that two entity-tags for different resources being equal does
 not indicate identical entities. In other words, if an entity-tag
 received for a subscription to a first resource matches an entity-tag
 received for a subscription to a second resource, the subscriber
 cannot assume that the two entity values are equal.

 With partial event notification, the NOTIFY message only carries the
 delta state, or the set of changes to the previous version of the
 entity. In that case, implementations MUST consider the full event
 state as the version of the entity to which the entity-tag in the
 NOTIFY message applies.

 The conditional notification mechanism is independent of the way in
 which subscriptions are installed. In other words, the mechanism
 supports implicit subscriptions, such as those associated with the
 REFER method [RFC3515].

 It is possible that the same resource is in some shape or form
 accessible through another mechanism in addition to SIP Event
 Notification, e.g., HTTP or the SIP PUBLISH method. In general,
 implementations MUST NOT expect the entity-tags to be shared between
 the mechanisms, unless event packages or specific applications of SIP
 events explicitly define such dependencies.

5. Subscriber Behavior

 This section augments the subscriber behavior defined in RFC 3265
 [RFC3265]. It first discusses general issues related to indicating
 support for the mechanism (Section 5.1) and creating conditions in
 SUBSCRIBE requests (Section 5.2). Next, it describes subscriber
 behavior for receiving NOTIFY requests (Section 5.3), and specific
 client workflows for polling resource state (Section 5.4), resuming a
 subscription (Section 5.5), refreshing a subscription (Section 5.6),
 and terminating a subscription (Section 5.7). Finally, handling of
 transient errors is discussed (Section 5.8).

Niemi & Willis Standards Track [Page 12]

RFC 5839 Entity-Tags for SIP Events May 2010

5.1. Detecting Support for Conditional Notification

 The mechanism defined in this memo is backwards compatible with SIP
 events [RFC3265] in that a notifier supporting this mechanism will
 insert a SIP entity-tag in its NOTIFY requests, and a subscriber that
 understands this mechanism will know how to use it in creating a
 conditional request.

 Unaware subscribers will simply ignore the entity-tag, make requests
 without conditions, and receive the default treatment from the
 notifier. Unaware notifiers will simply ignore the conditional
 header fields and continue normal operation.

5.2. Generating SUBSCRIBE Requests

 When creating a conditional SUBSCRIBE request, the subscriber MUST
 include a single conditional header field including an entity-tag in
 the request. The condition is evaluated by comparing the entity-tag
 of the subscribed resource with the entity-tag carried in the
 conditional header field. If they match, the condition evaluates to
 true.

 Unlike the condition introduced for the SIP PUBLISH [RFC3903] method,
 these conditions do not apply to the SUBSCRIBE request itself, but to
 the resulting NOTIFY requests. When true, the condition drives the
 notifier to change its behavior with regard to sending the
 notifications after the SUBSCRIBE.

 This specification defines a new header field called Suppress-If-
 Match. This header field introduces a condition to the SUBSCRIBE
 request. If true, it instructs the notifier either to omit the body
 of the resulting NOTIFY message (if the SUBSCRIBE is not sent within
 an existing dialog) or to suppress (i.e., block) the NOTIFY request
 that would otherwise be triggered by the SUBSCRIBE (for an
 established dialog). In the latter case, the SUBSCRIBE message will
 be answered with a 204 (No Notification) response. As long as the
 condition remains true, it also instructs the notifier either to
 suppress any subsequent NOTIFY request or, if there are reportable
 changes in the NOTIFY header, e.g., the Subscription-State has
 changed, to suppress the body of any subsequent NOTIFY request.

 If the condition is false, the notifier follows its default behavior.

 If the subscriber receives a 204 (No Notification) response to an in-
 dialog SUBSCRIBE, the subscriber MUST consider the event state and
 the subscription state unchanged.

Niemi & Willis Standards Track [Page 13]

RFC 5839 Entity-Tags for SIP Events May 2010

 The value of the Suppress-If-Match header field is an entity-tag,
 which is an opaque token that the subscriber simply copies (byte-
 wise) from a previously received NOTIFY request. Inclusion of an
 entity-tag in a Suppress-If-Match header field of a SUBSCRIBE request
 indicates that the client has a copy of, or is capable of recreating
 a copy of, the entity associated with that entity-tag.

 Example:

 Suppress-If-Match: b4cf7

 The header field can also be wildcarded using the special "*" entity-
 tag value. Such a condition always evaluates to true regardless of
 the value of the current entity-tag for the resource.

 Example:

 Suppress-If-Match: *

 Such a wildcard condition effectively quenches a subscription; the
 only notifications received are those reporting changes to the
 subscription state and those in response to a SUBSCRIBE message sent
 outside of an existing dialog. In both cases, the notifications will
 not contain a body.

 A subscription with a wildcard Suppress-If-Match condition is
 useful in scenarios where the subscriber wants to temporarily put
 a subscription in dormant mode. For example, a host may want to
 conserve bandwidth and power when it detects from screen or input
 device inactivity that the user isn’t actively monitoring the
 presence statuses of contacts.

5.3. Receiving NOTIFY Requests

 When a subscriber receives a NOTIFY request that contains a SIP-ETag
 header field, it MUST store the entity-tag if it wishes to make use
 of the conditional notification mechanism. The subscriber MUST be
 prepared to receive a NOTIFY with any entity-tag value, including a
 value that matches any previous value that the subscriber might have
 seen.

 The subscriber MUST NOT infer any meaning from the value of an
 entity-tag; specifically, the subscriber MUST NOT assume identical
 entities (i.e., event state) for NOTIFYs with identical entity-tag
 values when those NOTIFYs result from subscription to different
 resources.

Niemi & Willis Standards Track [Page 14]

RFC 5839 Entity-Tags for SIP Events May 2010

 Note that there are valid cases for which identical entity-tag
 values on different resources may occur. For example, it is
 possible to generate entity-tag values using a one-way hash
 function, resulting in the possibility that two different
 resources having the same entity-value will also have the same
 entity-tag. Clients however MUST NOT assume that this is the
 case, as the algorithm for the generation of entity-tags is
 notifier-dependent and not negotiated with the subscriber.
 Consequently, the subscriber cannot differentiate between two
 entity-tags that have the same value because they are similar
 hashes of identical entities, or because two notifiers happen to
 have used the same sequential number as an entity-tag. Entity
 tags are only required to be unique for a given resource, not
 globally unique.

5.4. Polling or Fetching Resource State

 Polling with conditional notification allows a user agent to
 efficiently poll resource state. This is accomplished using the
 Suppress-If-Match condition:

Niemi & Willis Standards Track [Page 15]

RFC 5839 Entity-Tags for SIP Events May 2010

 Subscriber Notifier
 ---------- --------

 (1) SUBSCRIBE -------->
 Expires: 0
 <-------- (2) 202

 <-------- (3) NOTIFY
 Subscription-State: terminated
 SIP-ETag: f2e45
 Content-Length: 17539

 (4) 200 -------->

 ... poll interval elapses ...

 (5) SUBSCRIBE -------->
 Suppress-If-Match: f2e45
 Expires: 0
 <-------- (6) 202

 <-------- (7) NOTIFY
 Subscription-State: terminated
 SIP-ETag: f2e45
 Content-Length: 0

 (8) 200 -------->

 Figure 3: Polling Resource State

 (1) The subscriber polls for resource state by sending a SUBSCRIBE
 with zero expiry (expires immediately).

 (2) The notifier accepts the SUBSCRIBE with a 202 (Accepted)
 response.

 (3) The notifier then immediately sends a first (and last) NOTIFY
 request with the current resource state and the current entity-
 tag in the SIP-ETag header field.

 (4) The subscriber accepts the notification with a 200 (OK)
 response.

 (5) After some arbitrary poll interval, the subscriber sends another
 SUBSCRIBE with a Suppress-If-Match header field that includes
 the entity-tag received in the previous NOTIFY.

Niemi & Willis Standards Track [Page 16]

RFC 5839 Entity-Tags for SIP Events May 2010

 (6) The notifier accepts the SUBSCRIBE with a 202 (Accepted)
 response. (202 would be used to indicate that the subscription
 request was understood without also indicating that it was
 authorized, as per Section 3.1.6.1 of SIP-Specific Event
 Notification [RFC3265].)

 (7) Since the resource state has not changed since the previous poll
 occurred, the notifier sends a NOTIFY message with no body. It
 also mirrors the current entity-tag of the resource in the SIP-
 ETag header field.

 (8) The subscriber accepts the notification with a 200 (OK)
 response.

5.5. Resuming a Subscription

 Resuming a subscription means the ability to continue an earlier
 subscription that either closed abruptly or was explicitly
 terminated. When resuming, the subscription is established without
 transmitting the resource state. This is accomplished with
 conditional notification and the Suppress-If-Match header field:

 Subscriber Notifier
 ---------- --------

 (1) SUBSCRIBE -------->
 Suppress-If-Match: ega23
 Expires: 3600
 <-------- (2) 202

 <-------- (3) NOTIFY
 Subscription-State: active
 SIP-ETag: ega23
 Content-Length: 0
 (4) 200 -------->

 Figure 4: Resuming a Subscription

 (1) The subscriber attempts to resume an earlier subscription by
 including a Suppress-If-Match header field with the entity-tag
 it last received.

 (2) The notifier accepts the subscription after proper
 authentication and authorization, by sending a 202 (Accepted)
 response.

Niemi & Willis Standards Track [Page 17]

RFC 5839 Entity-Tags for SIP Events May 2010

 (3) Since the condition is true, the notifier then immediately sends
 an initial NOTIFY request that has no body. It also mirrors the
 current entity-tag of the resource in the SIP-ETag header field.

 (4) The subscriber accepts the NOTIFY and sends a 200 (OK) response.

 Had the entity-tag not been valid any longer, the condition would
 have evaluated to false, and the NOTIFY would have had a body
 containing the latest resource state.

5.6. Refreshing a Subscription

 To refresh a subscription using conditional notification, the
 subscriber creates a subscription refresh before the subscription
 expires, and uses the Suppress-If-Match header field:

 Subscriber Notifier
 ---------- --------

 (1) SUBSCRIBE -------->
 Suppress-If-Match: aba91
 Expires: 3600

 <-------- (2) 204
 Expires: 3600

 Figure 5: Refreshing a Subscription

 (1) Before the subscription expires, the subscriber sends a
 SUBSCRIBE request that includes the Suppress-If-Match header
 field with the latest entity-tag it has seen.

 (2) If the condition evaluates to true, the notifier sends a 204 (No
 Notification) response and sends no NOTIFY request. The Expires
 header field of the 204 (No Notification) response indicates the
 new expiry time.

5.7. Terminating a Subscription

 To terminate a subscription using conditional notification, the
 subscriber creates a SUBSCRIBE request with a Suppress-If-Match
 condition:

Niemi & Willis Standards Track [Page 18]

RFC 5839 Entity-Tags for SIP Events May 2010

 Subscriber Notifier
 ---------- --------

 (1) SUBSCRIBE -------->
 Suppress-If-Match: ega23
 Expires: 0

 <-------- (2) 204

 Figure 6: Terminating a Subscription

 (1) The subscriber decides to terminate the subscription and sends a
 SUBSCRIBE request with the Suppress-If-Match condition with the
 entity-tag it has last seen.

 (2) If the condition evaluates to true, the notifier sends a 204 (No
 Notification) response, which concludes the subscription, and
 the subscriber can clear all state related to the subscription.

5.8. Handling Transient Errors

 This section is non-normative.

 In some deployments, there may be Back-to-Back User Agent (B2BUA)
 devices that track SIP dialogs such as subscription dialogs. These
 devices may be unaware of the conditional notification mechanism.

 It is possible that some B2BUA devices may treat a NOTIFY with
 suppressed body as an error, or may expect all SUBSCRIBE messages to
 have an associated NOTIFY message.

 In general, there is very little that an endpoint can do to recover
 from such transient errors. The most that can be done is to try to
 detect such errors, and define a fallback behavior.

 If subscribers encounter transient errors in conditional
 notification, they should disable the feature and fall back to normal
 subscription behavior.

Niemi & Willis Standards Track [Page 19]

RFC 5839 Entity-Tags for SIP Events May 2010

6. Notifier Behavior

 This section augments the notifier behavior as specified in RFC 3265
 [RFC3265].

6.1. Generating Entity-tags

 An entity-tag is a token carried in the SIP-ETag header field, and it
 is opaque to the client. The notifier is free to decide on any means
 for generating the entity-tag. It can have any value, except for
 "*". For example, one possible method is to implement the entity-tag
 as a simple counter, incrementing it by one for each generated
 notification per resource.

 A notifier MUST generate entity-tags for event notifications of all
 resources for which it is responsible. The entity-tag MUST be unique
 across all versions of all entities for each state of a resource as
 reported by a given event package. Otherwise said, for any
 subscription or sequence of subscriptions to a specific resource
 using a singular event package, each entity-tag produced MUST map to
 one and only one presentation of resource state (entity). Two
 identical entities for a specific resource might or might not have
 identical entity-tags; this decision is left to the notifier.

 An entity-tag is considered valid for as long as the entity exists.
 An entity becomes stale when its version is no longer the current
 one. The notifier MUST remember (or be able to recalculate) the
 entity-tag of an entity as long as the version of the entity is
 current. The notifier MAY remember the entity-tag longer than this,
 e.g., for implementing journaled state differentials (Section 6.4).

 The entity-tag values used in publications are not necessarily shared
 with the entity-tag values used in subscriptions. This is because
 there may not always be a one-to-one mapping between a publication
 and a notification of state change; there may be several sources to
 the event composition process, and a publication into a resource may
 not affect the resulting entity.

6.2. Suppressing NOTIFY Bodies

 When a condition in a SUBSCRIBE request for suppressing notifications
 is true (i.e., the local entity-tag for the resource state and the
 entity-tag in a Suppress-If-Match header field are byte-wise
 identical) but there are reportable changes in the NOTIFY header
 (e.g., the Subscription-State has changed), the notifier MUST
 suppress the body of the NOTIFY request. That is, the resulting
 NOTIFY contains no Content-Type header field, the Content-Length is
 set to zero, and no payload is attached to the message.

Niemi & Willis Standards Track [Page 20]

RFC 5839 Entity-Tags for SIP Events May 2010

 Additionally, when a condition in a SUBSCRIBE request for suppressing
 notifications is true and the SUBSCRIBE message is not sent within an
 established dialog, the notifier MUST send a NOTIFY request with a
 suppressed entity body.

 Suppressing the entity body of a NOTIFY does not change the current
 entity-tag of the resource. Hence, the NOTIFY MUST contain a SIP-
 ETag header field that contains the unchanged entity-tag of the
 resource state.

 A Suppress-If-Match header field that includes an entity-tag with the
 value of "*" MUST always evaluate to true.

6.3. Suppressing NOTIFY Requests

 When a condition in a SUBSCRIBE request to suppress notifications is
 true (i.e., the local entity-tag of the resource and the entity-tag
 in a Suppress-If-Match header field match), and the SUBSCRIBE is sent
 within an established dialog, then the notifier MUST suppress the
 resulting NOTIFY request, and generate a 204 (No Notification)
 response. As long as the condition remains true, and there are no
 reportable changes in the NOTIFY header, all subsequent NOTIFY
 requests MUST also be suppressed.

 Notifiers MUST NOT suppress a NOTIFY unless the corresponding
 SUBSCRIBE message was sent in an established dialog.

 A successful conditional SUBSCRIBE request MUST extend the
 subscription expiry time.

 Suppressing the entire NOTIFY has no effect on the entity-tag of the
 resource. In other words, it remains unchanged.

 A Suppress-If-Match header field that includes an entity-tag with the
 value of "*" MUST always evaluate to true.

6.4. State Differentials

 Some event packages support a scheme where notifications contain
 state differentials, or state deltas [RFC3265], instead of complete
 resource state.

 Further extensions could define means for notifiers to keep track of
 the state changes of a resource, e.g., storing the changes in a
 journal. If a condition fails, the notifier would then send a state
 differential in the NOTIFY rather than the full state of the event
 resource. This is only possible if the event package and the
 subscriber both support a payload format that has this capability.

Niemi & Willis Standards Track [Page 21]

RFC 5839 Entity-Tags for SIP Events May 2010

 When state differentials are sent, the SIP-ETag header field MUST
 contain an entity-tag that corresponds to the full resource state.

6.5. List Subscriptions

 The Event Notification Extension for Resource Lists [RFC4662] defines
 a mechanism for subscribing to a homogeneous list of resources using
 the SIP events framework.

 A list subscription delivers event notifications that contain both
 Resource List Meta-Information (RLMI) documents as well as the
 resource state of the individual resources on the list.

 Implementations MUST consider the full resource state of a resource
 list including RLMI and the entity-header as the entity to which the
 entity-tag applies.

7. Protocol Element Definitions

 This section describes the protocol extensions required for
 conditional notification.

7.1. 204 (No Notification) Response Code

 The 204 (No Notification) response code indicates that the request
 was successful, but the notification associated with the request will
 not be sent. It is valid only in response to a SUBSCRIBE message
 sent within an established dialog.

 The response code is added to the "Success" production rule in the
 SIP [RFC3261] message grammar.

7.2. Suppress-If-Match Header Field

 The Suppress-If-Match header field is added to the definition of the
 "message-header" rule in the SIP [RFC3261] grammar. Its use is
 described in Sections 5, 6.3, and 6.2.

 This header field is allowed to appear in any request, but its
 behavior is only defined for the SUBSCRIBE request.

7.3. Grammar

 This section defines the formal syntax for extensions described in
 this memo in Augmented BNF (ABNF) [RFC5234]. The rules defined here
 augment and reference the syntax defined in RFC 3261 [RFC3261] and
 RFC 3903 [RFC3903].

Niemi & Willis Standards Track [Page 22]

RFC 5839 Entity-Tags for SIP Events May 2010

 Success =/ "204" ; No Notification

 ; Success is defined in RFC 3261.

 message-header =/ Suppress-If-Match

 ; message-header is defined in RFC 3261.

 Suppress-If-Match = "Suppress-If-Match" HCOLON (entity-tag / "*")

 ; entity-tag is defined in RFC 3903.

8. IANA Considerations

 This document registers a new response code and a new header field
 name.

8.1. 204 (No Notification) Response Code

 This document registers a new response code. This response code is
 defined by the following information, which has been added to the
 methods and response-codes sub-registry available from
 http://www.iana.org.

 This information has been added under "Successful 2xx" category.

 +---------------------+-----------+
 | Response Code | Reference |
 +---------------------+-----------+
 | 204 No Notification | [RFC5839] |
 +---------------------+-----------+

8.2. Suppress-If-Match Header Field

 This document registers a new SIP header field called Suppress-If-
 Match. This header field is defined by the following information,
 which has been added to the header fields sub-registry available from
 http://www.iana.org.

 +-------------------+---------+-----------+
 | Header Name | Compact | Reference |
 +-------------------+---------+-----------+
 | Suppress-If-Match | | [RFC5839] |
 +-------------------+---------+-----------+

Niemi & Willis Standards Track [Page 23]

RFC 5839 Entity-Tags for SIP Events May 2010

9. Security Considerations

 The security considerations for SIP event notification are
 extensively discussed in RFC 3265 [RFC3265]. This specification
 introduces an optimization to SIP event notification, which in itself
 does not alter the security properties of the protocol.

10. Acknowledgments

 The following people have contributed corrections and suggestions to
 this document: Adam Roach, Sean Olson, Johnny Vrancken, Pekka Pessi,
 Eva Leppanen, Krisztian Kiss, Peili Xu, Avshalom Houri, David
 Viamonte, Jonathan Rosenberg, Qian Sun, Dale Worley, Tolga Asveren,
 Brian Stucker, Eric Rescorla, Arun Arunachalam, and the SIP and
 SIMPLE working groups.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3265] Roach, A., "Session Initiation Protocol (SIP)-Specific
 Event Notification", RFC 3265, June 2002.

 [RFC3903] Niemi, A., "Session Initiation Protocol (SIP) Extension
 for Event State Publication", RFC 3903, October 2004.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

11.2. Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3515] Sparks, R., "The Session Initiation Protocol (SIP) Refer
 Method", RFC 3515, April 2003.

 [RFC3680] Rosenberg, J., "A Session Initiation Protocol (SIP) Event
 Package for Registrations", RFC 3680, March 2004.

Niemi & Willis Standards Track [Page 24]

RFC 5839 Entity-Tags for SIP Events May 2010

 [RFC3842] Mahy, R., "A Message Summary and Message Waiting
 Indication Event Package for the Session Initiation
 Protocol (SIP)", RFC 3842, August 2004.

 [RFC3856] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

 [RFC3859] Peterson, J., "Common Profile for Presence (CPP)",
 RFC 3859, August 2004.

 [RFC4662] Roach, A., Campbell, B., and J. Rosenberg, "A Session
 Initiation Protocol (SIP) Event Notification Extension for
 Resource Lists", RFC 4662, August 2006.

Authors’ Addresses

 Aki Niemi
 Nokia
 P.O. Box 407
 NOKIA GROUP, FIN 00045
 Finland

 Phone: +358 50 389 1644
 EMail: aki.niemi@nokia.com

 Dean Willis (editor)
 Softarmor Systems
 3100 Independence Pkwy #311-164
 Plano, TX 75075
 USA

 Phone: +1 214 504 1987
 EMail: dean.willis@softarmor.com

Niemi & Willis Standards Track [Page 25]

