Net wor k Wor ki ng Group M Al l man

Request for Comments: 5681 V. Paxson
bsol etes: 2581 I CS
Cat egory: Standards Track E. Blanton

Purdue University
Sept enber 2009

TCP Congestion Contro
Abstr act

Thi s docunent defines TCP's four intertw ned congestion contro

al gorithnms: slow start, congestion avoidance, fast retransnmit, and
fast recovery. In addition, the docunent specifies how TCP shoul d
begin transnission after a relatively long idle period, as well as
di scussi ng vari ous acknow edgrment generation nethods. This docunent
obsol etes RFC 2581

Status of This Meno

This docunent specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice

Copyright (c) 2009 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents in effect on the date of
publication of this docunent (http://trustee.ietf.org/license-info).
Pl ease revi ew these docunents carefully, as they describe your rights
and restrictions with respect to this docunent.

This docunment may contain material from|ETF Docunents or |ETF
Contributions published or nmade publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
materi al may not have granted the IETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate license fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it nmay

Al man, et al. St andards Track [Page 1]

RFC 5681 TCP Congestion Control Sept ember 2009

not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Table O Contents

1. INtroduCti ON ... 2
2. Definiti ONs e 3
3. Congestion Control Algorithns 4
3.1. Slow Start and Congestion Avoidance 4
3.2. Fast Retransmit/Fast ReCOVErYy 8
4. Additional Considerations, 10
4.1. Restarting Idle Connections i, 10
4.2. Cenerating Acknowl edgments, 11
4.3. Loss Recovery Mechanisms 12
5. Security Considerati OnsS 13
6. Changes between RFC 2001 and RFC 2581 13
7. Changes Relative to RFC 2581 i 14
8. ACKNOW edgmENt S e 15
9. References e 15
9.1. Normative References 15
9.2. Informative References 16
1. Introduction

Thi s docunent specifies four TCP [RFC793] congestion contro

al gorithms: slow start, congestion avoi dance, fast retransnmt and
fast recovery. These algorithnms were devised in [Jac88] and [Jac90].
Their use with TCP is standardi zed in [RFC1122]. Additional early
work in additive-increase, nultiplicative-decrease congestion contro
is given in [CJ89].

Note that [Ste94] provides exanples of these algorithnms in action and
[W595] provides an expl anation of the source code for the BSD
i npl ement ati on of these al gorithns.

In addition to specifying these congestion control algorithns, this
document specifies what TCP connections should do after a relatively
long idle period, as well as specifying and clarifying sone of the

i ssues pertaining to TCP ACK generation

Thi s docunent obsol etes [RFC2581], which in turn obsol eted [RFC2001].

Thi s docunent is organized as follows. Section 2 provides various
definitions that will be used throughout the docunment. Section 3
provi des a specification of the congestion control algorithns.
Section 4 outlines concerns related to the congestion contro
algorithnms and finally, section 5 outlines security considerations.

Al man, et al. St andards Track [Page 2]

RFC 5681 TCP Congestion Control Sept ember 2009

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in [RFC2119].

2. Definitions

This section provides the definition of several terns that will be
used t hroughout the remai nder of this docunent.

SEGMENT: A segnent is ANY TCP/I P data or acknow edgnent packet (or
bot h) .

SENDER MAXI MUM SEGVENT SI ZE (SMSS): The SMSS is the size of the
| argest segnent that the sender can transnit. This value can be
based on the maxi mum transm ssion unit of the network, the path
MIU di scovery [RFC1191, RFC4821] algorithm RMSS (see next iten),
or other factors. The size does not include the TCP/IP headers
and options.

RECElI VER MAXI MUM SEGMVENT Sl ZE (RMSS): The RMSS is the size of the
| argest segnent the receiver is willing to accept. This is the
val ue specified in the MSS option sent by the receiver during
connection startup. O, if the MSS option is not used, it is 536
bytes [RFC1122]. The size does not include the TCP/IP headers and
options.

FULL- SI ZED SEGVENT: A segnent that contains the nmaxi num nunber of
data bytes permtted (i.e., a segnent containing SM5S bytes of
dat a) .

RECElI VER W NDOW (rwnd): The nost recently advertised recei ver w ndow.

CONGESTI ON W NDOW (cwnd): A TCP state variable that lints the anpunt
of data a TCP can send. At any given tine, a TCP MJST NOT send
data with a sequence nunber higher than the sum of the highest
acknow edged sequence nunber and the m ni nrum of cwnd and rwnd.

INITIAL WNDOW (IW: The initial windowis the size of the sender’s
congestion wi ndow after the three-way handshake is conpl et ed.

LOSS WNDOW (LW : The |l oss window is the size of the congestion
wi ndow after a TCP sender detects loss using its retransm ssion
timer.

RESTART W NDOW (RW: The restart window is the size of the congestion
wi ndow after a TCP restarts transmi ssion after an idle period (if
the slow start algorithmis used; see section 4.1 for nore
di scussi on).

Al man, et al. St andards Track [Page 3]

RFC 5681 TCP Congestion Control Sept ember 2009

FLI GHT SI ZE: The anount of data that has been sent but not yet
cunul ati vel y acknow edged.

DUPLI CATE ACKNOANLEDGMVENT: An acknowl edgnent is considered a
"duplicate"” in the follow ng algorithms when (a) the receiver of
the ACK has outstanding data, (b) the incom ng acknow edgnent
carries no data, (c) the SYN and FIN bits are both off, (d) the
acknow edgnment nunber is equal to the greatest acknow edgnent
recei ved on the given connection (TCP.UNA from [RFC793]) and (e)
the advertised wi ndow in the incom ng acknow edgnent equal s the
advertised window in the last incom ng acknow edgment.

Alternatively, a TCP that utilizes sel ective acknow edgnents
(SACKs) [RFC2018, RFC2883] can |everage the SACK information to
determi ne when an inconming ACKis a "duplicate" (e.g., if the ACK
contai ns previously unknown SACK i nformation).

3. Congestion Control Algorithns

This section defines the four congestion control algorithms: slow
start, congestion avoi dance, fast retransmit, and fast recovery,

devel oped in [Jac88] and [Jac90]. |In sone situations, it may be
beneficial for a TCP sender to be nore conservative than the
algorithns allow, however, a TCP MJUST NOT be nore aggressive than the
following algorithms allow (that is, MUST NOT send data when the

val ue of cwnd conputed by the follow ng algorithnms would not allow
the data to be sent).

Al so, note that the algorithnms specified in this docunent work in
terns of using loss as the signal of congestion. Explicit Congestion
Notification (ECN) could also be used as specified in [RFC3168].

3.1. Slow Start and Congestion Avoi dance

The sl ow start and congesti on avoi dance al gorithnms MJST be used by a
TCP sender to control the anpbunt of outstanding data being injected
into the network. To inplenment these algorithns, two variables are
added to the TCP per-connection state. The congestion w ndow (cwnd)
is a sender-side linmt on the anpunt of data the sender can transmt
into the network before receiving an acknow edgnment (ACK), while the
receiver’s advertised window (rwnd) is a receiver-side limt on the
anount of outstanding data. The nini mrum of cwnd and rwnd governs
data transm ssion.

Anot her state variable, the slow start threshold (ssthresh), is used

to determ ne whether the slow start or congestion avoi dance al gorithm
is used to control data transm ssion, as discussed bel ow

Al man, et al. St andards Track [Page 4]

RFC 5681 TCP Congestion Control Sept ember 2009

Begi nning transmission into a network with unknown conditions
requires TCP to slowy probe the network to deternine the available
capacity, in order to avoid congesting the network with an

i nappropriately large burst of data. The slow start algorithmis
used for this purpose at the beginning of a transfer, or after
repairing |loss detected by the retransmission tiner. Slow start
additionally serves to start the "ACK cl ock" used by the TCP sender
to release data into the network in the slow start, congestion

avoi dance, and | oss recovery al gorithms.

IW the initial value of cwnd, MJST be set using the foll ow ng
gui del i nes as an upper bound.

If SMSS > 2190 bytes:

IW= 2 * SM5S bytes and MJST NOT be nore than 2 segnents
If (SM5S > 1095 bytes) and (SMSS <= 2190 bytes):

IW= 3 * SM5S bytes and MJST NOT be nore than 3 segnents
if SMSS <= 1095 bytes:

IW= 4 * SM5S bytes and MJST NOT be nore than 4 segnents

As specified in [RFC3390], the SYN ACK and t he acknow edgrment of the
SYN ACK MUST NOT increase the size of the congestion w ndow.

Further, if the SYN or SYNACK is lost, the initial w ndow used by a
sender after a correctly transnitted SYN MJUST be one segnent

consi sting of at nobst SMSS bytes.

A detailed rationale and discussion of the |Wsetting is provided in
[RFC3390] .

When initial congestion wi ndows of nore than one segnent are

i mpl enented along with Path MIU Di scovery [RFC1191], and the MSS
being used is found to be too large, the congestion w ndow cwnd
SHOULD be reduced to prevent |large bursts of smaller segnents.
Specifically, cwnd SHOULD be reduced by the ratio of the old segnent
size to the new segnent size

The initial value of ssthresh SHOULD be set arbitrarily high (e.qg.

to the size of the |argest possible advertised wi ndow), but ssthresh
MJUST be reduced in response to congestion. Setting ssthresh as high
as possible allows the network conditions, rather than some arbitrary
host Iimt, to dictate the sending rate. 1In cases where the end
systens have a solid understanding of the network path, nore
carefully setting the initial ssthresh value may have nerit (e.g.
such that the end host does not create congestion along the path).

Al man, et al. St andards Track [Page 5]

RFC 5681 TCP Congestion Control Sept ember 2009

The slow start algorithmis used when cwnd < ssthresh, while the
congestion avoi dance algorithmis used when cwnd > ssthresh. Wen
cwnd and ssthresh are equal, the sender may use either slow start or
congesti on avoi dance.

During slow start, a TCP increnents cwnd by at nobst SMSS bytes for
each ACK received that cunul atively acknow edges new data. Sl ow
start ends when cwnd exceeds ssthresh (or, optionally, when it
reaches it, as noted above) or when congestion is observed. Wile
traditionally TCP inpl enmentati ons have increased cwnd by precisely
SM5S byt es upon recei pt of an ACK covering new data, we RECOVVEND
that TCP inpl enentations increase cwnd, per

cwnd += nmin (N, SMSS) (2)

where N is the nunber of previously unacknow edged bytes acknow edged
in the incomng ACK. This adjustnent is part of Appropriate Byte
Counti ng [RFC3465] and provi des robustness agai nst ni sbehavi ng
receivers that nay attenpt to induce a sender to artificially inflate
cwnd using a mechani sm known as "ACK Division" [SCM99]. ACK

Di vi sion consists of a receiver sending multiple ACKs for a single
TCP data segnment, each acknow edging only a portion of its data. A
TCP that increnments cwnd by SM5S for each such ACK will

i nappropriately inflate the anount of data injected into the network.

During congestion avoi dance, cwnd is increnmented by roughly 1 full-
sized segnent per round-trip tinme (RTT). Congestion avoi dance
continues until congestion is detected. The basic guidelines for

i ncrenmenting cwnd during congestion avoi dance are:

* MAY increnent cwnd by SMSS bytes
* SHOULD i ncrenment cwnd per equation (2) once per RTT
* MUST NOT increnent cwnd by nore than SMSS bytes

We note that [RFC3465] allows for cwnd increases of nore than SMSS
bytes for incoming acknow edgnments during slow start on an
experinental basis; however, such behavior is not allowed as part of
t he standard.

The RECOVMENDED way to increase cwnd during congestion avoidance is
to count the nunber of bytes that have been acknow edged by ACKs for
new data. (A drawback of this inplenentation is that it requires

mai ntai ni ng an additional state variable.) Wen the nunber of bytes
acknow edged reaches cwnd, then cwnd can be incremented by up to SM5S
bytes. Note that during congestion avoi dance, cwnd MJST NOT be

Al man, et al. St andards Track [Page 6]

RFC 5681 TCP Congestion Control Sept ember 2009

i ncreased by nore than SMSS bytes per RTT. This nethod both all ows
TCPs to increase cwnd by one segnent per RIT in the face of del ayed
ACKs and provi des robustness agai nst ACK Di vi sion attacks.

Anot her common fornmula that a TCP MAY use to update cwnd during
congestion avoidance is given in equation (3):

cwnd += SMSS* SMBS/ cwnd (3)

This adjustnent is executed on every incom ng ACK t hat acknow edges
new data. Equation (3) provides an acceptabl e approximation to the
underlying principle of increasing cwnd by 1 full-sized segnent per
RTT. (Note that for a connection in which the receiver is

acknow edgi ng every-other packet, (3) is |ess aggressive than all owed
-- roughly increasing cwnd every second RTT.)

| mpl enentation Note: Since integer arithmetic is usually used in TCP
i npl enentations, the fornula given in equation (3) can fail to

i ncrease cwnd when the congestion wi ndow is |arger than SMSS* SVSS.

If the above fornula yields O, the result SHOULD be rounded up to 1
byt e.

| mpl enentation Note: O der inplenentations have an additiona
additive constant on the right-hand side of equation (3). This is
incorrect and can actually lead to dininished perfornmance [RFC2525].

| mpl enent ati on Note: Sone inplenentations naintain cwnd in units of
bytes, while others in units of full-sized segnents. The latter wll
find equation (3) difficult to use, and may prefer to use the
counting approach di scussed in the previous paragraph

When a TCP sender detects segnent |oss using the retransnission tiner
and the given segnent has not yet been resent by way of the
retransnission tiner, the value of ssthresh MJUST be set to no nore
than the value given in equation (4):

ssthresh = max (FlightSize / 2, 2*SMSS) (4)

where, as discussed above, FlightSize is the anount of outstanding
data in the network.

On the other hand, when a TCP sender detects segnent |oss using the
retransm ssion tiner and the given segnent has al ready been
retransmtted by way of the retransmission tinmer at |east once, the
val ue of ssthresh is held constant.

Al man, et al. St andards Track [Page 7]

RFC 5681 TCP Congestion Control Sept ember 2009

| mpl enentati on Note: An easy nistake to make is to sinply use cwnd,
rather than FlightSize, which in sone inplenmentations may
incidentally increase well beyond rwnd.

Furt hernmore, upon a timeout (as specified in [RFC2988]) cwnd MIST be
set to no nore than the | oss wi ndow, LW which equals 1 full-sized
segrment (regardl ess of the value of IW. Therefore, after
retransmtting the dropped segnent the TCP sender uses the slow start
algorithmto increase the window from1 full-sized segnent to the new
val ue of ssthresh, at which point congestion avoi dance agai n takes
over.

As shown in [FF96] and [RFC3782], slowstart-based | oss recovery
after a tineout can cause spurious retransm ssions that trigger
duplicate acknow edgnents. The reaction to the arrival of these
duplicate ACKs in TCP inplenentations varies widely. This docunent
does not specify how to treat such acknow edgnents, but does note
this as an area that may benefit from additional attention
experinentation and specification

3.2. Fast Retransnit/Fast Recovery

A TCP receiver SHOULD send an i medi ate duplicate ACK when an out -

of -order segnent arrives. The purpose of this ACKis to informthe
sender that a segnent was received out-of-order and which sequence
nunber is expected. Fromthe sender’s perspective, duplicate ACKs
can be caused by a nunber of network problens. First, they can be
caused by dropped segnents. |In this case, all segnments after the
dropped segment will trigger duplicate ACKs until the loss is
repaired. Second, duplicate ACKs can be caused by the re-ordering of
data segnents by the network (not a rare event al ong sone network
pat hs [Pax97]). Finally, duplicate ACKs can be caused by replication
of ACK or data segnments by the network. 1In addition, a TCP receiver
SHOULD send an i medi ate ACK when the incoming segrment fills in all
or part of a gap in the sequence space. This will generate nore
tinely information for a sender recovering froma |oss through a
retransm ssion tinmeout, a fast retransmit, or an advanced | oss
recovery algorithm as outlined in section 4. 3.

The TCP sender SHOULD use the "fast retransnmit" algorithmto detect
and repair |oss, based on incom ng duplicate ACKs. The fast
retransmt algorithmuses the arrival of 3 duplicate ACKs (as defined
in section 2, without any intervening ACKs which nove SND. UNA) as an
i ndi cation that a segnment has been lost. After receiving 3 duplicate
ACKs, TCP perforns a retransmi ssion of what appears to be the m ssing
segrment, without waiting for the retransm ssion timer to expire.

Al man, et al. St andards Track [Page 8]

RFC 5681 TCP Congestion Control Sept ember 2009

After the fast retransmt algorithmsends what appears to be the

m ssing segnent, the "fast recovery" algorithm governs the

transm ssion of new data until a non-duplicate ACK arrives. The
reason for not performng slow start is that the receipt of the
duplicate ACKs not only indicates that a segnment has been | ost, but
al so that segnents are nost likely |eaving the network (although a
massi ve segnent duplication by the network can invalidate this
conclusion). In other words, since the receiver can only generate a
duplicate ACK when a segnment has arrived, that segnment has left the
network and is in the receiver’s buffer, so we knowit is no |onger
consum ng network resources. Furthernore, since the ACK "cl ock”
[Jac88] is preserved, the TCP sender can continue to transnit new
segrments (al though transm ssion nust continue using a reduced cwnd,
since loss is an indication of congestion).

The fast retransmt and fast recovery algorithnms are inplenented
toget her as foll ows.

1. On the first and second duplicate ACKs received at a sender, a
TCP SHOULD send a segnent of previously unsent data per [RFC3042]
provided that the receiver’s advertised wi ndow allows, the tota
FlightSize would remain | ess than or equal to cwnd plus 2*SMSS,
and that new data is available for transm ssion. Further, the
TCP sender MUST NOT change cwnd to reflect these two segnents
[RFC3042]. Note that a sender using SACK [RFC2018] MJUST NOT send
new data unl ess the inconing duplicate acknow edgnent contains
new SACK i nformation

2. Wen the third duplicate ACK is received, a TCP MIJST set ssthresh
to no nore than the value given in equation (4). Wen [RFC3042]
is in use, additional data sent in linted transnmt MJST NOT be
included in this calculation

3. The lost segnment starting at SND. UNA MUST be retransmtted and
cwnd set to ssthresh plus 3*SM5S. This artificially "inflates”
t he congestion wi ndow by the nunber of segnents (three) that have
left the network and which the receiver has buffered.

4. For each additional duplicate ACK received (after the third),
cwnd MJST be incremented by SMSS. This artificially inflates the
congestion window in order to reflect the additional segnent that
has left the network.

Not e: [SCWA99] di scusses a receiver-based attack whereby many

bogus duplicate ACKs are sent to the data sender in order to
artificially inflate cwnd and cause a hi gher than appropriate

Al man, et al. St andards Track [Page 9]

RFC 5681 TCP Congestion Control Sept ember 2009

sending rate to be used. A TCP NMAY therefore linmt the nunber of
times cwnd is artificially inflated during | oss recovery to the
number of outstandi ng segnents (or, an approximation thereof).

Not e: When an advanced | oss recovery mechani sm (such as outlined
in section 4.3) is not in use, this increase in FlightSize can
cause equation (4) to slightly inflate cwnd and ssthresh, as sone
of the segnents between SND. UNA and SND. NXT are assumed to have
left the network but are still reflected in FlightSize.

5. \When previously unsent data is avail able and the new val ue of
cwnd and the receiver’s advertised wi ndow allow, a TCP SHOULD
send 1*SMSS bytes of previously unsent data.

6. Wen the next ACK arrives that acknow edges previously
unacknow edged data, a TCP MJUST set cwnd to ssthresh (the val ue
set in step 2). This is ternmed "deflating” the w ndow.

This ACK shoul d be the acknow edgnent elicited by the

retransm ssion fromstep 3, one RTT after the retransm ssion
(though it may arrive sooner in the presence of significant out-
of -order delivery of data segnments at the receiver).
Additionally, this ACK should acknow edge all the internediate
segnments sent between the | ost segnent and the receipt of the
third duplicate ACK, if none of these were |ost.

Note: This algorithmis known to generally not recover efficiently
frommultiple losses in a single flight of packets [FF96]. Section
4.3 bel ow addresses such cases.

4, Additional Considerations
4.1. Restarting Idle Connections

A known problemw th the TCP congestion control algorithns described
above is that they allow a potentially inappropriate burst of traffic
to be transnmitted after TCP has been idle for a relatively |ong
period of time. After an idle period, TCP cannot use the ACK cl ock
to strobe new segnments into the network, as all the ACKs have drai ned
fromthe network. Therefore, as specified above, TCP can potentially
send a cwnd-size line-rate burst into the network after an idle
period. In addition, changing network conditions nay have rendered
TCP's notion of the avail abl e end-to-end network capacity between two
endpoi nts, as estimated by cwnd, inaccurate during the course of a
long idle period.

Al man, et al. St andards Track [Page 10]

RFC 5681 TCP Congestion Control Sept ember 2009

[Jac88] recomends that a TCP use slow start to restart transm ssion
after a relatively long idle period. Slow start serves to restart
the ACK clock, just as it does at the beginning of a transfer. This
mechani sm has been w dely deployed in the followi ng manner. Wen TCP
has not received a segnent for nore than one retransnission tineout,
cwnd is reduced to the value of the restart w ndow (RW before
transm ssi on begins.

For the purposes of this standard, we define RW= nin(lWcwnd).

Using the last tinme a segnent was received to determ ne whether or
not to decrease cwnd can fail to deflate cwnd in the comopn case of
persi stent HTTP connections [HTH98]. |In this case, a Wb server
receives a request before transnmitting data to the Wb client. The
reception of the request nakes the test for an idle connection fail
and allows the TCP to begin transmi ssion with a possibly

i nappropriately |arge cwnd.

Therefore, a TCP SHOULD set cwnd to no nore than RW before begi nni ng
transmission if the TCP has not sent data in an interval exceeding
the retransni ssion tineout.

4.2. Cenerating Acknow edgnents

The del ayed ACK al gorithm specified in [RFC1122] SHOULD be used by a
TCP receiver. Wen using delayed ACKs, a TCP receiver MJST NOT
excessivel y del ay acknow edgnents. Specifically, an ACK SHOULD be
generated for at |east every second full-sized segnent, and MJST be
generated within 500 ns of the arrival of the first unacknow edged
packet .

The requirenent that an ACK "SHOULD' be generated for at |east every
second full-sized segnent is listed in [RFCL122] in one place as a
SHOULD and another as a MJUST. Here we unanbiguously state it is a
SHOULD. We al so enphasize that this is a SHOULD, neaning that an

i mpl enent or shoul d i ndeed only deviate fromthis requirenment after
careful consideration of the inplications. See the discussion of
"Stretch ACK violation" in [RFC2525] and the references therein for a
di scussion of the possible performance problenms with generating ACKs
| ess frequently than every second full-sized segnment.

In sone cases, the sender and receiver nmay not agree on what
constitutes a full-sized segnent. An inplenentation is deened to
comply with this requirenment if it sends at |east one acknow edgnent
every time it receives 2*RMSS bytes of new data fromthe sender
where RMBS is the Maxi mum Segnent Size specified by the receiver to
the sender (or the default value of 536 bytes, per [RFC1122], if the
recei ver does not specify an MSS option during connection

Al man, et al. St andards Track [Page 11]

RFC 5681 TCP Congestion Control Sept ember 2009

establishnent). The sender nmay be forced to use a segnent size |ess
than RVSS due to the maxi num transnission unit (MIU), the path Mru
di scovery algorithmor other factors. For instance, consider the
case when the receiver announces an RMSS of X bytes but the sender
ends up using a segnent size of Y bytes (Y < X) due to path MIU

di scovery (or the sender’s MIU size). The receiver will generate
stretch ACKs if it waits for 2*X bytes to arrive before an ACK i s
sent. Clearly this will take nore than 2 segnments of size Y bytes.
Therefore, while a specific algorithmis not defined, it is desirable
for receivers to attenpt to prevent this situation, for exanple, by
acknow edgi ng at | east every second segment, regardless of size.
Finally, we repeat that an ACK MUST NOT be del ayed for nore than 500
nms waiting on a second full-sized segnent to arrive

Qut-of -order data segnments SHOULD be acknow edged i nmediately, in
order to accelerate loss recovery. To trigger the fast retransmt
algorithm the receiver SHOULD send an inmedi ate duplicate ACK when
it receives a data segnent above a gap in the sequence space. To
provi de feedback to senders recovering fromlosses, the receiver
SHOULD send an i medi ate ACK when it receives a data segnent that
fills in all or part of a gap in the sequence space.

A TCP receiver MIUST NOT generate nore than one ACK for every incom ng
segrment, other than to update the offered wi ndow as the receiving
application consunes new data (see [RFC813] and page 42 of [RFC793]).

4.3. Loss Recovery Mechani sns

A nunber of | oss recovery algorithns that augnent fast retransmit and
fast recovery have been suggested by TCP researchers and specified in
the RFC series. Wile some of these algorithns are based on the TCP
sel ective acknow edgnent (SACK) option [RFC2018], such as [FF96],

[MMB6a], [MW6b], and [RFC3517], others do not require SACKs, such as
[Hoe96], [FF96], and [RFC3782]. The non-SACK al gorithns use "partial
acknow edgnment s” (ACKs that cover previously unacknow edged data, but
not all the data outstandi ng when | oss was detected) to trigger
retransm ssions. Wile this docunent does not standardi ze any of the
specific algorithns that nmay i nprove fast retransnit/fast recovery,

t hese enhanced algorithnms are inplicitly allowed, as |long as they
follow the general principles of the basic four algorithnms outlined
above.

That is, when the first loss in a window of data is detected,
ssthresh MUST be set to no nore than the val ue given by equation (4).
Second, until all lost segnents in the window of data in question are
repai red, the nunmber of segments transmitted in each RTT MJUST be no
nmore than half the nunmber of outstanding segnents when the | oss was
detected. Finally, after all loss in the given wi ndow of segnents

Al man, et al. St andards Track [Page 12]

RFC 5681 TCP Congestion Control Sept ember 2009

has been successfully retransmtted, cwnd MJST be set to no nore than
ssthresh and congesti on avoi dance MJST be used to further increase
cwnd. Loss in two successive windows of data, or the loss of a
retransm ssion, should be taken as two indications of congestion and,
therefore, cwnd (and ssthresh) MJST be lowered twice in this case.

We RECOMMEND t hat TCP i npl enentors enpl oy sonme form of advanced | oss

recovery that can cope with nultiple losses in a wi ndow of data. The
algorithnms detailed in [RFC3782] and [RFC3517] conformto the genera

principles outlined above. W note that while these are not the only
two algorithms that conformto the above general principles these two
al gorithnms have been vetted by the comunity and are currently on the
St andar ds Tr ack.

5. Security Considerations

This docunment requires a TCP to dimnish its sending rate in the
presence of retransnission tinmeouts and the arrival of duplicate
acknow edgnents. An attacker can therefore inpair the perfornmance of
a TCP connection by either causing data packets or their

acknow edgnments to be lost, or by forging excessive duplicate

acknow edgnent s.

In response to the ACK division attack outlined in [SCWA99], this
docunent RECOMMENDS i ncreasi ng the congestion wi ndow based on the
nunber of bytes newly acknow edged in each arriving ACK rather than
by a particular constant on each arriving ACK (as outlined in section
3.1).

The Internet, to a considerable degree, relies on the correct

i mpl enentation of these algorithns in order to preserve network
stability and avoid congestion collapse. An attacker could cause TCP
endpoints to respond nore aggressively in the face of congestion by
forgi ng excessive duplicate acknow edgnents or excessive

acknow edgments for new data. Conceivably, such an attack could
drive a portion of the network into congestion coll apse.

6. Changes between RFC 2001 and RFC 2581

[RFC2001] was extensively rewitten editorially and it is not
feasible to item ze the |list of changes between [RFC2001] and

[RFC2581]. The intention of [RFC2581] was to not change any of the
recomendati ons given in [RFC2001], but to further clarify cases that
were not discussed in detail in [RFC2001]. Specifically, [RFC2581]
suggest ed what TCP connections should do after a relatively long idle
period, as well as specified and clarified some of the issues

Al man, et al. St andards Track [Page 13]

RFC 5681 TCP Congestion Control Sept ember 2009

pertaining to TCP ACK generation. Finally, the all owabl e upper bound
for the initial congestion wi ndow was rai sed fromone to two
segment s.

7. Changes Rel ative to RFC 2581

A specific definition for "duplicate acknow edgnment" has been added,
based on the definition used by BSD TCP

The docunent now notes that what to do with duplicate ACKs after the
retransm ssion tinmer has fired is future work and explicitly
unspecified in this docunent.

The initial w ndow requirenents were changed to allow Larger Initia
W ndows as standardized in [RFC3390]. Additionally, the steps to
take when an initial windowis discovered to be too |arge due to Path
MIU Di scovery [RFC1191] are detail ed.

The recomended initial value for ssthresh has been changed to say
that it SHOULD be arbitrarily high, where it was previously MNAY.
This is to provide additional guidance to inplenmentors on the matter

During slow start, the usage of Appropriate Byte Counting [RFC3465]
with L=1*SMBS is explicitly recommended. The nmethod of increasing

cwnd given in [RFC2581] is still explicitly allowed. Byte counting
during congestion avoi dance is also recommended, while the nethod
from [RFC2581] and ot her safe methods are still all owed.

The treatnment of ssthresh on retransm ssion timeout was clarified.
In particular, ssthresh nust be set to half the FlightSize on the
first retransm ssion of a given segnent and then is held constant on
subsequent retransm ssions of the same segnent.

The description of fast retransnmit and fast recovery has been
clarified, and the use of Limted Transmt [RFC3042] is now
recomrended.

TCPs now MAY limt the nunber of duplicate ACKs that artificially
inflate cwnd during | oss recovery to the nunber of segnents

out standing to avoid the duplicate ACK spoofing attack described in
[SCWA99] .

The restart w ndow has been changed to min(IWcwnd) fromIW This
behavi or was described as "experinmental" in [RFC2581].

It is now recommended that TCP inplenentors inplenent an advanced

| oss recovery algorithmconformng to the principles outlined in this
docunent .

Al man, et al. St andards Track [Page 14]

RFC 5681 TCP Congestion Control Sept ember 2009

The security considerations have been updated to discuss ACK division
and recommend byte counting as a counter to this attack.

8. Acknow edgnents

The core algorithnms we descri be were devel oped by Van Jacobson
[Jac88, Jac90]. |In addition, Limted Transmt [RFC3042] was

devel oped in conjunction with Hari Bal akrishnan and Sally Floyd. The
initial congestion wi ndow size specified in this docunent is a result
of work with Sally Floyd and Craig Partridge [RFC2414, RFC3390].

W Richard ("Rich") Stevens wote the first version of this docunent
[RFC2001] and co-authored the second version [RFC2581]. This present
versi on nuch benefits fromhis clarity and thoughtful ness of
description, and we are grateful for Rich's contributions in

el ucidating TCP congestion control, as well as in nore broadly
hel pi ng us understand nunerous issues relating to networKking.

We wi sh to enphasi ze that the shortcom ngs and mi stakes of this
docunent are solely the responsibility of the current authors.

Some of the text fromthis docunment is taken from"TCP/IP
Illustrated, Volunme 1: The Protocols" by W Richard Stevens

(Addi son-Wesl ey, 1994) and "TCP/IP Illustrated, Volume 2: The

| mpl enentation" by Gary R Wight and W Richard Stevens (Addi son-
Wesl ey, 1995). This material is used with the permi ssion of

Addi son- sl ey.

Ani|l Agarwal, Steve Arden, Neal Cardwell, Noritoshi Dem zu, CGorry
Fairhurst, Kevin Fall, John Heffner, Alfred Hoenes, Sally Floyd,
Rei ner Ludwi g, Matt Mathis, Craig Partridge, and Joe Touch
contributed a nunber of hel pful suggestions.

9. References

9.1. Normative References

[RFC793] Postel, J., "Transnission Control Protocol", STD 7, RFC
793, Septenber 1981

[RFC1122] Braden, R, Ed., "Requirenents for Internet Hosts -
Communi cati on Layers", STD 3, RFC 1122, Cctober 1989.

[RFC1191] Mogul, J. and S. Deering, "Path MIU di scovery", RFC 1191,
Novenber 1990.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

Al man, et al. St andards Track [Page 15]

RFC 5681 TCP Congestion Control Sept ember 2009

9.2. Infornative References

[CI89] Chiu, D. and R Jain, "Analysis of the Increase/Decrease
Al gorithns for Congestion Avoi dance in Conputer Networks",
Journal of Conmputer Networks and | SDN Systenms, vol. 17, no.
1, pp. 1-14, June 1989.

[FF96] Fall, K and S. Floyd, "Sinulation-based Conparisons of
Tahoe, Reno and SACK TCP", Conputer Conmmunication Review,
July 1996, ftp://ftp.ee.lDbl.gov/papers/sacks. ps.Z

[Hoe96] Hoe, J., "Inproving the Start-up Behavi or of a Congestion
Control Schene for TCP", In ACM SI GCOW August 1996.

[HTHO8] Hughes, A., Touch, J., and J. Heidemann, "lssues in TCP
Slow Start Restart After Idle", Wrk in Progress, Mrch
1998.

[Jac88] Jacobson, V., "Congestion Avoidance and Control", Conputer
Conmmuni cation Review, vol. 18, no. 4, pp. 314-329, Aug.
1988. ftp://ftp.ee.lDbl.gov/papers/congavoid. ps. Z.

[Jac90] Jacobson, V., "Modified TCP Congestion Avoi dance
Al gorithnt', end2end-interest mailing list, April 30, 1990.
ftp://ftp.isi.edu/ end2end/ end2end-i nterest-1990. nail .

[MvB6a] Mathis, M and J. Mahdavi, "Forward Acknow edgnent:
Refining TCP Congestion Control", Proceedi ngs of
SI GCOW 96, August, 1996, Stanford, CA. Available from
htt p: // ww. psc. edu/ net wor ki ng/ paper s/ papers. ht ni

[MVB6Db] Mathis, M and J. Mahdavi, "TCP Rate-Hal ving with Bounding
Par anmet ers", Technical report. Available from
htt p: // ww. psc. edu/ net wor ki ng/ paper s/ FACKnot es/ current.

[Pax97] Paxson, V., "End-to-End Internet Packet Dynam cs",
Proceedi ngs of SIGCOW ' 97, Cannes, France, Sep. 1997.

[RFC813] dark, D., "Wndow and Acknow edgenent Strategy in TCP",
RFC 813, July 1982.

[RFC2001] Stevens, W, "TCP Slow Start, Congestion Avoi dance, Fast
Retransmit, and Fast Recovery Al gorithnms", RFC 2001,
January 1997.

[RFC2018] WMathis, M, Mhdavi, J., Floyd, S., and A. Romanow, "TCP
Sel ecti ve Acknow edgnent Options", RFC 2018, Cctober 1996.

Al man, et al. St andards Track [Page 16]

RFC 5681

[RFC2414]

[RFC2525]

[RFC2581]

[RFC2883]

[RFC2988]

[RFC3042]

[RFC3168]

[RFC3390]

[RFC3465]

[RFC3517]

[RFC3782]

[RFC4821]

[SCWAQ9]

[St e94]

TCP Congestion Control Sept ember 2009

Allman, M, Floyd, S., and C. Partridge, "Increasing TCP' s
Initial Wndow', RFC 2414, Septenber 1998.

Paxson, V., Allman, M, Dawson, S., Fenner, W, Giner, J.,
Heavens, 1., Lahey, K., Senke, J., and B. Vol z, "Known TCP
| npl enent ati on Probl ens”, RFC 2525, March 1999.

Allman, M, Paxson, V., and W Stevens, "TCP Congestion
Control", RFC 2581, April 1999.

Fl oyd, S., Mahdavi, J., Mathis, M, and M Podol sky, "An
Extension to the Sel ective Acknow edgenent (SACK) Option
for TCP', RFC 2883, July 2000.

Paxson, V. and M Al lman, "Conputing TCP's Retransni ssion
Timer", RFC 2988, Novenber 2000.

Al'lman, M, Bal akrishnan, H, and S. Floyd, "Enhancing
TCP's Loss Recovery Using Linmted Transmit", RFC 3042,
January 2001.

Ramakri shnan, K., Floyd, S., and D. Black, "The Addition of
Explicit Congestion Notification (ECN) to IP", RFC 3168,
Sept enber 2001.

Allman, M, Floyd, S., and C. Partridge, "Increasing TCP' s
Initial Wndow', RFC 3390, Cctober 2002.

Allman, M, "TCP Congestion Control with Appropriate Byte
Counting (ABQ)", RFC 3465, February 2003.

Blanton, E., Allman, M, Fall, K, and L. Wang, "A
Conservative Sel ective Acknow edgnent (SACK)-based Loss
Recovery Algorithmfor TCP', RFC 3517, April 2003.

Fl oyd, S., Henderson, T., and A Qurtov, "The NewReno
Modi fication to TCP's Fast Recovery Al gorithni, RFC 3782,
April 2004.

Mathis, M and J. Heffner, "Packetization Layer Path MIU
Di scovery", RFC 4821, March 2007.

Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
"TCP Congestion Control Wth a M sbehaving Receiver", ACM
Conput er Conmuni cation Review, 29(5), Cctober 1999.

Stevens, W, "TCP/IP Illustrated, Volune 1: The Protocol s",
Addi son- Wesl ey, 1994,

Al man, et al. St andards Track [Page 17]

RFC 5681 TCP Congestion Control Sept ember 2009

[W595] Wight, G and W Stevens, "TCP/IP Illustrated, Volune 2:
The | npl enentation", Addi son-Wsley, 1995.

Aut hors’ Addresses

Mark Al l man

I nternational Conputer Science Institute (I1CSl)
1947 Center Street

Suite 600

Ber kel ey, CA 94704-1198

Phone: +1 440 235 1792

EMail: mal |l man@cir.org

http://ww.icir.org/ mall man/

Vern Paxson

I nternational Conputer Science Institute (I1CSl)
1947 Center Street

Suite 600

Ber kel ey, CA 94704-1198

Phone: +1 510/ 642-4274 x302

EMail: vern@cir.org

http://ww.icir.org/vern/

Et han Bl ant on

Purdue University Conputer Sciences

305 North University Street

West Lafayette, IN 47907

EMai | : ebl ant on@s. purdue. edu
http://ww. cs. purdue. edu/ horres/ ebl ant on/

Al man, et al. St andards Track [Page 18]

