
Internet Engineering Task Force (IETF) B. Halevy
Request for Comments: 5664 B. Welch
Category: Standards Track J. Zelenka
ISSN: 2070-1721 Panasas
 January 2010

 Object-Based Parallel NFS (pNFS) Operations

Abstract

 Parallel NFS (pNFS) extends Network File System version 4 (NFSv4) to
 allow clients to directly access file data on the storage used by the
 NFSv4 server. This ability to bypass the server for data access can
 increase both performance and parallelism, but requires additional
 client functionality for data access, some of which is dependent on
 the class of storage used, a.k.a. the Layout Type. The main pNFS
 operations and data types in NFSv4 Minor version 1 specify a layout-
 type-independent layer; layout-type-specific information is conveyed
 using opaque data structures whose internal structure is further
 defined by the particular layout type specification. This document
 specifies the NFSv4.1 Object-Based pNFS Layout Type as a companion to
 the main NFSv4 Minor version 1 specification.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5664.

Halevy, et al. Standards Track [Page 1]

RFC 5664 pNFS Objects January 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction ..3
 1.1. Requirements Language4
 2. XDR Description of the Objects-Based Layout Protocol4
 2.1. Code Components Licensing Notice4
 3. Basic Data Type Definitions6
 3.1. pnfs_osd_objid4 ..6
 3.2. pnfs_osd_version4 ..6
 3.3. pnfs_osd_object_cred47
 3.4. pnfs_osd_raid_algorithm48
 4. Object Storage Device Addressing and Discovery8
 4.1. pnfs_osd_targetid_type410
 4.2. pnfs_osd_deviceaddr410
 4.2.1. SCSI Target Identifier11
 4.2.2. Device Network Address11
 5. Object-Based Layout ..12
 5.1. pnfs_osd_data_map4 ..13
 5.2. pnfs_osd_layout4 ..14
 5.3. Data Mapping Schemes14
 5.3.1. Simple Striping15
 5.3.2. Nested Striping16
 5.3.3. Mirroring ..17
 5.4. RAID Algorithms ...18
 5.4.1. PNFS_OSD_RAID_018
 5.4.2. PNFS_OSD_RAID_418
 5.4.3. PNFS_OSD_RAID_518
 5.4.4. PNFS_OSD_RAID_PQ19
 5.4.5. RAID Usage and Implementation Notes19
 6. Object-Based Layout Update20
 6.1. pnfs_osd_deltaspaceused420
 6.2. pnfs_osd_layoutupdate421
 7. Recovering from Client I/O Errors21

Halevy, et al. Standards Track [Page 2]

RFC 5664 pNFS Objects January 2010

 8. Object-Based Layout Return22
 8.1. pnfs_osd_errno4 ...23
 8.2. pnfs_osd_ioerr4 ...24
 8.3. pnfs_osd_layoutreturn424
 9. Object-Based Creation Layout Hint25
 9.1. pnfs_osd_layouthint425
 10. Layout Segments ...26
 10.1. CB_LAYOUTRECALL and LAYOUTRETURN27
 10.2. LAYOUTCOMMIT ...27
 11. Recalling Layouts ...27
 11.1. CB_RECALL_ANY ..28
 12. Client Fencing ..29
 13. Security Considerations29
 13.1. OSD Security Data Types30
 13.2. The OSD Security Protocol30
 13.3. Protocol Privacy Requirements32
 13.4. Revoking Capabilities32
 14. IANA Considerations ...33
 15. References ..33
 15.1. Normative References33
 15.2. Informative References34
 Appendix A. Acknowledgments35

1. Introduction

 In pNFS, the file server returns typed layout structures that
 describe where file data is located. There are different layouts for
 different storage systems and methods of arranging data on storage
 devices. This document describes the layouts used with object-based
 storage devices (OSDs) that are accessed according to the OSD storage
 protocol standard (ANSI INCITS 400-2004 [1]).

 An "object" is a container for data and attributes, and files are
 stored in one or more objects. The OSD protocol specifies several
 operations on objects, including READ, WRITE, FLUSH, GET ATTRIBUTES,
 SET ATTRIBUTES, CREATE, and DELETE. However, using the object-based
 layout the client only uses the READ, WRITE, GET ATTRIBUTES, and
 FLUSH commands. The other commands are only used by the pNFS server.

 An object-based layout for pNFS includes object identifiers,
 capabilities that allow clients to READ or WRITE those objects, and
 various parameters that control how file data is striped across their
 component objects. The OSD protocol has a capability-based security
 scheme that allows the pNFS server to control what operations and
 what objects can be used by clients. This scheme is described in
 more detail in the "Security Considerations" section (Section 13).

Halevy, et al. Standards Track [Page 3]

RFC 5664 pNFS Objects January 2010

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [2].

2. XDR Description of the Objects-Based Layout Protocol

 This document contains the external data representation (XDR [3])
 description of the NFSv4.1 objects layout protocol. The XDR
 description is embedded in this document in a way that makes it
 simple for the reader to extract into a ready-to-compile form. The
 reader can feed this document into the following shell script to
 produce the machine readable XDR description of the NFSv4.1 objects
 layout protocol:

 #!/bin/sh
 grep ’^ *///’ $* | sed ’s?^ */// ??’ | sed ’s?^ *///$??’

 That is, if the above script is stored in a file called "extract.sh",
 and this document is in a file called "spec.txt", then the reader can
 do:

 sh extract.sh < spec.txt > pnfs_osd_prot.x

 The effect of the script is to remove leading white space from each
 line, plus a sentinel sequence of "///".

 The embedded XDR file header follows. Subsequent XDR descriptions,
 with the sentinel sequence are embedded throughout the document.

 Note that the XDR code contained in this document depends on types
 from the NFSv4.1 nfs4_prot.x file ([4]). This includes both nfs
 types that end with a 4, such as offset4, length4, etc., as well as
 more generic types such as uint32_t and uint64_t.

2.1. Code Components Licensing Notice

 The XDR description, marked with lines beginning with the sequence
 "///", as well as scripts for extracting the XDR description are Code
 Components as described in Section 4 of "Legal Provisions Relating to
 IETF Documents" [5]. These Code Components are licensed according to
 the terms of Section 4 of "Legal Provisions Relating to IETF
 Documents".

Halevy, et al. Standards Track [Page 4]

RFC 5664 pNFS Objects January 2010

 /// /*
 /// * Copyright (c) 2010 IETF Trust and the persons identified
 /// * as authors of the code. All rights reserved.
 /// *
 /// * Redistribution and use in source and binary forms, with
 /// * or without modification, are permitted provided that the
 /// * following conditions are met:
 /// *
 /// * o Redistributions of source code must retain the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer.
 /// *
 /// * o Redistributions in binary form must reproduce the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer in the documentation and/or other
 /// * materials provided with the distribution.
 /// *
 /// * o Neither the name of Internet Society, IETF or IETF
 /// * Trust, nor the names of specific contributors, may be
 /// * used to endorse or promote products derived from this
 /// * software without specific prior written permission.
 /// *
 /// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 /// * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// *
 /// * This code was derived from RFC 5664.
 /// * Please reproduce this note if possible.
 /// */
 ///
 /// /*
 /// * pnfs_osd_prot.x
 /// */
 ///
 /// %#include <nfs4_prot.x>
 ///

Halevy, et al. Standards Track [Page 5]

RFC 5664 pNFS Objects January 2010

3. Basic Data Type Definitions

 The following sections define basic data types and constants used by
 the Object-Based Layout protocol.

3.1. pnfs_osd_objid4

 An object is identified by a number, somewhat like an inode number.
 The object storage model has a two-level scheme, where the objects
 within an object storage device are grouped into partitions.

 /// struct pnfs_osd_objid4 {
 /// deviceid4 oid_device_id;
 /// uint64_t oid_partition_id;
 /// uint64_t oid_object_id;
 /// };
 ///

 The pnfs_osd_objid4 type is used to identify an object within a
 partition on a specified object storage device. "oid_device_id"
 selects the object storage device from the set of available storage
 devices. The device is identified with the deviceid4 type, which is
 an index into addressing information about that device returned by
 the GETDEVICELIST and GETDEVICEINFO operations. The deviceid4 data
 type is defined in NFSv4.1 [6]. Within an OSD, a partition is
 identified with a 64-bit number, "oid_partition_id". Within a
 partition, an object is identified with a 64-bit number,
 "oid_object_id". Creation and management of partitions is outside
 the scope of this document, and is a facility provided by the object-
 based storage file system.

3.2. pnfs_osd_version4

 /// enum pnfs_osd_version4 {
 /// PNFS_OSD_MISSING = 0,
 /// PNFS_OSD_VERSION_1 = 1,
 /// PNFS_OSD_VERSION_2 = 2
 /// };
 ///

 pnfs_osd_version4 is used to indicate the OSD protocol version or
 whether an object is missing (i.e., unavailable). Some of the
 object-based layout-supported RAID algorithms encode redundant
 information and can compensate for missing components, but the data
 placement algorithm needs to know what parts are missing.

Halevy, et al. Standards Track [Page 6]

RFC 5664 pNFS Objects January 2010

 At this time, the OSD standard is at version 1.0, and we anticipate a
 version 2.0 of the standard (SNIA T10/1729-D [14]). The second
 generation OSD protocol has additional proposed features to support
 more robust error recovery, snapshots, and byte-range capabilities.
 Therefore, the OSD version is explicitly called out in the
 information returned in the layout. (This information can also be
 deduced by looking inside the capability type at the format field,
 which is the first byte. The format value is 0x1 for an OSD v1
 capability. However, it seems most robust to call out the version
 explicitly.)

3.3. pnfs_osd_object_cred4

 /// enum pnfs_osd_cap_key_sec4 {
 /// PNFS_OSD_CAP_KEY_SEC_NONE = 0,
 /// PNFS_OSD_CAP_KEY_SEC_SSV = 1
 /// };
 ///
 /// struct pnfs_osd_object_cred4 {
 /// pnfs_osd_objid4 oc_object_id;
 /// pnfs_osd_version4 oc_osd_version;
 /// pnfs_osd_cap_key_sec4 oc_cap_key_sec;
 /// opaque oc_capability_key<>;
 /// opaque oc_capability<>;
 /// };
 ///

 The pnfs_osd_object_cred4 structure is used to identify each
 component comprising the file. The "oc_object_id" identifies the
 component object, the "oc_osd_version" represents the osd protocol
 version, or whether that component is unavailable, and the
 "oc_capability" and "oc_capability_key", along with the
 "oda_systemid" from the pnfs_osd_deviceaddr4, provide the OSD
 security credentials needed to access that object. The
 "oc_cap_key_sec" value denotes the method used to secure the
 oc_capability_key (see Section 13.1 for more details).

 To comply with the OSD security requirements, the capability key
 SHOULD be transferred securely to prevent eavesdropping (see
 Section 13). Therefore, a client SHOULD either issue the LAYOUTGET
 or GETDEVICEINFO operations via RPCSEC_GSS with the privacy service
 or previously establish a secret state verifier (SSV) for the
 sessions via the NFSv4.1 SET_SSV operation. The
 pnfs_osd_cap_key_sec4 type is used to identify the method used by the
 server to secure the capability key.

Halevy, et al. Standards Track [Page 7]

RFC 5664 pNFS Objects January 2010

 o PNFS_OSD_CAP_KEY_SEC_NONE denotes that the oc_capability_key is
 not encrypted, in which case the client SHOULD issue the LAYOUTGET
 or GETDEVICEINFO operations with RPCSEC_GSS with the privacy
 service or the NFSv4.1 transport should be secured by using
 methods that are external to NFSv4.1 like the use of IPsec [15]
 for transporting the NFSV4.1 protocol.

 o PNFS_OSD_CAP_KEY_SEC_SSV denotes that the oc_capability_key
 contents are encrypted using the SSV GSS context and the
 capability key as inputs to the GSS_Wrap() function (see GSS-API
 [7]) with the conf_req_flag set to TRUE. The client MUST use the
 secret SSV key as part of the client’s GSS context to decrypt the
 capability key using the value of the oc_capability_key field as
 the input_message to the GSS_unwrap() function. Note that to
 prevent eavesdropping of the SSV key, the client SHOULD issue
 SET_SSV via RPCSEC_GSS with the privacy service.

 The actual method chosen depends on whether the client established a
 SSV key with the server and whether it issued the operation with the
 RPCSEC_GSS privacy method. Naturally, if the client did not
 establish an SSV key via SET_SSV, the server MUST use the
 PNFS_OSD_CAP_KEY_SEC_NONE method. Otherwise, if the operation was
 not issued with the RPCSEC_GSS privacy method, the server SHOULD
 secure the oc_capability_key with the PNFS_OSD_CAP_KEY_SEC_SSV
 method. The server MAY use the PNFS_OSD_CAP_KEY_SEC_SSV method also
 when the operation was issued with the RPCSEC_GSS privacy method.

3.4. pnfs_osd_raid_algorithm4

 /// enum pnfs_osd_raid_algorithm4 {
 /// PNFS_OSD_RAID_0 = 1,
 /// PNFS_OSD_RAID_4 = 2,
 /// PNFS_OSD_RAID_5 = 3,
 /// PNFS_OSD_RAID_PQ = 4 /* Reed-Solomon P+Q */
 /// };
 ///

 pnfs_osd_raid_algorithm4 represents the data redundancy algorithm
 used to protect the file’s contents. See Section 5.4 for more
 details.

4. Object Storage Device Addressing and Discovery

 Data operations to an OSD require the client to know the "address" of
 each OSD’s root object. The root object is synonymous with the Small
 Computer System Interface (SCSI) logical unit. The client specifies
 SCSI logical units to its SCSI protocol stack using a representation

Halevy, et al. Standards Track [Page 8]

RFC 5664 pNFS Objects January 2010

 local to the client. Because these representations are local,
 GETDEVICEINFO must return information that can be used by the client
 to select the correct local representation.

 In the block world, a set offset (logical block number or track/
 sector) contains a disk label. This label identifies the disk
 uniquely. In contrast, an OSD has a standard set of attributes on
 its root object. For device identification purposes, the OSD System
 ID (root information attribute number 3) and the OSD Name (root
 information attribute number 9) are used as the label. These appear
 in the pnfs_osd_deviceaddr4 type below under the "oda_systemid" and
 "oda_osdname" fields.

 In some situations, SCSI target discovery may need to be driven based
 on information contained in the GETDEVICEINFO response. One example
 of this is Internet SCSI (iSCSI) targets that are not known to the
 client until a layout has been requested. The information provided
 as the "oda_targetid", "oda_targetaddr", and "oda_lun" fields in the
 pnfs_osd_deviceaddr4 type described below (see Section 4.2) allows
 the client to probe a specific device given its network address and
 optionally its iSCSI Name (see iSCSI [8]), or when the device network
 address is omitted, allows it to discover the object storage device
 using the provided device name or SCSI Device Identifier (see SPC-3
 [9].)

 The oda_systemid is implicitly used by the client, by using the
 object credential signing key to sign each request with the request
 integrity check value. This method protects the client from
 unintentionally accessing a device if the device address mapping was
 changed (or revoked). The server computes the capability key using
 its own view of the systemid associated with the respective deviceid
 present in the credential. If the client’s view of the deviceid
 mapping is stale, the client will use the wrong systemid (which must
 be system-wide unique) and the I/O request to the OSD will fail to
 pass the integrity check verification.

 To recover from this condition the client should report the error and
 return the layout using LAYOUTRETURN, and invalidate all the device
 address mappings associated with this layout. The client can then
 ask for a new layout if it wishes using LAYOUTGET and resolve the
 referenced deviceids using GETDEVICEINFO or GETDEVICELIST.

 The server MUST provide the oda_systemid and SHOULD also provide the
 oda_osdname. When the OSD name is present, the client SHOULD get the
 root information attributes whenever it establishes communication
 with the OSD and verify that the OSD name it got from the OSD matches
 the one sent by the metadata server. To do so, the client uses the
 root_obj_cred credentials.

Halevy, et al. Standards Track [Page 9]

RFC 5664 pNFS Objects January 2010

4.1. pnfs_osd_targetid_type4

 The following enum specifies the manner in which a SCSI target can be
 specified. The target can be specified as a SCSI Name, or as an SCSI
 Device Identifier.

 /// enum pnfs_osd_targetid_type4 {
 /// OBJ_TARGET_ANON = 1,
 /// OBJ_TARGET_SCSI_NAME = 2,
 /// OBJ_TARGET_SCSI_DEVICE_ID = 3
 /// };
 ///

4.2. pnfs_osd_deviceaddr4

 The specification for an object device address is as follows:

/// union pnfs_osd_targetid4 switch (pnfs_osd_targetid_type4 oti_type) {
/// case OBJ_TARGET_SCSI_NAME:
/// string oti_scsi_name<>;
///
/// case OBJ_TARGET_SCSI_DEVICE_ID:
/// opaque oti_scsi_device_id<>;
///
/// default:
/// void;
/// };
///
/// union pnfs_osd_targetaddr4 switch (bool ota_available) {
/// case TRUE:
/// netaddr4 ota_netaddr;
/// case FALSE:
/// void;
/// };
///
/// struct pnfs_osd_deviceaddr4 {
/// pnfs_osd_targetid4 oda_targetid;
/// pnfs_osd_targetaddr4 oda_targetaddr;
/// opaque oda_lun[8];
/// opaque oda_systemid<>;
/// pnfs_osd_object_cred4 oda_root_obj_cred;
/// opaque oda_osdname<>;
/// };
///

Halevy, et al. Standards Track [Page 10]

RFC 5664 pNFS Objects January 2010

4.2.1. SCSI Target Identifier

 When "oda_targetid" is specified as an OBJ_TARGET_SCSI_NAME, the
 "oti_scsi_name" string MUST be formatted as an "iSCSI Name" as
 specified in iSCSI [8] and [10]. Note that the specification of the
 oti_scsi_name string format is outside the scope of this document.
 Parsing the string is based on the string prefix, e.g., "iqn.",
 "eui.", or "naa." and more formats MAY be specified in the future in
 accordance with iSCSI Names properties.

 Currently, the iSCSI Name provides for naming the target device using
 a string formatted as an iSCSI Qualified Name (IQN) or as an Extended
 Unique Identifier (EUI) [11] string. Those are typically used to
 identify iSCSI or Secure Routing Protocol (SRP) [16] devices. The
 Network Address Authority (NAA) string format (see [10]) provides for
 naming the device using globally unique identifiers, as defined in
 Fibre Channel Framing and Signaling (FC-FS) [17]. These are
 typically used to identify Fibre Channel or SAS [18] (Serial Attached
 SCSI) devices. In particular, such devices that are dual-attached
 both over Fibre Channel or SAS and over iSCSI.

 When "oda_targetid" is specified as an OBJ_TARGET_SCSI_DEVICE_ID, the
 "oti_scsi_device_id" opaque field MUST be formatted as a SCSI Device
 Identifier as defined in SPC-3 [9] VPD Page 83h (Section 7.6.3.
 "Device Identification VPD Page"). If the Device Identifier is
 identical to the OSD System ID, as given by oda_systemid, the server
 SHOULD provide a zero-length oti_scsi_device_id opaque value. Note
 that similarly to the "oti_scsi_name", the specification of the
 oti_scsi_device_id opaque contents is outside the scope of this
 document and more formats MAY be specified in the future in
 accordance with SPC-3.

 The OBJ_TARGET_ANON pnfs_osd_targetid_type4 MAY be used for providing
 no target identification. In this case, only the OSD System ID, and
 optionally the provided network address, are used to locate the
 device.

4.2.2. Device Network Address

 The optional "oda_targetaddr" field MAY be provided by the server as
 a hint to accelerate device discovery over, e.g., the iSCSI transport
 protocol. The network address is given with the netaddr4 type, which
 specifies a TCP/IP based endpoint (as specified in NFSv4.1 [6]).
 When given, the client SHOULD use it to probe for the SCSI device at
 the given network address. The client MAY still use other discovery
 mechanisms such as Internet Storage Name Service (iSNS) [12] to
 locate the device using the oda_targetid. In particular, such an

Halevy, et al. Standards Track [Page 11]

RFC 5664 pNFS Objects January 2010

 external name service SHOULD be used when the devices may be attached
 to the network using multiple connections, and/or multiple storage
 fabrics (e.g., Fibre-Channel and iSCSI).

 The "oda_lun" field identifies the OSD 64-bit Logical Unit Number,
 formatted in accordance with SAM-3 [13]. The client uses the Logical
 Unit Number to communicate with the specific OSD Logical Unit. Its
 use is defined in detail by the SCSI transport protocol, e.g., iSCSI
 [8].

5. Object-Based Layout

 The layout4 type is defined in the NFSv4.1 [6] as follows:

 enum layouttype4 {
 LAYOUT4_NFSV4_1_FILES = 1,
 LAYOUT4_OSD2_OBJECTS = 2,
 LAYOUT4_BLOCK_VOLUME = 3
 };

 struct layout_content4 {
 layouttype4 loc_type;
 opaque loc_body<>;
 };

 struct layout4 {
 offset4 lo_offset;
 length4 lo_length;
 layoutiomode4 lo_iomode;
 layout_content4 lo_content;
 };

 This document defines structure associated with the layouttype4
 value, LAYOUT4_OSD2_OBJECTS. The NFSv4.1 [6] specifies the loc_body
 structure as an XDR type "opaque". The opaque layout is
 uninterpreted by the generic pNFS client layers, but obviously must
 be interpreted by the object storage layout driver. This section
 defines the structure of this opaque value, pnfs_osd_layout4.

Halevy, et al. Standards Track [Page 12]

RFC 5664 pNFS Objects January 2010

5.1. pnfs_osd_data_map4

 /// struct pnfs_osd_data_map4 {
 /// uint32_t odm_num_comps;
 /// length4 odm_stripe_unit;
 /// uint32_t odm_group_width;
 /// uint32_t odm_group_depth;
 /// uint32_t odm_mirror_cnt;
 /// pnfs_osd_raid_algorithm4 odm_raid_algorithm;
 /// };
 ///

 The pnfs_osd_data_map4 structure parameterizes the algorithm that
 maps a file’s contents over the component objects. Instead of
 limiting the system to simple striping scheme where loss of a single
 component object results in data loss, the map parameters support
 mirroring and more complicated schemes that protect against loss of a
 component object.

 "odm_num_comps" is the number of component objects the file is
 striped over. The server MAY grow the file by adding more components
 to the stripe while clients hold valid layouts until the file has
 reached its final stripe width. The file length in this case MUST be
 limited to the number of bytes in a full stripe.

 The "odm_stripe_unit" is the number of bytes placed on one component
 before advancing to the next one in the list of components. The
 number of bytes in a full stripe is odm_stripe_unit times the number
 of components. In some RAID schemes, a stripe includes redundant
 information (i.e., parity) that lets the system recover from loss or
 damage to a component object.

 The "odm_group_width" and "odm_group_depth" parameters allow a nested
 striping pattern (see Section 5.3.2 for details). If there is no
 nesting, then odm_group_width and odm_group_depth MUST be zero. The
 size of the components array MUST be a multiple of odm_group_width.

 The "odm_mirror_cnt" is used to replicate a file by replicating its
 component objects. If there is no mirroring, then odm_mirror_cnt
 MUST be 0. If odm_mirror_cnt is greater than zero, then the size of
 the component array MUST be a multiple of (odm_mirror_cnt+1).

 See Section 5.3 for more details.

Halevy, et al. Standards Track [Page 13]

RFC 5664 pNFS Objects January 2010

5.2. pnfs_osd_layout4

 /// struct pnfs_osd_layout4 {
 /// pnfs_osd_data_map4 olo_map;
 /// uint32_t olo_comps_index;
 /// pnfs_osd_object_cred4 olo_components<>;
 /// };
 ///

 The pnfs_osd_layout4 structure specifies a layout over a set of
 component objects. The "olo_components" field is an array of object
 identifiers and security credentials that grant access to each
 object. The organization of the data is defined by the
 pnfs_osd_data_map4 type that specifies how the file’s data is mapped
 onto the component objects (i.e., the striping pattern). The data
 placement algorithm that maps file data onto component objects
 assumes that each component object occurs exactly once in the array
 of components. Therefore, component objects MUST appear in the
 olo_components array only once. The components array may represent
 all objects comprising the file, in which case "olo_comps_index" is
 set to zero and the number of entries in the olo_components array is
 equal to olo_map.odm_num_comps. The server MAY return fewer
 components than odm_num_comps, provided that the returned components
 are sufficient to access any byte in the layout’s data range (e.g., a
 sub-stripe of "odm_group_width" components). In this case,
 olo_comps_index represents the position of the returned components
 array within the full array of components that comprise the file.

 Note that the layout depends on the file size, which the client
 learns from the generic return parameters of LAYOUTGET, by doing
 GETATTR commands to the metadata server. The client uses the file
 size to decide if it should fill holes with zeros or return a short
 read. Striping patterns can cause cases where component objects are
 shorter than other components because a hole happens to correspond to
 the last part of the component object.

5.3. Data Mapping Schemes

 This section describes the different data mapping schemes in detail.
 The object layout always uses a "dense" layout as described in
 NFSv4.1 [6]. This means that the second stripe unit of the file
 starts at offset 0 of the second component, rather than at offset
 stripe_unit bytes. After a full stripe has been written, the next
 stripe unit is appended to the first component object in the list
 without any holes in the component objects.

Halevy, et al. Standards Track [Page 14]

RFC 5664 pNFS Objects January 2010

5.3.1. Simple Striping

 The mapping from the logical offset within a file (L) to the
 component object C and object-specific offset O is defined by the
 following equations:

 L = logical offset into the file
 W = total number of components
 S = W * stripe_unit
 N = L / S
 C = (L-(N*S)) / stripe_unit
 O = (N*stripe_unit)+(L%stripe_unit)

 In these equations, S is the number of bytes in a full stripe, and N
 is the stripe number. C is an index into the array of components, so
 it selects a particular object storage device. Both N and C count
 from zero. O is the offset within the object that corresponds to the
 file offset. Note that this computation does not accommodate the
 same object appearing in the olo_components array multiple times.

 For example, consider an object striped over four devices, <D0 D1 D2
 D3>. The stripe_unit is 4096 bytes. The stripe width S is thus 4 *
 4096 = 16384.

 Offset 0:
 N = 0 / 16384 = 0
 C = 0-0/4096 = 0 (D0)
 O = 0*4096 + (0%4096) = 0

 Offset 4096:
 N = 4096 / 16384 = 0
 C = (4096-(0*16384)) / 4096 = 1 (D1)
 O = (0*4096)+(4096%4096) = 0

 Offset 9000:
 N = 9000 / 16384 = 0
 C = (9000-(0*16384)) / 4096 = 2 (D2)
 O = (0*4096)+(9000%4096) = 808

 Offset 132000:
 N = 132000 / 16384 = 8
 C = (132000-(8*16384)) / 4096 = 0 (D0)
 O = (8*4096) + (132000%4096) = 33696

Halevy, et al. Standards Track [Page 15]

RFC 5664 pNFS Objects January 2010

5.3.2. Nested Striping

 The odm_group_width and odm_group_depth parameters allow a nested
 striping pattern. odm_group_width defines the width of a data stripe
 and odm_group_depth defines how many stripes are written before
 advancing to the next group of components in the list of component
 objects for the file. The math used to map from a file offset to a
 component object and offset within that object is shown below. The
 computations map from the logical offset L to the component index C
 and offset relative O within that component object.

 L = logical offset into the file
 W = total number of components
 S = stripe_unit * group_depth * W
 T = stripe_unit * group_depth * group_width
 U = stripe_unit * group_width
 M = L / S
 G = (L - (M * S)) / T
 H = (L - (M * S)) % T
 N = H / U
 C = (H - (N * U)) / stripe_unit + G * group_width
 O = L % stripe_unit + N * stripe_unit + M * group_depth * stripe_unit

 In these equations, S is the number of bytes striped across all
 component objects before the pattern repeats. T is the number of
 bytes striped within a group of component objects before advancing to
 the next group. U is the number of bytes in a stripe within a group.
 M is the "major" (i.e., across all components) stripe number, and N
 is the "minor" (i.e., across the group) stripe number. G counts the
 groups from the beginning of the major stripe, and H is the byte
 offset within the group.

 For example, consider an object striped over 100 devices with a
 group_width of 10, a group_depth of 50, and a stripe_unit of 1 MB.
 In this scheme, 500 MB are written to the first 10 components, and
 5000 MB are written before the pattern wraps back around to the first
 component in the array.

Halevy, et al. Standards Track [Page 16]

RFC 5664 pNFS Objects January 2010

 Offset 0:
 W = 100
 S = 1 MB * 50 * 100 = 5000 MB
 T = 1 MB * 50 * 10 = 500 MB
 U = 1 MB * 10 = 10 MB
 M = 0 / 5000 MB = 0
 G = (0 - (0 * 5000 MB)) / 500 MB = 0
 H = (0 - (0 * 5000 MB)) % 500 MB = 0
 N = 0 / 10 MB = 0
 C = (0 - (0 * 10 MB)) / 1 MB + 0 * 10 = 0
 O = 0 % 1 MB + 0 * 1 MB + 0 * 50 * 1 MB = 0

 Offset 27 MB:
 M = 27 MB / 5000 MB = 0
 G = (27 MB - (0 * 5000 MB)) / 500 MB = 0
 H = (27 MB - (0 * 5000 MB)) % 500 MB = 27 MB
 N = 27 MB / 10 MB = 2
 C = (27 MB - (2 * 10 MB)) / 1 MB + 0 * 10 = 7
 O = 27 MB % 1 MB + 2 * 1 MB + 0 * 50 * 1 MB = 2 MB

 Offset 7232 MB:
 M = 7232 MB / 5000 MB = 1
 G = (7232 MB - (1 * 5000 MB)) / 500 MB = 4
 H = (7232 MB - (1 * 5000 MB)) % 500 MB = 232 MB
 N = 232 MB / 10 MB = 23
 C = (232 MB - (23 * 10 MB)) / 1 MB + 4 * 10 = 42
 O = 7232 MB % 1 MB + 23 * 1 MB + 1 * 50 * 1 MB = 73 MB

5.3.3. Mirroring

 The odm_mirror_cnt is used to replicate a file by replicating its
 component objects. If there is no mirroring, then odm_mirror_cnt
 MUST be 0. If odm_mirror_cnt is greater than zero, then the size of
 the olo_components array MUST be a multiple of (odm_mirror_cnt+1).
 Thus, for a classic mirror on two objects, odm_mirror_cnt is one.
 Note that mirroring can be defined over any RAID algorithm and
 striping pattern (either simple or nested). If odm_group_width is
 also non-zero, then the size of the olo_components array MUST be a
 multiple of odm_group_width * (odm_mirror_cnt+1). Replicas are
 adjacent in the olo_components array, and the value C produced by the
 above equations is not a direct index into the olo_components array.
 Instead, the following equations determine the replica component
 index RCi, where i ranges from 0 to odm_mirror_cnt.

 C = component index for striping or two-level striping
 i ranges from 0 to odm_mirror_cnt, inclusive
 RCi = C * (odm_mirror_cnt+1) + i

Halevy, et al. Standards Track [Page 17]

RFC 5664 pNFS Objects January 2010

5.4. RAID Algorithms

 pnfs_osd_raid_algorithm4 determines the algorithm and placement of
 redundant data. This section defines the different redundancy
 algorithms. Note: The term "RAID" (Redundant Array of Independent
 Disks) is used in this document to represent an array of component
 objects that store data for an individual file. The objects are
 stored on independent object-based storage devices. File data is
 encoded and striped across the array of component objects using
 algorithms developed for block-based RAID systems.

5.4.1. PNFS_OSD_RAID_0

 PNFS_OSD_RAID_0 means there is no parity data, so all bytes in the
 component objects are data bytes located by the above equations for C
 and O. If a component object is marked as PNFS_OSD_MISSING, the pNFS
 client MUST either return an I/O error if this component is attempted
 to be read or, alternatively, it can retry the READ against the pNFS
 server.

5.4.2. PNFS_OSD_RAID_4

 PNFS_OSD_RAID_4 means that the last component object, or the last in
 each group (if odm_group_width is greater than zero), contains parity
 information computed over the rest of the stripe with an XOR
 operation. If a component object is unavailable, the client can read
 the rest of the stripe units in the damaged stripe and recompute the
 missing stripe unit by XORing the other stripe units in the stripe.
 Or the client can replay the READ against the pNFS server that will
 presumably perform the reconstructed read on the client’s behalf.

 When parity is present in the file, then there is an additional
 computation to map from the file offset L to the offset that accounts
 for embedded parity, L’. First compute L’, and then use L’ in the
 above equations for C and O.

 L = file offset, not accounting for parity
 P = number of parity devices in each stripe
 W = group_width, if not zero, else size of olo_components array
 N = L / (W-P * stripe_unit)
 L’ = N * (W * stripe_unit) +
 (L % (W-P * stripe_unit))

5.4.3. PNFS_OSD_RAID_5

 PNFS_OSD_RAID_5 means that the position of the parity data is rotated
 on each stripe or each group (if odm_group_width is greater than
 zero). In the first stripe, the last component holds the parity. In

Halevy, et al. Standards Track [Page 18]

RFC 5664 pNFS Objects January 2010

 the second stripe, the next-to-last component holds the parity, and
 so on. In this scheme, all stripe units are rotated so that I/O is
 evenly spread across objects as the file is read sequentially. The
 rotated parity layout is illustrated here, with numbers indicating
 the stripe unit.

 0 1 2 P
 4 5 P 3
 8 P 6 7
 P 9 a b

 To compute the component object C, first compute the offset that
 accounts for parity L’ and use that to compute C. Then rotate C to
 get C’. Finally, increase C’ by one if the parity information comes
 at or before C’ within that stripe. The following equations
 illustrate this by computing I, which is the index of the component
 that contains parity for a given stripe.

 L = file offset, not accounting for parity
 W = odm_group_width, if not zero, else size of olo_components array
 N = L / (W-1 * stripe_unit)
 (Compute L’ as describe above)
 (Compute C based on L’ as described above)
 C’ = (C - (N%W)) % W
 I = W - (N%W) - 1
 if (C’ <= I) {
 C’++
 }

5.4.4. PNFS_OSD_RAID_PQ

 PNFS_OSD_RAID_PQ is a double-parity scheme that uses the Reed-Solomon
 P+Q encoding scheme [19]. In this layout, the last two component
 objects hold the P and Q data, respectively. P is parity computed
 with XOR, and Q is a more complex equation that is not described
 here. The equations given above for embedded parity can be used to
 map a file offset to the correct component object by setting the
 number of parity components to 2 instead of 1 for RAID4 or RAID5.
 Clients may simply choose to read data through the metadata server if
 two components are missing or damaged.

5.4.5. RAID Usage and Implementation Notes

 RAID layouts with redundant data in their stripes require additional
 serialization of updates to ensure correct operation. Otherwise, if
 two clients simultaneously write to the same logical range of an
 object, the result could include different data in the same ranges of
 mirrored tuples, or corrupt parity information. It is the

Halevy, et al. Standards Track [Page 19]

RFC 5664 pNFS Objects January 2010

 responsibility of the metadata server to enforce serialization
 requirements such as this. For example, the metadata server may do
 so by not granting overlapping write layouts within mirrored objects.

6. Object-Based Layout Update

 layoutupdate4 is used in the LAYOUTCOMMIT operation to convey updates
 to the layout and additional information to the metadata server. It
 is defined in the NFSv4.1 [6] as follows:

 struct layoutupdate4 {
 layouttype4 lou_type;
 opaque lou_body<>;
 };

 The layoutupdate4 type is an opaque value at the generic pNFS client
 level. If the lou_type layout type is LAYOUT4_OSD2_OBJECTS, then the
 lou_body opaque value is defined by the pnfs_osd_layoutupdate4 type.

 Object-Based pNFS clients are not allowed to modify the layout.
 Therefore, the information passed in pnfs_osd_layoutupdate4 is used
 only to update the file’s attributes. In addition to the generic
 information the client can pass to the metadata server in
 LAYOUTCOMMIT such as the highest offset the client wrote to and the
 last time it modified the file, the client MAY use
 pnfs_osd_layoutupdate4 to convey the capacity consumed (or released)
 by writes using the layout, and to indicate that I/O errors were
 encountered by such writes.

6.1. pnfs_osd_deltaspaceused4

 /// union pnfs_osd_deltaspaceused4 switch (bool dsu_valid) {
 /// case TRUE:
 /// int64_t dsu_delta;
 /// case FALSE:
 /// void;
 /// };
 ///

 pnfs_osd_deltaspaceused4 is used to convey space utilization
 information at the time of LAYOUTCOMMIT. For the file system to
 properly maintain capacity-used information, it needs to track how
 much capacity was consumed by WRITE operations performed by the
 client. In this protocol, the OSD returns the capacity consumed by a
 write (*), which can be different than the number of bytes written
 because of internal overhead like block-level allocation and indirect
 blocks, and the client reflects this back to the pNFS server so it
 can accurately track quota. The pNFS server can choose to trust this

Halevy, et al. Standards Track [Page 20]

RFC 5664 pNFS Objects January 2010

 information coming from the clients and therefore avoid querying the
 OSDs at the time of LAYOUTCOMMIT. If the client is unable to obtain
 this information from the OSD, it simply returns invalid
 olu_delta_space_used.

6.2. pnfs_osd_layoutupdate4

 /// struct pnfs_osd_layoutupdate4 {
 /// pnfs_osd_deltaspaceused4 olu_delta_space_used;
 /// bool olu_ioerr_flag;
 /// };
 ///

 "olu_delta_space_used" is used to convey capacity usage information
 back to the metadata server.

 The "olu_ioerr_flag" is used when I/O errors were encountered while
 writing the file. The client MUST report the errors using the
 pnfs_osd_ioerr4 structure (see Section 8.1) at LAYOUTRETURN time.

 If the client updated the file successfully before hitting the I/O
 errors, it MAY use LAYOUTCOMMIT to update the metadata server as
 described above. Typically, in the error-free case, the server MAY
 turn around and update the file’s attributes on the storage devices.
 However, if I/O errors were encountered, the server better not
 attempt to write the new attributes on the storage devices until it
 receives the I/O error report; therefore, the client MUST set the
 olu_ioerr_flag to true. Note that in this case, the client SHOULD
 send both the LAYOUTCOMMIT and LAYOUTRETURN operations in the same
 COMPOUND RPC.

7. Recovering from Client I/O Errors

 The pNFS client may encounter errors when directly accessing the
 object storage devices. However, it is the responsibility of the
 metadata server to handle the I/O errors. When the
 LAYOUT4_OSD2_OBJECTS layout type is used, the client MUST report the
 I/O errors to the server at LAYOUTRETURN time using the
 pnfs_osd_ioerr4 structure (see Section 8.1).

 The metadata server analyzes the error and determines the required
 recovery operations such as repairing any parity inconsistencies,
 recovering media failures, or reconstructing missing objects.

Halevy, et al. Standards Track [Page 21]

RFC 5664 pNFS Objects January 2010

 The metadata server SHOULD recall any outstanding layouts to allow it
 exclusive write access to the stripes being recovered and to prevent
 other clients from hitting the same error condition. In these cases,
 the server MUST complete recovery before handing out any new layouts
 to the affected byte ranges.

 Although it MAY be acceptable for the client to propagate a
 corresponding error to the application that initiated the I/O
 operation and drop any unwritten data, the client SHOULD attempt to
 retry the original I/O operation by requesting a new layout using
 LAYOUTGET and retry the I/O operation(s) using the new layout, or the
 client MAY just retry the I/O operation(s) using regular NFS READ or
 WRITE operations via the metadata server. The client SHOULD attempt
 to retrieve a new layout and retry the I/O operation using OSD
 commands first and only if the error persists, retry the I/O
 operation via the metadata server.

8. Object-Based Layout Return

 layoutreturn_file4 is used in the LAYOUTRETURN operation to convey
 layout-type specific information to the server. It is defined in the
 NFSv4.1 [6] as follows:

 struct layoutreturn_file4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 /* layouttype4 specific data */
 opaque lrf_body<>;
 };

 union layoutreturn4 switch(layoutreturn_type4 lr_returntype) {
 case LAYOUTRETURN4_FILE:
 layoutreturn_file4 lr_layout;
 default:
 void;
 };

 struct LAYOUTRETURN4args {
 /* CURRENT_FH: file */
 bool lora_reclaim;
 layoutreturn_stateid lora_recallstateid;
 layouttype4 lora_layout_type;
 layoutiomode4 lora_iomode;
 layoutreturn4 lora_layoutreturn;
 };

Halevy, et al. Standards Track [Page 22]

RFC 5664 pNFS Objects January 2010

 If the lora_layout_type layout type is LAYOUT4_OSD2_OBJECTS, then the
 lrf_body opaque value is defined by the pnfs_osd_layoutreturn4 type.

 The pnfs_osd_layoutreturn4 type allows the client to report I/O error
 information back to the metadata server as defined below.

8.1. pnfs_osd_errno4

 /// enum pnfs_osd_errno4 {
 /// PNFS_OSD_ERR_EIO = 1,
 /// PNFS_OSD_ERR_NOT_FOUND = 2,
 /// PNFS_OSD_ERR_NO_SPACE = 3,
 /// PNFS_OSD_ERR_BAD_CRED = 4,
 /// PNFS_OSD_ERR_NO_ACCESS = 5,
 /// PNFS_OSD_ERR_UNREACHABLE = 6,
 /// PNFS_OSD_ERR_RESOURCE = 7
 /// };
 ///

 pnfs_osd_errno4 is used to represent error types when read/write
 errors are reported to the metadata server. The error codes serve as
 hints to the metadata server that may help it in diagnosing the exact
 reason for the error and in repairing it.

 o PNFS_OSD_ERR_EIO indicates the operation failed because the object
 storage device experienced a failure trying to access the object.
 The most common source of these errors is media errors, but other
 internal errors might cause this as well. In this case, the
 metadata server should go examine the broken object more closely;
 hence, it should be used as the default error code.

 o PNFS_OSD_ERR_NOT_FOUND indicates the object ID specifies an object
 that does not exist on the object storage device.

 o PNFS_OSD_ERR_NO_SPACE indicates the operation failed because the
 object storage device ran out of free capacity during the
 operation.

 o PNFS_OSD_ERR_BAD_CRED indicates the security parameters are not
 valid. The primary cause of this is that the capability has
 expired, or the access policy tag (a.k.a., capability version
 number) has been changed to revoke capabilities. The client will
 need to return the layout and get a new one with fresh
 capabilities.

Halevy, et al. Standards Track [Page 23]

RFC 5664 pNFS Objects January 2010

 o PNFS_OSD_ERR_NO_ACCESS indicates the capability does not allow the
 requested operation. This should not occur in normal operation
 because the metadata server should give out correct capabilities,
 or none at all.

 o PNFS_OSD_ERR_UNREACHABLE indicates the client did not complete the
 I/O operation at the object storage device due to a communication
 failure. Whether or not the I/O operation was executed by the OSD
 is undetermined.

 o PNFS_OSD_ERR_RESOURCE indicates the client did not issue the I/O
 operation due to a local problem on the initiator (i.e., client)
 side, e.g., when running out of memory. The client MUST guarantee
 that the OSD command was never dispatched to the OSD.

8.2. pnfs_osd_ioerr4

 /// struct pnfs_osd_ioerr4 {
 /// pnfs_osd_objid4 oer_component;
 /// length4 oer_comp_offset;
 /// length4 oer_comp_length;
 /// bool oer_iswrite;
 /// pnfs_osd_errno4 oer_errno;
 /// };
 ///

 The pnfs_osd_ioerr4 structure is used to return error indications for
 objects that generated errors during data transfers. These are hints
 to the metadata server that there are problems with that object. For
 each error, "oer_component", "oer_comp_offset", and "oer_comp_length"
 represent the object and byte range within the component object in
 which the error occurred; "oer_iswrite" is set to "true" if the
 failed OSD operation was data modifying, and "oer_errno" represents
 the type of error.

 Component byte ranges in the optional pnfs_osd_ioerr4 structure are
 used for recovering the object and MUST be set by the client to cover
 all failed I/O operations to the component.

8.3. pnfs_osd_layoutreturn4

 /// struct pnfs_osd_layoutreturn4 {
 /// pnfs_osd_ioerr4 olr_ioerr_report<>;
 /// };
 ///

Halevy, et al. Standards Track [Page 24]

RFC 5664 pNFS Objects January 2010

 When OSD I/O operations failed, "olr_ioerr_report<>" is used to
 report these errors to the metadata server as an array of elements of
 type pnfs_osd_ioerr4. Each element in the array represents an error
 that occurred on the object specified by oer_component. If no errors
 are to be reported, the size of the olr_ioerr_report<> array is set
 to zero.

9. Object-Based Creation Layout Hint

 The layouthint4 type is defined in the NFSv4.1 [6] as follows:

 struct layouthint4 {
 layouttype4 loh_type;
 opaque loh_body<>;
 };

 The layouthint4 structure is used by the client to pass a hint about
 the type of layout it would like created for a particular file. If
 the loh_type layout type is LAYOUT4_OSD2_OBJECTS, then the loh_body
 opaque value is defined by the pnfs_osd_layouthint4 type.

9.1. pnfs_osd_layouthint4

 /// union pnfs_osd_max_comps_hint4 switch (bool omx_valid) {
 /// case TRUE:
 /// uint32_t omx_max_comps;
 /// case FALSE:
 /// void;
 /// };
 ///
 /// union pnfs_osd_stripe_unit_hint4 switch (bool osu_valid) {
 /// case TRUE:
 /// length4 osu_stripe_unit;
 /// case FALSE:
 /// void;
 /// };
 ///
 /// union pnfs_osd_group_width_hint4 switch (bool ogw_valid) {
 /// case TRUE:
 /// uint32_t ogw_group_width;
 /// case FALSE:
 /// void;
 /// };
 ///
 /// union pnfs_osd_group_depth_hint4 switch (bool ogd_valid) {
 /// case TRUE:
 /// uint32_t ogd_group_depth;
 /// case FALSE:

Halevy, et al. Standards Track [Page 25]

RFC 5664 pNFS Objects January 2010

 /// void;
 /// };
 ///
 /// union pnfs_osd_mirror_cnt_hint4 switch (bool omc_valid) {
 /// case TRUE:
 /// uint32_t omc_mirror_cnt;
 /// case FALSE:
 /// void;
 /// };
 ///
 /// union pnfs_osd_raid_algorithm_hint4 switch (bool ora_valid) {
 /// case TRUE:
 /// pnfs_osd_raid_algorithm4 ora_raid_algorithm;
 /// case FALSE:
 /// void;
 /// };
 ///
 /// struct pnfs_osd_layouthint4 {
 /// pnfs_osd_max_comps_hint4 olh_max_comps_hint;
 /// pnfs_osd_stripe_unit_hint4 olh_stripe_unit_hint;
 /// pnfs_osd_group_width_hint4 olh_group_width_hint;
 /// pnfs_osd_group_depth_hint4 olh_group_depth_hint;
 /// pnfs_osd_mirror_cnt_hint4 olh_mirror_cnt_hint;
 /// pnfs_osd_raid_algorithm_hint4 olh_raid_algorithm_hint;
 /// };
 ///

 This type conveys hints for the desired data map. All parameters are
 optional so the client can give values for only the parameters it
 cares about, e.g. it can provide a hint for the desired number of
 mirrored components, regardless of the RAID algorithm selected for
 the file. The server should make an attempt to honor the hints, but
 it can ignore any or all of them at its own discretion and without
 failing the respective CREATE operation.

 The "olh_max_comps_hint" can be used to limit the total number of
 component objects comprising the file. All other hints correspond
 directly to the different fields of pnfs_osd_data_map4.

10. Layout Segments

 The pnfs layout operations operate on logical byte ranges. There is
 no requirement in the protocol for any relationship between byte
 ranges used in LAYOUTGET to acquire layouts and byte ranges used in
 CB_LAYOUTRECALL, LAYOUTCOMMIT, or LAYOUTRETURN. However, using OSD
 byte-range capabilities poses limitations on these operations since

Halevy, et al. Standards Track [Page 26]

RFC 5664 pNFS Objects January 2010

 the capabilities associated with layout segments cannot be merged or
 split. The following guidelines should be followed for proper
 operation of object-based layouts.

10.1. CB_LAYOUTRECALL and LAYOUTRETURN

 In general, the object-based layout driver should keep track of each
 layout segment it got, keeping record of the segment’s iomode,
 offset, and length. The server should allow the client to get
 multiple overlapping layout segments but is free to recall the layout
 to prevent overlap.

 In response to CB_LAYOUTRECALL, the client should return all layout
 segments matching the given iomode and overlapping with the recalled
 range. When returning the layouts for this byte range with
 LAYOUTRETURN, the client MUST NOT return a sub-range of a layout
 segment it has; each LAYOUTRETURN sent MUST completely cover at least
 one outstanding layout segment.

 The server, in turn, should release any segment that exactly matches
 the clientid, iomode, and byte range given in LAYOUTRETURN. If no
 exact match is found, then the server should release all layout
 segments matching the clientid and iomode and that are fully
 contained in the returned byte range. If none are found and the byte
 range is a subset of an outstanding layout segment with for the same
 clientid and iomode, then the client can be considered malfunctioning
 and the server SHOULD recall all layouts from this client to reset
 its state. If this behavior repeats, the server SHOULD deny all
 LAYOUTGETs from this client.

10.2. LAYOUTCOMMIT

 LAYOUTCOMMIT is only used by object-based pNFS to convey modified
 attributes hints and/or to report the presence of I/O errors to the
 metadata server (MDS). Therefore, the offset and length in
 LAYOUTCOMMIT4args are reserved for future use and should be set to 0.

11. Recalling Layouts

 The object-based metadata server should recall outstanding layouts in
 the following cases:

 o When the file’s security policy changes, i.e., Access Control
 Lists (ACLs) or permission mode bits are set.

 o When the file’s aggregation map changes, rendering outstanding
 layouts invalid.

Halevy, et al. Standards Track [Page 27]

RFC 5664 pNFS Objects January 2010

 o When there are sharing conflicts. For example, the server will
 issue stripe-aligned layout segments for RAID-5 objects. To
 prevent corruption of the file’s parity, multiple clients must not
 hold valid write layouts for the same stripes. An outstanding
 READ/WRITE (RW) layout should be recalled when a conflicting
 LAYOUTGET is received from a different client for LAYOUTIOMODE4_RW
 and for a byte range overlapping with the outstanding layout
 segment.

11.1. CB_RECALL_ANY

 The metadata server can use the CB_RECALL_ANY callback operation to
 notify the client to return some or all of its layouts. The NFSv4.1
 [6] defines the following types:

 const RCA4_TYPE_MASK_OBJ_LAYOUT_MIN = 8;
 const RCA4_TYPE_MASK_OBJ_LAYOUT_MAX = 9;

 struct CB_RECALL_ANY4args {
 uint32_t craa_objects_to_keep;
 bitmap4 craa_type_mask;
 };

 Typically, CB_RECALL_ANY will be used to recall client state when the
 server needs to reclaim resources. The craa_type_mask bitmap
 specifies the type of resources that are recalled and the
 craa_objects_to_keep value specifies how many of the recalled objects
 the client is allowed to keep. The object-based layout type mask
 flags are defined as follows. They represent the iomode of the
 recalled layouts. In response, the client SHOULD return layouts of
 the recalled iomode that it needs the least, keeping at most
 craa_objects_to_keep object-based layouts.

 /// enum pnfs_osd_cb_recall_any_mask {
 /// PNFS_OSD_RCA4_TYPE_MASK_READ = 8,
 /// PNFS_OSD_RCA4_TYPE_MASK_RW = 9
 /// };
 ///

 The PNFS_OSD_RCA4_TYPE_MASK_READ flag notifies the client to return
 layouts of iomode LAYOUTIOMODE4_READ. Similarly, the
 PNFS_OSD_RCA4_TYPE_MASK_RW flag notifies the client to return layouts
 of iomode LAYOUTIOMODE4_RW. When both mask flags are set, the client
 is notified to return layouts of either iomode.

Halevy, et al. Standards Track [Page 28]

RFC 5664 pNFS Objects January 2010

12. Client Fencing

 In cases where clients are uncommunicative and their lease has
 expired or when clients fail to return recalled layouts within a
 lease period at the least (see "Recalling a Layout"[6]), the server
 MAY revoke client layouts and/or device address mappings and reassign
 these resources to other clients. To avoid data corruption, the
 metadata server MUST fence off the revoked clients from the
 respective objects as described in Section 13.4.

13. Security Considerations

 The pNFS extension partitions the NFSv4 file system protocol into two
 parts, the control path and the data path (storage protocol). The
 control path contains all the new operations described by this
 extension; all existing NFSv4 security mechanisms and features apply
 to the control path. The combination of components in a pNFS system
 is required to preserve the security properties of NFSv4 with respect
 to an entity accessing data via a client, including security
 countermeasures to defend against threats that NFSv4 provides
 defenses for in environments where these threats are considered
 significant.

 The metadata server enforces the file access-control policy at
 LAYOUTGET time. The client should use suitable authorization
 credentials for getting the layout for the requested iomode (READ or
 RW) and the server verifies the permissions and ACL for these
 credentials, possibly returning NFS4ERR_ACCESS if the client is not
 allowed the requested iomode. If the LAYOUTGET operation succeeds
 the client receives, as part of the layout, a set of object
 capabilities allowing it I/O access to the specified objects
 corresponding to the requested iomode. When the client acts on I/O
 operations on behalf of its local users, it MUST authenticate and
 authorize the user by issuing respective OPEN and ACCESS calls to the
 metadata server, similar to having NFSv4 data delegations. If access
 is allowed, the client uses the corresponding (READ or RW)
 capabilities to perform the I/O operations at the object storage
 devices. When the metadata server receives a request to change a
 file’s permissions or ACL, it SHOULD recall all layouts for that file
 and it MUST change the capability version attribute on all objects
 comprising the file to implicitly invalidate any outstanding
 capabilities before committing to the new permissions and ACL. Doing
 this will ensure that clients re-authorize their layouts according to
 the modified permissions and ACL by requesting new layouts.
 Recalling the layouts in this case is courtesy of the server intended
 to prevent clients from getting an error on I/Os done after the
 capability version changed.

Halevy, et al. Standards Track [Page 29]

RFC 5664 pNFS Objects January 2010

 The object storage protocol MUST implement the security aspects
 described in version 1 of the T10 OSD protocol definition [1]. The
 standard defines four security methods: NOSEC, CAPKEY, CMDRSP, and
 ALLDATA. To provide minimum level of security allowing verification
 and enforcement of the server access control policy using the layout
 security credentials, the NOSEC security method MUST NOT be used for
 any I/O operation. The remainder of this section gives an overview
 of the security mechanism described in that standard. The goal is to
 give the reader a basic understanding of the object security model.
 Any discrepancies between this text and the actual standard are
 obviously to be resolved in favor of the OSD standard.

13.1. OSD Security Data Types

 There are three main data types associated with object security: a
 capability, a credential, and security parameters. The capability is
 a set of fields that specifies an object and what operations can be
 performed on it. A credential is a signed capability. Only a
 security manager that knows the secret device keys can correctly sign
 a capability to form a valid credential. In pNFS, the file server
 acts as the security manager and returns signed capabilities (i.e.,
 credentials) to the pNFS client. The security parameters are values
 computed by the issuer of OSD commands (i.e., the client) that prove
 they hold valid credentials. The client uses the credential as a
 signing key to sign the requests it makes to OSD, and puts the
 resulting signatures into the security_parameters field of the OSD
 command. The object storage device uses the secret keys it shares
 with the security manager to validate the signature values in the
 security parameters.

 The security types are opaque to the generic layers of the pNFS
 client. The credential contents are defined as opaque within the
 pnfs_osd_object_cred4 type. Instead of repeating the definitions
 here, the reader is referred to Section 4.9.2.2 of the OSD standard.

13.2. The OSD Security Protocol

 The object storage protocol relies on a cryptographically secure
 capability to control accesses at the object storage devices.
 Capabilities are generated by the metadata server, returned to the
 client, and used by the client as described below to authenticate
 their requests to the object-based storage device. Capabilities
 therefore achieve the required access and open mode checking. They
 allow the file server to define and check a policy (e.g., open mode)
 and the OSD to enforce that policy without knowing the details (e.g.,
 user IDs and ACLs).

Halevy, et al. Standards Track [Page 30]

RFC 5664 pNFS Objects January 2010

 Since capabilities are tied to layouts, and since they are used to
 enforce access control, when the file ACL or mode changes the
 outstanding capabilities MUST be revoked to enforce the new access
 permissions. The server SHOULD recall layouts to allow clients to
 gracefully return their capabilities before the access permissions
 change.

 Each capability is specific to a particular object, an operation on
 that object, a byte range within the object (in OSDv2), and has an
 explicit expiration time. The capabilities are signed with a secret
 key that is shared by the object storage devices and the metadata
 managers. Clients do not have device keys so they are unable to
 forge the signatures in the security parameters. The combination of
 a capability, the OSD System ID, and a signature is called a
 "credential" in the OSD specification.

 The details of the security and privacy model for object storage are
 defined in the T10 OSD standard. The following sketch of the
 algorithm should help the reader understand the basic model.

 LAYOUTGET returns a CapKey and a Cap, which, together with the OSD
 System ID, are also called a credential. It is a capability and a
 signature over that capability and the SystemID. The OSD Standard
 refers to the CapKey as the "Credential integrity check value" and to
 the ReqMAC as the "Request integrity check value".

 CapKey = MAC<SecretKey>(Cap, SystemID)
 Credential = {Cap, SystemID, CapKey}

 The client uses CapKey to sign all the requests it issues for that
 object using the respective Cap. In other words, the Cap appears in
 the request to the storage device, and that request is signed with
 the CapKey as follows:

 ReqMAC = MAC<CapKey>(Req, ReqNonce)
 Request = {Cap, Req, ReqNonce, ReqMAC}

 The following is sent to the OSD: {Cap, Req, ReqNonce, ReqMAC}. The
 OSD uses the SecretKey it shares with the metadata server to compare
 the ReqMAC the client sent with a locally computed value:

 LocalCapKey = MAC<SecretKey>(Cap, SystemID)
 LocalReqMAC = MAC<LocalCapKey>(Req, ReqNonce)

 and if they match the OSD assumes that the capabilities came from an
 authentic metadata server and allows access to the object, as allowed
 by the Cap.

Halevy, et al. Standards Track [Page 31]

RFC 5664 pNFS Objects January 2010

13.3. Protocol Privacy Requirements

 Note that if the server LAYOUTGET reply, holding CapKey and Cap, is
 snooped by another client, it can be used to generate valid OSD
 requests (within the Cap access restrictions).

 To provide the required privacy requirements for the capability key
 returned by LAYOUTGET, the GSS-API [7] framework can be used, e.g.,
 by using the RPCSEC_GSS privacy method to send the LAYOUTGET
 operation or by using the SSV key to encrypt the oc_capability_key
 using the GSS_Wrap() function. Two general ways to provide privacy
 in the absence of GSS-API that are independent of NFSv4 are either an
 isolated network such as a VLAN or a secure channel provided by IPsec
 [15].

13.4. Revoking Capabilities

 At any time, the metadata server may invalidate all outstanding
 capabilities on an object by changing its POLICY ACCESS TAG
 attribute. The value of the POLICY ACCESS TAG is part of a
 capability, and it must match the state of the object attribute. If
 they do not match, the OSD rejects accesses to the object with the
 sense key set to ILLEGAL REQUEST and an additional sense code set to
 INVALID FIELD IN CDB. When a client attempts to use a capability and
 is rejected this way, it should issue a LAYOUTCOMMIT for the object
 and specify PNFS_OSD_BAD_CRED in the olr_ioerr_report parameter. The
 client may elect to issue a compound LAYOUTRETURN/LAYOUTGET (or
 LAYOUTCOMMIT/LAYOUTRETURN/LAYOUTGET) to attempt to fetch a refreshed
 set of capabilities.

 The metadata server may elect to change the access policy tag on an
 object at any time, for any reason (with the understanding that there
 is likely an associated performance penalty, especially if there are
 outstanding layouts for this object). The metadata server MUST
 revoke outstanding capabilities when any one of the following occurs:

 o the permissions on the object change,

 o a conflicting mandatory byte-range lock is granted, or

 o a layout is revoked and reassigned to another client.

 A pNFS client will typically hold one layout for each byte range for
 either READ or READ/WRITE. The client’s credentials are checked by
 the metadata server at LAYOUTGET time and it is the client’s
 responsibility to enforce access control among multiple users
 accessing the same file. It is neither required nor expected that
 the pNFS client will obtain a separate layout for each user accessing

Halevy, et al. Standards Track [Page 32]

RFC 5664 pNFS Objects January 2010

 a shared object. The client SHOULD use OPEN and ACCESS calls to
 check user permissions when performing I/O so that the server’s
 access control policies are correctly enforced. The result of the
 ACCESS operation may be cached while the client holds a valid layout
 as the server is expected to recall layouts when the file’s access
 permissions or ACL change.

14. IANA Considerations

 As described in NFSv4.1 [6], new layout type numbers have been
 assigned by IANA. This document defines the protocol associated with
 the existing layout type number, LAYOUT4_OSD2_OBJECTS, and it
 requires no further actions for IANA.

15. References

15.1. Normative References

 [1] Weber, R., "Information Technology - SCSI Object-Based Storage
 Device Commands (OSD)", ANSI INCITS 400-2004, December 2004.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [4] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed., "Network
 File System (NFS) Version 4 Minor Version 1 External Data
 Representation Standard (XDR) Description", RFC 5662,
 January 2010.

 [5] IETF Trust, "Legal Provisions Relating to IETF Documents",
 November 2008,
 <http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf>.

 [6] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed., "Network
 File System (NFS) Version 4 Minor Version 1 Protocol",
 RFC 5661, January 2010.

 [7] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [8] Satran, J., Meth, K., Sapuntzakis, C., Chadalapaka, M., and E.
 Zeidner, "Internet Small Computer Systems Interface (iSCSI)",
 RFC 3720, April 2004.

Halevy, et al. Standards Track [Page 33]

RFC 5664 pNFS Objects January 2010

 [9] Weber, R., "SCSI Primary Commands - 3 (SPC-3)", ANSI
 INCITS 408-2005, October 2005.

 [10] Krueger, M., Chadalapaka, M., and R. Elliott, "T11 Network
 Address Authority (NAA) Naming Format for iSCSI Node Names",
 RFC 3980, February 2005.

 [11] IEEE, "Guidelines for 64-bit Global Identifier (EUI-64)
 Registration Authority",
 <http://standards.ieee.org/regauth/oui/tutorials/EUI64.html>.

 [12] Tseng, J., Gibbons, K., Travostino, F., Du Laney, C., and J.
 Souza, "Internet Storage Name Service (iSNS)", RFC 4171,
 September 2005.

 [13] Weber, R., "SCSI Architecture Model - 3 (SAM-3)", ANSI
 INCITS 402-2005, February 2005.

15.2. Informative References

 [14] Weber, R., "SCSI Object-Based Storage Device Commands -2
 (OSD-2)", January 2009,
 <http://www.t10.org/cgi-bin/ac.pl?t=f&f=osd2r05a.pdf>.

 [15] Kent, S. and K. Seo, "Security Architecture for the Internet
 Protocol", RFC 4301, December 2005.

 [16] T10 1415-D, "SCSI RDMA Protocol (SRP)", ANSI INCITS 365-2002,
 December 2002.

 [17] T11 1619-D, "Fibre Channel Framing and Signaling - 2
 (FC-FS-2)", ANSI INCITS 424-2007, February 2007.

 [18] T10 1601-D, "Serial Attached SCSI - 1.1 (SAS-1.1)", ANSI
 INCITS 417-2006, June 2006.

 [19] MacWilliams, F. and N. Sloane, "The Theory of Error-Correcting
 Codes, Part I", 1977.

Halevy, et al. Standards Track [Page 34]

RFC 5664 pNFS Objects January 2010

Appendix A. Acknowledgments

 Todd Pisek was a co-editor of the initial versions of this document.
 Daniel E. Messinger, Pete Wyckoff, Mike Eisler, Sean P. Turner, Brian
 E. Carpenter, Jari Arkko, David Black, and Jason Glasgow reviewed and
 commented on this document.

Authors’ Addresses

 Benny Halevy
 Panasas, Inc.
 1501 Reedsdale St. Suite 400
 Pittsburgh, PA 15233
 USA

 Phone: +1-412-323-3500
 EMail: bhalevy@panasas.com
 URI: http://www.panasas.com/

 Brent Welch
 Panasas, Inc.
 6520 Kaiser Drive
 Fremont, CA 95444
 USA

 Phone: +1-510-608-7770
 EMail: welch@panasas.com
 URI: http://www.panasas.com/

 Jim Zelenka
 Panasas, Inc.
 1501 Reedsdale St. Suite 400
 Pittsburgh, PA 15233
 USA

 Phone: +1-412-323-3500
 EMail: jimz@panasas.com
 URI: http://www.panasas.com/

Halevy, et al. Standards Track [Page 35]

