I nt ernet Engi neering Task Force (I ETF) B. Hal evy

Request for Comments: 5664 B. Wl ch
Cat egory: Standards Track J. Zel enka
| SSN: 2070-1721 Panasas

January 2010

hj ect - Based Parallel NFS (pNFS) Operations

Abst r act

Paral l el NFS (pNFS) extends Network File Systemversion 4 (NFSv4) to
allowclients to directly access file data on the storage used by the
NFSv4 server. This ability to bypass the server for data access can
i ncrease both performance and parallelism but requires additiona
client functionality for data access, sone of which is dependent on
the class of storage used, a.k.a. the Layout Type. The main pNFS
operations and data types in NFSv4 M nor version 1 specify a |ayout-
type-i ndependent | ayer; |ayout-type-specific information is conveyed
usi ng opaque data structures whose internal structure is further
defined by the particular |layout type specification. This docunent
specifies the NFSv4.1 Obj ect-Based pNFS Layout Type as a conpanion to
the main NFSv4 M nor version 1 specification

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/infol/rfc5664.

Hal evy, et al. St andards Track [Page 1]

RFC 5664 pNFS Obj ect s January 2010

Copyright Notice

Copyright (c) 2010 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1

2.

7.

INtroduCti ON ... 3
1.1. Requirenents Languagettt 4
XDR Description of the bjects-Based Layout Protocol 4
2.1. Code Conponents Licensing Notice 4
Basic Data Type Definitions 6
3.1. pnfs_osd _objid4d 6
3.2. pnfs_0sd Versi OnNd e 6
3.3. pnfs_osd object _cred4d e 7
3.4. pnfs_osd_raid_algorithmd 8
oj ect Storage Device Addressing and Discovery 8
4.1. pnfs_osd_targetid typed 10
4.2. pnfs_osd_deviceaddr4d 10
4.2.1. SCSI Target Ildentifier 11
4.2.2. Device Network AdAressc.iiiiiinnann. 11
Qoj ect-Based Layoul 12
5.1. pnfs_osd_data_mapd 13
5.2. pnfs_osd_layout4d 14
5.3. Data Mapping Schenes 14
5.3.1. Sinple Striping 15
5.3.2. Nested Striping 16
5.3.3. MIroring ..o 17
5.4, RAID Al gorithns e 18
5.4.1. PNFS_OSD RAID O ...t e 18
5.4.2. PNFS_OSD RAID 4 18
5.4.3. PNFS_OSD RAID 5 ... 18
5.4.4. PNFS_OSD RAID PQ ... e 19
5.4.5. RAID Usage and Inplenentation Notes 19
bj ect-Based Layout Update i 20
6.1. pnfs_osd _deltaspaceused4d 20
6.2. pnfs_osd_layoutupdated 21
Recovering fromdCient [/OErrors iiiiiiiiinininan. 21

Hal evy, et al. St andards Track [Page 2]

RFC 5664 pNFS Obj ect s January 2010

8. (bject-Based Layout Return 22
8.1. pnfs_0SA_errnod 23
8.2, pnfs_0Sd_i0errd 24
8.3. pnfs_osd _layoutreturnd 24

9. (bject-Based Creation Layout Hint 25
9.1. pnfs_osd layouthintd 25

10. Layout SegmeNnt S e 26
10.1. CB LAYOUTRECALL and LAYOQUTRETURN 27
10. 2. LAYOUTCOMM T oottt e e e e e e e e e e e 27

11. Recalling Layout s e 27
11.1. CB RECALL_ANY . .. e 28

12, Adient FeNCiNgt e e 29

13. Security Considerati onst 29
13.1. OSD Security Data TYPeSt tee 30
13.2. The OSD Security Protocol 30
13.3. Protocol Privacy Requirements 32
13.4. Revoking Capabilities i, 32

14. 1TANA Considerati ONSttt e 33

15, Ref erenCes 33
15.1. Normative References 33
15.2. Informative References 34

Appendi x A. Acknow edgment s 35

1. Introduction

In pNFS, the file server returns typed | ayout structures that
describe where file data is located. There are different |ayouts for
di fferent storage systenms and net hods of arranging data on storage
devices. This docunent describes the layouts used w th object-based
storage devices (0SDs) that are accessed according to the OSD storage
protocol standard (ANSI | NCI TS 400-2004 [1]).

An "object" is a container for data and attributes, and files are
stored in one or nore objects. The OSD protocol specifies severa
operations on objects, including READ, WRI TE, FLUSH, GET ATTRI BUTES,
SET ATTRI BUTES, CREATE, and DELETE. However, using the object-based
| ayout the client only uses the READ, WRI TE, GET ATTRI BUTES, and
FLUSH conmands. The other conmands are only used by the pNFS server

An obj ect-based | ayout for pNFS includes object identifiers,
capabilities that allow clients to READ or WRI TE t hose objects, and
various paraneters that control how file data is striped across their
conponent objects. The OSD protocol has a capability-based security
scheme that allows the pNFS server to control what operations and
what objects can be used by clients. This schene is described in
nmore detail in the "Security Considerations" section (Section 13).

Hal evy, et al. St andards Track [Page 3]

RFC 5664 pNFS Obj ect s January 2010

1.1. Requirenments Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [2].

2. XDR Description of the Objects-Based Layout Protoco

Thi s docunent contains the external data representation (XDR [3])
description of the NFSv4.1 objects |ayout protocol. The XDR
description is enbedded in this docunent in a way that nakes it
sinmple for the reader to extract into a ready-to-conpile form The
reader can feed this docunent into the follow ng shell script to
produce the nmachi ne readabl e XDR description of the NFSv4.1 objects
| ayout protocol

#!/bin/sh
grep "N *[//’ $* | sed 's?M *[/] ?? | sed 's?N */[][$?7?

That is, if the above script is stored in a file called "extract.sh"
and this docunent is in a file called "spec.txt", then the reader can
do:

sh extract.sh < spec.txt > pnfs_osd _prot.x

The effect of the script is to renove | eading white space from each
line, plus a sentinel sequence of "///".

The enbedded XDR file header follows. Subsequent XDR descri ptions,
with the sentinel sequence are enbedded throughout the docunent.

Note that the XDR code contained in this docunent depends on types
fromthe NFSv4.1 nfs4_prot.x file ([4]). This includes both nfs
types that end with a 4, such as offset4, length4, etc., as well as
nmore generic types such as uint32_t and uint64_t.

2.1. Code Conponents Licensing Notice

The XDR description, marked with |ines beginning with the sequence
"/11", as well as scripts for extracting the XDR description are Code
Components as described in Section 4 of "Legal Provisions Relating to
| ETF Docunents" [5]. These Code Conponents are |licensed according to
the terns of Section 4 of "Legal Provisions Relating to | ETF
Docunent s".

Hal evy, et al. St andards Track [Page 4]

RFC 5664 pNFS Obj ect s January 2010

111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111

Hal evy,

/*
Copyright (c) 2010 | ETF Trust and the persons identified
as authors of the code. Al rights reserved.

Redi stribution and use in source and binary forns, with
or without nodification, are pernmtted provided that the
foll owi ng conditions are net:

0 Redistributions of source code nust retain the above
copyright notice, this list of conditions and the
foll owi ng discl ai ner.

0 Redistributions in binary form nust reproduce the above
copyright notice, this list of conditions and the
followi ng disclainer in the docunentation and/or other
materials provided with the distribution.

0 Neither the nane of Internet Society, |ETF or |ETF
Trust, nor the names of specific contributors, may be
used to endorse or pronmote products derived fromthis
sof tware without specific prior witten pernission

TH S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS
AND CONTRI BUTORS "AS |'S" AND ANY EXPRESS OR | MPLI ED
WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE

| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS
FOR A PARTI CULAR PURPOSE ARE DI SCLAI MED. | N NO
EVENT SHALL THE COPYRI GHT OANER OR CONTRI BUTORS BE
LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT
NOT LI M TED TO, PROCUREMENT OF SUBSTI TUTE GOODS OR
SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS
| NTERRUPTI ON) HOWMNEVER CAUSED AND ON ANY THEORY OF

LI ABI LI TY, WHETHER | N CONTRACT, STRI CT LI ABILITY,

OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG
IN ANY WAY QUT OF THE USE OF TH S SOFTWARE, EVEN I F
ADVI SED CF THE PCSSI BI LI TY OF SUCH DAMAGE.

Thi s code was derived from RFC 5664.
Pl ease reproduce this note if possible.
/

L R R A I S N S T N R I R R R R R

/*
* pnfs_osd prot.x
*/

%#i ncl ude <nfs4_prot. x>

et al. St andards Track [Page 5]

RFC 5664 pNFS Obj ect s January 2010

3. Basic Data Type Definitions

The follow ng sections define basic data types and constants used by
t he bj ect-Based Layout protocol

3.1. pnfs_osd objid4
An object is identified by a nunber, somewhat |ike an inode nunber.
The object storage nodel has a two-level schene, where the objects

wi thin an object storage device are grouped into partitions.

/1l struct pnfs_osd objid4 {

111 devi cei d4 oi d_devi ce_i d;
111 ui nt 64 _t oid partition_id
111 ui nt 64_t oi d_obj ect _i d;
11y},

11

The pnfs_osd objid4 type is used to identify an object within a
partition on a specified object storage device. "oid _device_ id"

sel ects the object storage device fromthe set of available storage
devices. The device is identified with the deviceid4 type, which is
an index into addressing information about that device returned by

t he GETDEVI CELI ST and GETDEVI CElI NFO operations. The devicei d4 data
type is defined in NFSv4.1 [6]. Wthin an OSD, a partition is
identified with a 64-bit nunber, "oid_partition_id'. Wthin a
partition, an object is identified with a 64-bit nunber
"oid_object_id". Creation and managenent of partitions is outside
the scope of this docunent, and is a facility provided by the object-
based storage file system

3.2. pnfs_osd_version4

/11l enum pnfs_osd_version4d {

111 PNFS OSD M SSING = 0,
111 PNFS_OSD VERSION 1 = 1,
111 PNFS_OSD VERSION 2 = 2
111 Y

111

pnfs_osd _version4 is used to indicate the OSD protocol version or
whet her an object is nissing (i.e., unavailable). Sonme of the

obj ect - based | ayout -supported RAID al gorithns encode redundant

i nformati on and can conpensate for m ssing conponents, but the data
pl acement al gorithm needs to know what parts are nissing.

Hal evy, et al. St andards Track [Page 6]

RFC 5664 pNFS Obj ect s January 2010

At this tinme, the OSD standard is at version 1.0, and we anticipate a
version 2.0 of the standard (SNIA T10/1729-D [14]). The second
generation OSD protocol has additional proposed features to support
nmore robust error recovery, snapshots, and byte-range capabilities.
Therefore, the OSD version is explicitly called out in the
information returned in the layout. (This information can also be
deduced by | ooking inside the capability type at the format field,
which is the first byte. The format value is 0x1 for an OSD vl
capability. However, it seens npst robust to call out the version
explicitly.)

3.3. pnfs_osd _object cred4

/1l enum pnfs_osd cap_key sec4 {

111 PNFS_OSD_CAP_KEY_SEC NONE = 0,

111 PNFS_OSD CAP_KEY_SEC Ssv =1

11y},

111

/1l struct pnfs_osd object cred4 {

111 pnfs_osd objid4 oc_object id

111 pnfs_osd_versi on4d oc_osd_version
Iy pnfs_osd_cap_key_sec4 oc_cap_key_sec;
1 opaque oc_capability_key<>;
11/ opaque oc_capability<>;
11y},

111

The pnfs_osd_object_cred4 structure is used to identify each
conmponent conprising the file. The "oc_object_id" identifies the
conponent object, the "oc_osd version" represents the osd protoco
versi on, or whether that conponent is unavailable, and the
"oc_capability" and "oc_capability key", along with the
"oda_systenmi d" fromthe pnfs_osd_devi ceaddr4, provide the OSD
security credentials needed to access that object. The
"oc_cap_key_sec" val ue denotes the nethod used to secure the
oc_capability key (see Section 13.1 for nore details).

To conply with the OSD security requirenents, the capability key
SHOULD be transferred securely to prevent eavesdropping (see

Section 13). Therefore, a client SHOULD either issue the LAYOUTGET
or CETDEVI CEl NFO operations via RPCSEC GSS with the privacy service
or previously establish a secret state verifier (SSV) for the
sessions via the NFSv4.1 SET_SSV operation. The

pnfs_osd cap_key sec4 type is used to identify the nethod used by the
server to secure the capability key.

Hal evy, et al. St andards Track [Page 7]

RFC 5664 pNFS Obj ect s January 2010

0 PNFS _OSD CAP_KEY_SEC NONE denotes that the oc_capability key is
not encrypted, in which case the client SHOULD i ssue the LAYOUTGET
or CGETDEVI CEI NFO operations with RPCSEC GSS with the privacy
service or the NFSv4.1 transport should be secured by using
met hods that are external to NFSv4.1 like the use of |Psec [15]
for transporting the NFSV4.1 protocol

0 PNFS _OsSD CAP_KEY_SEC SSV denotes that the oc_capability key
contents are encrypted using the SSV GSS context and the
capability key as inputs to the GSS Wap() function (see GSS-API
[7]) with the conf_req_flag set to TRUE. The client MJST use the
secret SSV key as part of the client’s GSS context to decrypt the
capability key using the value of the oc_capability key field as
the i nput _nessage to the GSS unwap() function. Note that to
prevent eavesdropping of the SSV key, the client SHOULD issue
SET_SSV via RPCSEC GSS with the privacy service.

The actual nethod chosen depends on whether the client established a
SSV key with the server and whether it issued the operation with the
RPCSEC_GSS privacy nmethod. Naturally, if the client did not
establish an SSV key via SET_SSV, the server MJIST use the

PNFS _OSD CAP_KEY_SEC NONE nethod. Otherwise, if the operation was
not issued with the RPCSEC GSS privacy nethod, the server SHOULD
secure the oc_capability key with the PNFS OSD CAP_KEY SEC SSV

met hod. The server MAY use the PNFS _OSD CAP_KEY_SEC SSV net hod al so
when the operation was issued with the RPCSEC GSS privacy net hod.

3.4. pnfs_osd_raid_algorithm

/1] enum pnfs_osd raid algorithm {

111 PNFS_OSD_RAI D_0 =1,

111 PNFS_OSD_RAI D_4 = 2,

111 PNFS_OSD_RAI D_5 = 3,

/11 PNFS_OSD RAID PQ = 4 /* Reed- Sol onon P+Q */
111y

111

pnfs_osd_raid_al gorithmt represents the data redundancy al gorithm
used to protect the file's contents. See Section 5.4 for nore
details.

4. (nject Storage Device Addressing and Di scovery
Data operations to an OSD require the client to know the "address" of
each OSD s root object. The root object is synonymous with the Smnal

Comput er SystemInterface (SCSI) logical unit. The client specifies
SCSI logical units to its SCSI protocol stack using a representation

Hal evy, et al. St andards Track [Page 8]

RFC 5664 pNFS Obj ect s January 2010

local to the client. Because these representations are |ocal
CETDEVI CEI NFO nust return information that can be used by the client
to select the correct local representation

In the block world, a set offset (logical block nunber or track/
sector) contains a disk label. This label identifies the disk
uniquely. In contrast, an OSD has a standard set of attributes on
its root object. For device identification purposes, the OSD System
ID (root information attribute nunber 3) and the OSD Nane (root
information attribute nunber 9) are used as the label. These appear
in the pnfs_osd_devi ceaddr4 type bel ow under the "oda_system d" and
"oda_osdnane" fi el ds.

In sone situations, SCSI target discovery nay need to be driven based
on information contained in the GETDEVI CEI NFO response. One exanpl e
of this is Internet SCSI (iSCSI) targets that are not known to the
client until a layout has been requested. The information provided
as the "oda targetid", "oda targetaddr", and "oda_lun" fields in the
pnfs_osd _devi ceaddr4 type described bel ow (see Section 4.2) allows
the client to probe a specific device given its network address and
optionally its i SCSI Name (see i SCSI [8]), or when the device network
address is onitted, allows it to discover the object storage device
usi ng the provided device nane or SCSI Device Identifier (see SPC 3

[el.)

The oda_systemid is inplicitly used by the client, by using the

obj ect credential signing key to sign each request with the request
integrity check value. This method protects the client from
unintentionally accessing a device if the device address nmappi ng was
changed (or revoked). The server conputes the capability key using
its own view of the systenm d associated with the respective deviceid

present in the credential. |If the client’s view of the deviceid
mapping is stale, the client will use the wong systenid (which nust
be system w de unique) and the 1/O request to the GSD will fail to

pass the integrity check verification.

To recover fromthis condition the client should report the error and
return the layout using LAYOUTRETURN, and invalidate all the device
address mappi ngs associated with this layout. The client can then
ask for a new layout if it w shes using LAYOQUTGET and resol ve the

ref erenced devi cei ds using GETDEVI CEI NFO or GETDEVI CELI ST.

The server MUST provide the oda _system d and SHOULD al so provide the
oda_osdnane. Wen the OSD nane is present, the client SHOULD get the
root information attributes whenever it establishes comunication
with the OSD and verify that the OSD nane it got fromthe OSD matches
the one sent by the nmetadata server. To do so, the client uses the
root_obj cred credentials.

Hal evy, et al. St andards Track [Page 9]

RFC 5664

4. 1.

pnfs_osd targetid type4d

pNFS Obj ect s

The followi ng enum specifies the manner in which a SCSI t

speci fi ed.

Device ldentifier.

/1l enum pnfs_osd targetid_ typed {

Iy
111
111
111
111

4. 2.

OBJ_TARGET_ANON
OBJ_TARGET_SCSI _NAVE

OBJ_TARGET_SCSI _DEVI CE_I D

pnfs_osd_devi ceaddr 4

nono
wN R

January 2010

arget can be

The target can be specified as a SCSI Nane, or as an SCS

The specification for an object device address is as foll ows:

/1] union pnfs_osd targetid4 switch (pnfs_osd targetid typed oti_type) {
case OBJ_TARGET_SCSI _NAME

111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy
111
111
111
111
111
Iy

b

string

oti _scsi_nanme<>;

case OBJ_TARGET_SCS| _DEVI CE_I D:

opaque

def aul t:
voi d;

oti _scsi _device_id<>;

union pnfs_osd_targetaddr4 switch (bool ota_available) {

s

case TRUE:
net addr 4

case FALSE:
voi d;

ot a_net addr;

struct pnfs_osd devi ceaddr4 {

pnfs_osd targetid4
pnfs_osd targetaddr4
opaque

opaque
pnfs_osd_obj ect _cred4
opaque

oda_targetid;
oda_t arget addr;
oda_l un[8];
oda_system d<>;
oda_root _obj _cred;
oda_osdnane<>;

Hal evy, et al. St andards Track

[Page 10]

RFC 5664 pNFS Obj ect s January 2010

4.2.1. SCSI Target ldentifier

When "oda_targetid" is specified as an OBJ_TARGET_SCSI _NAME, the
"oti_scsi_nanme" string MJST be formatted as an "i SCSI Nane" as
specified in iSCSI [8] and [10]. Note that the specification of the
oti_scsi_nanme string format is outside the scope of this docunent.
Parsing the string is based on the string prefix, e.g., "ign."
"eui.", or "naa." and nore fornmats MAY be specified in the future in
accordance with i SCSI Names properties.

Currently, the i SCSI Name provides for nam ng the target device using
a string formatted as an i SCSI Qualified Nane (IQ\) or as an Extended
Uni que ldentifier (EUI) [11] string. Those are typically used to
identify i SCSI or Secure Routing Protocol (SRP) [16] devices. The
Net wor k Address Authority (NAA) string format (see [10]) provides for
nam ng the device using globally unique identifiers, as defined in

Fi bre Channel Fram ng and Signaling (FGFS) [17]. These are
typically used to identify Fibre Channel or SAS [18] (Serial Attached
SCSl) devices. |In particular, such devices that are dual -attached
both over Fibre Channel or SAS and over i SCSI.

When "oda_targetid" is specified as an OBJ_TARGET_SCSI _DEVICE_ID, the
"oti_scsi_device_id" opaque field MIST be formatted as a SCSI Device
Identifier as defined in SPC-3 [9] VPD Page 83h (Section 7.6.3.
"Device ldentification VPD Page"). |If the Device ldentifier is
identical to the OSD System I D, as given by oda_systemd, the server
SHOULD provide a zero-length oti_scsi_device_id opaque value. Note
that simlarly to the "oti_scsi_name", the specification of the
oti_scsi_device_id opaque contents is outside the scope of this
docunent and nore fornmats MAY be specified in the future in
accordance with SPC 3.

The OBJ_TARGET_ANON pnfs_osd_targetid_type4 MAY be used for providing

no target identification. |In this case, only the OSD System | D, and
optionally the provided network address, are used to |ocate the
devi ce.

4.2.2. Device Network Address

The optional "oda_targetaddr"” field MAY be provided by the server as

a hint to accel erate device discovery over, e.g., the i SCSI transport
protocol. The network address is given with the netaddr4 type, which
specifies a TCP/|I P based endpoint (as specified in NFSv4.1 [6]).

Wien given, the client SHOULD use it to probe for the SCSI device at

the given network address. The client MAY still use other discovery

mechani sms such as Internet Storage Nane Service (iSNS) [12] to

| ocate the device using the oda_targetid. |In particular, such an

Hal evy, et al. St andards Track [Page 11]

RFC 5664 pNFS Obj ect s January 2010

external nanme service SHOULD be used when the devices nmay be attached
to the network using nultiple connections, and/or nultiple storage
fabrics (e.g., Fibre-Channel and i SCSl).

The "oda_lun" field identifies the OSD 64-bit Logical Unit Nunber,
formatted in accordance with SAM3 [13]. The client uses the Logica
Unit Number to communicate with the specific OSD Logical Unit. Its

use is defined in detail by the SCSI transport protocol, e.g., iSCS
[8].

5. (bj ect-Based Layout
The layout4 type is defined in the NFSv4.1 [6] as foll ows:

enum | ayout typed {

LAYOUT4_NFSV4_1 FILES =1
LAYOUT4_OsD2_OBJECTS = 2,
LAYOUT4_BLOCK_VOLUME =3

i

struct layout_content4 {
| ayoutt ype4 | oc_type;
opaque | oc_body<>;

struct layoutd {
of fset4 | o_of fset;
| engt h4 | o_I engt h;
| ayout i onnde4 | o_i onode;
| ayout _content4 | o_content;

b

Thi s docunent defines structure associated with the |ayouttyped

val ue, LAYOUT4_OSD2_OBJECTS. The NFSv4.1 [6] specifies the | oc_body
structure as an XDR type "opaque". The opaque |layout is

uni nterpreted by the generic pNFS client |ayers, but obviously nust
be interpreted by the object storage |ayout driver. This section
defines the structure of this opaque value, pnfs_osd_| ayout4.

Hal evy, et al. St andards Track [Page 12]

RFC 5664 pNFS Obj ect s January 2010

5.1. pnfs_osd_data nmap4

/1l struct pnfs_osd _data_map4d {

Iy uint32_t odm num conps;

1 | engt h4 odm stripe_unit;
11/ uint32_t odm group_wi dt h;
111 uint32_t odm gr oup_dept h;
111 uint32_t odmmnirror_cnt;

111 pnfs_osd raid_al gorithmt odm raid_al gorithm
1y

/11

The pnfs_osd data_map4 structure paraneterizes the algorithmthat
maps a file's contents over the conponent objects. |nstead of
limting the systemto sinple striping schene where loss of a single
conmponent object results in data | oss, the nmap paraneters support
mrroring and nore conplicated schenes that protect against loss of a
conponent obj ect.

"odm num conps" is the nunber of conponent objects the file is
striped over. The server MAY grow the file by addi ng nore conponents
to the stripe while clients hold valid layouts until the file has
reached its final stripe width. The file length in this case MJIST be
limted to the nunber of bytes in a full stripe.

The "odm stripe_unit" is the nunber of bytes placed on one conponent
bef ore advancing to the next one in the list of conponents. The
nunber of bytes in a full stripe is odmstripe_unit tines the nunber
of components. |In sonme RAID schenes, a stripe includes redundant
information (i.e., parity) that lets the systemrecover fromloss or
damage to a conponent object.

The "odm group_w dth" and "odm group_dept h" paraneters allow a nested
striping pattern (see Section 5.3.2 for details). |If there is no
nesting, then odm group_w dth and odm group_depth MJST be zero. The
size of the conponents array MJST be a nultiple of odm group w dth.

The "odmmirror_cnt" is used to replicate a file by replicating its
conponent objects. |If there is no mirroring, then odmnmirror_cnt
MUST be 0. If odmmrror_cnt is greater than zero, then the size of
the conponent array MJST be a nultiple of (odmmrror_cnt+1).

See Section 5.3 for nore details.

Hal evy, et al. St andards Track [Page 13]

RFC 5664 pNFS Obj ect s January 2010

5.2.

5.3.

Hal

pnfs_osd | ayout 4
/1l struct pnfs_osd_|ayoutd {
Iy pnfs_osd_dat a_map4 ol o_map
111 uint32_t ol o_conps_i ndex;
11/ pnfs_osd_object cred4 ol o_conponent s<>;
11y},
111

The pnfs_osd_| ayout4 structure specifies a | ayout over a set of
conmponent objects. The "ol o_conmponents” field is an array of object
identifiers and security credentials that grant access to each
object. The organization of the data is defined by the
pnfs_osd_data_map4 type that specifies howthe file's data is mapped
onto the conponent objects (i.e., the striping pattern). The data
pl acenent algorithmthat maps file data onto conponent objects
assunes that each conponent object occurs exactly once in the array
of conponents. Therefore, conponent objects MJST appear in the

ol o_conponents array only once. The conponents array nay represent
all objects conprising the file, in which case "ol o_conps_index" is
set to zero and the nunber of entries in the olo_conponents array is
equal to ol o_map. odm num conps. The server MAY return fewer
components than odm num conps, provided that the returned conponents
are sufficient to access any byte in the layout’'s data range (e.g., a
sub-stripe of "odm group w dth" conponents). In this case,

ol o_conps_i ndex represents the position of the returned conponents
array within the full array of conponents that conprise the file.

Note that the | ayout depends on the file size, which the client

|l earns fromthe generic return paraneters of LAYOUTGET, by doing
GETATTR conmands to the netadata server. The client uses the file
size to decide if it should fill holes with zeros or return a short
read. Striping patterns can cause cases where conponent objects are
shorter than other conponents because a hol e happens to correspond to
the | ast part of the conponent object.

Dat a Mappi ng Schenes

This section describes the different data nmapping schenes in detail
The object |ayout always uses a "dense" |ayout as described in
NFSv4.1 [6]. This nmeans that the second stripe unit of the file
starts at offset 0 of the second conponent, rather than at offset
stripe_unit bytes. After a full stripe has been witten, the next
stripe unit is appended to the first conponent object in the |ist
wi t hout any holes in the conponent objects.

evy, et al. St andards Track [Page 14]

RFC 5664 pNFS Obj ect s January 2010

5.3.1. Sinple Striping

The mapping fromthe |ogical offset within a file (L) to the
conmponent object C and object-specific offset Ois defined by the
foll owi ng equati ons:

| ogi cal offset into the file
total number of conponents

W?* stripe_unit

L/ S

(L-(N*S)) / stripe_unit
(Ntstripe_unit)+(L%tripe_unit)

ocozunsr
W mnmn

In these equations, S is the nunber of bytes in a full stripe, and N
is the stripe nunber. Cis an index into the array of conponents, so
it selects a particular object storage device. Both N and C count
fromzero. Ois the offset within the object that corresponds to the
file offset. Note that this conputation does not accommopdate the
sanme object appearing in the olo_conponents array multiple tines.

For exanpl e, consider an object striped over four devices, <D0 D1 D2
D3>. The stripe_unit is 4096 bytes. The stripe width Sis thus 4 *
4096 = 16384.

O fset O:
N=0/ 16384 =0

C = 0-0/4096 = 0 (DO)
O = 0%4096 + (0%4#096) = O
O fset 4096:

N = 4096 / 16384 = 0

C = (4096-(0*16384)) / 4096 = 1 (D1)
O = (0*4096) +(4096%1096) = 0
O fset 9000:

N = 9000 / 16384 = 0
C = (9000- (0*16384)) / 4096 = 2 (D2)
O = (0*4096) +(9000%1096) = 808

O fset 132000:
N = 132000 / 16384 = 8
C (132000- (8*16384)) / 4096 = 0 (DO)
O = (8*4096) + (1320009%096) = 33696

Hal evy, et al. St andards Track [Page 15]

RFC 5664 pNFS Obj ect s January 2010

5.3.2. Nested Striping

The odm group_wi dth and odm group_depth paraneters allow a nested
striping pattern. odmgroup_w dth defines the width of a data stripe
and odm group_dept h defines how many stripes are witten before
advancing to the next group of conponents in the Iist of conponent
objects for the file. The math used to map froma file offset to a
conmponent object and offset within that object is shown below. The
conmputations map fromthe logical offset L to the conponent index C
and offset relative Ow thin that conponent object.

| ogical offset into the file

total nunber of conponents

stripe_unit * group_depth * W

stripe_unit * group_depth * group_w dth
stripe_unit * group_w dth

L/ S

(L-(M*98) [/ T

(L-(M*9S)) %T

H/ U

(H- (N* U)) / stripe_unit + G* group_w dth
L %stripe_unit + N* stripe_unit + M* group_depth * stripe_unit

ocozrIrmzCc—Hwnzr
L e 1 A A VI | B

In these equations, S is the nunber of bytes striped across al
conponent objects before the pattern repeats. T is the nunber of
bytes striped within a group of conmponent objects before advancing to
the next group. U is the nunber of bytes in a stripe within a group.
Mis the "major" (i.e., across all conmponents) stripe nunber, and N
is the "mnor" (i.e., across the group) stripe nunber. G counts the
groups fromthe beginning of the major stripe, and His the byte

of fset within the group

For exanpl e, consider an object striped over 100 devices with a
group_wi dth of 10, a group_depth of 50, and a stripe_unit of 1 MB

In this schene, 500 MB are witten to the first 10 components, and
5000 MB are written before the pattern waps back around to the first
conponent in the array.

Hal evy, et al. St andards Track [Page 16]

RFC 5664 pNFS Obj ect s January 2010

O fset O:
W= 100
S=1 M * 50 * 100 = 5000 MB
T=1M* 50 * 10 = 500 MB
u=1M* 10 = 10 MB
M= 0/ 5000 MB =0
G=(0- (0 * 5000 MB)) / 500 MB =0
H=(0- (0 * 5000 MB)) %500 MB =0
N=0/ 10 MB =0
c=(0-(0*210MB)) / 1 MB+0* 10 =0
O=0%1 MB+0*1 MB+0*50*1M=0
O fset 27 MB
M= 27 MB/ 5000 MB =0
G= (27 MB - (0 * 5000 MB)) / 500 MB =0
H= (27 MB - (0 * 5000 MB)) %500 MB = 27 MB
N=27 MB/ 10 MB = 2
C=(27MB-(2*10M)) / 1 MB+0* 10 =7
O=27TMB %1 MB+2*1 M+0*50*1M=2NM
O fset 7232 MB:
M= 7232 MB/ 5000 MB =1
G=(7232 MB - (1 * 5000 MB)) / 500 MB = 4
H= (7232 MB - (1 * 5000 MB)) %500 MB = 232 MB
N=232 B/ 10 MB = 23
C=(232 MB- (23 * 10 MB)) / 1 MB + 4 * 10 = 42
O=7232 B %1 MB+23* 1 MB+1* 50* 1M =73 M

5.3.3. Mrroring

The odmmirror_cnt is used to replicate a file by replicating its
conponent objects. |If there is no mirroring, then odmnmrror_cnt
MUST be 0. If odmmirror_cnt is greater than zero, then the size of
the ol o_conponents array MJST be a nultiple of (odmmrror_cnt+1).
Thus, for a classic mrror on two objects, odmmrror_cnt is one.
Note that mirroring can be defined over any RAID al gorithm and
striping pattern (either sinple or nested). |If odmgroup width is
al so non-zero, then the size of the ol o_conponents array MJST be a
mul ti ple of odmgroup width * (odmmirror_cnt+1). Replicas are

adj acent in the ol o_conponents array, and the value C produced by the
above equations is not a direct index into the ol o_conponents array.
Instead, the followi ng equations determine the replica conponent

i ndex RG, where i ranges fromO to odmnirror_cnt.

C = conponent index for striping or two-level striping

i ranges fromO to odmmrror_cnt, inclusive
RCG =C* (odmmrror_cnt+1) + i

Hal evy, et al. St andards Track [Page 17]

RFC 5664 pNFS Obj ect s January 2010

5.4. RAID Algorithns

pnfs_osd_raid_al gorithmt determines the algorithmand pl acenent of
redundant data. This section defines the different redundancy
algorithnms. Note: The term "RAI D' (Redundant Array of | ndependent
Disks) is used in this docunent to represent an array of conponent
objects that store data for an individual file. The objects are
stored on independent object-based storage devices. File data is
encoded and striped across the array of conmponent objects using

al gorithnms devel oped for bl ock-based RAID systens.

5.4.1. PNFS_OSD_RAID 0

PNFS_OSD RAID 0 neans there is no parity data, so all bytes in the
conmponent objects are data bytes | ocated by the above equations for C
and O If a component object is marked as PNFS OSD M SSI NG the pNFS
client MUST either return an I/O error if this component is attenpted
to be read or, alternatively, it can retry the READ agai nst the pNFS
server.

5.4.2. PNFS_OSD RAID 4

PNFS _OSD RAID 4 neans that the | ast conponent object, or the last in
each group (if odmgroup width is greater than zero), contains parity
i nformati on conputed over the rest of the stripe with an XOR
operation. |If a conponent object is unavailable, the client can read
the rest of the stripe units in the damaged stripe and reconpute the
m ssing stripe unit by XORing the other stripe units in the stripe.
O the client can replay the READ agai nst the pNFS server that will
presunably performthe reconstructed read on the client’s behal f.

Wien parity is present in the file, then there is an additiona
conmputation to map fromthe file offset L to the offset that accounts
for enmbedded parity, L'. First conpute L', and then use L' in the
above equations for C and O

file offset, not accounting for parity

nunber of parity devices in each stripe

group_width, if not zero, else size of ol o_conponents array
L/ (WP * stripe_unit)

=N* (W* stripe_unit) +
(L % (WP * stripe_unit))

o
TRRTIRTINT!

rz

5.4.3. PNFS_OSD RAID 5
PNFS OSD RAID 5 neans that the position of the parity data is rotated

on each stripe or each group (if odmgroup width is greater than
zero). In the first stripe, the | ast conponent holds the parity. In

Hal evy, et al. St andards Track [Page 18]

RFC 5664 pNFS Obj ect s January 2010

the second stripe, the next-to-last conponent holds the parity, and

so on. In this schenme, all stripe units are rotated so that I/Ois
evenly spread across objects as the file is read sequentially. The
rotated parity layout is illustrated here, with nunbers indicating

the stripe unit.

012P
45 P3
8 P67
P9 ab

To conpute the conponent object C, first conpute the offset that
accounts for parity L' and use that to conpute C. Then rotate Cto
get C. Finally, increase C by one if the parity information cones
at or before C wthin that stripe. The follow ng equations
illustrate this by conmputing |, which is the index of the conponent
that contains parity for a given stripe

L =file offset, not accounting for parity

W= odm group_width, if not zero, else size of ol o_conponents array
N=L/ (W1 * stripe_unit)

(Compute L' as describe above)

(Compute C based on L' as described above)

C =(C- (Nw) %W

I

W- (N - 1
if (C <=1) {

}
5.4.4. PNFS_OSD_RAI D _PQ

PNFS_OSD RAID PQ is a double-parity schene that uses the Reed- Sol onon
P+Q encodi ng schenme [19]. In this layout, the last two conponent
objects hold the P and Q data, respectively. P is parity conmputed
with XOR, and Qis a nore conplex equation that is not described
here. The equations given above for enbedded parity can be used to
map a file offset to the correct conmponent object by setting the
nunber of parity conponents to 2 instead of 1 for RAI D4 or RAID5.
Cients may sinply choose to read data through the netadata server if
two conponents are nissing or danaged

5.4.5. RAID Usage and | npl enentati on Notes

RAID | ayouts with redundant data in their stripes require additiona
serialization of updates to ensure correct operation. Oherw se, if
two clients sinultaneously wite to the sane |ogical range of an
object, the result could include different data in the same ranges of
mrrored tuples, or corrupt parity information. It is the

Hal evy, et al. St andards Track [Page 19]

RFC 5664 pNFS Obj ect s January 2010

responsibility of the nmetadata server to enforce serialization
requi renents such as this. For exanple, the netadata server may do
so by not granting overlapping wite layouts within nmirrored objects.

6. (bj ect-Based Layout Update
| ayout updated is used in the LAYOUTCOM T operation to convey updates
to the layout and additional information to the netadata server. It
is defined in the NFSv4.1 [6] as foll ows:

struct | ayoutupdated {

| ayoutt ype4d | ou_type;

opaque | ou_body<>;
H
The | ayoutupdate4 type is an opaque value at the generic pNFS client
level. If the lou_type layout type is LAYOUT4_OSD2_OBJECTS, then the

| ou_body opaque value is defined by the pnfs_osd | ayoutupdated type.

bj ect-Based pNFS clients are not allowed to nodify the |ayout.
Therefore, the informati on passed in pnfs_osd_| ayoutupdate4 is used
only to update the file' s attributes. 1In addition to the generic
information the client can pass to the netadata server in
LAYQUTCOW T such as the highest offset the client wote to and the
last tine it nodified the file, the client MAY use
pnfs_osd | ayoutupdate4 to convey the capacity consuned (or rel eased)
by wites using the layout, and to indicate that I/O errors were
encountered by such wites.

6.1. pnfs_osd_del taspaceused4

/11 union pnfs_osd _del t aspaceused4 switch (bool dsu valid) {
111 case TRUE:

Iy i nt64 t dsu_del t a;
111 case FALSE:

111 voi d;

11}

Iy

pnfs_osd_del t aspaceused4 is used to convey space utilization
information at the time of LAYQUTCOW T. For the file systemto
properly maintain capacity-used information, it needs to track how
much capacity was consuned by WRI TE operations perforned by the
client. In this protocol, the OSD returns the capacity consuned by a
wite (*), which can be different than the nunber of bytes witten
because of internal overhead |ike block-1evel allocation and indirect
bl ocks, and the client reflects this back to the pNFS server so it
can accurately track quota. The pNFS server can choose to trust this

Hal evy, et al. St andards Track [Page 20]

RFC 5664 pNFS Obj ect s January 2010

informati on coming fromthe clients and therefore avoid querying the
OSDs at the tine of LAYOUTCOWM T. If the client is unable to obtain
this information fromthe OSD, it sinply returns invalid

ol u_del t a_space_used.

6.2. pnfs_osd | ayout update4

/1l struct pnfs_osd_| ayoutupdated {

111 pnfs_osd_del t aspaceused4 ol u_del t a_space_used,;
Iy bool olu_ioerr_flag;
11y},

111

"olu_delta_space used" is used to convey capacity usage infornation
back to the netadata server.

The "olu_ioerr_flag" is used when I/O errors were encountered while
writing the file. The client MJST report the errors using the
pnfs_osd ioerrd4 structure (see Section 8.1) at LAYOUTRETURN ti ne.

If the client updated the file successfully before hitting the 1/0
errors, it MAY use LAYOUTCOW T to update the netadata server as
descri bed above. Typically, in the error-free case, the server MAY
turn around and update the file's attributes on the storage devices.
However, if I/O errors were encountered, the server better not
attenpt to wite the new attributes on the storage devices until it
receives the I/O error report; therefore, the client MJST set the
olu_ ioerr_flag to true. Note that in this case, the client SHOULD
send both the LAYOQUTCOW T and LAYOUTRETURN operations in the sane
COVPOUND RPC

7. Recovering fromdient 1/O Errors

The pNFS client may encounter errors when directly accessing the

obj ect storage devices. However, it is the responsibility of the
nmet adata server to handle the I/O errors. Wen the
LAYOUT4_OSD2_OBJECTS | ayout type is used, the client MJST report the
I/Oerrors to the server at LAYOUTRETURN time using the
pnfs_osd_ioerr4 structure (see Section 8.1).

The nmet adata server anal yzes the error and deternines the required

recovery operations such as repairing any parity inconsistencies,
recovering nedia failures, or reconstructing mssing objects.

Hal evy, et al. St andards Track [Page 21]

RFC 5664 pNFS Obj ect s January 2010

The nmetadata server SHOULD recall any outstanding |ayouts to allow it
exclusive wite access to the stripes being recovered and to prevent
other clients fromhitting the same error condition. In these cases,
the server MUST conplete recovery before handing out any new | ayouts
to the affected byte ranges.

Al though it MAY be acceptable for the client to propagate a
corresponding error to the application that initiated the I1/0
operation and drop any unwitten data, the client SHOULD attenpt to
retry the original 1/0O operation by requesting a new |l ayout using
LAYOQUTGET and retry the 1/0O operation(s) using the new | ayout, or the
client MAY just retry the 1/0O operation(s) using regular NFS READ or
VWRI TE operations via the netadata server. The client SHOULD attenpt
to retrieve a new layout and retry the 1/O operation using OSD
conmands first and only if the error persists, retry the /0
operation via the netadata server.

8. (bject-Based Layout Return
layoutreturn_file4 is used in the LAYOUTRETURN operati on to convey
| ayout -type specific information to the server. It is defined in the
NFSv4.1 [6] as foll ows:

struct layoutreturn filed {

of fset4 I rf _offset;

| engt h4 [rf_Iength;
statei d4 I rf_stateid;

/* layouttyped specific data */
opaque I rf_body<>;

b

union layoutreturn4 switch(layoutreturn type4 |Ir_returntype) {
case LAYOUTRETURN4_FI LE:
| ayoutreturn_file4d Ir_layout;
defaul t:
voi d;

b

struct LAYOUTRETURMargs {
/* CURRENT_FH. file */

bool lora_reclaim

| ayoutreturn_stateid |l ora recallstateid;
| ayout t ype4d | ora_| ayout type;

| ayout i onpbde4 | ora_i onode;

| ayoutreturn4 | ora_l ayoutreturn;

Hal evy, et al. St andards Track [Page 22]

RFC 5664 pNFS Obj ect s January 2010
If the lora_layout _type layout type is LAYOUT4 _OSD2_OBJECTS, then the
I rf_body opaque value is defined by the pnfs_osd | ayoutreturnd type.

The pnfs_osd_| ayoutreturnd4 type allows the client to report I/O error
information back to the netadata server as defined bel ow

8.1. pnfs_osd errno4

/11 enum pnfs_osd_errno4d {

/11 PNFS_OSD_ERR _El O =1,
111 PNFS_OSD_ERR_NOT_FOUND = 2,
111 PNFS_OSD_ERR_NO_SPACE = 3,
111 PNFS_OSD_ERR_BAD CRED = 4,
111 PNFS_OSD_ERR_NO_ACCESS = 5,
111 PNFS_OSD_ERR_UNREACHABLE = 6,
/11 PNFS_OSD_ERR_RESOURCE =7
111y

111

pnfs_osd_errno4 is used to represent error types when read/wite
errors are reported to the nmetadata server. The error codes serve as
hints to the netadata server that may help it in diagnosing the exact
reason for the error and in repairing it.

0 PNFS OSD ERR EIO indicates the operation failed because the object
storage device experienced a failure trying to access the object.
The nost common source of these errors is nmedia errors, but other
internal errors mght cause this as well. |In this case, the
nmet adat a server should go exam ne the broken object nore closely;
hence, it should be used as the default error code.

0 PNFS_OSD ERR NOT_FOUND i ndi cates the object ID specifies an object
that does not exist on the object storage device.

0 PNFS_OSD ERR NO SPACE indicates the operation fail ed because the
obj ect storage device ran out of free capacity during the
operation.

0 PNFS_OSD ERR BAD CRED indicates the security paranmeters are not
valid. The primary cause of this is that the capability has
expired, or the access policy tag (a.k.a., capability version
nunber) has been changed to revoke capabilities. The client will
need to return the layout and get a new one with fresh
capabilities.

Hal evy, et al. St andards Track [Page 23]

RFC 5664 pNFS Obj ect s January 2010

0 PNFS_0OSD ERR NO ACCESS indicates the capability does not allow the
requested operation. This should not occur in normal operation
because the netadata server should give out correct capabilities,
or none at all.

0 PNFS_0OSD ERR UNREACHABLE indicates the client did not conplete the
I/ O operation at the object storage device due to a comuni cation
failure. Wether or not the I/O operation was executed by the OSD
i s undet erni ned.

0 PNFS OSD ERR RESOURCE indicates the client did not issue the I/O
operation due to a local problemon the initiator (i.e., client)
side, e.g., when running out of nmenory. The client MJST guarantee
that the OSD command was never dispatched to the OSD.

8.2. pnfs_osd_ioerr4

/1l struct pnfs_osd ioerrd {

111 pnfs_osd _objid4 oer _conponent;
111 | engt h4 oer _conp_of fset;
111 | engt h4 oer _conp_I engt h;
Iy bool oer_iswite;

111 pnfs_osd_errno4 oer _errno;
Iy},

111

The pnfs_osd_ioerr4 structure is used to return error indications for
objects that generated errors during data transfers. These are hints
to the nmetadata server that there are problens with that object. For
each error, "oer_conponent"”, "oer_conp_offset", and "oer_conp_| ength"
represent the object and byte range within the conponent object in
which the error occurred; "oer iswite" is set to "true" if the
fail ed OSD operati on was data nodi fying, and "oer_errno" represents
the type of error.

Conponent byte ranges in the optional pnfs _osd ioerr4 structure are
used for recovering the object and MJST be set by the client to cover
all failed |I/O operations to the conponent.

8.3. pnfs_osd_layoutreturn4
/1l struct pnfs_osd | ayoutreturnd {
111 pnfs_osd ioerr4 olr_ioerr_report<>

111y
/11

Hal evy, et al. St andards Track [Page 24]

RFC 5664 pNFS Obj ect s January 2010

When OSD I/ O operations failed, "olr_ioerr_report<>" is used to
report these errors to the netadata server as an array of elenents of
type pnfs_osd_ioerr4. Each elenment in the array represents an error

that occurred on the object specified by oer_conponent. |If no errors
are to be reported, the size of the olr_ioerr_report<> array is set
to zero.

9. (bject-Based Creation Layout Hint
The layouthint4 type is defined in the NFSv4.1 [6] as foll ows:

struct layouthint4 {
| ayout t ype4d | oh_type;
opaque | oh_body<>;

The | ayouthint4 structure is used by the client to pass a hint about
the type of layout it would like created for a particular file. |If
the I oh_type layout type is LAYOUT4_OSD2_ OBJECTS, then the | oh_body
opaque value is defined by the pnfs_osd | ayouthint4 type.

9.1. pnfs_osd_layouthint4

/1] union pnfs_osd max_conps_hint4 switch (bool onx_valid) {
111 case TRUE

111 uint32_t onx_nax_conps;
111 case FALSE:

Iy voi d;

11y},

111

/1] union pnfs_osd _stripe_unit_hint4 switch (bool osu valid) {
111 case TRUE:

111 | engt h4 osu_stripe_unit;
Iy case FALSE:

111 voi d;

Iy},

111

/1] union pnfs_osd group_width hint4 switch (bool ogw valid) {
111 case TRUE:

111 ui nt 32_t ogw_gr oup_wi dt h;
111 case FALSE:

111 voi d;

IR

111

/1] union pnfs_osd_group_depth_hint4 switch (bool ogd_valid) {
Iy case TRUE:

1 ui nt 32_t ogd_gr oup_dept h;

111 case FALSE:

Hal evy, et al. St andards Track [Page 25]

RFC 5664 pNFS Obj ect s January 2010

10.

111 voi d;

11y

111

/1] union pnfs_osd mrror_cnt_hint4 switch (bool ont_valid) {
1 case TRUE:

11/ uint32_t ontc_nmirror_cnt;
111 case FALSE:

111 voi d;

Iy,

111

/11l union pnfs_osd_raid_algorithmhint4 switch (bool ora_valid) {
11 case TRUE:

111 pnfs_osd raid_al gorithmt ora_raid_al gorithm
111 case FALSE:

111 voi d;

1y

/11

/1l struct pnfs_osd | ayouthintd {

111 pnfs_osd max_conps_hint4 ol h_nmax_conps_hi nt;
111 pnfs_osd stripe unit_hint4 ol h_stripe_unit_hint;
111 pnfs_osd_group_wi dth_hint4 ol h_group_wi dt h_hint;
111 pnfs_osd_group_depth_hint4 ol h_group_dept h_hi nt;
111 pnfs_osd _mirror_cnt_hint4 olh_mrror_cnt_hint;
11/ pnfs_osd raid _algorithmhint4 ol h_raid_al gorithmhint;
11y},

111

This type conveys hints for the desired data map. All paraneters are
optional so the client can give values for only the paraneters it
cares about, e.g. it can provide a hint for the desired nunber of
mrrored conponents, regardl ess of the RAID al gorithm sel ected for
the file. The server should nake an attenpt to honor the hints, but
it can ignore any or all of themat its own discretion and w thout
failing the respective CREATE operation.

The "ol h_max_conps_hint" can be used to limt the total nunber of
conponent objects conprising the file. Al other hints correspond
directly to the different fields of pnfs_osd_data_nap4.

Layout Segments

The pnfs | ayout operations operate on |ogical byte ranges. There is
no requirenent in the protocol for any rel ationship between byte

ranges used in LAYOUTGET to acquire layouts and byte ranges used in
CB_LAYOUTRECALL, LAYOUTCOWM T, or LAYOUTRETURN. However, using OSD
byt e-range capabilities poses limtations on these operations since

Hal evy, et al. St andards Track [Page 26]

RFC 5664 pNFS Obj ect s January 2010

10.

10.

11.

the capabilities associated with |ayout segnents cannot be nerged or
split. The follow ng guidelines should be followed for proper
operation of object-based |ayouts.

1. CB_LAYQUTRECALL and LAYOUTRETURN

In general, the object-based | ayout driver should keep track of each
| ayout segnent it got, keeping record of the segment’s i onode,

of fset, and length. The server should allow the client to get
mul ti ple overl appi ng | ayout segnents but is free to recall the |ayout
to prevent overlap

In response to CB LAYOUTRECALL, the client should return all |ayout
segnents mat ching the given i onode and overl apping with the recalled
range. Wen returning the layouts for this byte range with
LAYOUTRETURN, the client MJUST NOT return a sub-range of a |ayout
segnment it has; each LAYOUTRETURN sent MJST conpl etely cover at | east
one outstandi ng | ayout segnent.

The server, in turn, should rel ease any segnment that exactly matches
the clientid, ionpde, and byte range given in LAYOUTRETURN. If no

exact match is found, then the server should release all |ayout
segnents matching the clientid and i onode and that are fully
contained in the returned byte range. |f none are found and the byte

range i s a subset of an outstanding |ayout segnent with for the sane
clientid and i onbde, then the client can be considered nal functioning
and the server SHOULD recall all layouts fromthis client to reset
its state. If this behavior repeats, the server SHOULD deny al
LAYOQUTGETs fromthis client.

2. LAyautTCOW T

LAYOUTCOW T is only used by object-based pNFS to convey nodified

attributes hints and/or to report the presence of I/Oerrors to the

nmet adata server (MDS). Therefore, the offset and length in

LAYOUTCOW T4args are reserved for future use and should be set to O.
Recal | i ng Layouts

The obj ect-based netadata server should recall outstanding |layouts in
the foll ow ng cases:

0o Wien the file's security policy changes, i.e., Access Contro
Lists (ACLs) or permi ssion node bits are set.

o Wien the file s aggregati on map changes, rendering outstanding
| ayouts invalid.

Hal evy, et al. St andards Track [Page 27]

RFC 5664 pNFS Obj ect s January 2010

11.

0 Wien there are sharing conflicts. For exanple, the server wll
i ssue stripe-aligned | ayout segnents for RAID-5 objects. To
prevent corruption of the file's parity, nultiple clients rmust not
hold valid wite layouts for the same stripes. An outstanding
READ WRI TE (RW | ayout should be recalled when a conflicting
LAYOQUTGET is received froma different client for LAYOUTI OMODE4 RW
and for a byte range overlapping with the outstanding | ayout
segment .

1. CB_RECALL_ANY
The nmetadata server can use the CB RECALL_ANY cal |l back operation to

notify the client to return sone or all of its layouts. The NFSv4.1
[6] defines the follow ng types:

const RCA4_TYPE_MASK OBJ_LAYOUT M N = 8;
const RCA4_TYPE_MASK OBJ_LAYOUT MAX =9
struct CB_RECALL_ANY4args {

uint32_t craa_objects _to_keep

bi t map4 craa_type_mask
s

Typically, CB RECALL ANY will be used to recall client state when the
server needs to reclaimresources. The craa_type_nask bitmap
specifies the type of resources that are recalled and the
craa_objects_to_keep val ue specifies how many of the recalled objects
the client is allowed to keep. The object-based |ayout type nmask
flags are defined as follows. They represent the ionode of the
recall ed layouts. |In response, the client SHOULD return | ayouts of
the recalled ionode that it needs the | east, keeping at nost
craa_objects _to _keep object-based |ayouts.

/1l enum pnfs_osd_cb_recall _any_mask {

111 PNFS_OSD_RCA4_TYPE_MASK_READ = 8,
111 PNFS_OSD_RCA4_TYPE_MASK RW = 9
111y

111

The PNFS_OSD RCA4_TYPE MASK READ flag notifies the client to return

| ayouts of ionpbde LAYOUTI OMODE4_READ. Similarly, the

PNFS OSD RCA4 TYPE MASK RWflag notifies the client to return |ayouts
of ionode LAYOUTI OMODE4 RW \When both nask flags are set, the client
is notified to return layouts of either ionode.

Hal evy, et al. St andards Track [Page 28]

RFC 5664 pNFS Obj ect s January 2010

12.

13.

dient Fencing

In cases where clients are uncomuni cative and their |ease has
expired or when clients fail to return recalled |layouts within a

| ease period at the | east (see "Recalling a Layout"[6]), the server
MAY revoke client |ayouts and/or device address mappi ngs and reassign
these resources to other clients. To avoid data corruption, the

nmet adata server MJST fence off the revoked clients fromthe
respective objects as described in Section 13. 4.

Security Considerations

The pNFS extension partitions the NFSv4 file system protocol into two
parts, the control path and the data path (storage protocol). The
control path contains all the new operations described by this
extension; all existing NFSv4 security mechani sns and features apply
to the control path. The conbination of components in a pNFS system
is required to preserve the security properties of NFSv4 with respect
to an entity accessing data via a client, including security

count erneasures to defend against threats that NFSv4 provi des
defenses for in environments where these threats are consi dered
significant.

The netadata server enforces the file access-control policy at
LAYOUTGET tine. The client should use suitable authorization
credentials for getting the layout for the requested i onode (READ or
RW and the server verifies the permi ssions and ACL for these
credentials, possibly returning NFS4AERR ACCESS if the client is not

al l oned the requested ionode. |f the LAYOUTGET operation succeeds
the client receives, as part of the layout, a set of object
capabilities allowing it 1/0O access to the specified objects
corresponding to the requested ionode. Wen the client acts on I/0O
operations on behalf of its local users, it MJST authenticate and

aut hori ze the user by issuing respective OPEN and ACCESS calls to the
met adata server, simlar to having NFSv4 data del egations. |f access
is allowed, the client uses the correspondi ng (READ or RW
capabilities to performthe 1/O operations at the object storage
devices. Wen the netadata server receives a request to change a
file's permissions or ACL, it SHOULD recall all layouts for that file
and it MJST change the capability version attribute on all objects
comprising the file to inplicitly invalidate any outstanding
capabilities before conmmtting to the new perm ssions and ACL. Doing
this will ensure that clients re-authorize their layouts according to
the nodified perm ssions and ACL by requesting new | ayouts.

Recalling the layouts in this case is courtesy of the server intended
to prevent clients fromgetting an error on |/ Cs done after the
capability version changed

Hal evy, et al. St andards Track [Page 29]

RFC 5664 pNFS Obj ect s January 2010

13.

13.

The object storage protocol MJST inplenment the security aspects
described in version 1 of the T10 OSD protocol definition [1]. The
standard defines four security methods: NOSEC, CAPKEY, CMDRSP, and
ALLDATA. To provide mnimm | evel of security allow ng verification
and enforcenment of the server access control policy using the |ayout
security credentials, the NOSEC security nmethod MJUST NOT be used for
any |/O operation. The renai nder of this section gives an overvi ew
of the security mechani smdescribed in that standard. The goal is to
give the reader a basic understanding of the object security nodel
Any di screpancies between this text and the actual standard are
obviously to be resolved in favor of the OSD standard.

1. OSD Security Data Types

There are three main data types associated with object security: a
capability, a credential, and security paraneters. The capability is
a set of fields that specifies an object and what operations can be
perfornmed on it. A credential is a signed capability. Only a
security nanager that knows the secret device keys can correctly sign
a capability to forma valid credential. |In pNFS, the file server
acts as the security manager and returns signed capabilities (i.e.
credentials) to the pNFS client. The security paraneters are val ues
comput ed by the issuer of OSD commands (i.e., the client) that prove
they hold valid credentials. The client uses the credential as a
signing key to sign the requests it nmakes to OSD, and puts the
resulting signatures into the security paraneters field of the OSD
command. The object storage device uses the secret keys it shares
with the security nanager to validate the signature values in the
security paraneters.

The security types are opaque to the generic layers of the pNFS
client. The credential contents are defined as opaque within the
pnfs_osd_object_cred4 type. |Instead of repeating the definitions
here, the reader is referred to Section 4.9.2.2 of the OSD standard.

2. The OSD Security Protocol

The object storage protocol relies on a cryptographically secure
capability to control accesses at the object storage devices.
Capabilities are generated by the netadata server, returned to the
client, and used by the client as described below to authenticate
their requests to the object-based storage device. Capabilities

t herefore achi eve the required access and open node checking. They
allow the file server to define and check a policy (e.g., open node)
and the OSD to enforce that policy w thout knowi ng the details (e.g.
user |IDs and ACLs).

Hal evy, et al. St andards Track [Page 30]

RFC 5664 pNFS Obj ect s January 2010

Since capabilities are tied to layouts, and since they are used to
enforce access control, when the file ACL or node changes the
out st andi ng capabilities MJST be revoked to enforce the new access

perm ssions. The server SHOULD recall layouts to allowclients to
gracefully return their capabilities before the access perm ssions
change.

Each capability is specific to a particular object, an operation on
that object, a byte range within the object (in OSDv2), and has an
explicit expiration tine. The capabilities are signed with a secret
key that is shared by the object storage devices and the netadata
managers. Cdients do not have device keys so they are unable to
forge the signatures in the security paraneters. The conbi nation of
a capability, the OSD System|D, and a signature is called a
"credential" in the OSD specification.

The details of the security and privacy nodel for object storage are
defined in the T10 OSD standard. The followi ng sketch of the
al gorithm shoul d hel p the reader understand the basic nodel.

LAYOUTGET returns a CapKey and a Cap, which, together with the OSD
System I D, are also called a credential. It is a capability and a
signature over that capability and the System D. The OSD Standard
refers to the CapKey as the "Credential integrity check value" and to
the ReqMAC as the "Request integrity check val ue".

CapKey = MAC<Secret Key>(Cap, Systemnl D)
Credential = {Cap, System D, CapKey}

The client uses CapKey to sign all the requests it issues for that
obj ect using the respective Cap. |n other words, the Cap appears in
the request to the storage device, and that request is signed with
the CapKey as foll ows:

ReqMAC = MAC<CapKey>(Req, RegNonce)
Request = {Cap, Req, ReqNonce, ReqMAC}

The following is sent to the OSD: {Cap, Req, RegqNonce, RegMAC}. The
OSD uses the SecretKey it shares with the netadata server to conpare
the ReqMAC the client sent with a locally conmputed val ue:

Local CapKey
Local ReqMAC

MAC<Secr et Key>(Cap, Systenl D)
MAC<Local CapKey>(Req, RegNonce)

and if they match the OSD assunes that the capabilities cane from an
aut hentic nmetadata server and all ows access to the object, as allowed
by the Cap.

Hal evy, et al. St andards Track [Page 31]

RFC 5664 pNFS Obj ect s January 2010

13.

13.

3. Protocol Privacy Requirenents

Note that if the server LAYOUTGET reply, holding CapKey and Cap, is
snooped by another client, it can be used to generate valid OSD
requests (within the Cap access restrictions).

To provide the required privacy requirements for the capability key
returned by LAYOUTGET, the GSS-API [7] framework can be used, e.g.

by using the RPCSEC GSS privacy nmethod to send the LAYOUTGET
operation or by using the SSV key to encrypt the oc_capability_key
using the GSS Wap() function. Two general ways to provide privacy
in the absence of GSS-API that are independent of NFSv4 are either an
i sol ated network such as a VLAN or a secure channel provided by |Psec
[15].

4. Revoking Capabilities

At any time, the netadata server nmy invalidate all outstanding
capabilities on an object by changing its POLI CY ACCESS TAG
attribute. The value of the POLICY ACCESS TAG is part of a
capability, and it nust match the state of the object attribute. |If
they do not match, the OSD rejects accesses to the object with the
sense key set to | LLEGAL REQUEST and an additional sense code set to
I NVALID FIELD IN CDB. When a client attenpts to use a capability and
is rejected this way, it should issue a LAYQOUTCOWM T for the object
and specify PNFS OSD BAD CRED in the olr_ioerr_report paraneter. The
client may elect to issue a conpound LAYOUTRETURN LAYOUTGET (or
LAYOUTCOWM T/ LAYOUTRETURN LAYOQUTGET) to attenpt to fetch a refreshed
set of capabilities.

The netadata server nmay el ect to change the access policy tag on an
object at any time, for any reason (with the understanding that there
is likely an associ ated performance penalty, especially if there are
out standing layouts for this object). The netadata server MJST
revoke outstanding capabilities when any one of the foll owing occurs:

o the pernissions on the object change,
o a conflicting nandatory byte-range lock is granted, or
o a layout is revoked and reassigned to another client.

A pNFS client will typically hold one | ayout for each byte range for
either READ or READWRITE. The client’'s credentials are checked by
the metadata server at LAYOUTGET tine and it is the client’s
responsibility to enforce access control among nultiple users
accessing the sane file. It is neither required nor expected that
the pNFS client will obtain a separate |ayout for each user accessing

Hal evy, et al. St andards Track [Page 32]

RFC 5664 pNFS Obj ect s January 2010

14.

15.

15.

a shared object. The client SHOULD use OPEN and ACCESS calls to
check user perm ssions when perfornming |I/O so that the server’s
access control policies are correctly enforced. The result of the
ACCESS operation may be cached while the client holds a valid | ayout
as the server is expected to recall layouts when the file s access
per m ssions or ACL change.

| ANA Consi der ati ons

As described in NFSv4.1 [6], new |l ayout type nunbers have been
assigned by 1ANA. This docunment defines the protocol associated with
the existing layout type nunber, LAYOUT4 OSD2_OBJECTS, and it
requires no further actions for | ANA

Ref er ences
1. Nor mati ve Ref erences

[1] Weber, R, "Information Technol ogy - SCSI Object-Based Storage
Devi ce Commands (QOSD)", ANSI I NCI TS 400- 2004, Decenber 2004.

[2] Bradner, S., "Key words for use in RFCs to Indicate Requirenent
Level s", BCP 14, RFC 2119, March 1997.

[3] Eisler, M, "XDR External Data Representation Standard"
STD 67, RFC 4506, May 2006.

[4] Shepler, S., Ed., Eisler, M, Ed., and D. Noveck, Ed., "Network
File System (NFS) Version 4 Mnor Version 1 External Data
Representation Standard (XDR) Description", RFC 5662,

January 2010.

[5] | ETF Trust, "Legal Provisions Relating to | ETF Docunents"
Novenber 2008,
<http://trustee.ietf.org/docs/|ETF-Trust-License-Policy. pdf>.

[6] Shepler, S., Ed., Eisler, M, Ed., and D. Noveck, Ed., "Network
File System (NFS) Version 4 Mnor Version 1 Protocol"
RFC 5661, January 2010.

[7] Linn, J., "Generic Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.

[8] Satran, J., Meth, K., Sapuntzakis, C., Chadal apaka, M, and E.
Zeidner, "Internet Small Conputer Systems Interface (iSCSI)",
RFC 3720, April 2004.

Hal evy, et al. St andards Track [Page 33]

RFC 5664

[9]

[10]

[11]

[12]

[13]

15.2. |

[14]

[15]

[16]

[17]

[18]

[19]

Hal evy,

pNFS Obj ect s January 2010

Weber, R, "SCSI Primary Conmands - 3 (SPC-3)", ANSI
I NCI TS 408- 2005, Cctober 2005.

Krueger, M, Chadal apaka, M, and R Elliott, "T11l Network
Address Authority (NAA) Naming Format for i SCSI Node Nanes",
RFC 3980, February 2005.

| EEE, "CQuidelines for 64-bit dobal Identifier (EU -64)
Regi stration Authority",
<http://standards.ieee.org/regauth/oui/tutorials/EU 64. htm >.

Tseng, J., G bbons, K., Travostino, F., Du Laney, C, and J.
Souza, "lInternet Storage Nane Service (iSNS)", RFC 4171,
Sept enber 2005.

Weber, R, "SCSI Architecture Mddel - 3 (SAM3)", ANSI
I NCI TS 402- 2005, February 2005.

nformati ve References

Weber, R, "SCSI bject-Based Storage Device Commands -2
(OsD-2)", January 2009,

<http://ww.t10. org/ cgi - bi n/ ac. pl ?t =f & =osd2r 05a. pdf >.

Kent, S. and K. Seo, "Security Architecture for the Internet
Protocol ", RFC 4301, Decenber 2005.

T10 1415-D, "SCSI RDVA Protocol (SRP)", ANSI INCI TS 365-2002,
Decenber 2002.

T11 1619-D, "Fi bre Channel Frami ng and Signaling - 2
(FCG-FS-2)", ANSI INCITS 424-2007, February 2007.

T10 1601-D, "Serial Attached SCSI - 1.1 (SAS-1.1)", ANS|
I NCI TS 417-2006, June 2006.

MacW I lianms, F. and N. Sloane, "The Theory of Error-Correcting
Codes, Part 1", 1977.

et al. St andards Track [Page 34]

RFC 5664 pNFS Obj ect s January 2010

Appendi x A. Acknow edgrent s

Todd Pisek was a co-editor of the initial versions of this docunent.
Dani el E. Messinger, Pete Wckoff, Mke Eisler, Sean P. Turner, Brian
E. Carpenter, Jari Arkko, David Bl ack, and Jason d asgow revi ewed and
comented on this docunent.

Aut hors’ Addr esses

Benny Hal evy

Panasas, |nc.

1501 Reedsdale St. Suite 400
Pi ttsburgh, PA 15233

USA

Phone: +1-412-323-3500

EMai | : bhal evy@anasas. com

URI : htt p: //ww. panasas. conl
Brent Wl ch

Panasas, |nc.
6520 Kai ser Drive
Fremont, CA 95444

USA

Phone: +1-510-608-7770

EMai | : wel ch@anasas. com

URI : http: // ww. panasas. conf

Ji m Zel enka

Panasas, |Inc.

1501 Reedsdale St. Suite 400
Pi ttsburgh, PA 15233

USA

Phone: +1-412-323-3500

EMai | . jinz@anasas.com

URI : http://ww. panasas. con

Hal evy, et al. St andards Track [Page 35]

