
Network Working Group D. Harrington
Request for Comments: 5592 Huawei Technologies (USA)
Category: Standards Track J. Salowey
 Cisco Systems
 W. Hardaker
 Cobham Analytic Solutions
 June 2009

 Secure Shell Transport Model for the
 Simple Network Management Protocol (SNMP)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Harrington, et al. Standards Track [Page 1]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

Abstract

 This memo describes a Transport Model for the Simple Network
 Management Protocol (SNMP), using the Secure Shell (SSH) protocol.

 This memo also defines a portion of the Management Information Base
 (MIB) for use with network management protocols in TCP/IP-based
 internets. In particular, it defines objects for monitoring and
 managing the Secure Shell Transport Model for SNMP.

Table of Contents

 1. Introduction ..3
 1.1. The Internet-Standard Management Framework3
 1.2. Conventions ..3
 1.3. Modularity ...5
 1.4. Motivation ...5
 1.5. Constraints ..6
 2. The Secure Shell Protocol7
 3. How SSHTM Fits into the Transport Subsystem8
 3.1. Security Capabilities of this Model8
 3.1.1. Threats ...8
 3.1.2. Message Authentication9
 3.1.3. Authentication Protocol Support10
 3.1.4. SSH Subsystem11
 3.2. Security Parameter Passing12
 3.3. Notifications and Proxy12
 4. Cached Information and References13
 4.1. Secure Shell Transport Model Cached Information13
 4.1.1. tmSecurityName13
 4.1.2. tmSessionID ..14
 4.1.3. Session State14
 5. Elements of Procedure ..14
 5.1. Procedures for an Incoming Message15
 5.2. Procedures for Sending an Outgoing Message17
 5.3. Establishing a Session18
 5.4. Closing a Session ...20
 6. MIB Module Overview ..21
 6.1. Structure of the MIB Module21
 6.2. Textual Conventions21
 6.3. Relationship to Other MIB Modules21
 6.3.1. MIB Modules Required for IMPORTS21
 7. MIB Module Definition ..22
 8. Operational Considerations29
 9. Security Considerations ..30
 9.1. Skipping Public Key Verification31
 9.2. Notification Authorization Considerations31
 9.3. SSH User and Key Selection31

Harrington, et al. Standards Track [Page 2]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 9.4. Conceptual Differences between USM and SSHTM31
 9.5. The ’none’ MAC Algorithm32
 9.6. Use with SNMPv1/v2c Messages32
 9.7. MIB Module Security32
 10. IANA Considerations ...33
 11. Acknowledgments ...33
 12. References ..34
 12.1. Normative References34
 12.2. Informative References35

1. Introduction

 This memo describes a Transport Model for the Simple Network
 Management Protocol, using the Secure Shell (SSH) protocol [RFC4251]
 within a Transport Subsystem [RFC5590]. The Transport Model
 specified in this memo is referred to as the Secure Shell Transport
 Model (SSHTM).

 This memo also defines a portion of the Management Information Base
 (MIB) for use with network management protocols in TCP/IP-based
 internets. In particular, it defines objects for monitoring and
 managing the Secure Shell Transport Model for SNMP.

 It is important to understand the SNMP architecture [RFC3411] and the
 terminology of the architecture to understand where the Transport
 Model described in this memo fits into the architecture and interacts
 with other subsystems within the architecture.

1.1. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,
 RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

1.2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Harrington, et al. Standards Track [Page 3]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 Lowercase versions of the keywords should be read as in normal
 English. They will usually, but not always, be used in a context
 that relates to compatibility with the RFC 3411 architecture or the
 subsystem defined here but that might have no impact on on-the-wire
 compatibility. These terms are used as guidance for designers of
 proposed IETF models to make the designs compatible with RFC 3411
 subsystems and Abstract Service Interfaces (ASIs). Implementers are
 free to implement differently. Some usages of these lowercase terms
 are simply normal English usage.

 For consistency with SNMP-related specifications, this document
 favors terminology as defined in STD 62, rather than favoring
 terminology that is consistent with non-SNMP specifications. This is
 consistent with the IESG decision to not require the SNMPv3
 terminology be modified to match the usage of other non-SNMP
 specifications when SNMPv3 was advanced to Full Standard.

 "Authentication" in this document typically refers to the English
 meaning of "serving to prove the authenticity of" the message, not
 data source authentication or peer identity authentication.

 The terms "manager" and "agent" are not used in this document
 because, in the RFC 3411 architecture, all SNMP entities have the
 capability of acting as manager, agent, or both depending on the SNMP
 application types supported in the implementation. Where distinction
 is required, the application names of command generator, command
 responder, notification originator, notification receiver, and proxy
 forwarder are used. See "SNMP Applications" [RFC3413] for further
 information.

 The User-based Security Model (USM) [RFC3414] is a mandatory-to-
 implement Security Model in STD 62. While the SSH and USM
 specifications frequently refer to a user, the terminology preferred
 in [RFC3411] and in this memo is "principal". A principal is the
 "who" on whose behalf services are provided or processing takes
 place. A principal can be, among other things, an individual acting
 in a particular role, a set of individuals each acting in a
 particular role, an application or a set of applications, or a
 combination of these within an administrative domain.

 Throughout this document, the terms "client" and "server" are used to
 refer to the two ends of the SSH transport connection. The client
 actively opens the SSH connection, and the server passively listens
 for the incoming SSH connection. Either SNMP entity may act as
 client or as server, as discussed further below.

Harrington, et al. Standards Track [Page 4]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

1.3. Modularity

 The reader is expected to have read and understood the description of
 the SNMP architecture, as defined in [RFC3411], and the Transport
 Subsystem architecture extension specified in "Transport Subsystem
 for the Simple Network Management Protocol (SNMP)" [RFC5590].

 This memo describes the Secure Shell Transport Model for SNMP, a
 specific SNMP Transport Model to be used within the SNMP Transport
 Subsystem to provide authentication, encryption, and integrity
 checking of SNMP messages.

 In keeping with the RFC 3411 design decision to use self-contained
 documents, this document defines the elements of procedure and
 associated MIB module objects that are needed for processing the
 Secure Shell Transport Model for SNMP.

 This modularity of specification is not meant to be interpreted as
 imposing any specific requirements on implementation.

1.4. Motivation

 Version 3 of the Simple Network Management Protocol (SNMPv3) added
 security to the protocol. The User-based Security Model (USM)
 [RFC3414] was designed to be independent of other existing security
 infrastructures to ensure it could function when third-party
 authentication services were not available, such as in a broken
 network. As a result, USM utilizes a separate user and key-
 management infrastructure. Operators have reported that having to
 deploy another user and key-management infrastructure in order to use
 SNMPv3 is a reason for not deploying SNMPv3.

 This memo describes a Transport Model that will make use of the
 existing and commonly deployed Secure Shell security infrastructure.
 This Transport Model is designed to meet the security and operational
 needs of network administrators, maximize usability in operational
 environments to achieve high deployment success, and at the same time
 minimize implementation and deployment costs to minimize deployment
 time.

 This document addresses the requirement for the SSH client to
 authenticate the SSH server and for the SSH server to authenticate
 the SSH client, and describes how SNMP can make use of the
 authenticated identities in authorization policies for data access,
 in a manner that is independent of any specific Access Control Model.

Harrington, et al. Standards Track [Page 5]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 This document addresses the requirement to utilize client-
 authentication and key-exchange methods that support different
 security infrastructures and provide different security properties.
 This document describes how to use client authentication as described
 in "The Secure Shell (SSH) Authentication Protocol" [RFC4252]. The
 SSH Transport Model should work with any of the ssh-userauth methods,
 including the "publickey", "password", "hostbased", "none",
 "keyboard-interactive", "gssapi-with-mic", ."gssapi-keyex", "gssapi",
 and "external-keyx" (see the SSH Protocol Parameters registry
 maintained by IANA). The use of the "none" authentication method is
 NOT RECOMMENDED, as described in this document’s Security
 Considerations. Local accounts may be supported through the use of
 the publickey, hostbased, or password methods. The password method
 allows for integration with a deployed password infrastructure, such
 as Authentication, Authorization, and Accounting (AAA) servers using
 the RADIUS protocol [RFC2865]. The SSH Transport Model SHOULD be
 able to take advantage of future-defined ssh-userauth methods, such
 as those that might make use of X.509 certificate credentials.

 It is desirable to use mechanisms that could unify the approach for
 administrative security for SNMPv3 and command line interfaces (CLI)
 and other management interfaces. The use of security services
 provided by Secure Shell is the approach commonly used for the CLI
 and is the approach being adopted for use with NETCONF [RFC4742].
 This memo describes a method for invoking and running the SNMP
 protocol within a Secure Shell (SSH) session as an SSH Subsystem.

 This memo describes how SNMP can be used within a Secure Shell (SSH)
 session, using the SSH connection protocol [RFC4254] over the SSH
 transport protocol, and using ssh-userauth [RFC4252] for
 authentication.

 There are a number of challenges to be addressed to map Secure Shell
 authentication method parameters into the SNMP architecture so that
 SNMP continues to work without any surprises. These are discussed in
 detail below.

1.5. Constraints

 The design of this SNMP Transport Model is influenced by the
 following constraints:

 1. In times of network stress, the transport protocol and its
 underlying security mechanisms SHOULD NOT depend upon the ready
 availability of other network services (e.g., Network Time
 Protocol (NTP) or AAA protocols).

Harrington, et al. Standards Track [Page 6]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 2. When the network is not under stress, the Transport Model and its
 underlying security mechanisms MAY depend upon the ready
 availability of other network services.

 3. It may not be possible for the Transport Model to determine when
 the network is under stress.

 4. A Transport Model SHOULD NOT require changes to the SNMP
 architecture.

 5. A Transport Model SHOULD NOT require changes to the underlying
 security protocol.

2. The Secure Shell Protocol

 SSH is a protocol for secure remote login and other secure network
 services over an insecure network. It consists of three major
 protocol components and add-on methods for user authentication:

 o The Transport Layer Protocol [RFC4253] provides server
 authentication and message confidentiality and integrity. It may
 optionally also provide compression. The transport layer will
 typically be run over a TCP/IP connection but might also be used
 on top of any other reliable data stream.

 o The User Authentication Protocol [RFC4252] authenticates the
 client-side principal to the server. It runs over the Transport
 Layer Protocol.

 o The Connection Protocol [RFC4254] multiplexes the encrypted tunnel
 into several logical channels. It runs over the transport after
 successfully authenticating the principal.

 o Generic Message Exchange Authentication [RFC4256] is a general
 purpose authentication method for the SSH protocol, suitable for
 interactive authentications where the authentication data should
 be entered via a keyboard.

 o "Generic Security Service Application Program Interface (GSS-API)
 Authentication and Key Exchange for the Secure Shell (SSH)
 Protocol" [RFC4462] describes methods for using the GSS-API for
 authentication and key exchange in SSH. It defines an SSH user-
 authentication method that uses a specified GSS-API mechanism to
 authenticate a user; it also defines a family of SSH key-exchange
 methods that use GSS-API to authenticate a Diffie-Hellman key
 exchange.

Harrington, et al. Standards Track [Page 7]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 The client sends a service request once a secure, transport-layer
 connection has been established. A second service request is sent
 after client authentication is complete. This allows new protocols
 to be defined and coexist with the protocols listed above.

 The connection protocol provides channels that can be used for a wide
 range of purposes. Standard methods are provided for setting up
 secure interactive shell sessions and for forwarding ("tunneling")
 arbitrary TCP/IP ports and X11 connections.

3. How SSHTM Fits into the Transport Subsystem

 A Transport Model is a component of the Transport Subsystem [RFC5590]
 within the SNMP architecture. The SSH Transport Model thus fits
 between the underlying SSH transport layer and the Message Dispatcher
 [RFC3411].

 The SSH Transport Model will establish a channel between itself and
 the SSH Transport Model of another SNMP engine. The sending
 Transport Model passes unencrypted messages from the Dispatcher to
 SSH to be encrypted, and the receiving Transport Model accepts
 decrypted incoming messages from SSH and passes them to the
 Dispatcher.

 After an SSH Transport Model channel is established, then SNMP
 messages can conceptually be sent through the channel from one SNMP
 Message Dispatcher to another SNMP Message Dispatcher. Multiple SNMP
 messages MAY be passed through the same channel.

 The SSH Transport Model of an SNMP engine will perform the
 translation between SSH-specific security parameters and SNMP-
 specific, model-independent parameters.

3.1. Security Capabilities of this Model

3.1.1. Threats

 The Secure Shell Transport Model provides protection against the
 threats identified by the RFC 3411 architecture [RFC3411]:

 1. Modification of Information - SSH provides for verification that
 the contents of each message have not been modified during its
 transmission through the network by digitally signing each SSH
 packet.

 2. Masquerade - SSH provides for verification of the identity of the
 SSH server and the identity of the SSH client.

Harrington, et al. Standards Track [Page 8]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 SSH provides for verification of the identity of the SSH server
 through the SSH transport protocol server authentication
 [RFC4253]. This allows an operator or management station to
 ensure the authenticity of the SNMP engine that provides MIB
 data.

 SSH provides a number of mechanisms for verification of the
 identity of the SSH client-side principal using the Secure Shell
 Authentication Protocol [RFC4252]. These include public key,
 password, and host-based mechanisms. This allows the SNMP Access
 Control Subsystem to ensure that only authorized principals have
 access to potentially sensitive data.

 Verification of the client’s principal identity is important for
 use with the SNMP Access Control Subsystem to ensure that only
 authorized principals have access to potentially sensitive data.

 The SSH user identity is provided to the Transport Model, so it
 can be used to map to an SNMP model-independent securityName for
 use with SNMP access control and notification configuration.
 (The identity may undergo various transforms before it maps to
 the securityName.)

 3. Message Stream Modification - SSH protects against malicious re-
 ordering or replaying of messages within a single SSH session by
 using sequence numbers and integrity checks. SSH protects
 against replay of messages across SSH sessions by ensuring that
 the cryptographic keys used for encryption and integrity checks
 are generated afresh for each session.

 4. Disclosure - SSH provides protection against the disclosure of
 information to unauthorized recipients or eavesdroppers by
 allowing for encryption of all traffic between SNMP engines.

3.1.2. Message Authentication

 The RFC 3411 architecture recognizes three levels of security:

 - without authentication and without privacy (noAuthNoPriv)

 - with authentication but without privacy (authNoPriv)

 - with authentication and with privacy (authPriv)

 The Secure Shell protocol provides support for encryption and data
 integrity. While it is technically possible to support no
 authentication and no encryption in SSH, it is NOT RECOMMENDED by
 [RFC4253].

Harrington, et al. Standards Track [Page 9]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 The SSH Transport Model determines from SSH the identity of the
 authenticated principal and the type and address associated with an
 incoming message, and provides this information to SSH for an
 outgoing message. The SSH transport-layer algorithms used to provide
 authentication, data integrity, and encryption SHOULD NOT be exposed
 to the SSH Transport Model layer. The SNMPv3 WG deliberately avoided
 this and settled for an assertion by the Security Model that the
 requirements of securityLevel were met. The SSH Transport Model has
 no mechanisms by which it can test whether an underlying SSH
 connection provides auth or priv, so the SSH Transport Model trusts
 that the underlying SSH connection has been properly configured to
 support authPriv security characteristics.

 An SSH Transport-Model-compliant implementation MUST use an SSH
 connection that provides authentication, data integrity, and
 encryption that meets the highest level of SNMP security (authPriv).
 Outgoing messages specified with a securityLevel of noAuthNoPriv or
 authNoPriv are actually sent by the SSH Transport Model with
 authPriv-level protection.

 The security protocols used in the Secure Shell Authentication
 Protocol [RFC4252] and the Secure Shell Transport Layer Protocol
 [RFC4253] are considered acceptably secure at the time of writing.
 However, the procedures allow for new authentication and privacy
 methods to be specified at a future time if the need arises.

3.1.3. Authentication Protocol Support

 The SSH Transport Model should support any server- or client-
 authentication mechanism supported by SSH. This includes the three
 authentication methods described in the SSH Authentication Protocol
 document [RFC4252] (publickey, password, and host-based), keyboard
 interactive, and others.

 The password-authentication mechanism allows for integration with
 deployed password-based infrastructure. It is possible to hand a
 password to a service such as RADIUS [RFC2865] or Diameter [RFC3588]
 for validation. The validation could be done using the user name and
 user password attributes. It is also possible to use a different
 password-validation protocol such as the Challenge Handshake
 Authentication Protocol (CHAP) [RFC1994] or digest authentication
 [RFC5090] to integrate with RADIUS or Diameter. At some point in the
 processing, these mechanisms require the password to be made
 available as cleartext on the device that is authenticating the
 password, which might introduce threats to the authentication
 infrastructure.

Harrington, et al. Standards Track [Page 10]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 GSS-API key exchange [RFC4462] provides a framework for the addition
 of client-authentication mechanisms that support different security
 infrastructures and provide different security properties.
 Additional authentication mechanisms, such as one that supports X.509
 certificates, may be added to SSH in the future.

3.1.4. SSH Subsystem

 This document describes the use of an SSH Subsystem for SNMP to make
 SNMP usage distinct from other usages.

 An SSH Subsystem of type "snmp" is opened by the SSH Transport Model
 during the elements of procedure for an outgoing SNMP message. Since
 the sender of a message initiates the creation of an SSH session if
 needed, the SSH session will already exist for an incoming message;
 otherwise, the incoming message would never reach the SSH Transport
 Model.

 Implementations may choose to instantiate SSH sessions in
 anticipation of outgoing messages. This approach might be useful to
 ensure that an SSH session to a given target can be established
 before it becomes important to send a message over the SSH session.
 Of course, there is no guarantee that a pre-established session will
 still be valid when needed.

 SSH sessions are uniquely identified within the SSH Transport Model
 by the combination of tmTransportAddress and tmSecurityName
 associated with each session.

 Because naming policies might differ between administrative domains,
 many SSH client software packages support a user@hostname:port
 addressing syntax that operators can use to align non-equivalent
 account names. The SnmpSSHAddress Textual Convention echos this
 common SSH notation.

 When this notation is used in an SnmpSSHAddress, the SSH connection
 should be established with an SSH user name matching the "user"
 portion of the notation when establishing a session with the remote
 SSH server. The user name must be encoded in UTF-8 (per [RFC4252]).
 The "user" portion may or may not match the tmSecurityName parameter
 passed from the Security Model. If no "user@" portion is specified
 in the SnmpSSHAddress, then the SSH connection should be established
 using the tmSecurityName as the SSH user name when establishing a
 session with the remote SSH server.

Harrington, et al. Standards Track [Page 11]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 The SnmpSSHAddress and tmSecurityName associated with an SSH session
 MUST remain constant during the life of the session. Different
 SnmpSSHAddress values (with different hostnames, "user@" prefix
 names, and/or port numbers) will each result in individual SSH
 sessions.

3.2. Security Parameter Passing

 For incoming messages, SSH-specific security parameters are
 translated by the Transport Model into security parameters
 independent of the Transport and Security Models. The Transport
 Model accepts messages from the SSH Subsystem, records the transport-
 related and SSH-security-related information, including the
 authenticated identity, in a cache referenced by tmStateReference,
 and passes the WholeMsg and the tmStateReference to the Dispatcher
 using the receiveMessage() ASI (Abstract Service Interface).

 For outgoing messages, the Transport Model takes input provided by
 the Dispatcher in the sendMessage() ASI. The SSH Transport Model
 converts that information into suitable security parameters for SSH,
 establishes sessions as needed, and passes messages to the SSH
 Subsystem for sending.

3.3. Notifications and Proxy

 SSH connections may be initiated by command generators or by
 notification originators. Command generators are frequently operated
 by a human, but notification originators are usually unmanned
 automated processes. As a result, it may be necessary to provision
 authentication credentials on the SNMP engine containing the
 notification originator or to use a third-party key provider, such as
 Kerberos, so the engine can successfully authenticate to an engine
 containing a notification receiver.

 The targets to whom notifications or proxy requests should be sent is
 typically determined and configured by a network administrator. The
 SNMP-NOTIFICATION-MIB contains a list of targets to which
 notifications should be sent. The SNMP-TARGET-MIB module [RFC3413]
 contains objects for defining these management targets, including
 transport domains and addresses and security parameters, for
 applications such as notification generators and proxy forwarders.

 For the SSH Transport Model, transport type and address are
 configured in the snmpTargetAddrTable, and the securityName and
 securityLevel parameters are configured in the snmpTargetParamsTable.
 The default approach is for an administrator to statically
 preconfigure this information to identify the targets authorized to
 receive notifications or received proxied messages. Local access-

Harrington, et al. Standards Track [Page 12]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 control processing needs to be performed by a notification originator
 before notifications are actually sent, and this processing is done
 using the configured securityName. An important characteristic of
 this is that authorization is done prior to determining if the
 connection can succeed. Thus, the locally configured securityName is
 entirely trusted within the notification originator.

 The SNMP-TARGET-MIB and NOTIFICATION-MIB MIB modules may be
 configured using SNMP or other implementation-dependent mechanisms,
 such as CLI scripting or loading a configuration file. It may be
 necessary to provide additional implementation-specific configuration
 of SSH parameters.

4. Cached Information and References

 When performing SNMP processing, there are two levels of state
 information that may need to be retained: the immediate state linking
 a request-response pair and a potentially longer-term state relating
 to transport and security. "Transport Subsystem for the Simple
 Network Management Protocol" [RFC5590] defines general requirements
 for caches and references.

 This document defines additional cache requirements related to the
 Secure Shell Transport Model.

4.1. Secure Shell Transport Model Cached Information

 The Secure Shell Transport Model has specific responsibilities
 regarding the cached information. See the Elements of Procedure in
 Section 5 for detailed processing instructions on the use of the
 tmStateReference fields by the SSH Transport Model.

4.1.1. tmSecurityName

 The tmSecurityName MUST be a human-readable name (in snmpAdminString
 format) representing the identity that has been set according to the
 procedures in Section 5. The tmSecurityName MUST be constant for all
 traffic passing through an SSHTM session. Messages MUST NOT be sent
 through an existing SSH session that was established using a
 different tmSecurityName.

 On the SSH server side of a connection:

 The tmSecurityName should be the SSH user name. How the SSH user
 name is extracted from the SSH layer is implementation-dependent.

Harrington, et al. Standards Track [Page 13]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 The SSH protocol is not always clear on whether the user name
 field must be filled in, so for some implementations, such as
 those using GSSAPI authentication, it may be necessary to use a
 mapping algorithm to transform an SSH identity to a tmSecurityName
 or to transform a tmSecurityName to an SSH identity.

 In other cases, the user name may not be verified by the server,
 so for these implementations, it may be necessary to obtain the
 user name from other credentials exchanged during the SSH
 exchange.

 On the SSH client side of a connection:

 The tmSecurityName is presented to the SSH Transport Model by the
 application (possibly because of configuration specified in the
 SNMP-TARGET-MIB).

 The securityName MAY be derived from the tmSecurityName by a Security
 Model and MAY be used to configure notifications and access controls
 in MIB modules. Transport Models SHOULD generate a predictable
 tmSecurityName so operators will know what to use when configuring
 MIB modules that use securityNames derived from tmSecurityNames.

4.1.2. tmSessionID

 The tmSessionID MUST be recorded per message at the time of receipt.
 When tmSameSecurity is set, the recorded tmSessionID can be used to
 determine whether the SSH session available for sending a
 corresponding outgoing message is the same SSH session as was used
 when receiving the incoming message (e.g., a response to a request).

4.1.3. Session State

 The per-session state that is referenced by tmStateReference may be
 saved across multiple messages in a Local Configuration Datastore.
 Additional session/connection state information might also be stored
 in a Local Configuration Datastore.

5. Elements of Procedure

 Abstract Service Interfaces have been defined by [RFC3411] and
 further augmented by [RFC5590] to describe the conceptual data flows
 between the various subsystems within an SNMP entity. The Secure
 Shell Transport Model uses some of these conceptual data flows when
 communicating between subsystems.

Harrington, et al. Standards Track [Page 14]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 To simplify the elements of procedure, the release of state
 information is not always explicitly specified. As a general rule,
 if state information is available when a message gets discarded, the
 message-state information should also be released, and if state
 information is available when a session is closed, the session-state
 information should also be released.

 An error indication in statusInformation will typically include the
 Object Identifier (OID) and value for an incremented error counter.
 This may be accompanied by the requested securityLevel and the
 tmStateReference. Per-message context information is not accessible
 to Transport Models, so for the returned counter OID and value,
 contextEngine would be set to the local value of snmpEngineID and
 contextName to the default context for error counters.

5.1. Procedures for an Incoming Message

 1. The SSH Transport Model queries the SSH engine, in an
 implementation-dependent manner, to determine the address the
 message originated from, the user name authenticated by SSH, and
 a session identifier.

 2. Determine the tmTransportAddress to be associated with the
 incoming message:

 A. If this is a client-side SSH session, then the
 tmTransportAddress is set to the tmTransportAddress used to
 establish the session. It MUST exactly include any "user@"
 prefix associated with the address provided to the
 openSession() ASI.

 B. If this is a server-side SSH session and this is the first
 message received over the session, then the
 tmTransportAddress is set to the address the message
 originated from, determined in an implementation-dependent
 way. This value MUST be constant for the entire SSH session,
 and future messages received MUST result in the
 tmTransportAddress being set to the same value.

 C. If this is a server-side SSH session and this is not the
 first message received over the session, then the
 tmTransportAddress is set to the previously established
 tmTransportAddress for the session (the value from step B,
 determined from a previous incoming message).

Harrington, et al. Standards Track [Page 15]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 3. Determine the tmSecurityName to be associated with the incoming
 message:

 A. If this is a client-side SSH session, then the tmSecurityName
 MUST be set to the tmSecurityName used to establish the
 session.

 B. If this is a server-side SSH session and this is the first
 message received over the session, then the tmSecurityName is
 set to the SSH user name. How the SSH user name is extracted
 from the SSH layer is implementation-dependent. This value
 MUST be constant for the entire SSH session, and future
 messages received MUST result in the tmSecurityName being set
 to the same value.

 C. If this is a server-side SSH session and this is not the
 first message received over the session, then the
 tmSecurityName is set to the previously established
 tmSecurityName for the session (the value from step B,
 determined from a previous incoming message).

 4. Create a tmStateReference cache for subsequent reference to the
 information.

 tmTransportDomain = snmpSSHDomain

 tmTransportAddress = the derived tmTransportAddress from step
 2.

 tmSecurityName = the derived tmSecurityName from step 3.

 tmTransportSecurityLevel = "authPriv" (authentication and
 confidentiality MUST be used to comply with this Transport
 Model.)

 tmSessionID = an implementation-dependent value that can be
 used to detect when a session has closed and been replaced by
 another session. The value in tmStateReference MUST uniquely
 identify the session over which the message was received.
 This session identifier MUST NOT be reused until there are no
 references to it remaining.

 Then the Transport Model passes the message to the Dispatcher using
 the following ASI:

Harrington, et al. Standards Track [Page 16]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 statusInformation =
 receiveMessage(
 IN transportDomain -- snmpSSHDomain
 IN transportAddress -- the tmTransportAddress for the message
 IN wholeMessage -- the whole SNMP message from SSH
 IN wholeMessageLength -- the length of the SNMP message
 IN tmStateReference -- (NEW) transport info
)

5.2. Procedures for Sending an Outgoing Message

 The Dispatcher passes the information to the Transport Model using
 the ASI defined in the Transport Subsystem:

 statusInformation =
 sendMessage(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN outgoingMessage -- the message to send
 IN outgoingMessageLength -- its length
 IN tmStateReference -- (NEW) transport info
)

 The SSH Transport Model performs the following tasks.

 1. If tmStateReference does not refer to a cache containing values
 for tmTransportDomain, tmTransportAddress, tmSecurityName,
 tmRequestedSecurityLevel, and tmSameSecurity, then increment the
 snmpSshtmSessionInvalidCaches counter, discard the message, and
 return the error indication in the statusInformation. Processing
 of this message stops.

 2. Extract the tmTransportDomain, tmTransportAddress,
 tmSecurityName, tmRequestedSecurityLevel, tmSameSecurity, and
 tmSessionID from the tmStateReference.

 3. Identify an SSH session over which to send the messages:

 A. If tmSameSecurity is true and there is no existing session
 with a matching tmSessionID, tmSecurityName, and
 tmTransportAddress, then increment the
 snmpSshtmSessionNoSessions counter, discard the message, and
 return the error indication in the statusInformation.
 Processing of this message stops.

 B. If there is a session with a matching tmSessionID,
 tmTransportAddress, and tmSecurityName, then select that
 session.

Harrington, et al. Standards Track [Page 17]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 C. If there is a session that matches the tmTransportAddress and
 tmSecurityName, then select that session.

 D. If the above steps failed to select a session to use, then
 call openSession() with the tmStateReference as a parameter.

 + If openSession fails, then discard the message, release
 tmStateReference, and pass the error indication returned
 by openSession back to the calling module. Processing of
 this message stops.

 + If openSession succeeds, then record the
 destTransportDomain, destTransportAddress, tmSecurityname,
 and tmSessionID in an implementation-dependent manner.
 This will be needed when processing an incoming message.

 4. Pass the wholeMessage to SSH for encapsulation as data in an SSH
 message over the identified SSH session. Any necessary
 additional SSH-specific parameters should be provided in an
 implementation-dependent manner.

5.3. Establishing a Session

 The Secure Shell Transport Model provides the following Abstract
 Service Interface (ASI) to describe the data passed between the SSH
 Transport Model and the SSH service. It is an implementation
 decision how such data is passed.

 statusInformation =
 openSession(
 IN tmStateReference -- transport information to be used
 OUT tmStateReference -- transport information to be used
 IN maxMessageSize -- of the sending SNMP entity
)

 The following describes the procedure to follow to establish a
 session between a client and server to run SNMP over SSH. This
 process is used by any SNMP engine establishing a session for
 subsequent use.

 This will be done automatically for an SNMP application that
 initiates a transaction, such as a command generator, a notification
 originator, or a proxy forwarder.

Harrington, et al. Standards Track [Page 18]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 1. Increment the snmpSshtmSessionOpens counter.

 2. Using tmTransportAddress, the client will establish an SSH
 transport connection using the SSH transport protocol,
 authenticate the server, and exchange keys for message integrity
 and encryption. The transportAddress associated with a session
 MUST remain constant during the lifetime of the SSH session.
 Implementations may need to cache the transportAddress passed to
 the openSession API for later use when performing incoming
 message processing (see Section 5.1).

 1. To authenticate the server, the client usually stores pairs
 (tmTransportAddress, server host public key) in an
 implementation-dependent manner.

 2. The other parameters of the transport connection are provided
 in an implementation-dependent manner.

 3. If the attempt to establish a connection is unsuccessful or
 if server-authentication fails, then
 snmpSshtmSessionOpenErrors is incremented, an openSession
 error indication is returned, and openSession processing
 stops.

 3. The client will then invoke an SSH authentication service to
 authenticate the principal, such as that described in the SSH
 authentication protocol [RFC4252].

 1. If the tmTransportAddress field contains a user name followed
 by an ’@’ character (US-ASCII 0x40), that user name string
 should be presented to the SSH server as the "user name" for
 user-authentication purposes. If there is no user name in
 the tmTransportAddress, then the tmSecurityName should be
 used as the user name.

 2. The credentials used to authenticate the SSH principal are
 determined in an implementation-dependent manner.

 3. In an implementation-specific manner, invoke the SSH user-
 authentication service using the calculated user name.

 4. If the user authentication is unsuccessful, then the
 transport connection is closed, the
 snmpSshtmSessionUserAuthFailures counter is incremented, an
 error indication is returned to the calling module, and
 processing stops for this message.

Harrington, et al. Standards Track [Page 19]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 4. The client should invoke the "ssh-connection" service (also known
 as the SSH connection protocol [RFC4254]), and request a channel
 of type "session". If unsuccessful, the transport connection is
 closed, the snmpSshtmSessionNoChannels counter is incremented, an
 error indication is returned to the calling module, and
 processing stops for this message.

 5. The client invokes "snmp" as an SSH Subsystem, as indicated in
 the "subsystem" parameter. If unsuccessful, the transport
 connection is closed, the snmpSshtmSessionNoSubsystems counter is
 incremented, an error indication is returned to the calling
 module, and processing stops for this message.

 In order to allow SNMP traffic to be easily identified and
 filtered by firewalls and other network devices, servers
 associated with SNMP entities using the Secure Shell Transport
 Model MUST default to providing access to the "snmp" SSH
 Subsystem if the SSH session is established using the IANA-
 assigned TCP ports (5161 and 5162). Servers SHOULD be
 configurable to allow access to the SNMP SSH Subsystem over other
 ports.

 6. Set tmSessionID in the tmStateReference cache to an
 implementation-dependent value to identify the session.

 7. The tmSecurityName used to establish the SSH session must be the
 only tmSecurityName used with the session. Incoming messages for
 the session MUST be associated with this tmSecurityName value.
 How this is accomplished is implementation-dependent.

5.4. Closing a Session

 The Secure Shell Transport Model provides the following ASI to close
 a session:

 statusInformation =
 closeSession(
 IN tmSessionID -- session ID of session to be closed
)

 The following describes the procedure to follow to close a session
 between a client and server. This process is followed by any SNMP
 engine to close an SSH session. It is implementation-dependent when
 a session should be closed. The calling code should release the
 associated tmStateReference.

Harrington, et al. Standards Track [Page 20]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 1. Increment the snmpSshtmSessionCloses counter.

 2. If there is no session corresponding to tmSessionID, then
 closeSession processing is complete.

 3. Have SSH close the session associated with tmSessionID.

6. MIB Module Overview

 This MIB module provides management of the Secure Shell Transport
 Model. It defines an OID to identify the SNMP-over-SSH transport
 domain, a Textual Convention for SSH Addresses, and several
 statistics counters.

6.1. Structure of the MIB Module

 Objects in this MIB module are arranged into subtrees. Each subtree
 is organized as a set of related objects. The overall structure and
 assignment of objects to their subtrees, and the intended purpose of
 each subtree, is shown below.

6.2. Textual Conventions

 Generic and Common Textual Conventions used in this document can be
 found summarized at http://www.ops.ietf.org/mib-common-tcs.html

6.3. Relationship to Other MIB Modules

 Some management objects defined in other MIB modules are applicable
 to an entity implementing the SSH Transport Model. In particular, it
 is assumed that an entity implementing the SNMP-SSH-TM-MIB will
 implement the SNMPv2-MIB [RFC3418] and the SNMP-FRAMEWORK-MIB
 [RFC3411]. It is expected that an entity implementing this MIB will
 also support the Transport Security Model [RFC5591] and, therefore,
 implement the SNMP-TSM-MIB.

 This MIB module is for monitoring SSH Transport Model information.

6.3.1. MIB Modules Required for IMPORTS

 The following MIB module imports items from [RFC2578], [RFC2579], and
 [RFC2580].

 This MIB module also references [RFC1033], [RFC4252], [RFC3490], and
 [RFC3986].

Harrington, et al. Standards Track [Page 21]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 This document uses TDomain Textual Conventions for the SNMP-internal
 MIB modules defined here for compatibility with the RFC 3413 MIB
 modules and the RFC 3411 Abstract Service Interfaces.

7. MIB Module Definition

SNMP-SSH-TM-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 OBJECT-IDENTITY, mib-2, snmpDomains,
 Counter32
 FROM SNMPv2-SMI -- RFC 2578
 TEXTUAL-CONVENTION
 FROM SNMPv2-TC -- RFC 2579
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF -- RFC 2580
 ;

snmpSshtmMIB MODULE-IDENTITY
 LAST-UPDATED "200906090000Z"
 ORGANIZATION "ISMS Working Group"
 CONTACT-INFO "WG-EMail: isms@lists.ietf.org
 Subscribe: isms-request@lists.ietf.org

 Chairs:
 Juergen Quittek
 NEC Europe Ltd.
 Network Laboratories
 Kurfuersten-Anlage 36
 69115 Heidelberg
 Germany
 +49 6221 90511-15
 quittek@netlab.nec.de

 Juergen Schoenwaelder
 Jacobs University Bremen
 Campus Ring 1
 28725 Bremen
 Germany
 +49 421 200-3587
 j.schoenwaelder@jacobs-university.de

 Co-editors:
 David Harrington
 Huawei Technologies USA
 1700 Alma Drive
 Plano Texas 75075

Harrington, et al. Standards Track [Page 22]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 USA
 +1 603-436-8634
 ietfdbh@comcast.net

 Joseph Salowey
 Cisco Systems
 2901 3rd Ave
 Seattle, WA 98121
 USA
 jsalowey@cisco.com

 Wes Hardaker
 Cobham Analytic Solutions
 P.O. Box 382
 Davis, CA 95617
 USA
 +1 530 792 1913
 ietf@hardakers.net
 "
 DESCRIPTION
 "The Secure Shell Transport Model MIB.

 Copyright (c) 2009 IETF Trust and the persons
 identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, are permitted provided that the
 following conditions are met:

 - Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 - Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials
 provided with the distribution.

 - Neither the name of Internet Society, IETF or IETF Trust,
 nor the names of specific contributors, may be used to endorse
 or promote products derived from this software without
 specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 CONTRIBUTORS ’AS IS’ AND ANY EXPRESS OR IMPLIED WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

Harrington, et al. Standards Track [Page 23]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This version of this MIB module is part of RFC 5592;
 see the RFC itself for full legal notices."

 REVISION "200906090000Z"
 DESCRIPTION "The initial version, published in RFC 5592."

 ::= { mib-2 189 }

-- -- --
-- subtrees in the SNMP-SSH-TM-MIB
-- -- --

snmpSshtmNotifications OBJECT IDENTIFIER ::= { snmpSshtmMIB 0 }
snmpSshtmObjects OBJECT IDENTIFIER ::= { snmpSshtmMIB 1 }
snmpSshtmConformance OBJECT IDENTIFIER ::= { snmpSshtmMIB 2 }

-- ---
-- Objects
-- ---

snmpSSHDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP-over-SSH transport domain. The corresponding
 transport address is of type SnmpSSHAddress.

 When an SNMP entity uses the snmpSSHDomain Transport
 Model, it must be capable of accepting messages up to
 and including 8192 octets in size. Implementation of
 larger values is encouraged whenever possible.

 The securityName prefix to be associated with the
 snmpSSHDomain is ’ssh’. This prefix may be used by Security
 Models or other components to identify which secure transport
 infrastructure authenticated a securityName."
 ::= { snmpDomains 7 }

SnmpSSHAddress ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1a"
 STATUS current

Harrington, et al. Standards Track [Page 24]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 DESCRIPTION
 "Represents either a hostname or IP address, along with a port
 number and an optional user name.

 The beginning of the address specification may contain a
 user name followed by an ’@’ (US-ASCII character 0x40). This
 portion of the address will indicate the user name that should
 be used when authenticating to an SSH server. The user name
 must be encoded in UTF-8 (per [RFC4252]). If missing, the
 SNMP securityName should be used. After the optional user
 name field and ’@’ character comes the hostname or IP
 address.

 The hostname is always in US-ASCII (as per RFC1033);
 internationalized hostnames are encoded in US-ASCII as
 specified in RFC 3490. The hostname is followed by a colon
 ’:’ (US-ASCII character 0x3A) and a decimal port number in
 US-ASCII. The name SHOULD be fully qualified whenever
 possible.

 An IPv4 address must be in dotted decimal format followed
 by a colon ’:’ (US-ASCII character 0x3A) and a decimal port
 number in US-ASCII.

 An IPv6 address must be in colon-separated format, surrounded
 by square brackets (’[’, US-ASCII character 0x5B, and ’]’,
 US-ASCII character 0x5D), followed by a colon ’:’ (US-ASCII
 character 0x3A) and a decimal port number in US-ASCII.

 Values of this Textual Convention might not be directly usable
 as transport-layer addressing information and may require
 runtime resolution. As such, applications that write them
 must be prepared for handling errors if such values are
 not supported or cannot be resolved (if resolution occurs
 at the time of the management operation).

 The DESCRIPTION clause of TransportAddress objects that may
 have snmpSSHAddress values must fully describe how (and
 when) such names are to be resolved to IP addresses and vice
 versa.

 This Textual Convention SHOULD NOT be used directly in
 object definitions since it restricts addresses to a
 specific format. However, if it is used, it MAY be used
 either on its own or in conjunction with
 TransportAddressType or TransportDomain as a pair.

Harrington, et al. Standards Track [Page 25]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 When this Textual Convention is used as a syntax of an
 index object, there may be issues with the limit of 128
 sub-identifiers, which is specified in SMIv2 (STD 58). It
 is RECOMMENDED that all MIB documents using this Textual
 Convention make explicit any limitations on index
 component lengths that management software must observe.
 This may be done either by including SIZE constraints on
 the index components or by specifying applicable
 constraints in the conceptual row DESCRIPTION clause or
 in the surrounding documentation.
 "
 REFERENCE
 "RFC 1033: DOMAIN ADMINISTRATORS OPERATIONS GUIDE
 RFC 3490: Internationalizing Domain Names in Applications
 RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
 RFC 4252: The Secure Shell (SSH) Authentication Protocol"
 SYNTAX OCTET STRING (SIZE (1..255))

-- The snmpSshtmSession Group

snmpSshtmSession OBJECT IDENTIFIER ::= { snmpSshtmObjects 1 }

snmpSshtmSessionOpens OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of times an openSession() request has been
 executed as an SSH client, whether it succeeded or
 failed.
 "
 ::= { snmpSshtmSession 1 }

snmpSshtmSessionCloses OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of times a closeSession() request has been
 executed as an SSH client, whether it succeeded or
 failed.
 "
 ::= { snmpSshtmSession 2 }

snmpSshtmSessionOpenErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current

Harrington, et al. Standards Track [Page 26]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 DESCRIPTION "The number of times an openSession() request
 failed to open a transport connection or failed to
 authenticate the server.
 "
 ::= { snmpSshtmSession 3 }

snmpSshtmSessionUserAuthFailures OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of times an openSession() request
 failed to open a session as an SSH client due to
 user-authentication failures.
 "
 ::= { snmpSshtmSession 4 }

snmpSshtmSessionNoChannels OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of times an openSession() request
 failed to open a session as an SSH client due to
 channel-open failures.
 "
 ::= { snmpSshtmSession 5 }

snmpSshtmSessionNoSubsystems OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of times an openSession() request
 failed to open a session as an SSH client due to
 inability to connect to the requested subsystem.
 "
 ::= { snmpSshtmSession 6 }

snmpSshtmSessionNoSessions OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of times an outgoing message was
 dropped because the same session was no longer
 available.
 "
 ::= { snmpSshtmSession 7 }

snmpSshtmSessionInvalidCaches OBJECT-TYPE
 SYNTAX Counter32

Harrington, et al. Standards Track [Page 27]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION "The number of outgoing messages dropped because the
 tmStateReference referred to an invalid cache.
 "
 ::= { snmpSshtmSession 8 }

-- **
-- snmpSshtmMIB - Conformance Information
-- **

snmpSshtmCompliances OBJECT IDENTIFIER ::= { snmpSshtmConformance 1 }

snmpSshtmGroups OBJECT IDENTIFIER ::= { snmpSshtmConformance 2 }

-- **
-- Compliance statements
-- **

snmpSshtmCompliance MODULE-COMPLIANCE
 STATUS current

 DESCRIPTION "The compliance statement for SNMP engines that
 support the SNMP-SSH-TM-MIB."
 MODULE
 MANDATORY-GROUPS { snmpSshtmGroup }
 ::= { snmpSshtmCompliances 1 }

-- **
-- Units of conformance
-- **

snmpSshtmGroup OBJECT-GROUP
 OBJECTS {
 snmpSshtmSessionOpens,
 snmpSshtmSessionCloses,
 snmpSshtmSessionOpenErrors,
 snmpSshtmSessionUserAuthFailures,
 snmpSshtmSessionNoChannels,
 snmpSshtmSessionNoSubsystems,
 snmpSshtmSessionNoSessions,
 snmpSshtmSessionInvalidCaches
 }
 STATUS current
 DESCRIPTION "A collection of objects for maintaining information
 of an SNMP engine that implements the SNMP Secure
 Shell Transport Model.
 "

Harrington, et al. Standards Track [Page 28]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 ::= { snmpSshtmGroups 2 }

END

8. Operational Considerations

 The SSH Transport Model will likely not work in conditions where
 remote access to the CLI has stopped working. The SSH Transport
 Model assumes that TCP and IP continue to operate correctly between
 the communicating nodes. Failures in either node, death of the
 deamon serving the communication, routing problems in the network
 between, firewalls that block the traffic, and other problems can
 prevent the SSH Transport Model from working. In situations where
 management access has to be very reliable, operators should consider
 mitigating measures. These measures may include dedicated
 management-only networks, point-to-point links, and the ability to
 use alternate protocols and transports.

 To have SNMP properly utilize the security services provided by SSH,
 the SSH Transport Model MUST be used with a Security Model that knows
 how to process a tmStateReference, such as the Transport Security
 Model for SNMP [RFC5591].

 If the SSH Transport Model is configured to utilize AAA services,
 operators should consider configuring support for local
 authentication mechanisms, such as local passwords, so SNMP can
 continue operating during times of network stress.

 The SSH protocol has its own window mechanism, defined in RFC 4254.
 The SSH specifications leave it open when window adjustment messages
 should be created, and some implementations send these whenever
 received data has been passed to the application. There are
 noticeable bandwidth and processing overheads to handling such window
 adjustment messages, which can be avoided by sending them less
 frequently.

 The SSH protocol requires the execution of CPU-intensive calculations
 to establish a session key during session establishment. This means
 that short-lived sessions become computationally expensive compared
 to USM, which does not have a notion of a session key. Other
 transport security protocols such as TLS support a session-resumption
 feature that allows reusing a cached session key. Such a mechanism
 does not exist for SSH and thus SNMP applications should keep SSH
 sessions for longer time periods.

 To initiate SSH connections, an entity must be configured with SSH
 client credentials plus information to authenticate the server.
 While hosts are often configured to be SSH clients, most

Harrington, et al. Standards Track [Page 29]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 internetworking devices are not. To send notifications over SSHTM,
 the internetworking device will need to be configured as an SSH
 client. How this credential configuration is done is implementation-
 and deployment-specific.

9. Security Considerations

 This memo describes a Transport Model that permits SNMP to utilize
 SSH security services. The security threats and how the SSH
 Transport Model mitigates those threats is covered in detail
 throughout this memo.

 The SSH Transport Model relies on SSH mutual authentication, binding
 of keys, confidentiality, and integrity. Any authentication method
 that meets the requirements of the SSH architecture will provide the
 properties of mutual authentication and binding of keys.

 SSHv2 provides perfect forward secrecy (PFS) for encryption keys.
 PFS is a major design goal of SSH, and any well-designed key-exchange
 algorithm will provide it.

 The security implications of using SSH are covered in [RFC4251].

 The SSH Transport Model has no way to verify that server
 authentication was performed, to learn the host’s public key in
 advance, or to verify that the correct key is being used. The SSH
 Transport Model simply trusts that these are properly configured by
 the implementer and deployer.

 SSH provides the "none" userauth method. The SSH Transport Model
 MUST NOT be used with an SSH connection with the "none" userauth
 method. While SSH does support turning off confidentiality and
 integrity, they MUST NOT be turned off when used with the SSH
 Transport Model.

 The SSH protocol is not always clear on whether the user name field
 must be filled in, so for some implementations, such as those using
 GSSAPI authentication, it may be necessary to use a mapping algorithm
 to transform an SSH identity to a tmSecurityName or to transform a
 tmSecurityName to an SSH identity.

 In other cases, the user name may not be verified by the server, so
 for these implementations, it may be necessary to obtain the user
 name from other credentials exchanged during the SSH exchange.

Harrington, et al. Standards Track [Page 30]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

9.1. Skipping Public Key Verification

 Most key-exchange algorithms are able to authenticate the SSH
 server’s identity to the client. However, for the common case of
 Diffie-Hellman (DH) signed by public keys, this requires the client
 to know the host’s public key a priori and to verify that the correct
 key is being used. If this step is skipped, then authentication of
 the SSH server to the SSH client is not done. Data confidentiality
 and data integrity protection to the server still exist, but these
 are of dubious value when an attacker can insert himself between the
 client and the real SSH server. Note that some userauth methods may
 defend against this situation, but many of the common ones (including
 password and keyboard-interactive) do not and, in fact, depend on the
 fact that the server’s identity has been verified (so passwords are
 not disclosed to an attacker).

 SSH MUST NOT be configured to skip public-key verification for use
 with the SSH Transport Model.

9.2. Notification Authorization Considerations

 SNMP Notifications are authorized to be sent to a receiver based on
 the securityName used by the notification originator’s SNMP engine.
 This authorization is performed before the message is actually sent
 and before the credentials of the remote receiver have been verified.
 Thus, the credentials presented by a notification receiver MUST match
 the expected value(s) for a given transport address, and ownership of
 the credentials MUST be properly cryptographically verified.

9.3. SSH User and Key Selection

 If a "user@" prefix is used within an SnmpSSHAddress value to specify
 an SSH user name to use for authentication, then the key presented to
 the remote entity MUST be the key expected by the server for the
 "user". This may be different than a locally cached key identified
 by the securityName value.

9.4. Conceptual Differences between USM and SSHTM

 The User-based Security Model [RFC3414] employed symmetric
 cryptography and user-naming conventions. SSH employs an asymmetric
 cryptography and naming model. Unlike USM, cryptographic keys will
 be different on both sides of the SSH connection. Both sides are
 responsible for verifying that the remote entity presents the right
 key. The optional "user@" prefix component of the SnmpSSHAddress
 Textual Convention allows the client SNMP stack to associate the
 connection with a securityName that may be different than the SSH
 user name presented to the SSH server.

Harrington, et al. Standards Track [Page 31]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

9.5. The ’none’ MAC Algorithm

 SSH provides the "none" Message Authentication Code (MAC) algorithm,
 which would allow you to turn off data integrity while maintaining
 confidentiality. However, if you do this, then an attacker may be
 able to modify the data in flight, which means you effectively have
 no authentication.

 SSH MUST NOT be configured using the "none" MAC algorithm for use
 with the SSH Transport Model.

9.6. Use with SNMPv1/v2c Messages

 The SNMPv1 and SNMPv2c message processing described in [RFC3584] (BCP
 74) always selects the SNMPv1 or SNMPv2c Security Models,
 respectively. Both of these and the User-based Security Model
 typically used with SNMPv3 derive the securityName and securityLevel
 from the SNMP message received, even when the message was received
 over a secure transport. Access control decisions are therefore made
 based on the contents of the SNMP message, rather than using the
 authenticated identity and securityLevel provided by the SSH
 Transport Model.

9.7. MIB Module Security

 There are no management objects defined in this MIB module that have
 a MAX-ACCESS clause of read-write and/or read-create. So, if this
 MIB module is implemented correctly, then there is no risk that an
 intruder can alter or create any management objects of this MIB
 module via direct SNMP SET operations.

 Some of the readable objects in this MIB module (i.e., objects with a
 MAX-ACCESS other than not-accessible) may be considered sensitive or
 vulnerable in some network environments. It is thus important to
 control even GET and/or NOTIFY access to these objects and possibly
 to even encrypt the values of these objects when sending them over
 the network via SNMP. These are the tables and objects and their
 sensitivity/vulnerability:

 o The information in the snmpSshtmSession group is generated locally
 when a client session is being opened or closed. This information
 can reflect the configured capabilities of a remote SSH server,
 which could be helpful to an attacker for focusing an attack.

Harrington, et al. Standards Track [Page 32]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 SNMP versions prior to SNMPv3 did not include adequate security.
 Even if the network itself is secure (for example by using IPSec or
 SSH), even then, there is no control as to who on the secure network
 is allowed to access and GET/SET (read/change/create/delete) the
 objects in this MIB module.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [RFC3410], Section 8),
 including full support for cryptographic mechanisms for
 authentication and privacy, such as those found in the User-based
 Security Model [RFC3414], the Transport Security Model [RFC5591], and
 the SSH Transport Model described in this document.

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

10. IANA Considerations

 IANA has assigned:

 1. Two TCP port numbers in the Port Numbers registry that will be
 the default ports for the SNMP-over-SSH Transport Model as
 defined in this document, and the SNMP-over-SSH Transport Model
 for notifications as defined in this document. The assigned
 keywords and port numbers are "snmpssh" (5161) and "snmpssh-trap"
 (5162).

 2. An SMI number (189) under mib-2, for the MIB module in this
 document.

 3. An SMI number (7) under snmpDomains, for the snmpSSHDomain.

 4. "ssh" as the corresponding prefix for the snmpSSHDomain in the
 SNMP Transport Domains registry; defined in [RFC5590].

 5. "snmp" as a Connection Protocol Subsystem Name in the SSH
 Protocol Parameters registry.

11. Acknowledgments

 The editors would like to thank Jeffrey Hutzelman for sharing his SSH
 insights, and Dave Shield for an outstanding job wordsmithing the
 existing document to improve organization and clarity.

Harrington, et al. Standards Track [Page 33]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 Additionally, helpful document reviews were received from Juergen
 Schoenwaelder.

12. References

12.1. Normative References

 [RFC1033] Lottor, M., "Domain administrators operations guide",
 RFC 1033, November 1987.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3413] Levi, D., Meyer, P., and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62,
 RFC 3413, December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

 [RFC3418] Presuhn, R., "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62,
 RFC 3418, December 2002.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
 RFC 3490, March 2003.

Harrington, et al. Standards Track [Page 34]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 [RFC3584] Frye, R., Levi, D., Routhier, S., and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-standard Network Management Framework",
 BCP 74, RFC 3584, August 2003.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4252] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, January 2006.

 [RFC4253] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, January 2006.

 [RFC4254] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, January 2006.

 [RFC5590] Harrington, D. and J. Schoenwaelder, "Transport Subsystem
 for the Simple Network Management Protocol (SNMP)",
 RFC 5590, June 2009.

12.2. Informative References

 [RFC1994] Simpson, W., "PPP Challenge Handshake Authentication
 Protocol (CHAP)", RFC 1994, August 1996.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC3588] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
 Arkko, "Diameter Base Protocol", RFC 3588, September 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC4256] Cusack, F. and M. Forssen, "Generic Message Exchange
 Authentication for the Secure Shell Protocol (SSH)",
 RFC 4256, January 2006.

Harrington, et al. Standards Track [Page 35]

RFC 5592 Secure Shell Transport Model for SNMP June 2009

 [RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
 "Generic Security Service Application Program Interface
 (GSS-API) Authentication and Key Exchange for the Secure
 Shell (SSH) Protocol", RFC 4462, May 2006.

 [RFC4742] Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure SHell (SSH)", RFC 4742,
 December 2006.

 [RFC5090] Sterman, B., Sadolevsky, D., Schwartz, D., Williams, D.,
 and W. Beck, "RADIUS Extension for Digest Authentication",
 RFC 5090, February 2008.

 [RFC5591] Harrington, D. and W. Hardaker, "Transport Security Model
 for the Simple Network Management Protocol (SNMP)",
 RFC 5591, June 2009.

Authors’ Addresses

 David Harrington
 Huawei Technologies (USA)
 1700 Alma Dr. Suite 100
 Plano, TX 75075
 USA

 Phone: +1 603 436 8634
 EMail: ietfdbh@comcast.net

 Joseph Salowey
 Cisco Systems
 2901 3rd Ave
 Seattle, WA 98121
 USA

 EMail: jsalowey@cisco.com

 Wes Hardaker
 Cobham Analytic Solutions
 P.O. Box 382
 Davis, CA 95617
 US

 Phone: +1 530 792 1913
 EMail: ietf@hardakers.net

Harrington, et al. Standards Track [Page 36]

