
Network Working Group C. Irby
Request for Comments: 553 K. Victor
NIC: 17810 SRI-ARC
 14 July 1973

 Draft design for a text/graphics protocol

DRAFT DESIGN FOR A TEXT/GRAPHICS PROTOCOL

 This proposal should be seen as a synthesis of existing ideas rather
 than an attempt to put forth new ones. It is based on work by the
 NGG, Elaine Thomas, Peter Deutsch, Charles Irby, Ken Victor, Bill
 Duvall, Bob Sproull, and others at ARC, PARC, and BBN.

 We are concerned about the lack of text-handling capabilities of the
 protocol suggested in RFC 493. Also, we feel that the protocol will
 have a significant influence on the interface provided to writers of
 future graphics application programs, and consequently that such
 things as "beam twiddling" should not be part of the protocol.

 Things of this nature address the problem at too low a level for a
 facility which is intended to service the needs of a wide range of
 graphics devices.

 We feel that, although the breakdown into "levels" as proposed in
 RFC 493 may be expedient for initial experimentation, it is
 inappropriate for a Network Standard Protocol. Instead, we
 propose that the protocol allow for two levels, segmented and
 structured. This allows the writers of graphics application
 programs to deal with a very simple display facility (segments
 consisting of lines, dots, or character strings) or with a
 powerful structure of display subroutines.

 We propose an experimental implementation of such a scheme on the
 ARC, BBN, and PARC systems to test these ideas using several
 application programs (including NLS) and at least an IMLAC, ARDS, and
 an E&S LDS.

Environment

 We are trying to design a protocol used to communicate with a
 "virtual display" to operate at the other end of a wire (ARPANET
 connection) from a "host" which is running some kind of display
 application program.

Irby, et. al. [Page 1]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 We will adopt the terminology that the human user, sitting at the
 display, is the "user" and the application program is the
 "server".

 We wish to stress the fact that within a single application, a single
 terminal should be useable both as an "interactive graphics" terminal
 AND as an "interactive control" terminal. Thus, the graphics
 protocol must allow for teletype-like operations.

 The need for two sets of connections for running graphics programs
 over the Net (according to our understanding) is centered about the
 issue of handling (being able to recover gracefully from) berserk
 programs (and perhaps achieving greater bandwidth through the net).

 We recognize this problem but also think one should be able to run
 graphics programs using only one set of telnet connections. Also, it
 seems obvious that even though one is running a graphics program, one
 must expect to be able to handle "unescorted" characters (not
 embedded in a command or response message) being sent to his
 terminal.

 Consequently, we are proposing that the graphics protocol be
 implemented within telnet using 8-bit BEGIN-GRAPHICS-COMMAND and
 END-GRAPHICS-COMMAND characters or the 8-bit transparent mode of the
 new telnet. This means that one will be able to run graphics
 programs with one, two, or more sets of telnet connections.

 We also strongly propose that any site which is interested in
 supporting display terminals for use in network graphics would be
 prudent to implement local control over the display (such as IGNORE-
 GRAPHICS-COMMANDS, RESET-TO-TTY-MODE commands from the user to the
 using host). Failure to take such precautions may very well lead to
 burned out tubes!

Basic concepts

 The model

 The model we are adopting consists of an application program
 manipulating a (remote) display file. This file may be
 "segmented" or "structured", in which case it may be manipulated
 independently from the display itself.

 For structured display files an "update display" command causes
 the display file to get mapped onto the display in whatever
 fashion is appropriate for the display.

Irby, et. al. [Page 2]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 Part of this protocol deals with commands issued to the (remote)
 display file editor. This editor creates and changes the display
 file at the user host.

 Structured Display Files

 A structured display file consists of named subpictures, each
 containing any number of named units. There are two types of
 units, primitive units and call units. The effect of a unit is
 independent of its name or creation within the subpicture.

 Primitive units contain drawing instructions and associated
 coordinates that may generate visible information on the
 display screen. Drawing instructions and coordinates can occur
 only in primitive units.

 Call units give the display structure a subroutine capability.
 A call unit invokes the display of another subpicture. In
 other words, a call unit allows one subpicture to contain
 instances of other subpictures. As well as providing for
 subroutine-style control transfer, call units can be used to
 establish display parameters and maintain parameter
 transparency. For example, a call unit can be used to call a
 subpicture with a translation and relative intensity setting.
 On return from the called subpicture, these parameters are
 restored to their original values.

 A subpicture is an ordered list of units which can be any
 mixture of primitive and call units. Each subpicture begins
 with a header and terminates with the subpicture end unit. The
 subpicture end unit is a single unique unit in a display
 structure linked to the end of each subpicture.

 In order to understand how control passes through a structure,
 one can think of the display elements as follows: subpictures
 are subroutines and units are linked blocks of in-line code.
 When all of the units contained in a subpicture have been
 executed, the subpicture end unit returns control to wherever
 the subpicture was called from. A primitive unit contains
 display code and transfer to the next unit. A call unit
 contains a subroutine call to a subpicture and a transfer to
 the next unit in line.

Irby, et. al. [Page 3]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 Segmented Display Files

 A segmented display file consists of named segments, each
 containing any number of primitive units. The only operations
 available for segmented display file is to add new, delete old, or
 replace old segments (updating the actual display happens
 automatically). The effect of a unit is independent of its name
 or creation order within the subpicture.

 Hosts

 Since a given terminal may be under partial control of several
 different hosts, all further discussion of names, coordinates,
 display files, etc. should be taken as relative to each individual
 host.

 That is, each host believes it has a display file, naming, and
 coordinate space and a set of state parameters entirely under its
 control; its only evidence of resource sharing is that the
 terminal may appear to be of different sizes at different times.

 (We feel that in principle it should be processes within hosts,
 rather than hosts, that enjoy these properties, but it does not
 seem feasible to construct a process identification scheme that
 all hosts will find acceptable.)

 Subpictures

 A subpicture has a name and zero or more units.

 Subpicture names are arbitrary, globally unique, fixed-length
 identifiers (subpicture names are chosen by the host).

 Each unit (displayable component) has a name, which is local to
 the subpicture.

 A unit may be a "primitive unit", such as a string or a vector, or
 a "call unit", which implies displaying a (possibly transformed)
 copy of another subpicture.

 The display data are organized into a re-entrant tree (acyclic
 graph) by the call units.

 A unit may be "visible" or "invisible".

Irby, et. al. [Page 4]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 A particular instance of a subpicture (the result of a call-
 unit) appears on the screen precisely if it and all subpictures
 on the logical path to it from the root of the tree are
 "visible".

 Primitive units

 Strings

 A string is a horizontal line of characters with its own mode
 and X,Y origin relative to the origin of the subpicture.

 Note: intensity is always relative.

 Font and mode (e.g. blinking) information logically accompanies
 each character. This is accomplished by means of embedded mode
 and font specification characters and a "restore original
 string mode and font" character.

 Note: Mode modifiers are non-displayable characters and do
 not take up character positions on the screen.

 Determining the space occupied on the screen by a string
 requires knowledge of the font(s) being used; this is a
 separate question which is dealt with later.

 TTY units

 A tty unit is a rectangle that consists of a number of lines.
 Within this unit the display acts as if it were an alpha-numeric
 display, e.g.,

 characters which would write beyond the right hand margin of
 the rectangle cause an automatic line folding to take place

 ascii control characters CarriageReturn, LineFeed, FormFeed,
 and BackSpaceCharacter, (HorizontalTab and VerticalTab?), are
 interpreted appropriately

 other control characters are displayed in a terminal specific
 manner, e.g. ^F, <^F>, etc.

 display of the characters in the range 200-377 is left
 unspecified at this point (truncated to 7 bits?, alternate
 fonts?, alternate modes?)

Irby, et. al. [Page 5]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 It is hoped that we can agree on a standardization of some
 of the characters in this range to allow for such things as
 greek letters, common mathematical symbols, super-scripting,
 and sub-scripting.

 linefolding that would cause characters to be written below the
 rectangle (whether performed automatically or by a LineFeed
 character, etc.) cause the text within the unit to be scrolled
 upwards one line (storage tube may adopt a different scheme).

 Characters are displayed in a teletype unit in one of two ways:

 Characters sent to the terminal that are not part of any
 command (unescorted characters) are appended to appropriate
 tty-units (see below --- USE-TTY-UNITS, TTY)

 By use of the APPEND-STRING-TO-UNITS command for structured
 display files

 The first character sent to a tty-unit appears as the first
 character (at the left margin) of the top line. This is necessary
 for a number of reasons, the most convincing of which is the
 behavior characteristics of storage tubes and most real alpha-
 numeric displays.

 Successive characters appear as successive characters within
 the top line until either an explicit (e.g., linefeed) or
 implicit (line overflow) line break occurs.

 When a line break occurs, the next character appears on the
 second from the top line of the unit.

 This continues until the bottom line of the tty-unit is
 reached.

 At this point, a line break causes the lines within the unit
 to scroll up one line.

 Note: Storage scopes may use a different technique for
 scrolling.

 Dots

 A dot unit consists of an initial X0,Y0 followed by a series of
 points X,Y which describe a series of dots.

 Each dot unit logically carries mode information such as
 blinking, relative intensity, etc.

Irby, et. al. [Page 6]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 Lines

 A line unit consists of an origin X0,Y0 followed by a series of
 points X,Y which describes a series of straight lines connected
 tail-to-head (i.e. a polygon).

 Each line unit logically carries mode information such as
 blinking, dotted vs. solid, invisible.

 Other kinds of lines, such as conic sections, may belong in the
 primitive set.

 Special points

 This primitive unit consists of a series of points, which will
 be displayed joined by lines in the best available manner.

 The intent is to use Flegal’s algorithms to produce a smooth
 curve.

 Device-specific

 This primitive unit consists of any number of device specific
 commands. The device type may be obtained through an
 interrogation command.

 Call units

 In addition to the name of the referenced subpicture, a call unit
 may include the following transformations:

 Master/instance rectangle: specifies a rectangle in the
 caller’s space into which a specified rectangle of the callee’s
 space is to be imaged. This provides independent scaling in
 each coordinate as well as translation and clipping.

 Rotation. It may be desirable to combine this with scaling
 using the familiar idea of homogeneous transformation.

 Intensity and color control. In principle, a call could
 specify intensity increments (positive or negative) for each
 color.

 It is assumed that best effort will be used in scaling and
 rotation of text. We recommend replacing it by a line when all
 else fails.

Irby, et. al. [Page 7]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 Initial state

 After the initial telnet connection is established, the first
 graphics command issued by the applications program should be a
 request for either a structured display file or for a segmented
 display file.

 The response to this request should be whether or not the
 requested display file was allocated and other parameters about
 the virtual display, e.g. screen size, character sizes, whether
 or not color is available, etc.

 Before the display file is allocated, the terminal should appear
 as, and simulate to the best of its ability, a Network Virtual
 Terminal (NVT).

 Any graphic commands issued before the allocation of a display
 file will be ignored.

 After requesting commands and receiving a structured display file,
 the following structure will exist:

 There will exist a subpicture, referred to as the ICP
 SUBPICTURE, whose rectangular extent corresponds to the extent
 of the virtual display allocated to this host.

 There will exist a tty-unit, referred to as the ICP TTY-UNIT,
 in the ICP SUBPICTURE, where rectangular extent corresponds to
 the extent of the virtual display allocated to this host.

 This tty-unit will consist of n lines, where n is terminal
 dependent and available through a query command.

 This tty-unit will be instituted for the display of
 unescorted characters.

 There will be in effect an implicit call on the ICP SUBPICTURE.

 This call is not accessible to the applications program.

 The applications program causes the display of information by:

 1) creating primitive units in the ICP SUBPICTURE

 2) creating call units, to created subpictures, in the ICP
 SUBPICTURE

Irby, et. al. [Page 8]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 3) using the TTY command to make visible/invisible the ICP
 TTY-UNIT (or change its location or size)

 After requesting and receiving a segmented display file, the
 following structure will exist:

 There will exist a segment, referred to as the ICP SEGMENT.

 There will exist a tty-unit, referred to as the ICP TTY-
 UNIT, in the ICP SEGMENT, whose rectangular extent
 corresponds to the extent of the virtual display allocated
 to this host.

 This tty-unit will consist of n lines, where n is terminal
 dependent and available through a query command.

 This tty-unit will be instituted for the display unescorted
 characters.

 The applications program causes the display of information by:

 1) creating primitive units in the ICP SEGMENT

 2) creating new segments

 3) using the TTY command to make visible/invisible the ICP
 TTY-UNIT (or to relocate it or change its size)

Display editing primitives

 General editing primitives

 REQUEST-DISPLAY-FILE (file-type)

 file-type is either structured or segmented.

 This command requires a response.

 Segmented display file editing

 SEGMENT (Segment)

 If the segment Segment already exists, then it is cleared; if
 it did not exist then it is created.

 Pictures are displayed within segments by the use of the
 primitive unit command listed below.

Irby, et. al. [Page 9]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 DELETE-SEGMENT(Segment)

 If the segment exists, then it is deleted.

 Primitive Units

 All unit operations cause immediate display on the screen.

 STRING-UNIT(Segment,Mode,X-Origin,Y-Origin,Text)

 Writes the specified string unit.

 Mode refers to relative intensity, blinking, reverse video,
 color, etc.

 Errors: Segment does not exist.

 LINE-UNIT(Segment,Type,Mode,X0,Y0,X1,Y1, ..., Xn,Yn)

 Draws the specified line segments.

 Type refers to solid, dashed, dotted, etc.

 Errors: Segment does not exist; illegal mode.

 DOT-UNIT(Segment,Mode,X0,Y0,X1,Y1, ..., Xn,Yn)

 Draws the specified dots.

 Errors: Segment does not exist; illegal mode.

 SPECIAL-POINTS-UNIT(Segment,Mode,X1,Y1, ..., Xn,Yn)

 Draws the special-points curve.

 The terminal should attempt to connect the specified points in
 the nicest way possible (e.g. Flegal’s spline curve algorithm,
 straight line segments).

 Errors: Segment does not exist; illegal mode.

 TTY-UNIT(Segment,Mode,Rectangle,Lines)

 Creates a unit which will behave as a tty-simulation area with
 "lines" lines distributed within the specified rectangle.

 Unescorted characters will be echoed in this unit in addition
 to any other units they are being sent to.

Irby, et. al. [Page 10]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 Errors: Segment does not exist.

 DEVICE-SPECIFIC-UNIT(Segment,device commands)

 Creates a unit of device specific commands.

 TTY(parameters)

 parameters are:

 position rectangle, visible/invisible, number of lines, mode
 of characters

 This refers to the ICP TTY simulation.

 RESET()

 delete all segments, except ICP SEGMENT, and all units of ICP
 SEGMENT, except ICP TTY-UNIT

 resets all nodes to their initial state (i.e., the state that
 existed immediately after a REQUEST-DISPLAY-FILE command)

Structured display file editing

 SUBPICTURE(Subpicture, rectangle)

 Creates a new subpicture with name "Subpicture". "rectangle"
 is the coordinates of a diagonal of the subpicture’s virtual
 screen (i.e. its coordinate system.)

 If a subpicture named "Subpicture" already exists, it is
 cleared and the new coordinate rectangle takes precedence.

 DELETE-SUBPICTURE(Subpicture)

 Deletes the subpicture named "Subpicture". Call units
 referring to Subpicture are also deleted.

 CLEAR-SUBPICTURE(Subpicture)

 Deletes all units of the subpicture Subpicture, but does not
 delete the subpicture.

Irby, et. al. [Page 11]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 Primitive Units

 All the operations for creating units are transparent to the
 prior existence of the designated unit, i.e. they function as
 "replace" as well as "create".

 STRING-UNIT(Subpicture,Unit,Target-Key,Mode,X-Origin,Y-
 origin,Text)

 Replaces the unit by a string unit.

 Mode specifies the mode of the characters (e.g. blinking,
 underlined, etc).

 Target-Key is used in conjunction with the TARGET-SENSITIVE
 command and target input. It may also be sent via the SET-
 TARGET-KEY COMMAND.

 Errors: Subpicture does not exist; X-Origin or Y-Origin is
 outside the subpicture’s virtual coordinate system.

 We explicitly do not require an error if the string
 extends beyond the right-hand edge of the subpicture;
 however, the results are not defined.

 LINE-UNIT(Subpicture,Unit,Target-Key,Type,Mode,X0,Y0,X1,Y1,
 ..., Xn,Yn)

 Replaces the unit by a line unit.

 Errors: Subpicture does not exist illegal mode; some X or
 Y is outside the subpicture.

 DOT-UNIT(Subpicture,Unit,Target-Key,Type,Mode,X0,Y0,X1,Y1, ...,
 Xn,Yn)

 Replaces the unit by a dot unit.

 Errors: Subpicture does not exist; illegal mode; some X or Y
 is outside the subpicture.

 SPECIAL-POINTS-UNIT(Subpicture,Unit,Target-Key,Type,Mode,X1,Y1,
 ..., Xn,Yn)

 Replaces the unit by a special-points unit.

 Errors: Subpicture does not exist; illegal mode; some X or Y
 is outside the subpicture.

Irby, et. al. [Page 12]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 CALL-UNIT(Subpicture,Unit,Target-Key,Called-
 Subpicture,Parameters)

 Replaces the unit by a call unit.

 Parameters:

 Master-Instance rectangles

 rotation

 mode

 Errors: Subpicture does not exist; Called-Subpicture does
 not exist; parameter errors.

 TTY-UNIT(Subpicture, unit, mode, rectangle, lines)

 Creates a unit which will behave as a tty-simulation area
 with "lines" lines distributed within the specified
 rectangle.

 Errors: Subpicture does not exist.

 DEVICE-SPECIFIC-UNIT(Subpicture, Unit, Target-Key, device,
 commands)

 Creates a unit of device specific commands. The action of
 the commands should leave alone (or at least restore) any
 global modes, e.g., the standout mode (see below).

 APPEND-STRING-TO-UNIT(Subpicture, Unit, Text)

 Appends the specified text to the specific commands. This only
 makes sense if the specified unit is a string or tty unit.

 Errors: Subpicture does not exist, unit does not exist, not a
 string or tty unit.

 DELETE-UNIT(Subpicture, Unit)

 Deletes a unit.

Irby, et. al. [Page 13]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 VISIBLE-UNIT(Subpicture, Unit, Flag)

 Makes the Unit visible or invisible as specified by Flag. If a
 unit which is target sensitive is made invisible, it is no
 longer target sensitive. However, in the absence of a
 subsequent modifying target sensitive command, the unit becomes
 target sensitive again if it should be made visible.

 Errors: Subpicture does not exist, unit does not exist.

 SET-TARGET-KEY(Subpicture, Unit, Target-Key)

 Sets the target key for the specified unit to the specified
 value.

 SET-STANDOUT-MODE(mode)

 Sets the mode that will be used to make text and/or units stand
 out to blinking, underlining, etc.

 If the terminal does not support the specified mode, the
 terminal should make a best effort or use another method to
 make things stand out.

 STANDOUT-UNIT(Subpicture, unit, yesno)

 makes the specified unit stand out (according to the mode set
 by SET-STANDOUT-MODE) or not, according to "yesno". If the
 unit which is to stand out is a call-unit, the instance of the
 subpicture which is the result of the call (all the way to the
 terminal nodes) is made to stand out.

 STANDOUT-TEXT(Subpicture, unit, begin-char-count, end-char-count,
 yesno)

 Unit must refer to a string unit.

 Makes the specified text stand out (according to the mode set
 by SET-STANDOUT-MODE) or not, according to "yesno".

 UPDATE-STRUCTURED-DISPLAY()

 This causes any changes that have been made to the display
 file, since the last update or since ICP, to be reflected on
 the screen.

Irby, et. al. [Page 14]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 TTY(parameters)

 parameters are:

 position rectangle, visible/invisible, number of lines, mode
 of characters

 This refers to the ICP TTY simulation

 USE-TTY-UNITS(Subpicture1, unit1, ..., Subpicturen, unitn)

 Unescorted characters are to be appended only to the specified
 tty units.

 Errors: Subpicture, unit does not exist.

 RESET(How)

 Case How Of

 = Permanent

 Immediately resets the terminal to its initial ICP state

 = Temporary

 Immediately resets the terminal to its initial ICP state
 without destroying the previous state.

 = Restore state saved from last RESET(Temporary).

Direct Feedback

 It seems extremely desirable, given network speeds, to allow the
 using host to perform direct feedback to the user without
 intervention from the application program in the serving host. This
 is already done in telnet with local echoing. We propose extending
 this capability to graphics by allowing "dragging" (attaching a
 subpicture’s origin to the position of the cursor), "tracking"
 (following the movement of the mouse, stylus, or light pen with a
 distinctive mark on the screen), "inking" (plotting the trail of the
 cursor on the screen) and "rubber banding" (a straight line attached
 to a fixed point on one end the cursor location on the other).

 These should be seen as allowable extensions of the protocol rather
 than as requirements. There should, however, be commands available
 in the protocol for determining their existence and controlling them.

Irby, et. al. [Page 15]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

Data input primitives

 Input Control

 TARGET-SENSATIVE(key1, ..., keyn)

 Arms the units which have the specified keys for target
 selection.

 SET-INPUT-MODE(Device, parameters)

 Selects the mode in which a logical device shall produce input
 and under what conditions.

 the logical devices are specified below as well as their
 possible input formats and conditions.

 Errors: no such device.

 Keyboard input

 The keyboard has only one input mode, in which it sends a
 character whenever a key is struck.

 Binary devices

 Unless otherwise specified, binary devices act as an extension of
 the keyboard and produce 8-bit characters which are not
 distinguishable from keyboard characters by the serving host.

 The algorithm for translating binary devices into characters is
 not specified, but something like the NLS accumulation
 algorithm for mouse-keyset chords is intended.

 Binary devices may also input binary data (according to their
 up/down states), which is transmitted on state changes. Examples
 of this type of device are function keys and overlay cards, mouse
 and keyset (used independently or together), pen-up/pen/down,
 light pen buttons, etc.

 Coordinate input

 Coordinates may be sent according to any subset of the following
 criteria: with every character in some designated set (e.g.
 control characters, or all characters); with every binary device
 state change input; after some time interval has elapsed; after a
 position change P > (y1-y0) ^2+(x1-x0)^2, etc.

Irby, et. al. [Page 16]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 Coordinates may be sent in either or both of "X-Y" or "target"
 format.

 X-Y format is just the location of the cursor relative to the
 screen region assigned to the host.

 Target format is the "call stack" (logical path from the root
 unit - the ICP SUBPICTURE - to the closest unit) plus the
 target-key of that unit plus the count of the closest character
 within the string or the closest line segment or dot or special
 point if appropriate.

 Target input is unavailable for segmented display files.

 In the event of overlapping target sensitive units, it is
 not specified which of the units selected will be returned
 as the hit unit.

 Time input

 Since hosts may wish to consider two events happening sufficiently
 close together to be simultaneous, or to keep detailed interaction
 statistics, it must be possible to request time information to be
 sent with some reasonable subnet of other types of input.

Interrogations

 It must be possible for the serving host to discover its environment
 (e.g. screen size, available devices) and to read back state
 information (display file).

 This is very desirable both for debugging and for redirecting a
 displayed image to another device (e.g. a plotter).

 Environment

 Terminal parameters: screen size and resolution, available input
 devices, terminal type (for device specific control), number of
 lines in the ICP TTY-UNIT.

 Character parameters: available character sizes, special (non-
 ASCII) characters, font characteristics, sub- and super-scripting
 facilities.

 State

 Display file or display file components.

Irby, et. al. [Page 17]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 Cursor Position

 It should be possible for the application program to read the
 cursor position at any time.

 Display File Support

 It should be possible to find out if this user process supports
 only segmented or structured display files, or both.

 Command support

 It should be possible to get a matrix from the user process
 which indicates which commands are implemented. This is a
 necessity to find out which, if any, of the direct feedback
 features are supported, and might be nice to allow for, e.g.,
 the possibility of a text only or graphics only subset of the
 protocol to be implemented.

Encoding Principles

 Commands will have the format : BGC OPCODE DATA EGC where:

 BGC (Begin Graphics Command) places the telnet connection into a
 "read graphics command" mode,

 OPCODE DATA is the specific graphics command and data, and

 EGC (End Graphics Command) restores the telnet connection to its
 normal state.

 Note: This may all have to be bracketed by telnet Begin-8-bit-
 transparent-mode and End-8-bit-transparent-mode commands.

 Numbers in general will have have 7-bits of significance in each byte
 -- if the high order of a byte is on, then the significant bits from
 the next byte should be concatenated onto the low-order end of the
 bits collected so far, etc..

 Subpicture names - shall be 14-bit numbers, assigned by the serving
 host.

 Unit names - shall be 14-bit numbers, assigned by the serving host.

 Strings - shall be 8-bit characters, with an escape convention to
 represent changes of font and mode.

Irby, et. al. [Page 18]

RFC 553 Draft design for a text/graphics protocol 14 July 1973

 Since the channel is 8-bits wide, there is room for many more than
 128 displayable characters. However, the interpretation of codes
 200B and above is not standardized!

 Coordinates should be as described in RFC 493.

 Rectangles - shall be specified by the coordinates of the endpoints
 of one of the diagonal.

Encoding

 The actual encoding of this protocol is forthcoming. Since we expect
 some changes to come about because of the upcoming Network Graphics
 Group Meeting, we have postponed the actual encoding until after this
 meeting.

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Via Genie, 12/1999]

Irby, et. al. [Page 19]

