
Network Working Group Q. Xie
Request for Comments: 5353 R. Stewart
Category: Experimental The Resource Group
 M. Stillman
 Nokia
 M. Tuexen
 Muenster Univ. of Applied Sciences
 A. Silverton
 Sun Microsystems, Inc.
 September 2008

 Endpoint Handlespace Redundancy Protocol (ENRP)

Status of This Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Abstract

 The Endpoint Handlespace Redundancy Protocol (ENRP) is designed to
 work in conjunction with the Aggregate Server Access Protocol (ASAP)
 to accomplish the functionality of the Reliable Server Pooling
 (RSerPool) requirements and architecture. Within the operational
 scope of RSerPool, ENRP defines the procedures and message formats of
 a distributed, fault-tolerant registry service for storing,
 bookkeeping, retrieving, and distributing pool operation and
 membership information.

Table of Contents

 1. Introduction ..3
 1.1. Definitions ..3
 1.2. Conventions ..4
 2. ENRP Message Definitions ..4
 2.1. ENRP_PRESENCE Message5
 2.2. ENRP_HANDLE_TABLE_REQUEST Message6
 2.3. ENRP_HANDLE_TABLE_RESPONSE Message7
 2.4. ENRP_HANDLE_UPDATE Message9
 2.5. ENRP_LIST_REQUEST Message10
 2.6. ENRP_LIST_RESPONSE Message11
 2.7. ENRP_INIT_TAKEOVER Message12
 2.8. ENRP_INIT_TAKEOVER_ACK Message13
 2.9. ENRP_TAKEOVER_SERVER Message14
 2.10. ENRP_ERROR Message15

Xie, et al. Experimental [Page 1]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 3. ENRP Operation Procedures15
 3.1. Methods for Communicating amongst ENRP Servers16
 3.2. ENRP Server Initialization16
 3.2.1. Generate a Server Identifier16
 3.2.2. Acquire Peer Server List17
 3.2.2.1. Finding the Mentor Server17
 3.2.2.2. Request Complete Server List from
 Mentor Peer17
 3.2.3. Download ENRP Handlespace Data from Mentor Peer18
 3.3. Server Handlespace Update20
 3.3.1. Announcing Additions or Updates of PE20
 3.3.2. Announcing Removal of PE21
 3.4. Maintaining Peer List and Monitoring Peer Status22
 3.4.1. Discovering New Peer22
 3.4.2. Server Sending Heartbeat22
 3.4.3. Detecting Peer Server Failure23
 3.5. Taking Over a Failed Peer Server23
 3.5.1. Initiating Server Take-over Arbitration23
 3.5.2. Takeover Target Peer Server24
 3.6. Handlespace Data Auditing and Re-synchronization25
 3.6.1. Auditing Procedures25
 3.6.2. PE Checksum Calculation Algorithm26
 3.6.3. Re-Synchronization Procedures27
 3.7. Handling Unrecognized Messages or Unrecognized
 Parameters ..28
 4. Variables and Thresholds28
 4.1. Variables ...28
 4.2. Thresholds ..28
 5. IANA Considerations ..28
 5.1. A New Table for ENRP Message Types29
 5.2. A New Table for Update Action Types29
 5.3. Port Numbers ..30
 5.4. SCTP Payload Protocol Identifier30
 6. Security Considerations ..30
 6.1. Summary of RSerPool Security Threats30
 6.2. Implementing Security Mechanisms32
 6.3. Chain of Trust ..34
 7. Acknowledgments ..35
 8. References ...36
 8.1. Normative References36
 8.2. Informative References37

Xie, et al. Experimental [Page 2]

RFC 5353 Endpoint Handlespace Redundancy September 2008

1. Introduction

 ENRP is designed to work in conjunction with ASAP [RFC5352] to
 accomplish the functionality of RSerPool as defined by its
 requirements [RFC3237].

 Within the operational scope of RSerPool, ENRP defines the procedures
 and message formats of a distributed, fault-tolerant registry service
 for storing, bookkeeping, retrieving, and distributing pool operation
 and membership information.

 Whenever appropriate, in the rest of this document, we will refer to
 this RSerPool registry service as ENRP handlespace, or simply
 handlespace, because it manages all pool handles.

1.1. Definitions

 This document uses the following terms:

 Operational scope: The part of the network visible to pool users by
 a specific instance of the reliable server pooling protocols.

 Pool (or server pool): A collection of servers providing the same
 application functionality.

 Pool handle: A logical pointer to a pool. Each server pool will be
 identifiable in the operational scope of the system by a unique
 pool handle.

 Pool element: A server entity having registered to a pool.

 Pool user: A server pool user.

 Pool element handle (or endpoint handle): A logical pointer to a
 particular pool element in a pool, consisting of the pool handle
 and a destination transport address of the pool element.

 Handle space: A cohesive structure of pool handles and relations
 that may be queried by an internal or external agent.

 ENRP client channel: The communication channel through which an ASAP
 User (either a Pool Element (PE) or Pool User (PU)) requests ENRP
 handlespace service. The client channel is usually defined by the
 transport address of the Home ENRP server and a well-known port
 number.

Xie, et al. Experimental [Page 3]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 ENRP server channel: Defined by a list of IP addresses (one for each
 ENRP server in an operational scope) and a well-known port number.
 All ENRP servers in an operational scope can send "group-cast"
 messages to other servers through this channel. In a "group-
 cast", the sending server sends multiple copies of the message,
 one to each of its peer servers, over a set of point-to-point
 Stream Control Transmission Protocol (SCTP) associations between
 the sending server and the peers. The "group-cast" may be
 conveniently implemented with the use of the "SCTP_SENDALL" option
 on a one-to-many style SCTP socket.

 Home ENRP server: The ENRP server to which a PE or PU currently
 belongs. A PE MUST only have one Home ENRP server at any given
 time, and both the PE and its Home ENRP server MUST keep track of
 this master/slave relationship between them. A PU SHOULD select
 one of the available ENRP servers as its Home ENRP server.

1.2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. ENRP Message Definitions

 In this section, we define the format of all ENRP messages. These
 are messages sent and received amongst ENRP servers in an operational
 scope. Messages sent and received between a PE/PU and an ENRP server
 are part of ASAP and are defined in [RFC5352]. A common format, that
 is defined in [RFC5354], is used for all ENRP and ASAP messages.

 Most ENRP messages contain a combination of fixed fields and TLV
 (Type-Length-Value) parameters. The TLV parameters are also defined
 in [RFC5354]. If a nested TLV parameter is not ended on a 32-bit
 word boundary, it will be padded with all ’0’ octets to the next 32-
 bit word boundary.

 All messages, as well as their fields/parameters described below,
 MUST be transmitted in network byte order (aka Big Endian, meaning
 the most significant byte is transmitted first).

Xie, et al. Experimental [Page 4]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 For ENRP, the following message types are defined in this section:

 Type Message Name
 ----- -------------------------
 0x00 - (Reserved by IETF)
 0x01 - ENRP_PRESENCE
 0x02 - ENRP_HANDLE_TABLE_REQUEST
 0x03 - ENRP_HANDLE_TABLE_RESPONSE
 0x04 - ENRP_HANDLE_UPDATE
 0x05 - ENRP_LIST_REQUEST
 0x06 - ENRP_LIST_RESPONSE
 0x07 - ENRP_INIT_TAKEOVER
 0x08 - ENRP_INIT_TAKEOVER_ACK
 0x09 - ENRP_TAKEOVER_SERVER
 0x0a - ENRP_ERROR
 0x0b-0xff - (Reserved by IETF)

 Figure 1

2.1. ENRP_PRESENCE Message

 This ENRP message is used to announce (periodically) the presence of
 an ENRP server, or to probe the status of a peer ENRP server. This
 message is either sent on the ENRP server channel or sent point-to-
 point to another ENRP server.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0x01 |0|0|0|0|0|0|0|0| Message Length |
 +-+
 | Sending Server’s ID |
 +-+
 | Receiving Server’s ID |
 +-+
 : PE Checksum Param :
 +-+
 : Server Information Param (optional) :
 +-+

 Sending Server’s ID: 32 bits (unsigned integer)

 This is the ID of the ENRP server that sent this message.

Xie, et al. Experimental [Page 5]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 Receiving Server’s ID: 32 bits (unsigned integer)

 This is the ID of the ENRP server to which this message is
 intended. If the message is not intended for an individual
 server (e.g., the message is group-casted to a group of
 servers), this field MUST be sent with all 0s. If the message
 is sent point-to-point, this field MAY be sent with all 0s.

 PE Checksum Parameter:

 This is a TLV that contains the latest PE checksum of the ENRP
 server that sends the ENRP_PRESENCE. This parameter SHOULD be
 included for handlespace consistency auditing. See
 Section 3.6.1 for details.

 Server Information Parameter:

 If this parameter is present, it contains the server
 information of the sender of this message (the Server
 Information Parameter is defined in [RFC5354]). This parameter
 is optional. However, if this message is sent in response to a
 received "reply required" ENRP_PRESENCE from a peer, the sender
 then MUST include its server information.

 Note, at startup, an ENRP server MUST pick a randomly generated, non-
 zero 32-bit unsigned integer as its ID and MUST use this same ID
 until the ENRP server is rebooted.

2.2. ENRP_HANDLE_TABLE_REQUEST Message

 An ENRP server sends this message to one of its peers to request a
 copy of the handlespace data. This message is normally used during
 server initialization or handlespace re-synchronization.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0x02 |0|0|0|0|0|0|0|W| Message Length = 0xC |
 +-+
 | Sending Server’s ID |
 +-+
 | Receiving Server’s ID |
 +-+

Xie, et al. Experimental [Page 6]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 W (oWn-children-only) Flag: 1 bit

 Set to ’1’ if the sender of this message is only requesting
 information about the PEs owned by the message receiver.
 Otherwise, set to ’0’.

 Sending Server’s ID:

 See Section 2.1.

 Receiving Server’s ID:

 See Section 2.1.

2.3. ENRP_HANDLE_TABLE_RESPONSE Message

 The PEER_NAME_TABLE_RESPONSE message is sent by an ENRP server in
 response to a received PEER_NAME_TABLE_REQUEST message to assist
 peer-server initialization or handlespace synchronization.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0x03 |0|0|0|0|0|0|M|R| Message Length |
 +-+
 | Sending Server’s ID |
 +-+
 | Receiving Server’s ID |
 +-+
 : :
 : Pool Entry #1 (optional) :
 : :
 +-+
 : :
 : ... :
 : :
 +-+
 : :
 : Pool Entry #n (optional) :
 : :
 +-+

 M (More_to_send) Flag: 1 bit

 Set to ’1’ if the sender of this message has more pool entries
 to send in subsequent ENRP_HANDLE_TABLE_RESPONSE messages.
 Otherwise, set to ’0’.

Xie, et al. Experimental [Page 7]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 R (Reject) Flag: 1 bit

 MUST be set to ’1’ if the sender of this message is rejecting a
 handlespace request. In this case, pool entries MUST NOT be
 included. This might happen if the sender of this message is
 in the middle of initializing its database or is under high
 load.

 Message Length: 16 bits (unsigned integer)

 Indicates the entire length of the message, including the
 header, in number of octets.

 Note, the value in the Message Length field will NOT cover any
 padding at the end of this message.

 Sending Server’s ID:

 See Section 2.1.

 Receiving Server’s ID:

 See Section 2.1.

 Pool Entry #1-#n:

 If the R flag is set to ’0’, at least one pool entry SHOULD be
 present in this message. Each pool entry MUST start with a
 Pool Handle parameter, as defined in Section 3.9 of [RFC5354],
 and is followed by one or more Pool Element parameters in TLV
 format, as shown below:

 +---------------------------+
 : Pool Handle :
 +---------------------------+
 : PE #1 :
 +---------------------------+
 : PE #2 :
 +---------------------------+
 : ... :
 +---------------------------+
 : PE #n :
 +---------------------------+

Xie, et al. Experimental [Page 8]

RFC 5353 Endpoint Handlespace Redundancy September 2008

2.4. ENRP_HANDLE_UPDATE Message

 The PEER_NAME_UPDATE message is sent by the Home ENRP server of a PE
 to all peer servers to announce registration, re-registration, or de-
 registration of the PE in the handlespace.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0x04 |0|0|0|0|0|0|0|0| Message Length |
 +-+
 | Sending Server’s ID |
 +-+
 | Receiving Server’s ID |
 +-+
 | Update Action | (reserved) |
 +-+
 : Pool Handle Parameter :
 +-+
 : Pool Element Parameter :
 +-+

 Message Length: 16 bits (unsigned integer)

 Indicates the entire length of the message, including the
 header, in number of octets.

 Note, the value in the Message Length field will NOT cover any
 padding at the end of this message.

 Update Action: 16 bits (unsigned integer)

 This field indicates the requested action of the specified PE.
 The field MUST be set to one of the following values:

 0x0000 - ADD_PE: Add or update the specified PE in the ENRP
 handlespace.

 0x0001 - DEL_PE: Delete the specified PE from the ENRP
 handlespace.

 0x0002 - 0xFFFF: Reserved by IETF.

 Other values are reserved by IETF and MUST NOT be used.

Xie, et al. Experimental [Page 9]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 Reserved: 16 bits

 This field MUST be set to all 0s by the sender and ignored by
 the receiver.

 Sending Server’s ID:

 See Section 2.1.

 Receiving Server’s ID:

 See Section 2.1.

 Pool Handle:

 Specifies to which the PE belongs.

 Pool Element:

 Specifies the PE.

2.5. ENRP_LIST_REQUEST Message

 The PEER_LIST_REQUEST message is sent to request a current copy of
 the ENRP server list. This message is normally sent from a newly
 activated ENRP server to an established ENRP server as part of the
 initialization process.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0x05 |0|0|0|0|0|0|0|0| Message Length = 0xC |
 +-+
 | Sending Server’s ID |
 +-+
 | Receiving Server’s ID |
 +-+

 Sending Server’s ID:

 See Section 2.1.

 Receiving Server’s ID:

 See Section 2.1.

Xie, et al. Experimental [Page 10]

RFC 5353 Endpoint Handlespace Redundancy September 2008

2.6. ENRP_LIST_RESPONSE Message

 The PEER_LIST_RESPONSE message is sent in response from an ENRP
 server that receives a PEER_LIST_REQUEST message to return
 information about known ENRP servers.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0x06 |0|0|0|0|0|0|0|R| Message Length |
 +-+
 | Sending Server’s ID |
 +-+
 | Receiving Server’s ID |
 +-+
 : Server Information Parameter of Peer #1 :
 +-+
 : ... :
 +-+
 : Server Information Parameter of Peer #n :
 +-+

 R (Reject) Flag: 1 bit

 This flag MUST be set to ’1’ if the sender of this message is
 rejecting a PEER_LIST_REQUEST message. If this case occurs,
 the message MUST NOT include any Server Information Parameters.

 Message Length: 16 bits (unsigned integer)

 Indicates the entire length of the message in number of octets.

 Note, the value in the Message Length field will NOT cover any
 padding at the end of this message.

 Sending Server’s ID:

 See Section 2.1.

 Receiving Server’s ID:

 See Section 2.1.

 Server Information Parameter of Peer #1-#n:

 Each contains a Server Information Parameter of a peer known to
 the sender. The Server Information Parameter is defined in
 [RFC5354].

Xie, et al. Experimental [Page 11]

RFC 5353 Endpoint Handlespace Redundancy September 2008

2.7. ENRP_INIT_TAKEOVER Message

 The ENRP_INIT_TAKEOVER message is sent by an ENRP server (the
 takeover initiator) to announce its intention of taking over a
 specific peer ENRP server. It is sent to all its peers.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0x07 |0|0|0|0|0|0|0|0| Message Length |
 +-+
 | Sending Server’s ID |
 +-+
 | Receiving Server’s ID |
 +-+
 | Targeting Server’s ID |
 +-+

 Sending Server’s ID:

 See Section 2.1.

 Receiving Server’s ID:

 See Section 2.1.

 Targeting Server’s ID: 32 bits (unsigned integer)

 This is the ID of the peer ENRP that is the target of this
 takeover attempt.

Xie, et al. Experimental [Page 12]

RFC 5353 Endpoint Handlespace Redundancy September 2008

2.8. ENRP_INIT_TAKEOVER_ACK Message

 The PEER_INIT_TAKEOVER_ACK message is sent in response to a takeover
 initiator to acknowledge the reception of the PEER_INIT_TAKEOVER
 message and that it does not object to the takeover.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0x08 |0|0|0|0|0|0|0|0| Message Length |
 +-+
 | Sending Server’s ID |
 +-+
 | Receiving Server’s ID |
 +-+
 | Targeting Server’s ID |
 +-+

 Sending Server’s ID:

 See Section 2.1.

 Receiving Server’s ID:

 See Section 2.1.

 Targeting Server’s ID:

 This is the ID of the peer ENRP that is the target of this
 takeover attempt.

Xie, et al. Experimental [Page 13]

RFC 5353 Endpoint Handlespace Redundancy September 2008

2.9. ENRP_TAKEOVER_SERVER Message

 The PEER_TAKEOVER_REGISTRAR message is sent by the takeover initiator
 to declare the enforcement of a takeover to all active peer ENRP
 servers.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0x09 |0|0|0|0|0|0|0|0| Message Length |
 +-+
 | Sending Server’s ID |
 +-+
 | Receiving Server’s ID |
 +-+
 | Targeting Server’s ID |
 +-+

 Sending Server’s ID:

 See Section 2.1.

 Receiving Server’s ID:

 See Section 2.1.

 Targeting Server’s ID:

 This is the ID of the peer ENRP that is the target of this
 takeover operation.

Xie, et al. Experimental [Page 14]

RFC 5353 Endpoint Handlespace Redundancy September 2008

2.10. ENRP_ERROR Message

 The ENRP_ERROR message is sent by a registrar to report an
 operational error to a peer ENRP server.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 0x0a |0|0|0|0|0|0|0|0| Message Length |
 +-+
 | Sending Server’s ID |
 +-+
 | Receiving Server’s ID |
 +-+
 : Operational Error Parameter :
 +-+

 Sending Server’s ID:

 See Section 2.1.

 Receiving Server’s ID:

 See Section 2.1.

 Operational Error Parameter:

 This parameter, defined in [RFC5354], indicates the type of
 error(s) being reported.

3. ENRP Operation Procedures

 In this section, we discuss the operation procedures defined by ENRP.
 An ENRP server MUST follow these procedures when sending, receiving,
 or processing ENRP messages.

 Many of the RSerPool events call for both server-to-server and PU/
 PE-to-server message exchanges. Only the message exchanges and
 activities between an ENRP server and its peer(s) are considered
 within the ENRP scope and are defined in this document.

 Procedures for exchanging messages between a PE/PU and ENRP servers
 are defined in [RFC5352].

Xie, et al. Experimental [Page 15]

RFC 5353 Endpoint Handlespace Redundancy September 2008

3.1. Methods for Communicating amongst ENRP Servers

 Within an RSerPool operational scope, ENRP servers need to
 communicate with each other in order to exchange information, such as
 the pool membership changes, handlespace data synchronization, etc.

 Two types of communications are used amongst ENRP servers:

 o point-to-point message exchanges from one ENPR server to a
 specific peer server, and

 o announcements from one server to all its peer servers in the
 operational scope.

 Point-to-point communication is always carried out over an SCTP
 association between the sending server and the receiving server.
 Announcements are sent out via "group-casts" over the ENRP server
 channel.

3.2. ENRP Server Initialization

 This section describes the steps a new ENRP server needs to take in
 order to join the other existing ENRP servers, or to initiate the
 handlespace service if it is the first ENRP server started in the
 operational scope.

3.2.1. Generate a Server Identifier

 A new ENRP server MUST generate a non-zero, 32-bit server ID that is
 as unique as possible among all the ENRP servers in the operational
 scope, and this server ID MUST remain unchanged for the lifetime of
 the server. Normally, a good 32-bit random number will be good
 enough, as the server ID [RFC4086] provides some information on
 randomness guidelines.

 Note, there is a very remote chance (about 1 in about 4 billion) that
 two ENRP servers in an operational scope will generate the same
 server ID and hence cause a server ID conflict in the pool. However,
 no severe consequence of such a conflict has been identified.

 Note, the ENRP server ID space is separate from the PE Id space
 defined in [RFC5352].

Xie, et al. Experimental [Page 16]

RFC 5353 Endpoint Handlespace Redundancy September 2008

3.2.2. Acquire Peer Server List

 At startup, the ENRP server (the initiating server) will first
 attempt to learn of all existing peer ENRP servers in the same
 operational scope, or to determine that it is alone in the scope.

 The initiating server uses an existing peer server to bootstrap
 itself into service. We call this peer server the mentor server.

3.2.2.1. Finding the Mentor Server

 If the initiating server is told about one existing peer server
 through some administrative means (such as DNS query, configuration
 database, startup scripts, etc.), the initiating server MUST then use
 this peer server as its mentor server.

 If multiple existing peer servers are specified, the initiating
 server MUST pick one of them as its mentor server and keep the others
 as its backup mentor servers.

 If no existing peer server is specified, the initiating server MUST
 assume that it is alone in the operational scope, and MUST skip the
 procedures in Section 3.2.2.2 and Section 3.2.3 and MUST consider its
 initialization completed and start offering ENRP services.

3.2.2.2. Request Complete Server List from Mentor Peer

 Once the initiating server finds its mentor peer server (by either
 discovery or administrative means), the initiating server MUST send
 an ENRP_LIST_REQUEST message to the mentor peer server to request a
 copy of the complete server list maintained by the mentor peer (see
 Section 3.4 for maintaining a server list).

 The initiating server SHOULD start a MAX-TIME-NO-RESPONSE timer every
 time it finishes sending an ENRP_LIST_REQUEST message. If the timer
 expires before receiving a response from the mentor peer, the
 initiating server SHOULD abandon the interaction with the current
 mentor server and send a new server list request to a backup mentor
 peer, if one is available.

 Upon the reception of this request, the mentor peer server SHOULD
 reply with an ENRP_LIST_RESPONSE message and include in the message
 body all existing ENRP servers known by the mentor peer.

 Upon the reception of the ENRP_LIST_RESPONSE message from the mentor
 peer, the initiating server MUST use the server information carried
 in the message to initialize its own peer list.

Xie, et al. Experimental [Page 17]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 However, if the mentor itself is in the process of startup and not
 ready to provide a peer server list (for example, the mentor peer is
 waiting for a response to its own ENRP_LIST_REQUEST to another
 server), it MUST reject the request by the initiating server and
 respond with an ENRP_LIST_RESPONSE message with the R flag set to
 ’1’, and with no server information included in the response.

 In the case where its ENRP_LIST_REQUEST is rejected by the mentor
 peer, the initiating server SHOULD either wait for a few seconds and
 re-send the ENRP_LIST_REQUEST to the mentor server, or if there is a
 backup mentor peer available, select another mentor peer server and
 send the ENRP_LIST_REQUEST to the new mentor server.

3.2.3. Download ENRP Handlespace Data from Mentor Peer

 After a peer list download is completed, the initiating server MUST
 request a copy of the current handlespace data from its mentor peer
 server, by taking the following steps:

 1. The initiating server MUST first send an
 ENRP_HANDLE_TABLE_REQUEST message to the mentor peer, with the W
 flag set to ’0’, indicating that the entire handlespace is
 requested.

 2. Upon the reception of this message, the mentor peer MUST start a
 download session in which a copy of the current handlespace data
 maintained by the mentor peer is sent to the initiating server in
 one or more ENRP_HANDLE_TABLE_RESPONSE messages. (Note, the
 mentor server may find it particularly desirable to use multiple
 ENRP_HANDLE_TABLE_RESPONSE messages to send the handlespace when
 the handlespace is large, especially when forming and sending out
 a single response containing a large handlespace may interrupt
 its other services.)

 If more than one ENRP_HANDLE_TABLE_RESPONSE message is used
 during the download, the mentor peer MUST use the M flag in each
 ENRP_HANDLE_TABLE_RESPONSE message to indicate whether this
 message is the last one for the download session. In particular,
 the mentor peer MUST set the M flag to ’1’ in the outbound
 ENRP_HANDLE_TABLE_RESPONSE if there is more data to be
 transferred and MUST keep track of the progress of the current
 download session. The mentor peer MUST set the M flag to ’0’ in
 the last ENRP_HANDLE_TABLE_RESPONSE for the download session and
 close the download session (i.e., removing any internal record of
 the session) after sending out the last message.

Xie, et al. Experimental [Page 18]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 3. During the downloading, every time the initiating server receives
 an ENRP_HANDLE_TABLE_RESPONSE message, it MUST transfer the data
 entries carried in the message into its local handlespace
 database, and then check whether or not this message is the last
 one for the download session.

 If the M flag is set to ’1’ in the just processed
 ENRP_HANDLE_TABLE_RESPONSE message, the initiating server MUST
 send another ENRP_HANDLE_TABLE_REQUEST message to the mentor peer
 to request for the next ENRP_HANDLE_TABLE_RESPONSE message.

 4. When unpacking the data entries from a ENRP_HANDLE_TABLE_RESPONSE
 message into its local handlespace database, the initiating
 server MUST handle each pool entry carried in the message using
 the following rules:

 A. If the pool does not exist in the local handlespace, the
 initiating server MUST create the pool in the local
 handlespace and add the PE(s) in the pool entry to the pool.

 When creating the pool, the initiation server MUST set the
 overall member selection policy type of the pool to the
 policy type indicated in the first PE.

 B. If the pool already exists in the local handlespace, but the
 PE(s) in the pool entry is not currently a member of the
 pool, the initiating server MUST add the PE(s) to the pool.

 C. If the pool already exists in the local handlespace AND the
 PE(s) in the pool entry is already a member of the pool, the
 initiating server SHOULD replace the attributes of the
 existing PE(s) with the new information. ENRP will make sure
 that the information stays up to date.

 5. When the last ENRP_HANDLE_TABLE_RESPONSE message is received from
 the mentor peer and unpacked into the local handlespace, the
 initialization process is completed and the initiating server
 SHOULD start to provide ENRP services.

 Under certain circumstances, the mentor peer itself may not be able
 to provide a handlespace download to the initiating server. For
 example, the mentor peer is in the middle of initializing its own
 handlespace database, or it currently has too many download sessions
 open to other servers.

Xie, et al. Experimental [Page 19]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 In such a case, the mentor peer MUST reject the request by the
 initiating server and respond with an ENRP_HANDLE_TABLE_RESPONSE
 message with the R flag set to ’1’, and with no pool entries included
 in the response.

 In the case where its ENRP_HANDLE_TABLE_REQUEST is rejected by the
 mentor peer, the initiating server SHOULD either wait for a few
 seconds and re-send the ENRP_HANDLE_TABLE_REQUEST to the mentor
 server, or if there is a backup mentor peer available, select another
 mentor peer server and send the ENRP_HANDLE_TABLE_REQUEST to the new
 mentor server.

 A handlespace download session that has been started may get
 interrupted for some reason. To cope with this, the initiating
 server SHOULD start a timer every time it finishes sending an
 ENRP_HANDLE_TABLE_REQUEST to its mentor peer. If this timer expires
 without receiving a response from the mentor peer, the initiating
 server SHOULD abort the current download session and re-start a new
 handlespace download with a backup mentor peer, if one is available.

 Similarly, after sending out an ENRP_HANDLE_TABLE_RESPONSE, and the
 mentor peer setting the M-bit to ’1’ to indicate that it has more
 data to send, it SHOULD start a session timer. If this timer expires
 without receiving another request from the initiating server, the
 mentor peer SHOULD abort the session, cleaning out any resource and
 record of the session.

3.3. Server Handlespace Update

 This includes a set of update operations used by an ENRP server to
 inform its peers when its local handlespace is modified, e.g.,
 addition of a new PE, removal of an existing PE, change of pool or PE
 properties.

3.3.1. Announcing Additions or Updates of PE

 When a new PE is granted registration to the handlespace or an
 existing PE is granted a re-registration, the Home ENRP server uses
 this procedure to inform all its peers.

 This is an ENRP announcement and is sent to all the peer of the Home
 ENRP server. See Section 3.1 on how announcements are sent.

 An ENRP server MUST announce this update to all its peers in a
 ENRP_HANDLE_UPDATE message with the Update Action field set to
 ’ADD_PE’, indicating the addition of a new PE or the modification of

Xie, et al. Experimental [Page 20]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 an existing PE. The complete new information of the PE and the pool
 it belongs to MUST be indicated in the message with a PE parameter
 and a Pool Handle parameter, respectively.

 The Home ENRP server SHOULD fill in its server ID in the Sending
 Server’s ID field and leave the Receiving Server’s ID blank (i.e.,
 all 0s).

 When a peer receives this ENRP_HANDLE_UPDATE message, it MUST take
 the following actions:

 1. If the named pool indicated by the pool handle does not exist in
 its local copy of the handlespace, the peer MUST create the named
 pool in its local handlespace and add the PE to the pool as the
 first PE. It MUST then copy in all other attributes of the PE
 carried in the message.

 When the new pool is created, the overall member selection policy
 of the pool MUST be set to the policy type indicated by the PE.

 2. If the named pool already exists in the peer’s local copy of the
 handlespace *and* the PE does not exist, the peer MUST add the PE
 to the pool as a new PE and copy in all attributes of the PE
 carried in the message.

 3. If the named pool exists *and* the PE is already a member of the
 pool, the peer MUST replace the attributes of the PE with the new
 information carried in the message.

3.3.2. Announcing Removal of PE

 When an existing PE is granted de-registration or is removed from its
 handlespace for some other reasons (e.g., purging an unreachable PE,
 see Section 3.5 in [RFC5352]), the ENRP server MUST use this
 procedure to inform all its peers about the change just made.

 This is an ENRP announcement and is sent to all the peers of the Home
 ENRP server. See Section 3.1 on how announcements are sent.

 An ENRP server MUST announce the PE removal to all its peers in an
 ENRP_HANDLE_UPDATE message with the Update Action field set to
 DEL_PE, indicating the removal of an existing PE. The complete
 information of the PE and the pool it belongs to MUST be indicated in
 the message with a PE parameter and a Pool Handle parameter,
 respectively.

Xie, et al. Experimental [Page 21]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 The sending server MUST fill in its server ID in the Sending Server’s
 ID field and leave the Receiving Server’s ID blank (i.e., set to all
 0s).

 When a peer receives this ENRP_HANDLE_UPDATE message, it MUST first
 find the pool and the PE in its own handlespace, and then remove the
 PE from its local handlespace. If the removed PE is the last one in
 the pool, the peer MUST also delete the pool from its local
 handlespace.

 If the peer fails to find the PE or the pool in its handlespace, it
 SHOULD take no further actions.

3.4. Maintaining Peer List and Monitoring Peer Status

 An ENRP server MUST keep an internal record on the status of each of
 its known peers. This record is referred to as the server’s "peer
 list".

3.4.1. Discovering New Peer

 If a message of any type is received from a previously unknown peer,
 the ENRP server MUST consider this peer a new peer in the operational
 scope and add it to the peer list.

 The ENRP server MUST send an ENRP_PRESENCE message with the Reply-
 required flag set to ’1’ to the source address found in the arrived
 message. This will force the new peer to reply with its own
 ENRP_PRESENCE containing its full server information (see
 Section 2.1).

3.4.2. Server Sending Heartbeat

 Every PEER-HEARTBEAT-CYCLE seconds, an ENRP server MUST announce its
 continued presence to all its peer with a ENRP_PRESENCE message. In
 the ENRP_PRESENCE message, the ENRP server MUST set the
 ’Replay_required’ flag to ’0’, indicating that no response is
 required.

 The arrival of this periodic ENRP_PRESENCE message will cause all its
 peers to update their internal variable "peer_last_heard" for the
 sending server (see Section 3.4.3 for more details).

Xie, et al. Experimental [Page 22]

RFC 5353 Endpoint Handlespace Redundancy September 2008

3.4.3. Detecting Peer Server Failure

 An ENRP server MUST keep an internal variable "peer_last_heard" for
 each of its known peers and the value of this variable MUST be
 updated to the current local time every time a message of any type
 (point-to-point or announcement) is received from the corresponding
 peer.

 If a peer has not been heard for more than MAX-TIME-LAST-HEARD
 seconds, the ENRP server MUST immediately send a point-to-point
 ENRP_PRESENCE with the Reply_request flag set to ’1’ to that peer.

 If the send fails or the peer does not reply after MAX-TIME-NO-
 RESPONSE seconds, the ENRP server MUST consider the peer server dead
 and SHOULD initiate the takeover procedure defined in Section 3.5.

3.5. Taking Over a Failed Peer Server

 In the following descriptions, we call the ENRP server that detects
 the failed peer server and initiates the takeover the "initiating
 server" and the failed peer server the "target server". This allows
 the PE to continue to operate in case of a failure of their Home ENRP
 server.

3.5.1. Initiating Server Take-over Arbitration

 The initiating server SHOULD first start the takeover arbitration
 process by sending an ENRP_INIT_TAKEOVER message to all its peer
 servers. See Section 3.1 on how announcements are sent. In the
 message, the initiating server MUST fill in the Sending Server’s ID
 and Targeting Server’s ID. The goal is that only one ENRP server
 takes over the PE from the target.

 After announcing the ENRP_INIT_TAKEOVER message ("group-casting" to
 all known peers, including the target server), the initiating server
 SHOULD wait for an ENRP_INIT_TAKEOVER_ACK message from each of its
 known peers, except that of the target server.

 Each peer receiving an ENRP_INIT_TAKEOVER message from the initiating
 server MUST take the following actions:

 1. If the peer server determines that it (itself) is the target
 server indicated in the ENRP_INIT_TAKEOVER message, it MUST
 immediately announce an ENRP_PRESENCE message to all its peer
 ENRP servers in an attempt to stop this takeover process. This

Xie, et al. Experimental [Page 23]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 indicates a false failure-detection case by the initiating
 server. The initiating server MUST stop the takeover operation
 by marking the target server as "active" and taking no further
 takeover actions.

 2. If the peer server finds that it has already started its own
 takeover arbitration process on the same target server, it MUST
 perform the following arbitration:

 A. If the peer’s server ID is smaller in value than the Sending
 Server’s ID in the arrived ENRP_INIT_TAKEOVER message, the
 peer server MUST immediately abort its own take-over attempt
 by taking no further takeover actions of its own. Moreover,
 the peer MUST mark the target server as "not active" on its
 internal peer list so that its status will no longer be
 monitored by the peer, and reply to the initiating server
 with an ENRP_INIT_TAKEOVER_ACK message.

 B. Otherwise, the peer MUST ignore the ENRP_INIT_TAKEOVER
 message.

 3. If the peer finds that it is neither the target server nor is in
 its own takeover process, the peer MUST: a) mark the target
 server as "not active" on its internal peer list so that its
 status will no longer be monitored by this peer, and b) MUST
 reply to the initiating server with an ENRP_INIT_TAKEOVER_ACK
 message.

 Once the initiating server has received the ENRP_INIT_TAKEOVER_ACK
 message from all of its currently known peers (except for the target
 server), it MUST consider that it has won the arbitration and MUST
 proceed to complete the takeover, following the steps described in
 Section 3.5.2.

 However, if it receives an ENRP_PRESENCE from the target server at
 any point in the arbitration process, the initiating server MUST
 immediately stop the takeover process and mark the status of the
 target server as "active".

3.5.2. Takeover Target Peer Server

 The initiating ENRP server MUST first send, via an announcement, an
 ENRP_TAKEOVER_SERVER message to inform all its active peers that the
 takeover has been enforced. The target server’s ID MUST be filled in
 the message. The initiating server SHOULD then remove the target
 server from its internal peer list.

Xie, et al. Experimental [Page 24]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 Then, it SHOULD examine its local copy of the handlespace and claim
 ownership of each of the PEs originally owned by the target server,
 by following these steps:

 1. mark itself as the Home ENRP server of each of the PEs originally
 owned by the target server;

 2. send a point-to-point ASAP_ENDPOINT_KEEP_ALIVE message, with the
 ’H’ flag set to ’1’, to each of the PEs. This will trigger the
 PE to adopt the initiating sever as its new Home ENRP server.

 When a peer receives the ENRP_TAKEOVER_SERVER message from the
 initiating server, it SHOULD update its local peer list and PE cache
 by following these steps:

 1. remove the target server from its internal peer list;

 2. update the Home ENRP server of each PE in its local copy of the
 handlespace to be the sender of the message, i.e., the initiating
 server.

3.6. Handlespace Data Auditing and Re-synchronization

 Message losses or certain temporary breaks in network connectivity
 may result in data inconsistency in the local handlespace copy of
 some of the ENRP servers in an operational scope. Therefore, each
 ENRP server in the operational scope SHOULD periodically verify that
 its local copy of handlespace data is still in sync with that of its
 peers.

 This section defines the auditing and re-synchronization procedures
 for an ENRP server to maintain its handlespace data consistency.

3.6.1. Auditing Procedures

 A checksum covering the data that should be the same is exchanged to
 figure out whether or not the data is the same.

 The auditing of handlespace consistency is based on the following
 procedures:

 1. An ENRP server SHOULD keep a separate PE checksum (a 16-bit
 integer internal variable) for each of its known peers and for
 itself. For an ENRP server with ’k’ known peers, we denote these
 internal variables as "pe_checksum_pr0", "pe_checksum_pr1", ...,
 "pe_checksum_prk", where "pe_checksum_pr0" is the server’s own PE
 checksum. The list of what these checksums cover and a detailed
 algorithm for calculating them is given in Section 3.6.2.

Xie, et al. Experimental [Page 25]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 2. Each time an ENRP server sends out an ENRP_PRESENCE, it MUST
 include in the message its current PE checksum (i.e.,
 "pe_checksum_pr0").

 3. When an ENRP server (server A) receives a PE checksum (carried in
 an arrived ENRP_PRESENCE) from a peer ENRP server (server B),
 server A SHOULD compare the PE checksum found in the
 ENRP_PRESENCE with its own internal PE checksum of server B
 (i.e., "pe_checksum_prB").

 4. If the two values match, server A will consider that there is no
 handlespace inconsistency between itself and server B, and it
 should take no further actions.

 5. If the two values do NOT match, server A SHOULD consider that
 there is a handlespace inconsistency between itself and server B,
 and a re-synchronization process SHOULD be carried out
 immediately with server B (see Section 3.6.3).

3.6.2. PE Checksum Calculation Algorithm

 When an ENRP server (server A) calculates an internal PE checksum for
 a peer (server B), it MUST use the following algorithm.

 Let us assume that in server A’s internal handlespace, there are
 currently ’M’ PEs that are owned by server B. Each of the ’M’ PEs
 will then contribute to the checksum calculation with the following
 byte block:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 : Pool handle string of the pool the PE belongs (padded with :
 : zeros to next 32-bit word boundary, if needed) :
 +-+
 | PE Id (4 octets) |
 +-+

 Note, these are not TLVs. This byte block gives each PE a unique
 byte pattern in the scope. The 16-bit PE checksum for server B
 "pe_checksum_prB" is then calculated over the byte blocks contributed
 by the ’M’ PEs one by one. The PE checksum calculation MUST use the
 Internet algorithm described in [RFC1071].

 Server A MUST calculate its own PE checksum (i.e., "pe_checksum_pr0")
 in the same fashion, using the byte blocks of all the PEs owned by
 itself.

Xie, et al. Experimental [Page 26]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 Note, whenever an ENRP finds that its internal handlespace has
 changed (e.g., due to PE registration/de-registration, receiving peer
 updates, removing failed PEs, downloading handlespace pieces from a
 peer, etc.), it MUST immediately update all its internal PE checksums
 that are affected by the change.

 Implementation Note: when the internal handlespace changes (e.g., a
 new PE added or an existing PE removed), an implementation need not
 re-calculate the affected PE checksum; it can instead simply update
 the checksum by adding or subtracting the byte block of the
 corresponding PE from the previous checksum value.

3.6.3. Re-Synchronization Procedures

 If an ENRP server determines that there is inconsistency between its
 local handlespace data and a peer’s handlespace data with regard to
 the PEs owned by that peer, it MUST perform the following steps to
 re-synchronize the data:

 1. The ENRP server SHOULD first "mark" every PE it knows about that
 is owned by the peer in its local handlespace database;

 2. The ENRP server SHOULD then send an ENRP_HANDLE_TABLE_REQUEST
 message with the W flag set to ’1’ to the peer to request a
 complete list of PEs owned by the peer;

 3. Upon reception of the ENRP_HANDLE_TABLE_REQUEST message with the
 W flag set to ’1’, the peer server SHOULD immediately respond
 with an ENRP_HANDLE_TABLE_RESPONSE message listing all PEs
 currently owned by the peer.

 4. Upon reception of the ENRP_HANDLE_TABLE_RESPONSE message, the
 ENRP server SHOULD transfer the PE entries carried in the message
 into its local handlespace database. If a PE entry being
 transferred already exists in its local database, the ENRP server
 MUST replace the entry with the copy found in the message and
 remove the "mark" from the entry.

 5. After transferring all the PE entries from the received
 ENRP_HANDLE_TABLE_RESPONSE message into its local database, the
 ENRP server SHOULD check whether there are still PE entries that
 remain "marked" in its local handlespace. If so, the ENRP server
 SHOULD silently remove those "marked" entries.

 Note, similar to what is described in Section 3.2.3, the peer may
 reject the ENRP_HANDLE_TABLE_REQUEST or use more than one
 ENRP_HANDLE_TABLE_RESPONSE message to respond.

Xie, et al. Experimental [Page 27]

RFC 5353 Endpoint Handlespace Redundancy September 2008

3.7. Handling Unrecognized Messages or Unrecognized Parameters

 When an ENRP server receives an ENRP message with an unknown message
 type or a message of known type that contains an unknown parameter,
 it SHOULD handle the unknown message or the unknown parameter
 according to the unrecognized message and parameter handling rules
 defined in Sections 3 and 4 in [RFC5354].

 According to the rules, if an error report to the message sender is
 needed, the ENRP server that discovered the error SHOULD send back an
 ENRP_ERROR message with a proper error cause code.

4. Variables and Thresholds

4.1. Variables

 peer_last_heard - The local time that a peer server was last heard
 (via receiving either a group-cast or point-to-point message from
 the peer).

 pe_checksum_pr - The internal 16-bit PE checksum that an ENRP server
 keeps for a peer. A separate PE checksum is kept for each of its
 known peers as well as for itself.

4.2. Thresholds

 PEER-HEARTBEAT-CYCLE - The period for an ENRP server to announce a
 heartbeat message to all its known peers. (Default=30 secs.)

 MAX-TIME-LAST-HEARD - Pre-set threshold for how long an ENRP server
 will wait before considering a silent peer server potentially
 dead. (Default=61 secs.)

 MAX-TIME-NO-RESPONSE - Pre-set threshold for how long a message
 sender will wait for a response after sending out a message.
 (Default=5 secs.)

5. IANA Considerations

 This document (RFC 5353) is the reference for all registrations
 described in this section. All registrations have been listed on the
 RSerPool Parameters page.

Xie, et al. Experimental [Page 28]

RFC 5353 Endpoint Handlespace Redundancy September 2008

5.1. A New Table for ENRP Message Types

 ENRP Message Types are maintained by IANA. Ten initial values have
 been assigned by IANA, as described in Figure 1. IANA created a new
 table, "ENRP Message Types":

 Type Message Name Reference
 ----- ------------------------- ---------
 0x00 (Reserved by IETF) RFC 5353
 0x01 ENRP_PRESENCE RFC 5353
 0x02 ENRP_HANDLE_TABLE_REQUEST RFC 5353
 0x03 ENRP_HANDLE_TABLE_RESPONSE RFC 5353
 0x04 ENRP_HANDLE_UPDATE RFC 5353
 0x05 ENRP_LIST_REQUEST RFC 5353
 0x06 ENRP_LIST_RESPONSE RFC 5353
 0x07 ENRP_INIT_TAKEOVER RFC 5353
 0x08 ENRP_INIT_TAKEOVER_ACK RFC 5353
 0x09 ENRP_TAKEOVER_SERVER RFC 5353
 0x0a ENRP_ERROR RFC 5353
 0x0b-0xff (Available for assignment) RFC 5353

 Requests to register an ENRP Message Type in this table should be
 sent to IANA. The number must be unique. The "Specification
 Required" policy of [RFC5226] MUST be applied.

5.2. A New Table for Update Action Types

 Update Types are maintained by IANA. Two initial values have been
 assigned by IANA. IANA created a new table, "Update Action Types":

 Type Update Action Reference
 ------------- -------------------- ---------
 0x0000 ADD_PE RFC 5353
 0x0001 DEL_PE RFC 5353
 0x0002-0xffff (Available for assignment) RFC 5353

 Requests to register an Update Action Type in this table should be
 sent to IANA. The number must be unique. The "Specification
 Required" policy of [RFC5226] MUST be applied.

Xie, et al. Experimental [Page 29]

RFC 5353 Endpoint Handlespace Redundancy September 2008

5.3. Port Numbers

 The references for the already assigned port numbers

 enrp-udp 9901/udp

 enrp-sctp 9901/sctp

 enrp-sctp-tls 9902/sctp

 have been updated to RFC 5353.

5.4. SCTP Payload Protocol Identifier

 The reference for the already assigned ENRP payload protocol
 identifier 12 have been updated to RFC 5353.

6. Security Considerations

 We present a summary of the threats to the RSerPool architecture and
 describe security requirements in response to mitigate the threats.
 Next, we present the security mechanisms, based on TLS, that are
 implementation requirements in response to the threats. Finally, we
 present a chain-of-trust argument that examines critical data paths
 in RSerPool and shows how these paths are protected by the TLS
 implementation.

6.1. Summary of RSerPool Security Threats

 "Threats Introduced by Reliable Server Pooling (RSerPool) and
 Requirements for Security in Response to Threats" [RFC5355] describes
 the threats to the RSerPool architecture in detail and lists the
 security requirements in response to each threat. From the threats
 described in this document, the security services required for the
 RSerPool protocol are enumerated below.

 Threat 1) PE registration/de-registration flooding or spoofing

 Security mechanism in response: ENRP server authenticates the PE.

 Threat 2) PE registers with a malicious ENRP server

 Security mechanism in response: PE authenticates the ENRP server.

 Threats 1 and 2, taken together, result in mutual authentication of
 the ENRP server and the PE.

Xie, et al. Experimental [Page 30]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 Threat 3) Malicious ENRP server joins the ENRP server pool

 Security mechanism in response: ENRP servers mutually authenticate.

 Threat 4) A PU communicates with a malicious ENRP server for handle
 resolution

 Security mechanism in response: The PU authenticates the ENRP server.

 Threat 5) Replay attack

 Security mechanism in response: Security protocol that has protection
 from replay attacks.

 Threat 6) Corrupted data that causes a PU to have misinformation
 concerning a pool handle resolution

 Security mechanism in response: Security protocol that supports
 integrity protection

 Threat 7) Eavesdropper snooping on handlespace information

 Security mechanism in response: Security protocol that supports data
 confidentiality.

 Threat 8) Flood of ASAP_ENDPOINT_UNREACHABLE messages from the PU to
 ENRP server

 Security mechanism in response: ASAP must control the number of ASAP
 endpoint unreachable messages transmitted from the PU to the ENRP
 server.

 Threat 9) Flood of ASAP_ENDPOINT_KEEP_ALIVE messages to the PE from
 the ENRP server

 Security mechanism in response: ENRP server must control the number
 of ASAP_ENDPOINT_KEEP_ALIVE messages to the PE.

 To summarize, threats 1-7 require security mechanisms that support
 authentication, integrity, data confidentiality, and protection from
 replay attacks.

 For RSerPool, we need to authenticate the following:

 PU <---- ENRP server (PU authenticates the ENRP server)
 PE <----> ENRP server (mutual authentication)
 ENRP server <-----> ENRP server (mutual authentication)

Xie, et al. Experimental [Page 31]

RFC 5353 Endpoint Handlespace Redundancy September 2008

6.2. Implementing Security Mechanisms

 We do not define any new security mechanisms specifically for
 responding to threats 1-7. Rather, we use an existing IETF security
 protocol, specifically [RFC3237], to provide the security services
 required. TLS supports all these requirements and MUST be
 implemented. The TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite MUST be
 supported, at a minimum, by implementers of TLS for RSerPool. For
 purposes of backwards compatibility, ENRP SHOULD support
 TLS_RSA_WITH_3DES_EDE_CBC_SHA. Implementers MAY also support any
 other IETF-approved ciphersuites.

 ENRP servers, PEs, and PUs MUST implement TLS. ENRP servers and PEs
 MUST support mutual authentication using PSK. ENRP servers MUST
 support mutual authentication among themselves using PSK. PUs MUST
 authenticate ENRP servers using certificates.

 TLS with PSK is mandatory to implement as the authentication
 mechanism for ENRP to ENRP authentication and PE to ENRP
 authentication. For PSK, having a pre-shared-key constitutes
 authorization. The network administrators of a pool need to decide
 which nodes are authorized to participate in the pool. The
 justification for PSK is that we assume that one administrative
 domain will control and manage the server pool. This allows for PSK
 to be implemented and managed by a central security administrator.

 TLS with certificates is mandatory to implement as the authentication
 mechanism for PUs to the ENRP server. PUs MUST authenticate ENRP
 servers using certificates. ENRP servers MUST possess a site
 certificate whose subject corresponds to their canonical hostname.
 PUs MAY have certificates of their own for mutual authentication with
 TLS, but no provisions are set forth in this document for their use.
 All RSerPool elements that support TLS MUST have a mechanism for
 validating certificates received during TLS negotiation; this entails
 possession of one or more root certificates issued by certificate
 authorities (preferably, well-known distributors of site certificates
 comparable to those that issue root certificates for web browsers).

 In order to prevent man-in-the-middle attacks, the client MUST verify
 the server’s identity (as presented in the server’s Certificate
 message). The client’s understanding of the server’s identity
 (typically the identity used to establish the transport connection)
 is called the "reference identity". The client determines the type
 (e.g., DNS name or IP address) of the reference identity and performs
 a comparison between the reference identity and each subjectAltName
 value of the corresponding type until a match is produced. Once a
 match is produced, the server’s identity has been verified, and the
 server identity check is complete. Different subjectAltName types

Xie, et al. Experimental [Page 32]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 are matched in different ways. The client may map the reference
 identity to a different type prior to performing a comparison.
 Mappings may be performed for all available subjectAltName types to
 which the reference identity can be mapped; however, the reference
 identity should only be mapped to types for which the mapping is
 either inherently secure (e.g., extracting the DNS name from a URI to
 compare with a subjectAltName of type dNSName) or for which the
 mapping is performed in a secure manner (e.g., using DNS Security
 (DNSSEC), or using user- or admin-configured host-to-address/
 address-to-host lookup tables).

 If the server identity check fails, user-oriented clients SHOULD
 either notify the user or close the transport connection and indicate
 that the server’s identity is suspect. Automated clients SHOULD
 close the transport connection and then return or log an error
 indicating that the server’s identity is suspect, or both. Beyond
 the server identity check described in this section, clients should
 be prepared to do further checking to ensure that the server is
 authorized to provide the service it is requested to provide. The
 client may need to make use of local policy information in making
 this determination.

 If the reference identity is an internationalized domain name,
 conforming implementations MUST convert it to the ASCII Compatible
 Encoding (ACE) format, as specified in Section 4 of [RFC3490], before
 comparison with subjectAltName values of type dNSName. Specifically,
 conforming implementations MUST perform the conversion operation
 specified in Section 4 of [RFC3490] as follows: * in step 1, the
 domain name SHALL be considered a "stored string"; * in step 3, set
 the flag called "UseSTD3ASCIIRules"; * in step 4, process each label
 with the "ToASCII" operation; and * in step 5, change all label
 separators to U+002E (full stop).

 After performing the "to-ASCII" conversion, the DNS labels and names
 MUST be compared for equality according to the rules specified in
 Section 3 of RFC 3490. The ’*’ (ASCII 42) wildcard character is
 allowed in subjectAltName values of type dNSName, and then, only as
 the left-most (least significant) DNS label in that value. This
 wildcard matches any left-most DNS label in the server name. That
 is, the subject *.example.com matches the server names a.example.com
 and b.example.com, but does not match example.com or a.b.example.com.

 When the reference identity is an IP address, the identity MUST be
 converted to the "network byte order" octet string representation RFC
 791 [RFC0791] and RFC 2460 [RFC2460]. For IP version 4, as specified
 in RFC 791, the octet string will contain exactly four octets. For
 IP version 6, as specified in RFC 2460, the octet string will contain
 exactly sixteen octets. This octet string is then compared against

Xie, et al. Experimental [Page 33]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 subjectAltName values of type iPAddress. A match occurs if the
 reference identity octet string and value octet strings are
 identical.

 After a TLS layer is established in a session, both parties are to
 independently decide whether or not to continue based on local policy
 and the security level achieved. If either party decides that the
 security level is inadequate for it to continue, it SHOULD remove the
 TLS layer immediately after the TLS (re)negotiation has completed
 (see RFC 4511)[RFC4511]. Implementations may re-evaluate the
 security level at any time and, upon finding it inadequate, should
 remove the TLS layer.

 Implementations MUST support TLS with SCTP, as described in [RFC3436]
 or TLS over TCP, as described in [RFC5246]. When using TLS/SCTP we
 must ensure that RSerPool does not use any features of SCTP that are
 not available to a TLS/SCTP user. This is not a difficult technical
 problem, but simply a requirement. When describing an API of the
 RSerPool lower layer, we also have to take into account the
 differences between TLS and SCTP.

 Threat 8 requires the ASAP protocol to limit the number of
 ASAP_ENDPOINT_UNREACHABLE messages (see Section 3.5 of RFC 5352) to
 the ENRP server.

 Threat 9 requires the ENRP protocol to limit the number of
 ASAP_ENDPOINT_KEEP_ALIVE messages from the ENRP server to the PE.

 There is no security mechanism defined for the multicast
 announcements. Therefore, a receiver of such an announcement cannot
 consider the source address of such a message to be a trustworthy
 address of an ENRP server. A receiver must also be prepared to
 receive a large number of multicast announcements from attackers.

6.3. Chain of Trust

 Security is mandatory to implement in RSerPool and is based on TLS
 implementation in all three architecture components that comprise
 RSerPool -- namely PU, PE, and the ENRP server. We define an ENRP
 server that uses TLS for all communication and authenticates ENRP
 peers and PE registrants to be a secured ENRP server.

 Here is a description of all possible data paths and a description of
 the security.

Xie, et al. Experimental [Page 34]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 PU <---> secured ENRP server (authentication of ENRP server;
 queries over TLS)
 PE <---> secured ENRP server (mutual authentication;
 registration/de-registration over TLS)
 secured ENRP server <---> secured ENRP server (mutual authentication;
 database updates using TLS)

 If all components of the system authenticate and communicate using
 TLS, the chain of trust is sound. The root of the trust chain is the
 ENRP server. If that is secured using TLS, then security will be
 enforced for all ENRP and PE components that try to connect to it.

 Summary of interaction between secured and unsecured components: If
 the PE does not use TLS and tries to register with a secure ENRP
 server, it will receive an error message response indicated as an
 error due to security considerations and the registration will be
 rejected. If an ENRP server that does not use TLS tries to update
 the database of a secure ENRP server, then the update will be
 rejected. If a PU does not use TLS and communicates with a secure
 ENRP server, it will get a response with the understanding that the
 response is not secure, as the response can be tampered with in
 transit even if the ENRP database is secured.

 The final case is the PU sending a secure request to ENRP. It might
 be that ENRP and PEs are not secured and this is an allowable
 configuration. The intent is to secure the communication over the
 Internet between the PU and the ENRP server.

 Summary:

 RSerPool architecture components can communicate with each other to
 establish a chain of trust. Secured PE and ENRP servers reject any
 communications with unsecured ENRP or PE servers.

 If the above is enforced, then a chain of trust is established for
 the RSerPool user.

7. Acknowledgments

 The authors wish to thank John Loughney, Lyndon Ong, Walter Johnson,
 Thomas Dreibholz, Frank Volkmer, and many others for their invaluable
 comments and feedback.

Xie, et al. Experimental [Page 35]

RFC 5353 Endpoint Handlespace Redundancy September 2008

8. References

8.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC1071] Braden, R., Borman, D., Partridge, C., and W. Plummer,
 "Computing the Internet checksum", RFC 1071,
 September 1988.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version
 6 (IPv6) Specification", RFC 2460, December 1998.

 [RFC3237] Tuexen, M., Xie, Q., Stewart, R., Shore, M., Ong, L.,
 Loughney, J., and M. Stillman, "Requirements for
 Reliable Server Pooling", RFC 3237, January 2002.

 [RFC3436] Jungmaier, A., Rescorla, E., and M. Tuexen, "Transport
 Layer Security over Stream Control Transmission
 Protocol", RFC 3436, December 2002.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications
 (IDNA)", RFC 3490, March 2003.

 [RFC4511] Sermersheim, J., "Lightweight Directory Access Protocol
 (LDAP): The Protocol", RFC 4511, June 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs", BCP 26,
 RFC 5226, May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer
 Security (TLS) Protocol Version 1.2", RFC 5246,
 August 2008.

 [RFC5354] Stewart, R., Xie, Q., Stillman, M., and M. Tuexen,
 "Aggregate Server Access Protocol (ASAP) and Endpoint
 Handlespace Redundancy Protocol (ENRP) Parameters",
 RFC 5354, September 2008.

 [RFC5352] Stewart, R., Xie, Q., Stillman, M., and M. Tuexen,
 "Aggregate Server Access Protocol (ASAP)", RFC 5352,
 September 2008.

Xie, et al. Experimental [Page 36]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 [RFC5355] Stillman, M., Ed., Gopal, R., Guttman, E., Holdrege,
 M., and S. Sengodan, "Threats Introduced by Reliable
 Server Pooling (RSerPool) and Requirements for Security
 in Response to Threats", RFC 5355, September 2008.

8.2. Informative References

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086,
 June 2005.

 [SCTPSOCKET] Stewart, R., Poon, K., Tuexen, M., Yasevich, V., and P.
 Lei, "Sockets API Extensions for Stream Control
 Transmission Protocol (SCTP)", Work in Progress,
 July 2008.

Authors’ Addresses

 Qiaobing Xie
 The Resource Group
 1700 Pennsylvania Ave NW
 Suite 560
 Washington, D.C., 20006
 USA

 Phone: +1 224-465-5954
 EMail: Qiaobing.Xie@gmail.com

 Randall R. Stewart
 The Resource Group
 1700 Pennsylvania Ave NW
 Suite 560
 Washington, D.C., 20006
 USA

 Phone:
 EMail: randall@lakerest.net

 Maureen Stillman
 Nokia
 1167 Peachtree Ct.
 Naperville, IL 60540
 US

 Phone:
 EMail: maureen.stillman@nokia.com

Xie, et al. Experimental [Page 37]

RFC 5353 Endpoint Handlespace Redundancy September 2008

 Michael Tuexen
 Muenster Univ. of Applied Sciences
 Stegerwaldstr. 39
 48565 Steinfurt
 Germany

 EMail: tuexen@fh-muenster.de

 Aron J. Silverton
 Sun Microsystems, Inc.
 10 S. Wacker Drive
 Suite 2000
 Chicago, IL 60606
 USA

 Phone:
 EMail: ajs.ietf@gmail.com

Xie, et al. Experimental [Page 38]

RFC 5353 Endpoint Handlespace Redundancy September 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Xie, et al. Experimental [Page 39]

