
Network Working Group V. Gill
Request for Comments: 5082 J. Heasley
Obsoletes: 3682 D. Meyer
Category: Standards Track P. Savola, Ed.
 C. Pignataro
 October 2007

 The Generalized TTL Security Mechanism (GTSM)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 The use of a packet’s Time to Live (TTL) (IPv4) or Hop Limit (IPv6)
 to verify whether the packet was originated by an adjacent node on a
 connected link has been used in many recent protocols. This document
 generalizes this technique. This document obsoletes Experimental RFC
 3682.

Gill, et al. Standards Track [Page 1]

RFC 5082 GTSM October 2007

Table of Contents

 1. Introduction . 2
 2. Assumptions Underlying GTSM 3
 2.1. GTSM Negotiation . 4
 2.2. Assumptions on Attack Sophistication 4
 3. GTSM Procedure . 5
 4. Acknowledgments . 6
 5. Security Considerations 6
 5.1. TTL (Hop Limit) Spoofing 7
 5.2. Tunneled Packets . 7
 5.2.1. IP Tunneled over IP 8
 5.2.2. IP Tunneled over MPLS 9
 5.3. Onlink Attackers . 11
 5.4. Fragmentation Considerations 11
 5.5. Multi-Hop Protocol Sessions 12
 6. Applicability Statement 12
 6.1. Backwards Compatibility 12
 7. References . 13
 7.1. Normative References 13
 7.2. Informative References 14
 Appendix A. Multi-Hop GTSM 15
 Appendix B. Changes Since RFC 3682 15

1. Introduction

 The Generalized TTL Security Mechanism (GTSM) is designed to protect
 a router’s IP-based control plane from CPU-utilization based attacks.
 In particular, while cryptographic techniques can protect the router-
 based infrastructure (e.g., BGP [RFC4271], [RFC4272]) from a wide
 variety of attacks, many attacks based on CPU overload can be
 prevented by the simple mechanism described in this document. Note
 that the same technique protects against other scarce-resource
 attacks involving a router’s CPU, such as attacks against processor-
 line card bandwidth.

 GTSM is based on the fact that the vast majority of protocol peerings
 are established between routers that are adjacent. Thus, most
 protocol peerings are either directly between connected interfaces
 or, in the worst case, are between loopback and loopback, with static
 routes to loopbacks. Since TTL spoofing is considered nearly
 impossible, a mechanism based on an expected TTL value can provide a
 simple and reasonably robust defense from infrastructure attacks
 based on forged protocol packets from outside the network. Note,
 however, that GTSM is not a substitute for authentication mechanisms.
 In particular, it does not secure against insider on-the-wire
 attacks, such as packet spoofing or replay.

Gill, et al. Standards Track [Page 2]

RFC 5082 GTSM October 2007

 Finally, the GTSM mechanism is equally applicable to both TTL (IPv4)
 and Hop Limit (IPv6), and from the perspective of GTSM, TTL and Hop
 Limit have identical semantics. As a result, in the remainder of
 this document the term "TTL" is used to refer to both TTL or Hop
 Limit (as appropriate).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Assumptions Underlying GTSM

 GTSM is predicated upon the following assumptions:

 1. The vast majority of protocol peerings are between adjacent
 routers.

 2. Service providers may or may not configure strict ingress
 filtering [RFC3704] on non-trusted links. If maximal protection
 is desired, such filtering is necessary as described in
 Section 2.2.

 3. Use of GTSM is OPTIONAL, and can be configured on a per-peer
 (group) basis.

 4. The peer routers both implement GTSM.

 5. The router supports a method to use separate resource pools
 (e.g., queues, processing quotas) for differently classified
 traffic.

 Note that this document does not prescribe further restrictions that
 a router may apply to packets not matching the GTSM filtering rules,
 such as dropping packets that do not match any configured protocol
 session and rate-limiting the rest. This document also does not
 suggest the actual means of resource separation, as those are
 hardware and implementation-specific.

 However, the possibility of denial-of-service (DoS) attack prevention
 is based on the assumption that classification of packets and
 separation of their paths are done before the packets go through a
 scarce resource in the system. In practice, the closer GTSM
 processing is done to the line-rate hardware, the more resistant the
 system is to DoS attacks.

Gill, et al. Standards Track [Page 3]

RFC 5082 GTSM October 2007

2.1. GTSM Negotiation

 This document assumes that, when used with existing protocols, GTSM
 will be manually configured between protocol peers. That is, no
 automatic GTSM capability negotiation, such as is provided by RFC
 3392 [RFC3392], is assumed or defined.

 If a new protocol is designed with built-in GTSM support, then it is
 recommended that procedures are always used for sending and
 validating received protocol packets (GTSM is always on, see for
 example [RFC2461]). If, however, dynamic negotiation of GTSM support
 is necessary, protocol messages used for such negotiation MUST be
 authenticated using other security mechanisms to prevent DoS attacks.

 Also note that this specification does not offer a generic GTSM
 capability negotiation mechanism, so messages of the protocol
 augmented with the GTSM behavior will need to be used if dynamic
 negotiation is deemed necessary.

2.2. Assumptions on Attack Sophistication

 Throughout this document, we assume that potential attackers have
 evolved in both sophistication and access to the point that they can
 send control traffic to a protocol session, and that this traffic
 appears to be valid control traffic (i.e., it has the source/
 destination of configured peer routers).

 We also assume that each router in the path between the attacker and
 the victim protocol speaker decrements TTL properly (clearly, if
 either the path or the adjacent peer is compromised, then there are
 worse problems to worry about).

 For maximal protection, ingress filtering should be applied before
 the packet goes through the scarce resource. Otherwise an attacker
 directly connected to one interface could disturb a GTSM-protected
 session on the same or another interface. Interfaces that aren’t
 configured with this filtering (e.g., backbone links) are assumed to
 not have such attackers (i.e., are trusted).

 As a specific instance of such interfaces, we assume that tunnels are
 not a back-door for allowing TTL-spoofing on protocol packets to a
 GTSM-protected peering session with a directly connected neighbor.
 We assume that: 1) there are no tunneled packets terminating on the
 router, 2) tunnels terminating on the router are assumed to be secure
 and endpoints are trusted, 3) tunnel decapsulation includes source
 address spoofing prevention [RFC3704], or 4) the GTSM-enabled session
 does not allow protocol packets coming from a tunnel.

Gill, et al. Standards Track [Page 4]

RFC 5082 GTSM October 2007

 Since the vast majority of peerings are between adjacent routers, we
 can set the TTL on the protocol packets to 255 (the maximum possible
 for IP) and then reject any protocol packets that come in from
 configured peers that do NOT have an inbound TTL of 255.

 GTSM can be disabled for applications such as route-servers and other
 multi-hop peerings. In the event that an attack comes in from a
 compromised multi-hop peering, that peering can be shut down.

3. GTSM Procedure

 If GTSM is not built into the protocol and is used as an additional
 feature (e.g., for BGP, LDP, or MSDP), it SHOULD NOT be enabled by
 default in order to remain backward-compatible with the unmodified
 protocol. However, if the protocol defines a built-in dynamic
 capability negotiation for GTSM, a protocol peer MAY suggest the use
 of GTSM provided that GTSM would only be enabled if both peers agree
 to use it.

 If GTSM is enabled for a protocol session, the following steps are
 added to the IP packet sending and reception procedures:

 Sending protocol packets:

 The TTL field in all IP packets used for transmission of
 messages associated with GTSM-enabled protocol sessions MUST be
 set to 255. This also applies to the related ICMP error
 handling messages.

 On some architectures, the TTL of control plane originated
 traffic is under some configurations decremented in the
 forwarding plane. The TTL of GTSM-enabled sessions MUST NOT be
 decremented.

 Receiving protocol packets:

 The GTSM packet identification step associates each received
 packet addressed to the router’s control plane with one of the
 following three trustworthiness categories:

 + Unknown: these are packets that cannot be associated with
 any registered GTSM-enabled session, and hence GTSM cannot
 make any judgment on the level of risk associated with them.

 + Trusted: these are packets that have been identified as
 belonging to one of the GTSM-enabled sessions, and their TTL
 values are within the expected range.

Gill, et al. Standards Track [Page 5]

RFC 5082 GTSM October 2007

 + Dangerous: these are packets that have been identified as
 belonging to one of the GTSM-enabled sessions, but their TTL
 values are NOT within the expected range, and hence GTSM
 believes there is a risk that these packets have been
 spoofed.

 The exact policies applied to packets of different
 classifications are not postulated in this document and are
 expected to be configurable. Configurability is likely
 necessary in particular with the treatment of related messages
 (ICMP errors). It should be noted that fragmentation may
 restrict the amount of information available for
 classification.

 However, by default, the implementations:

 + SHOULD ensure that packets classified as Dangerous do not
 compete for resources with packets classified as Trusted or
 Unknown.

 + MUST NOT drop (as part of GTSM processing) packets
 classified as Trusted or Unknown.

 + MAY drop packets classified as Dangerous.

4. Acknowledgments

 The use of the TTL field to protect BGP originated with many
 different people, including Paul Traina and Jon Stewart. Ryan
 McDowell also suggested a similar idea. Steve Bellovin, Jay
 Borkenhagen, Randy Bush, Alfred Hoenes, Vern Paxon, Robert Raszuk,
 and Alex Zinin also provided useful feedback on earlier versions of
 this document. David Ward provided insight on the generalization of
 the original BGP-specific idea. Alex Zinin, Alia Atlas, and John
 Scudder provided a significant amount of feedback for the newer
 versions of the document. During and after the IETF Last Call,
 useful comments were provided by Francis Dupont, Sam Hartman, Lars
 Eggert, and Ross Callon.

5. Security Considerations

 GTSM is a simple procedure that protects single-hop protocol
 sessions, except in those cases in which the peer has been
 compromised. In particular, it does not protect against the wide
 range of on-the-wire attacks; protection from these attacks requires
 more rigorous security mechanisms.

Gill, et al. Standards Track [Page 6]

RFC 5082 GTSM October 2007

5.1. TTL (Hop Limit) Spoofing

 The approach described here is based on the observation that a TTL
 (or Hop Limit) value of 255 is non-trivial to spoof, since as the
 packet passes through routers towards the destination, the TTL is
 decremented by one per router. As a result, when a router receives a
 packet, it may not be able to determine if the packet’s IP address is
 valid, but it can determine how many router hops away it is (again,
 assuming none of the routers in the path are compromised in such a
 way that they would reset the packet’s TTL).

 Note, however, that while engineering a packet’s TTL such that it has
 a particular value when sourced from an arbitrary location is
 difficult (but not impossible), engineering a TTL value of 255 from
 non-directly connected locations is not possible (again, assuming
 none of the directly connected neighbors are compromised, the packet
 has not been tunneled to the decapsulator, and the intervening
 routers are operating in accordance with RFC 791 [RFC0791]).

5.2. Tunneled Packets

 The security of any tunneling technique depends heavily on
 authentication at the tunnel endpoints, as well as how the tunneled
 packets are protected in flight. Such mechanisms are, however,
 beyond the scope of this memo.

 An exception to the observation that a packet with TTL of 255 is
 difficult to spoof may occur when a protocol packet is tunneled and
 the tunnel is not integrity-protected (i.e., the lower layer is
 compromised).

 When the protocol packet is tunneled directly to the protocol peer
 (i.e., the protocol peer is the decapsulator), the GTSM provides some
 limited added protection as the security depends entirely on the
 integrity of the tunnel.

 For protocol adjacencies over a tunnel, if the tunnel itself is
 deemed secure (i.e., the underlying infrastructure is deemed secure,
 and the tunnel offers degrees of protection against spoofing such as
 keys or cryptographic security), the GTSM can serve as a check that
 the protocol packet did not originate beyond the head-end of the
 tunnel. In addition, if the protocol peer can receive packets for
 the GTSM-protected protocol session from outside the tunnel, the GTSM
 can help thwart attacks from beyond the adjacent router.

 When the tunnel tail-end decapsulates the protocol packet and then
 IP-forwards the packet to a directly connected protocol peer, the TTL
 is decremented as described below. This means that the tunnel

Gill, et al. Standards Track [Page 7]

RFC 5082 GTSM October 2007

 decapsulator is the penultimate node from the GTSM-protected protocol
 peer’s perspective. As a result, the GTSM check protects from
 attackers encapsulating packets to your peers. However, specific
 cases arise when the connection from the tunnel decapsulator node to
 the protocol peer is not an IP forwarding hop, where TTL-decrementing
 does not happen (e.g., layer-2 tunneling, bridging, etc). In the
 IPsec architecture [RFC4301], another example is the use of Bump-in-
 the-Wire (BITW) [BITW].

5.2.1. IP Tunneled over IP

 Protocol packets may be tunneled over IP directly to a protocol peer,
 or to a decapsulator (tunnel endpoint) that then forwards the packet
 to a directly connected protocol peer. Examples of tunneling IP over
 IP include IP-in-IP [RFC2003], GRE [RFC2784], and various forms of
 IPv6-in-IPv4 (e.g., [RFC4213]). These cases are depicted below.

 Peer router ---------- Tunnel endpoint router and peer
 TTL=255 [tunnel] [TTL=255 at ingress]
 [TTL=255 at processing]

 Peer router -------- Tunnel endpoint router ----- On-link peer
 TTL=255 [tunnel] [TTL=255 at ingress] [TTL=254 at ingress]
 [TTL=254 at egress]

 In both cases, the encapsulator (origination tunnel endpoint) is the
 (supposed) sending protocol peer. The TTL in the inner IP datagram
 can be set to 255, since RFC 2003 specifies the following behavior:

 When encapsulating a datagram, the TTL in the inner IP
 header is decremented by one if the tunneling is being
 done as part of forwarding the datagram; otherwise, the
 inner header TTL is not changed during encapsulation.

 In the first case, the encapsulated packet is tunneled directly to
 the protocol peer (also a tunnel endpoint), and therefore the
 encapsulated packet’s TTL can be received by the protocol peer with
 an arbitrary value, including 255.

 In the second case, the encapsulated packet is tunneled to a
 decapsulator (tunnel endpoint), which then forwards it to a directly
 connected protocol peer. For IP-in-IP tunnels, RFC 2003 specifies
 the following decapsulator behavior:

 The TTL in the inner IP header is not changed when decapsulating.
 If, after decapsulation, the inner datagram has TTL = 0, the
 decapsulator MUST discard the datagram. If, after decapsulation,
 the decapsulator forwards the datagram to one of its network

Gill, et al. Standards Track [Page 8]

RFC 5082 GTSM October 2007

 interfaces, it will decrement the TTL as a result of doing normal
 IP forwarding. See also Section 4.4.

 And similarly, for GRE tunnels, RFC 2784 specifies the following
 decapsulator behavior:

 When a tunnel endpoint decapsulates a GRE packet which has an IPv4
 packet as the payload, the destination address in the IPv4 payload
 packet header MUST be used to forward the packet and the TTL of
 the payload packet MUST be decremented.

 Hence the inner IP packet header’s TTL, as seen by the decapsulator,
 can be set to an arbitrary value (in particular, 255). If the
 decapsulator is also the protocol peer, it is possible to deliver the
 protocol packet to it with a TTL of 255 (first case). On the other
 hand, if the decapsulator needs to forward the protocol packet to a
 directly connected protocol peer, the TTL will be decremented (second
 case).

5.2.2. IP Tunneled over MPLS

 Protocol packets may also be tunneled over MPLS Label Switched Paths
 (LSPs) to a protocol peer. The following diagram depicts the
 topology.

 Peer router -------- LSP Termination router and peer
 TTL=255 MPLS LSP [TTL=x at ingress]

 MPLS LSPs can operate in Uniform or Pipe tunneling models. The TTL
 handling for these models is described in RFC 3443 [RFC3443] that
 updates RFC 3032 [RFC3032] in regards to TTL processing in MPLS
 networks. RFC 3443 specifies the TTL processing in both Uniform and
 Pipe Models, which in turn can used with or without penultimate hop
 popping (PHP). The TTL processing in these cases results in
 different behaviors, and therefore are analyzed separately. Please
 refer to Section 3.1 through Section 3.3 of RFC 3443.

 The main difference from a TTL processing perspective between Uniform
 and Pipe Models at the LSP termination node resides in how the
 incoming TTL (iTTL) is determined. The tunneling model determines
 the iTTL: For Uniform Model LSPs, the iTTL is the value of the TTL
 field from the popped MPLS header (encapsulating header), whereas for
 Pipe Model LSPs, the iTTL is the value of the TTL field from the
 exposed header (encapsulated header).

Gill, et al. Standards Track [Page 9]

RFC 5082 GTSM October 2007

 For Uniform Model LSPs, RFC 3443 states that at ingress:

 For each pushed Uniform Model label, the TTL is copied from the
 label/IP-packet immediately underneath it.

 From this point, the inner TTL (i.e., the TTL of the tunneled IP
 datagram) represents non-meaningful information, and at the egress
 node or during PHP, the ingress TTL (iTTL) is equal to the TTL of the
 popped MPLS header (see Section 3.1 of RFC 3443). In consequence,
 for Uniform Model LSPs of more than one hop, the TTL at ingress
 (iTTL) will be less than 255 (x <= 254), and as a result the check
 described in Section 3 of this document will fail.

 The TTL treatment is identical between Short Pipe Model LSPs without
 PHP and Pipe Model LSPs (without PHP only). For these cases, RFC
 3443 states that:

 For each pushed Pipe Model or Short Pipe Model label, the TTL
 field is set to a value configured by the network operator. In
 most implementations, this value is set to 255 by default.

 In these models, the forwarding treatment at egress is based on the
 tunneled packet as opposed to the encapsulation packet. The ingress
 TTL (iTTL) is the value of the TTL field of the header that is
 exposed, that is the tunneled IP datagram’s TTL. The protocol
 packet’s TTL as seen by the LSP termination can therefore be set to
 an arbitrary value (including 255). If the LSP termination router is
 also the protocol peer, it is possible to deliver the protocol packet
 with a TTL of 255 (x = 255).

 Finally, for Short Pipe Model LSPs with PHP, the TTL of the tunneled
 packet is unchanged after the PHP operation. Therefore, the same
 conclusions drawn regarding the Short Pipe Model LSPs without PHP and
 Pipe Model LSPs (without PHP only) apply to this case. For Short
 Pipe Model LSPs, the TTL at egress has the same value with or without
 PHP.

 In conclusion, GTSM checks are possible for IP tunneled over Pipe
 model LSPs, but not for IP tunneled over Uniform model LSPs.
 Additionally, for all tunneling modes, if the LSP termination router
 needs to forward the protocol packet to a directly connected protocol
 peer, it is not possible to deliver the protocol packet to the
 protocol peer with a TTL of 255. If the packet is further forwarded,
 the outgoing TTL (oTTL) is calculated by decrementing iTTL by one.

Gill, et al. Standards Track [Page 10]

RFC 5082 GTSM October 2007

5.3. Onlink Attackers

 As described in Section 2, an attacker directly connected to one
 interface can disturb a GTSM-protected session on the same or another
 interface (by spoofing a GTSM peer’s address) unless ingress
 filtering has been applied on the connecting interface. As a result,
 interfaces that do not include such protection need to be trusted not
 to originate attacks on the router.

5.4. Fragmentation Considerations

 As mentioned, fragmentation may restrict the amount of information
 available for classification. Since non-initial IP fragments do not
 contain Layer 4 information, it is highly likely that they cannot be
 associated with a registered GTSM-enabled session. Following the
 receiving protocol procedures described in Section 3, non-initial IP
 fragments would likely be classified with Unknown trustworthiness.
 And since the IP packet would need to be reassembled in order to be
 processed, the end result is that the initial-fragment of a GTSM-
 enabled session effectively receives the treatment of an Unknown-
 trustworthiness packet, and the complete reassembled packet receives
 the aggregate of the Unknowns.

 In principle, an implementation could remember the TTL of all
 received fragments. Then when reassembling the packet, verify that
 the TTL of all fragments match the required value for an associated
 GTSM-enabled session. In the likely common case that the
 implementation does not do this check on all fragments, then it is
 possible for a legitimate first fragment (which passes the GTSM
 check) to be combined with spoofed non-initial fragments, implying
 that the integrity of the received packet is unknown and unprotected.
 If this check is performed on all fragments at reassembly, and some
 fragment does not pass the GTSM check for a GTSM-enabled session, the
 reassembled packet is categorized as a Dangerous-trustworthiness
 packet and receives the corresponding treatment.

 Further, reassembly requires to wait for all the fragments and
 therefore likely invalidates or weakens the fifth assumption
 presented in Section 2: it may not be possible to classify non-
 initial fragments before going through a scarce resource in the
 system, when fragments need to be buffered for reassembly and later
 processed by a CPU. That is, when classification cannot be done with
 the required granularity, non-initial fragments of GTSM-enabled
 session packets would not use different resource pools.

 Consequently, to get practical protection from fragment attacks,
 operators may need to rate-limit or discard all received fragments.
 As such, it is highly RECOMMENDED for GTSM-protected protocols to

Gill, et al. Standards Track [Page 11]

RFC 5082 GTSM October 2007

 avoid fragmentation and reassembly by manual MTU tuning, using
 adaptive measures such as Path MTU Discovery (PMTUD), or any other
 available method [RFC1191], [RFC1981], or [RFC4821].

5.5. Multi-Hop Protocol Sessions

 GTSM could possibly offer some small, though difficult to quantify,
 degree of protection when used with multi-hop protocol sessions (see
 Appendix A). In order to avoid having to quantify the degree of
 protection and the resulting applicability of multi-hop, we only
 describe the single-hop case because its security properties are
 clearer.

6. Applicability Statement

 GTSM is only applicable to environments with inherently limited
 topologies (and is most effective in those cases where protocol peers
 are directly connected). In particular, its application should be
 limited to those cases in which protocol peers are directly
 connected.

 GTSM will not protect against attackers who are as close to the
 protected station as its legitimate peer. For example, if the
 legitimate peer is one hop away, GTSM will not protect from attacks
 from directly connected devices on the same interface (see
 Section 2.2 for more).

 Experimentation on GTSM’s applicability and security properties is
 needed in multi-hop scenarios. The multi-hop scenarios where GTSM
 might be applicable is expected to have the following
 characteristics: the topology between peers is fairly static and
 well-known, and in which the intervening network (between the peers)
 is trusted.

6.1. Backwards Compatibility

 RFC 3682 [RFC3682] did not specify how to handle "related messages"
 (ICMP errors). This specification mandates setting and verifying
 TTL=255 of those as well as the main protocol packets.

 Setting TTL=255 in related messages does not cause issues for RFC
 3682 implementations.

 Requiring TTL=255 in related messages may have impact with RFC 3682
 implementations, depending on which default TTL the implementation
 uses for originated packets; some implementations are known to use
 255, while 64 or other values are also used. Related messages from
 the latter category of RFC 3682 implementations would be classified

Gill, et al. Standards Track [Page 12]

RFC 5082 GTSM October 2007

 as Dangerous and treated as described in Section 3. This is not
 believed to be a significant problem because protocols do not depend
 on related messages (e.g., typically having a protocol exchange for
 closing the session instead of doing a TCP-RST), and indeed the
 delivery of related messages is not reliable. As such, related
 messages typically provide an optimization to shorten a protocol
 keepalive timeout. Regardless of these issues, given that related
 messages provide a significant attack vector to e.g., reset protocol
 sessions, making this further restriction seems sensible.

7. References

7.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC2003] Perkins, C., "IP Encapsulation within IP", RFC 2003,
 October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2461] Narten, T., Nordmark, E., and W. Simpson, "Neighbor
 Discovery for IP Version 6 (IPv6)", RFC 2461,
 December 1998.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 March 2000.

 [RFC3392] Chandra, R. and J. Scudder, "Capabilities Advertisement
 with BGP-4", RFC 3392, November 2002.

 [RFC3443] Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
 in Multi-Protocol Label Switching (MPLS) Networks",
 RFC 3443, January 2003.

 [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
 for IPv6 Hosts and Routers", RFC 4213, October 2005.

 [RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
 Protocol 4 (BGP-4)", RFC 4271, January 2006.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

Gill, et al. Standards Track [Page 13]

RFC 5082 GTSM October 2007

7.2. Informative References

 [BITW] "Thread: ’IP-in-IP, TTL decrementing when forwarding and
 BITW’ on int-area list, Message-ID:
 <Pine.LNX.4.64.0606020830220.12705@netcore.fi>",
 June 2006, <http://www1.ietf.org/mail-archive/web/
 int-area/current/msg00267.html>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 November 1990.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
 Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
 Encoding", RFC 3032, January 2001.

 [RFC3682] Gill, V., Heasley, J., and D. Meyer, "The Generalized TTL
 Security Mechanism (GTSM)", RFC 3682, February 2004.

 [RFC3704] Baker, F. and P. Savola, "Ingress Filtering for Multihomed
 Networks", BCP 84, RFC 3704, March 2004.

 [RFC4272] Murphy, S., "BGP Security Vulnerabilities Analysis",
 RFC 4272, January 2006.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, March 2007.

Gill, et al. Standards Track [Page 14]

RFC 5082 GTSM October 2007

Appendix A. Multi-Hop GTSM

 NOTE: This is a non-normative part of the specification.

 The main applicability of GTSM is for directly connected peers. GTSM
 could be used for non-directly connected sessions as well, where the
 recipient would check that the TTL is within a configured number of
 hops from 255 (e.g., check that packets have 254 or 255). As such
 deployment is expected to have a more limited applicability and
 different security implications, it is not specified in this
 document.

Appendix B. Changes Since RFC 3682

 o Bring the work on the Standards Track (RFC 3682 was Experimental).

 o New text on GTSM applicability and use in new and existing
 protocols.

 o Restrict the scope to not specify multi-hop scenarios.

 o Explicitly require that related messages (ICMP errors) must also
 be sent and checked to have TTL=255. See Section 6.1 for
 discussion on backwards compatibility.

 o Clarifications relating to fragmentation, security with tunneling,
 and implications of ingress filtering.

 o A significant number of editorial improvements and clarifications.

Authors’ Addresses

 Vijay Gill
 EMail: vijay@umbc.edu

 John Heasley
 EMail: heas@shrubbery.net

 David Meyer
 EMail: dmm@1-4-5.net

 Pekka Savola (editor)
 Espoo
 Finland
 EMail: psavola@funet.fi

 Carlos Pignataro
 EMail: cpignata@cisco.com

Gill, et al. Standards Track [Page 15]

RFC 5082 GTSM October 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Gill, et al. Standards Track [Page 16]

