
Network Working Group T. Gondrom
Request for Comments: 4998 Open Text Corporation
Category: Standards Track R. Brandner
 InterComponentWare AG
 U. Pordesch
 Fraunhofer Gesellschaft
 August 2007

 Evidence Record Syntax (ERS)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 In many scenarios, users must be able prove the existence and
 integrity of data, including digitally signed data, in a common and
 reproducible way over a long and possibly undetermined period of
 time. This document specifies the syntax and processing of an
 Evidence Record, a structure designed to support long-term non-
 repudiation of existence of data.

Gondrom, et al. Standards Track [Page 1]

RFC 4998 ERS August 2007

Table of Contents

 1. Introduction . 3
 1.1. Motivation . 3
 1.2. General Overview and Requirements 4
 1.3. Terminology . 5
 1.4. Conventions Used in This Document 6
 2. Identification and References 7
 2.1. ASN.1 Module Definition 7
 2.1.1. ASN.1 Module Definition for 1988 ASN.1 Syntax 7
 2.1.2. ASN.1 Module Definition for 1997-ASN.1 Syntax 7
 2.2. ASN.1 Imports and Exports 7
 2.2.1. Imports and Exports Conform with 1988 ASN.1 8
 2.2.2. Imports and Exports Conform with 1997-ASN.1 8
 2.3. LTANS Identification 9
 3. Evidence Record . 9
 3.1. Syntax . 9
 3.2. Generation . 10
 3.3. Verification . 11
 4. Archive Timestamp . 11
 4.1. Syntax . 11
 4.2. Generation . 12
 4.3. Verification . 15
 5. Archive Timestamp Chain and Archive Timestamp Sequence 16
 5.1. Syntax . 17
 5.2. Generation . 17
 5.3. Verification . 19
 6. Encryption . 20
 6.1. Syntax . 21
 6.1.1. EncryptionInfo in 1988 ASN.1 21
 6.1.2. EncryptionInfo in 1997-ASN.1 22
 7. Security Considerations 22
 8. References . 23
 8.1. Normative References 23
 8.2. Informative References 24
 Appendix A. Evidence Record Using CMS 26
 Appendix B. ASN.1-Module with 1988 Syntax 27
 Appendix C. ASN.1-Module with 1997 Syntax 29

Gondrom, et al. Standards Track [Page 2]

RFC 4998 ERS August 2007

1. Introduction

1.1. Motivation

 In many application areas of electronic data exchange, a non-
 repudiable proof of the existence of digital data must be possible.
 In some cases, this proof must survive the passage of long periods of
 time. An important example is digitally signed data. Digital
 signatures can be used to demonstrate data integrity and to perform
 source authentication. In some cases, digitally signed data must be
 archived for 30 years or more. However, the reliability of digital
 signatures over long periods is not absolute. During the archival
 period, hash algorithms and public key algorithms can become weak or
 certificates can become invalid. These events complicate the
 reliance on digitally signed data after many years by increasing the
 likelihood that forgeries can be created. To avoid losing the
 desired security properties derived from digital signatures, it is
 necessary to prove that the digitally signed data already existed
 before such a critical event. This can be accomplished using a
 timestamp. However, some timestamps rely upon mechanisms that will
 be subject to the same problems. To counter this problem, timestamps
 are renewed by simply obtaining a new timestamp that covers the
 original data and its timestamps prior to the compromise of
 mechanisms used to generate the timestamps. This document provides a
 syntax to support the periodic renewal of timestamps.

 It is necessary to standardize the data formats and processing
 procedures for such timestamps in order to be able to verify and
 communicate preservation evidence. A first approach was made by IETF
 within [RFC3126], where an optional Archive Timestamp Attribute was
 specified for integration in signatures according to the
 Cryptographic Messages Syntax (CMS) [RFC3852].

 Evidence Record Syntax (ERS) broadens and generalizes this approach
 for data of any format and takes long-term archive service
 requirements [RFC4810] into account -- in particular, the handling of
 large sets of data objects. ERS specifies a syntax for an
 EvidenceRecord, which contains a set of Archive Timestamps and some
 additional data. This Evidence Record can be stored separately from
 the archived data, as a file, or integrated into the archived data,
 i.e., as an attribute. ERS also specifies processes for generation
 and verification of Evidence Records. Appendix A describes the
 integration and use of an EvidenceRecord in context of signed and
 enveloped messages according to the Cryptographic Message Syntax
 (CMS). ERS does not specify a protocol for interacting with a long-
 term archive system. The Long-term Archive Protocol specification
 being developed by the IETF LTANS WG addresses this interface.

Gondrom, et al. Standards Track [Page 3]

RFC 4998 ERS August 2007

1.2. General Overview and Requirements

 ERS is designed to meet the requirements for data structures set
 forth in [RFC4810].

 The basis of the ERS are Archive Timestamps, which can cover a single
 data object (as an RFC3161 compliant timestamp does) or can cover a
 group of data objects. Groups of data objects are addressed using
 hash trees, first described by Merkle [MER1980], combined with a
 timestamp. The leaves of the hash tree are hash values of the data
 objects in a group. A timestamp is requested only for the root hash
 of the hash tree. The deletion of a data object in the tree does not
 influence the provability of others. For any particular data object,
 the hash tree can be reduced to a few sets of hash values, which are
 sufficient to prove the existence of a single data object.
 Similarly, the hash tree can be reduced to prove existence of a data
 group, provided all members of the data group have the same parent
 node in the hash tree. Archive Timestamps are comprised of an
 optional reduced hash tree and a timestamp.

 An EvidenceRecord may contain many Archive Timestamps. For the
 generation of the initial Archive Timestamp, the data objects to be
 timestamped have to be determined. Depending on the context, this
 could be a file or a data object group consisting of multiple files,
 such as a document and its associated digital signature.

 Before the cryptographic algorithms used within the Archive Timestamp
 become weak or timestamp certificates become invalid, Archive
 Timestamps have to be renewed by generating a new Archive Timestamp.
 (Note: Information about the weakening of the security properties of
 public key and hash algorithms, as well as the risk of compromise of
 private keys of Time Stamping Units, has to be closely watched by the
 Long-Term Archive provider or the owner of the data objects himself.
 This information should be gathered by "out-of-band" means and is out
 of scope of this document.) ERS distinguishes two ways for renewal
 of an Archive Timestamp: Timestamp Renewal and Hash-Tree Renewal.

 Depending on the conditions, the respective type of renewal is
 required: The timestamp renewal is necessary if the private key of a
 Timestamping Unit has been compromised, or if an asymmetric algorithm
 or a hash algorithm used for the generation of the timestamps is no
 longer secure for the given key size. If the hash algorithm used to
 build the hash trees in the Archive Timestamp loses its security
 properties, the Hash-Tree Renewal is required.

 In the case of Timestamp Renewal, the timestamp of an Archive
 Timestamp has to be hashed and timestamped by a new Archive
 Timestamp. This mode of renewal can only be used when it is not

Gondrom, et al. Standards Track [Page 4]

RFC 4998 ERS August 2007

 necessary to access the archived data objects covered by the
 timestamp. For example, this simple form of renewal is sufficient if
 the public key algorithm of the timestamp is going to lose its
 security or the timestamp authority certificate is about to expire.
 This is very efficient, in particular, if Archive Timestamping is
 done by an archiving system or service, which implements a central
 management of Archive Timestamps.

 Timestamp renewal is not sufficient if the hash algorithm used to
 build the hash tree of an Archive Timestamp becomes insecure. In the
 case of Hash-Tree Renewal, all evidence data must be accessed and
 timestamped. This includes not only the timestamps but also the
 complete Archive Timestamps and the archived data objects covered by
 the timestamps, which must be hashed and timestamped again by a new
 Archive Timestamp.

1.3. Terminology

 Archived data object: A data unit that is archived and has to be
 preserved for a long time by the Long-term Archive Service.

 Archived data object group: A set of two or more of data objects,
 which for some reason belong together. For example, a document file
 and a signature file could be an archived data object group, which
 represent signed data.

 Archive Timestamp: A timestamp and typically lists of hash values,
 which allow the verification of the existence of several data objects
 at a certain time. (In its most simple variant, when it covers only
 one object, it may only consist of the timestamp.)

 Archive Timestamp Chain: Part of an Archive Timestamp Sequence, it is
 a time-ordered sequence of Archive Timestamps, where each Archive
 Timestamp preserves non-repudiation of the previous Archive
 Timestamp, even after the previous Archive Timestamp becomes invalid.
 Overall non-repudiation is maintained until the new Archive Timestamp
 itself becomes invalid. The process of generating such an Archive
 Timestamp Chain is called Timestamp Renewal.

 Archive Timestamp Sequence: Part of the Evidence Record, it is a
 sequence of Archive Timestamp Chains, where each Archive Timestamp
 Chain preserves non-repudiation of the previous Archive Timestamp
 Chains, even after the hash algorithm used within the previous
 Archive Timestamp’s hash tree became weak. Non-repudiation is
 preserved until the last Archive Timestamp of the last chain becomes
 invalid. The process of generating such an Archive Timestamp
 Sequence is called Hash-Tree Renewal.

Gondrom, et al. Standards Track [Page 5]

RFC 4998 ERS August 2007

 Evidence: Information that may be used to resolve a dispute about
 various aspects of authenticity of archived data objects.

 Evidence record: Collection of evidence compiled for one or more
 given archived data objects over time. An evidence record includes
 all Archive Timestamps (within structures of Archive Timestamp Chains
 and Archive Timestamp Sequences) and additional verification data,
 like certificates, revocation information, trust anchors, policy
 details, role information, etc.

 Long-term Archive (LTA) Service: A service responsible for preserving
 data for long periods of time, including generation and collection of
 evidence, storage of archived data objects and evidence, etc.

 Reduced hash tree: The process of reducing a Merkle hash tree
 [MER1980] to a list of lists of hash values. This is the basis of
 storing the evidence for a single data object.

 Timestamp: A cryptographically secure confirmation generated by a
 Time Stamping Authority (TSA). [RFC3161] specifies a structure for
 timestamps and a protocol for communicating with a TSA. Besides
 this, other data structures and protocols may also be appropriate,
 e.g., such as defined in [ISO-18014-1.2002], [ISO-18014-2.2002],
 [ISO-18014-3.2004], and [ANSI.X9-95.2005].

 An Archive Timestamp relates to a data object, if the hash value of
 this data object is part of the first hash value list of the Archive
 Timestamp. An Archive Timestamp relates to a data object group, if
 it relates to every data object of the group and no other data
 objects. An Archive Timestamp Chain relates to a data object / data
 object group, if its first Archive Timestamp relates to this data
 object/data object group. An Archive Timestamp Sequence relates to a
 data object / data object group, if its first Archive Timestamp Chain
 relates to this data object/data object group.

1.4. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Gondrom, et al. Standards Track [Page 6]

RFC 4998 ERS August 2007

2. Identification and References

2.1. ASN.1 Module Definition

 As many open ASN.1 compilers still support the 1988 syntax, this
 standard offers to support two versions of ASN.1 1997-ASN.1 and 1988-
 ASN.1. (For specification of ASN.1 refer to [CCITT.X208.1988],
 [CCITT.X209.1988], [CCITT.X680.2002] and [CCITT.X690.2002].) This
 specification defines the two ASN.1 modules, one for 1988 conform
 ASN.1 and another in 1997-ASN.1 syntax. Depending on the syntax
 version of your compiler implementation, you can use the imports for
 the 1988 conformant ASN.1 syntax or the imports for the 1997-ASN.1
 syntax. The appendix of this document lists the two complete
 alternative ASN.1 modules. If there is a conflict between both
 modules, the 1988-ASN.1 module precedes.

2.1.1. ASN.1 Module Definition for 1988 ASN.1 Syntax

 1988 ASN.1 Module start

 ERS {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5)
 ltans(11) id-mod(0) id-mod-ers88(2) id-mod-ers88-v1(1) }
 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

2.1.2. ASN.1 Module Definition for 1997-ASN.1 Syntax

 ASN.1 Module start

 ERS {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5)
 ltans(11) id-mod(0) id-mod-ers(1) id-mod-ers-v1(1) }
 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

2.2. ASN.1 Imports and Exports

 The specification exports all definitions and imports various
 definitions. Depending on the ASN.1 syntax version of your
 implementation, you can use the imports for the 1988 conform ASN.1
 syntax below or the imports for the 1997-ASN.1 syntax in
 Section 2.2.2.

Gondrom, et al. Standards Track [Page 7]

RFC 4998 ERS August 2007

2.2.1. Imports and Exports Conform with 1988 ASN.1

 -- EXPORTS ALL --

 IMPORTS

 -- Imports from RFC 3852 Cryptographic Message Syntax
 ContentInfo, Attribute
 FROM CryptographicMessageSyntax2004 -- FROM [RFC3852]
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2004(24) }

 -- Imports from RFC 3280 [RFC3280], Appendix A.1
 AlgorithmIdentifier
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 mod(0) pkix1-explicit(18) }
 ;

2.2.2. Imports and Exports Conform with 1997-ASN.1

 -- EXPORTS ALL --

 IMPORTS

 -- Imports from PKCS-7
 ContentInfo
 FROM PKCS7
 {iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-7(7) modules(0)}

 -- Imports from AuthenticationFramework
 AlgorithmIdentifier
 FROM AuthenticationFramework
 {joint-iso-itu-t ds(5) module(1)
 authenticationFramework(7) 4}

 -- Imports from InformationFramework
 Attribute
 FROM InformationFramework
 {joint-iso-itu-t ds(5) module(1)
 informationFramework(1) 4}
 ;

Gondrom, et al. Standards Track [Page 8]

RFC 4998 ERS August 2007

2.3. LTANS Identification

 This document defines the LTANS object identifier tree root.

 LTANS Object Identifier tree root

 ltans OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) ltans(11) }

3. Evidence Record

 An Evidence Record is a unit of data, which can be used to prove the
 existence of an archived data object or an archived data object group
 at a certain time. The Evidence Record contains Archive Timestamps,
 generated during a long archival period and possibly useful data for
 validation. It is possible to store this Evidence Record separately
 from the archived data objects or to integrate it into the data
 itself. For data types, signed data and enveloped data of the CMS
 integration are specified in Appendix A.

3.1. Syntax

 Evidence Record has the following ASN.1 Syntax:

 ASN.1 Evidence Record

 EvidenceRecord ::= SEQUENCE {
 version INTEGER { v1(1) } ,
 digestAlgorithms SEQUENCE OF AlgorithmIdentifier,
 cryptoInfos [0] CryptoInfos OPTIONAL,
 encryptionInfo [1] EncryptionInfo OPTIONAL,
 archiveTimeStampSequence ArchiveTimeStampSequence
 }

 CryptoInfos ::= SEQUENCE SIZE (1..MAX) OF Attribute

 The fields have the following meanings:

 The ’version’ field indicates the syntax version, for compatibility
 with future revisions of this specification and to distinguish it
 from earlier non-conformant or proprietary versions of the ERS. The
 value 1 indicates this specification. Lower values indicate an
 earlier version of the ERS has been used. An implementation
 conforming to this specification SHOULD reject a version value below
 1.

Gondrom, et al. Standards Track [Page 9]

RFC 4998 ERS August 2007

 digestAlgorithms is a sequence of all the hash algorithms used to
 hash the data object over the archival period. It is the union of
 all digestAlgorithm values from the ArchiveTimestamps contained in
 the EvidenceRecord. The ordering of the values is not relevant.

 cryptoInfos allows the storage of data useful in the validation of
 the archiveTimeStampSequence. This could include possible Trust
 Anchors, certificates, revocation information, or the current
 definition of the suitability of cryptographic algorithms, past and
 present (e.g., RSA 768-bit valid until 1998, RSA 1024-bit valid until
 2008, SHA1 valid until 2010). These items may be added based on the
 policy used. Since this data is not protected within any timestamp,
 the data should be verifiable through other mechanisms. Such
 verification is out of scope of this document.

 encryptionInfo contains the necessary information to support
 encrypted content to be handled. For discussion of syntax, please
 refer to Section 6.1.

 ArchiveTimeStampSequence is a sequence of ArchiveTimeStampChain,
 described in Section 5.

 If the archive data objects were encrypted before generating Archive
 Timestamps but a non-repudiation proof is needed for unencrypted data
 objects, the optional encryptionInfos field contains data necessary
 to unambiguously re-encrypt data objects. If omitted, it means that
 data objects are not encrypted or that a non-repudiation proof for
 the unencrypted data is not required. For further details, see
 Section 6.

3.2. Generation

 The generation of an EvidenceRecord can be described as follows:

 1. Select a data object or group of data objects to archive.

 2. Create the initial Archive Timestamp (see Section 4, "Archive
 Timestamp").

 3. Refresh the Archive Timestamp when necessary, by Timestamp
 Renewal or Hash-Tree Renewal (see Section 5).

 The process of generation depends on whether the Archive Timestamps
 are generated, stored, and managed by a centralized instance. In the
 case of central management, it is possible to collect many data
 objects, build hash trees, store them, and reduce them later. In
 case of local generation, it might be easier to generate a simple
 Archive Timestamp without building hash trees. This can be

Gondrom, et al. Standards Track [Page 10]

RFC 4998 ERS August 2007

 accomplished by omitting the reducedHashtree field from the
 ArchiveTimestamp. In this case, the ArchiveTimestamp covers a single
 data object. Using this approach, it is possible to "convert"
 existing timestamps into ArchiveTimestamps for renewal.

3.3. Verification

 The Verification of an EvidenceRecord overall can be described as
 follows:

 1. Select an archived data object or group of data objects

 2. Re-encrypt data object/data object group, if encryption field is
 used (for details, see Section 6).

 3. Verify Archive Timestamp Sequence (details in Section 4 and
 Section 5).

4. Archive Timestamp

 An Archive Timestamp is a timestamp and a set of lists of hash
 values. The lists of hash values are generated by reduction of an
 ordered Merkle hash tree [MER1980]. The leaves of this hash tree are
 the hash values of the data objects to be timestamped. Every inner
 node of the tree contains one hash value, which is generated by
 hashing the concatenation of the children nodes. The root hash
 value, which represents unambiguously all data objects, is
 timestamped.

4.1. Syntax

 An Archive Timestamp has the following ASN.1 Syntax:

 ASN.1 Archive Timestamp

 ArchiveTimeStamp ::= SEQUENCE {
 digestAlgorithm [0] AlgorithmIdentifier OPTIONAL,
 attributes [1] Attributes OPTIONAL,
 reducedHashtree [2] SEQUENCE OF PartialHashtree OPTIONAL,
 timeStamp ContentInfo}

 PartialHashtree ::= SEQUENCE OF OCTET STRING

 Attributes ::= SET SIZE (1..MAX) OF Attribute

 The fields of type ArchiveTimeStamp have the following meanings:

Gondrom, et al. Standards Track [Page 11]

RFC 4998 ERS August 2007

 digestAlgorithm identifies the digest algorithm and any associated
 parameters used within the reduced hash tree. If the optional field
 digestAlgorithm is not present, the digest algorithm of the timestamp
 MUST be used. Which means, if timestamps according to [RFC3161] are
 used in this case, the content of this field is identical to
 hashAlgorithm of messageImprint field of TSTInfo.

 attributes contains information an LTA might want to provide to
 document individual renewal steps and the creation of the individual
 ArchiveTimeStamps, e.g., applied policies. As the structure of the
 ArchiveTimeStamp may be protected by hash and timestamps, the
 ordering is relevant, which is why a SET is used instead of a
 SEQUENCE.

 reducedHashtree contains lists of hash values, organized in
 PartialHashtrees for easier understanding. They can be derived by
 reducing a hash tree to the nodes necessary to verify a single data
 object. Hash values are represented as octet strings. If the
 optional field reducedHashtree is not present, the ArchiveTimestamp
 simply contains an ordinary timestamp.

 timeStamp should contain the timestamp as defined in Section 1.3.
 (e.g., as defined with TimeStampToken in [RFC3161]). Other types of
 timestamp MAY be used, if they contain time data, timestamped data,
 and a cryptographically secure confirmation from the TSA of these
 data.

4.2. Generation

 The lists of hash values of an Archive Timestamp can be generated by
 building and reducing a Merkle hash tree [MER1980].

 Such a hash tree can be built as follows:

 1. Collect data objects to be timestamped.

 2. Choose a secure hash algorithm H and generate hash values for the
 data objects. These values will be the leaves of the hash tree.

 3. For each data group containing more than one document, its
 respective document hashes are binary sorted in ascending order,
 concatenated, and hashed. The hash values are the complete
 output from the hash algorithm, i.e., leading zeros are not
 removed, with the most significant bit first.

 4. If there is more than one hash value, place them in groups and
 sort each group in binary ascending order. Concatenate these
 values and generate new hash values, which are inner nodes of

Gondrom, et al. Standards Track [Page 12]

RFC 4998 ERS August 2007

 this tree. (If additional hash values are needed, e.g., so that
 all nodes have the same number of children, any data may be
 hashed using H and used.) Repeat this step until there is only
 one hash value, which is the root node of the hash tree.

 5. Obtain a timestamp for this root hash value. The hash algorithm
 in the timestamp request MUST be the same as the hash algorithm
 of the hash tree, or the digestAlgorithm field of the
 ArchiveTimeStamp MUST be present and specify the hash algorithm
 of the hash tree.

 An example of a constructed hash tree for 3 data groups, where data
 groups 1 and 3 only contain one document, and data group 2 contains 3
 documents:

 +------+
 | h123 |
 +------+
 / \
 / \
 +----+ +----+
 | h12| | h3 |
 +----+ +----+
 / \
 / \
 +----+ +-------+
 | h1 | | h2abc |
 +----+ +-------+
 / | \
 / | \
 / | \
 / | \
 +----+ +----+ +----+
 | h2a| | h2b| | h2c|
 +----+ +----+ +----+

 Figure 1: Hash tree

 h1 = H(d1) where d1 is the only data object in data group 1
 h3 = H(d3) where d3 is the only data object in data group 3
 h12 = H(binary sorted and concatenated (h1, h2abc))
 h123 = H(binary sorted and concatenated (h12, h3))
 h2a = H(first data object of data object group 2)
 h2b = H(second data object of data object group 2)
 h2c = H(third data object of data object group 2)
 h2abc = H(binary sorted and concatenated (h2a, h2b, h2c))

Gondrom, et al. Standards Track [Page 13]

RFC 4998 ERS August 2007

 The hash tree can be reduced to lists of hash values, necessary to
 have a proof of existence for a single data object:

 1. Generate hash value h of the data object, using hash algorithm H
 of the hash tree.

 2. Select all hash values, which have the same father node as h.
 Generate the first list of hash values by arranging these hashes,
 in binary ascending order. This will be stored in the structure
 of the PartialHashtree. Repeat this step for the father node of
 all hashes until the root hash is reached. The father nodes
 themselves are not saved in the hash lists -- they are
 computable.

 3. The list of all partialHashtrees finally is the reducedHashtree.
 (All of the specified hash values under the same father node,
 except the father node of the nodes below, are grouped in a
 PartialHashtree. The sequence list of all Partialhashtrees is
 the reducedHashtree.)

 4. Finally, add the timestamp and the info about the hash algorithm
 to get an Archive Timestamp.

 Assuming that the sorted binary ordering of the hashes in Figure 1
 is: h2abc < h1, then the reduced hash tree for data group 1 (d1) is:

 +--------------------------------+
 | +-----------------+ +--------+ |
 | | +------+ +----+ | | +----+ | | | | | | | |
 | | | h2abc| | h1 | | | | h3 | | |
 | | +------+ +----+ | | +----+ | |
 | +-----------------+ +--------+ |
 +--------------------------------+

 Figure 2: Reduced hash tree for data group 1

 The pseudo ASN1 for this reduced hash tree rht1 would look like:
 rht1 = SEQ(pht1, pht2)

 with the PartialHashtrees pht1 and pht2
 pht1 = SEQ (h2abc, h1)
 pht2 = SEQ (h3)

Gondrom, et al. Standards Track [Page 14]

RFC 4998 ERS August 2007

 Assuming the same hash tree as in Figure 1, the reduced hash tree for
 all data objects in data group 2 is identical.

 +---+
 | +----------------------+ +--------+ +--------+ |
 | | +----+ +----+ +----+ | | +----+ | | +----+ | | | | | | | | | | | |
 | | | h2b| | h2c| | h2a| | | | h1 | | | | h3 | | |
 | | +----+ +----+ +----+ | | +----+ | | +----+ | |
 | +----------------------+ +--------+ +--------+ |
 +---+

 Figure 3: Reduced hash tree for data object group 2

 The pseudo ASN1 for this reduced hash tree would look like:
 rht2 = SEQ(pht3, pht4, pht5)

 with the PartialHashtrees pht3, pht4, and pht5
 pht3 = SEQ (h2b, h2c, h2a)
 pht4 = SEQ (h1)
 pht5 = SEQ (h3)

 Note there are no restrictions on the quantity or length of hash-
 value lists. Also note that it is profitable but not required to
 build hash trees and reduce them. An Archive Timestamp may consist
 only of one list of hash-values and a timestamp or only a timestamp
 with no hash value lists.

 The data (e.g. certificates, Certificate Revocation Lists (CRLs), or
 Online Certificate Status Protocol (OCSP) responses) needed to verify
 the timestamp MUST be preserved, and SHOULD be stored in the
 timestamp itself unless this causes unnecessary duplication. A
 timestamp according to [RFC3161] is a CMS object in which
 certificates can be stored in the certificates field and CRLs can be
 stored in the crls field of signed data. OCSP responses can be
 stored as unsigned attributes [RFC3126]. Note [ANSI.X9-95.2005],
 [ISO-18014-2.2002], and [ISO-18014-3.2004], which specify verifiable
 timestamps that do not depend on certificates, CRLs, or OCSP
 responses.

4.3. Verification

 An Archive Timestamp shall prove that a data object existed at a
 certain time, given by timestamp. This can be verified as follows:

 1. Calculate hash value h of the data object with hash algorithm H
 given in field digestAlgorithm of the Archive Timestamp.

Gondrom, et al. Standards Track [Page 15]

RFC 4998 ERS August 2007

 2. Search for hash value h in the first list (partialHashtree) of
 reducedHashtree. If not present, terminate verification process
 with negative result.

 3. Concatenate the hash values of the actual list (partialHashtree)
 of hash values in binary ascending order and calculate the hash
 value h’ with algorithm H. This hash value h’ MUST become a
 member of the next higher list of hash values (from the next
 partialHashtree). Continue step 3 until a root hash value is
 calculated.

 4. Check timestamp. In case of a timestamp according to [RFC3161],
 the root hash value must correspond to hashedMessage, and
 digestAlgorithm must correspond to hashAlgorithm field, both in
 messageImprint field of timeStampToken. In case of other
 timestamp formats, the hash value and digestAlgorithm must also
 correspond to their equivalent fields if they exist.

 If a proof is necessary for more than one data object, steps 1 and 2
 have to be done for all data objects to be proved. If an additional
 proof is necessary that the Archive Timestamp relates to a data
 object group (e.g., a document and all its signatures), it can be
 verified additionally, that only the hash values of the given data
 objects are in the first hash-value list.

5. Archive Timestamp Chain and Archive Timestamp Sequence

 An Archive Timestamp proves the existence of single data objects or
 data object group at a certain time. However, this first Archive
 Timestamp in the first ArchiveTimeStampChain can become invalid, if
 hash algorithms or public key algorithms used in its hash tree or
 timestamp become weak or if the validity period of the timestamp
 authority certificate expires or is revoked.

 Prior to such an event, the existence of the Archive Timestamp or
 archive timestamped data has to be reassured. This can be done by
 creating a new Archive Timestamp. Depending on whether the timestamp
 becomes invalid or the hash algorithm of the hash tree becomes weak,
 two kinds of Archive Timestamp renewal are possible:

 o Timestamp Renewal: A new Archive Timestamp is generated, which
 covers the timestamp of the old one. One or more Archive
 Timestamps generated by Timestamp Renewal yield an Archive
 Timestamp Chain for a data object or data object group.

Gondrom, et al. Standards Track [Page 16]

RFC 4998 ERS August 2007

 o Hash-Tree Renewal: A new Archive Timestamp is generated, which
 covers all the old Archive Timestamps as well as the data objects.
 A new Archive Timestamp Chain is started. One or more Archive
 Timestamp Chains for a data object or data object group yield an
 Archive Timestamp Sequence.

 After the renewal, always only the last (i.e., most recent)
 ArchiveTimeStamp and the algorithms and timestamps used by it must be
 watched regarding expiration and loss of security.

5.1. Syntax

 ArchiveTimeStampChain and ArchiveTimeStampSequence have the following
 ASN.1 Syntax:

 ASN.1 ArchiveTimeStampChain and ArchiveTimeStampSequence

 ArchiveTimeStampChain ::= SEQUENCE OF ArchiveTimeStamp

 ArchiveTimeStampSequence ::= SEQUENCE OF
 ArchiveTimeStampChain

 ArchiveTimeStampChain and ArchiveTimeStampSequence MUST be ordered
 ascending by time of timestamp. Within an ArchiveTimeStampChain, all
 reducedHashtrees of the contained ArchiveTimeStamps MUST use the same
 Hash-Algorithm.

5.2. Generation

 The initial Archive Timestamp relates to a data object or a data
 object group. Before cryptographic algorithms that are used within
 the most recent Archive Timestamp (which is, at the beginning, the
 initial one) become weak or their timestamp certificates become
 invalid, Archive Timestamps have to be renewed by generating a new
 Archive Timestamp.

 In the case of Timestamp Renewal, the content of the timeStamp field
 of the old Archive Timestamp has to be hashed and timestamped by a
 new Archive Timestamp. The new Archive Timestamp MAY not contain a
 reducedHashtree field, if the timestamp only simply covers the
 previous timestamp. However, generally one can collect a number of
 old Archive Timestamps and build the new hash tree with the hash
 values of the content of their timeStamp fields.

 The new Archive Timestamp MUST be added to the ArchiveTimestampChain.
 This hash tree of the new Archive Timestamp MUST use the same hash
 algorithm as the old one, which is specified in the digestAlgorithm

Gondrom, et al. Standards Track [Page 17]

RFC 4998 ERS August 2007

 field of the Archive Timestamp or, if this value is not set (as it is
 optional), within the timestamp itself.

 In the case of Hash-Tree Renewal, the Archive Timestamp and the
 archived data objects covered by the Archive Timestamp must be hashed
 and timestamped again, as described below:

 1. Select a secure hash algorithm H.

 2. Select data objects d(i) referred to by initial Archive Timestamp
 (objects that are still present and not deleted). Generate hash
 values h(i) = H((d(i)). If data groups with more than one
 document are present, then one will have more than one hash for a
 group, i.e., h(i_a), h(i_b).., h(i_n)

 3. atsc(i) is the encoded ArchiveTimeStampSequence, the
 concatenation of all previous Archive Timestamp Chains (in
 chronological order) related to data object d(i). Generate hash
 value ha(i) = H(atsc(i)).
 Note: The ArchiveTimeStampChains used are DER encoded, i.e., they
 contain sequence and length tags.

 4. Concatenate each h(i) with ha(i) and generate hash values
 h(i)’ = H (h(i)+ ha(i)). For multi-document groups, this is:
 h(i_a)’ = H (h(i_a)+ ha(i))
 h(i_b)’ = H (h(i_b)+ ha(i)), etc.

 5. Build a new Archive Time Stamp for each h(i)’. (Hash-tree
 generation and reduction is defined in Section 4.2; note that
 each h(i)’ will be treated in Section 4.2 as the document hash.
 The first hash value list in the reduced hash tree should only
 contain h(i)’. For a multi-document group, the first hash value
 list will contain the new hashes for all the documents in this
 group, i.e., h(i_a)’, h(i_b)’.., h(i_n)’)

 6. Create new ArchiveTimeStampChain containing the new Archive
 Timestamp and append this ArchiveTimeStampChain to the
 ArchiveTimeStampSequence.

Gondrom, et al. Standards Track [Page 18]

RFC 4998 ERS August 2007

 +-------+
 | h123’ |
 +-------+
 / \
 / \
 +-----+ +----+
 | h12’| | h3’|
 +-----+ +----+
 / \
 / \
 +----+ +--------+
 | h1’| | h2abc’ |
 +----+ +--------+
 / | \
 / | \
 / | \
 / | \
 +----+ +----+ +----+
 |h2a’| |h2b’| |h2c’|
 +----+ +----+ +----+

 Figure 4: Hash tree from Hash-Tree Renewal

 Let H be the new secure hash algorithm
 ha(1), ha(2), ha(3) are as defined in step 4 above
 h1’ = H(binary sorted and concatenated (H(d1), ha(1)))
 d1 is the original document from data group 1
 h3’ = H(binary sorted and concatenated (H(d3), ha(3)))
 d3 is the original document from data group 3

 h2a = H(first data object of data object group 2)
 ...
 h2c = H(third data object of data object group 2)
 h2a’ = H(binary sorted and concatenated (h2a, ha(2)))
 ...
 h2c’ = H(binary sorted and concatenated (h2c, ha(2)))

 h2abc = H(binary sorted and concatenated (h2a’, h2b’, h2c’))

 ArchiveTimeStamps that are not necessary for verification should not
 be added to an ArchiveTimeStampChain or ArchiveTimeStampSequence.

5.3. Verification

 To get a non-repudiation proof that a data object existed at a
 certain time, the Archive Timestamp Chains and their relations to
 each other and to the data objects have to be proved:

Gondrom, et al. Standards Track [Page 19]

RFC 4998 ERS August 2007

 1. Verify that the first Archive Timestamp of the first
 ArchiveTimestampChain (the initial Archive Timestamp) contains
 the hash value of the data object.

 2. Verify each ArchiveTimestampChain. The first hash value list of
 each ArchiveTimeStamp MUST contain the hash value of the
 timestamp of the Archive Timestamp before. Each Archive
 Timestamp MUST be valid relative to the time of the following
 Archive Timestamp. All Archive Timestamps within a chain MUST
 use the same hash algorithm and this algorithm MUST be secure at
 the time of the first Archive Timestamp of the following
 ArchiveTimeStampChain.

 3. Verify that the first hash value list (partialHashtree) of the
 first Archive Timestamp of all other ArchiveTimeStampChains
 contains a hash value of the concatenation of the data object
 hash and the hash value of all older ArchiveTimeStampChain.
 Verify that this Archive Timestamp was generated before the last
 Archive Timestamp of the ArchiveTimeStampChain became invalid.

 In order to complete the non-repudiation proof for the data objects,
 the last Archive Timestamp has to be valid at the time the
 verification is performed.

 If the proof is necessary for more than one data object, steps 1 and
 3 have to be done for all these data objects. To prove the Archive
 Timestamp Sequence relates to a data object group, verify that each
 first Archive Timestamp of the first ArchiveTimeStampChain of the
 ArchiveTimeStampSequence of each data object does not contain other
 hash values in its first hash value list (than the hash values of the
 other data objects).

6. Encryption

 If service providers are used to archive data and generate Archive
 Timestamps, it might be desirable or required that clients only send
 encrypted data to be archived. However, this means that evidence
 records refer to encrypted data objects. ERS directly protects the
 integrity of the bit-stream and this freezes the bit structure at the
 time of archiving. This precludes changing of the encryption scheme
 during the archival period, e.g., if the encryption scheme is no
 longer secure, a change is not possible without losing the integrity
 proof of the EvidenceRecord. In such cases, the services of a data
 transformation (and by this also possible re-encryption) done by a
 notary service might be a possible solution. To avoid problems when
 using the evidence records in the future, additional special
 precautions have to be taken:

Gondrom, et al. Standards Track [Page 20]

RFC 4998 ERS August 2007

 o Evidence generated to prove the existence of encrypted data cannot
 always be relied upon to prove the existence of unencrypted data.
 It may be possible to choose an algorithm or a key for decryption
 that is not the algorithm or key used for encryption. In this
 case, the evidence record would not be a non-repudiation proof for
 the unencrypted data. Therefore, only encryption methods should
 be used that make it possible to prove that archive-timestamped
 encrypted data objects unambiguously represent unencrypted data
 objects. All data necessary to prove unambiguous representation
 should be included in the archived data objects. (Note: In
 addition, the long-term security of the encryption schemes should
 be analyzed to determine if it could be used to create collision
 attacks.)

 o When a relying party uses an evidence record to prove the
 existence of encrypted data objects, it may be desirable for
 clients to only store the unencrypted data objects and to delete
 the encrypted copy. In order to use the evidence record, it must
 then be possible to unambiguously re-encrypt the unencrypted data
 to get exactly the data that was originally archived. Therefore,
 additional data necessary to re-encrypt data objects should be
 inserted into the evidence record by the client, i.e., the LTA
 never sees these values.

 An extensible structure is defined to store the necessary parameters
 of the encryption methods. The use of the specified
 encryptionInfoType and encryptionInfoValue may be heavily dependent
 on the mechanisms and has to be defined in other specifications.

6.1. Syntax

 The EncryptionInfo field in EvidenceRecord has the following syntax
 depending on the version of ASN.1.

6.1.1. EncryptionInfo in 1988 ASN.1

 1988 ASN.1 EncryptionInfo

 EncryptionInfo ::= SEQUENCE {
 encryptionInfoType OBJECT IDENTIFIER,
 encryptionInfoValue ANY DEFINED BY encryptionInfoType
 }

Gondrom, et al. Standards Track [Page 21]

RFC 4998 ERS August 2007

6.1.2. EncryptionInfo in 1997-ASN.1

 1997-ASN.1 EncryptionInfo

 EncryptionInfo ::= SEQUENCE {
 encryptionInfoType ENCINFO-TYPE.&id
 ({SupportedEncryptionAlgorithms}),
 encryptionInfoValue ENCINFO-TYPE.&Type
 ({SupportedEncryptionAlgorithms}{@encryptionInfoType})
 }

 ENCINFO-TYPE ::= TYPE-IDENTIFIER

 SupportedEncryptionAlgorithms ENCINFO-TYPE ::= {...}

 encryptionInfo contains information necessary for the unambiguous
 re-encryption of unencrypted content so that it exactly matches with
 the encrypted data objects protected by the EvidenceRecord.

7. Security Considerations

 Secure Algorithms

 Cryptographic algorithms and parameters that are used within Archive
 Timestamps must be secure at the time of generation. This concerns
 the hash algorithm used in the hash lists of Archive Timestamp as
 well as hash algorithms and public key algorithms of the timestamps.
 Publications regarding security suitability of cryptographic
 algorithms ([NIST.800-57-Part1.2006] and [ETSI-TS102176-1-2005]) have
 to be considered by verifying components. A generic solution for
 automatic interpretation of security suitability policies in
 electronic form is desirable but not the subject of this
 specification.

 Redundancy

 Retrospectively, certain parts of an Archive Timestamp may turn out
 to have lost their security suitability before this has been publicly
 known. For example, retrospectively, it may turn out that algorithms
 have lost their security suitability, and that even TSAs are
 untrustworthy. This can result in Archive Timestamps using those
 losing their probative force. Many TSAs are using the same signature
 algorithms. While the compromise of a private key will only affect
 the security of one specific TSA, the retrospective loss of security
 of a signature algorithm will have impact on a potentially large
 number of TSAs at once. To counter such risks, it is recommended to

Gondrom, et al. Standards Track [Page 22]

RFC 4998 ERS August 2007

 generate and manage at least two redundant Evidence Records with
 ArchiveTimeStampSequences using different hash algorithms and
 different TSAs using different signature algorithms.

 To best achieve and manage this redundancy, it is recommended to
 manage the Archive Timestamps in a central LTA.

 Secure Timestamps

 Archive Timestamping depends upon the security of normal time
 stamping. Security requirements for Time Stamping Authorities stated
 in security policies have to be met. Renewed Archive Timestamps
 should have the same or higher quality as the initial Archive
 Timestamp. Archive Timestamps used for signature renewal of signed
 data, should have the same or higher quality than the maximum quality
 of the signatures.

 Secure Encryption

 For non-repudiation proof, it does not matter whether encryption has
 been broken or not. Nevertheless, users should keep secret their
 private keys and randoms used for encryption and disclose them only
 if needed, e.g., in a lawsuit to a judge or expert. They should use
 encryption algorithms and parameters that are prospected to be
 unbreakable as long as confidentiality of the archived data is
 important.

8. References

8.1. Normative References

 [CCITT.X208.1988]
 International Telephone and Telegraph Consultative
 Committee, "Specification of Abstract Syntax Notation One
 (ASN.1)", CCITT Recommendation X.208, November 1988.

 [CCITT.X209.1988]
 International Telephone and Telegraph Consultative
 Committee, "Specification of Basic Encoding Rules for
 Abstract Syntax Notation One (ASN.1)",
 CCITT Recommendation X.209, 1988.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3161] Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,
 "Internet X.509 Public Key Infrastructure Time-Stamp
 Protocol (TSP)", RFC 3161, August 2001.

Gondrom, et al. Standards Track [Page 23]

RFC 4998 ERS August 2007

 [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [RFC3852] Housley, R., "Cryptographic Message Syntax (CMS)",
 RFC 3852, July 2004.

8.2. Informative References

 [ANSI.X9-95.2005]
 American National Standard for Financial Services,
 "Trusted Timestamp Management and Security", ANSI X9.95,
 June 2005.

 [CCITT.X680.2002]
 International Telephone and Telegraph Consultative
 Committee, "Abstract Syntax Notation One (ASN.1):
 Specification of basic notation", CCITT Recommendation
 X.680, July 2002.

 [CCITT.X690.2002]
 International Telephone and Telegraph Consultative
 Committee, "ASN.1 encoding rules: Specification of basic
 encoding Rules (BER), Canonical encoding rules (CER) and
 Distinguished encoding rules (DER)", CCITT Recommendation
 X.690, July 2002.

 [ETSI-TS102176-1-2005]
 European Telecommunication Standards Institute (ETSI),
 Electronic Signatures and Infrastructures (ESI);,
 "Algorithms and Parameters for Secure Electronic
 Signatures; Part 1: Hash functions and asymmetric
 algorithms", ETSI TS 102 176-1 V1.2.1, July 2005.

 [ISO-18014-1.2002]
 ISO/IEC JTC 1/SC 27, "Time stamping services - Part 1:
 Framework", ISO ISO-18014-1, February 2002.

 [ISO-18014-2.2002]
 ISO/IEC JTC 1/SC 27, "Time stamping services - Part 2:
 Mechanisms producing independent tokens", ISO ISO-18014-2,
 December 2002.

 [ISO-18014-3.2004]
 ISO/IEC JTC 1/SC 27, "Time stamping services - Part 3:
 Mechanisms producing linked tokens", ISO ISO-18014-3,
 February 2004.

Gondrom, et al. Standards Track [Page 24]

RFC 4998 ERS August 2007

 [MER1980] Merkle, R., "Protocols for Public Key Cryptosystems,
 Proceedings of the 1980 IEEE Symposium on Security and
 Privacy (Oakland, CA, USA)", pages 122-134, April 1980.

 [NIST.800-57-Part1.2006]
 National Institute of Standards and Technology,
 "Recommendation for Key Management - Part 1: General
 (Revised)", NIST 800-57 Part1, May 2006.

 [RFC3126] Pinkas, D., Ross, J., and N. Pope, "Electronic Signature
 Formats for long term electronic signatures", RFC 3126,
 September 2001.

 [RFC4810] Wallace, C., Pordesch, U., and R. Brandner, "Long-Term
 Archive Service Requirements", RFC 4810, March 2007.

Gondrom, et al. Standards Track [Page 25]

RFC 4998 ERS August 2007

Appendix A. Evidence Record Using CMS

 An Evidence Record can be added to signed data or enveloped data in
 order to transfer them in a conclusive way. For CMS, a sensible
 place to store such an Evidence Record is an unsigned attribute
 (signed message) or an unprotected attribute (enveloped message).

 One advantage of storing the Evidence Record within the CMS structure
 is that all data can be transferred in one conclusive file and is
 directly connected. The documents, the signatures, and their
 Evidence Records can be bundled and managed together. The
 description in the appendix contains the normative specification of
 how to integrate ERS in CMS structures.

 The Evidence Record also contains information about the selection
 method that was used for the generation of the data objects to be
 timestamped. In the case of CMS, two selection methods can be
 distinguished:

 1. The CMS Object as a whole including contentInfo is selected as
 data object and archive timestamped. This means that a hash
 value of the CMS object MUST be located in the first list of hash
 values of Archive Timestamps.

 2. The CMS Object and the signed or encrypted content are included
 in the Archive Timestamp as separated objects. In this case, the
 hash value of the CMS Object as well as the hash value of the
 content have to be stored in the first list of hash values as a
 group of data objects.

 However, other selection methods could also be applied, for instance,
 as in [RFC3126].

 In the case of the two selection methods defined above, the Evidence
 Record has to be added to the first signature of the CMS Object of
 signed data. Depending on the selection method, the following Object
 Identifiers are defined for the Evidence Record:

 ASN.1 Internal EvidenceRecord Attribute

 id-aa-er-internal OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) id-aa(2) 49 }

 ASN.1 External EvidenceRecord Attribute

 id-aa-er-external OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) id-aa(2) 50 }

Gondrom, et al. Standards Track [Page 26]

RFC 4998 ERS August 2007

 The attributes SHOULD only occur once. If they appear several times,
 they have to be stored within the first signature in chronological
 order.

 If the CMS object doesn’t have the EvidenceRecord Attributes -- which
 indicates that the EvidenceRecord has been provided externally -- the
 archive timestamped data object has to be generated over the complete
 CMS object within the existing coding.

 In case of verification, if only one EvidenceRecord is contained in
 the CMS object, the hash value must be generated over the CMS object
 without the one EvidenceRecord. This means that the attribute has to
 be removed before verification. The length of fields containing tags
 has to be adapted. Apart from that, the existing coding must not be
 modified.

 If several Archive Timestamps occur, the data object has to be
 generated as follows:

 o During verification of the first (in chronological order)
 EvidenceRecord, all EvidenceRecord have to be removed in order to
 generate the data object.

 o During verification of the nth one EvidenceRecord, the first n-1
 attributes should remain within the CMS object.

 o The verification of the nth one EvidenceRecord must result in a
 point of time when the document must have existed with the first n
 attributes. The verification of the n+1th attribute must prove
 that this requirement has been met.

Appendix B. ASN.1-Module with 1988 Syntax

 ASN.1-Module

 ERS {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5)
 ltans(11) id-mod(0) id-mod-ers88(2) id-mod-ers88-v1(1) }
 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 -- Imports from RFC 3852 Cryptographic Message Syntax
 ContentInfo, Attribute

Gondrom, et al. Standards Track [Page 27]

RFC 4998 ERS August 2007

 FROM CryptographicMessageSyntax2004 -- FROM [RFC3852]
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2004(24) }

 -- Imports from RFC 3280 [RFC3280], Appendix A.1
 AlgorithmIdentifier
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 mod(0) pkix1-explicit(18) }
 ;

 ltans OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) ltans(11) }

 EvidenceRecord ::= SEQUENCE {
 version INTEGER { v1(1) } ,
 digestAlgorithms SEQUENCE OF AlgorithmIdentifier,
 cryptoInfos [0] CryptoInfos OPTIONAL,
 encryptionInfo [1] EncryptionInfo OPTIONAL,
 archiveTimeStampSequence ArchiveTimeStampSequence
 }

 CryptoInfos ::= SEQUENCE SIZE (1..MAX) OF Attribute

 ArchiveTimeStamp ::= SEQUENCE {
 digestAlgorithm [0] AlgorithmIdentifier OPTIONAL,
 attributes [1] Attributes OPTIONAL,
 reducedHashtree [2] SEQUENCE OF PartialHashtree OPTIONAL,
 timeStamp ContentInfo}

 PartialHashtree ::= SEQUENCE OF OCTET STRING

 Attributes ::= SET SIZE (1..MAX) OF Attribute

 ArchiveTimeStampChain ::= SEQUENCE OF ArchiveTimeStamp

 ArchiveTimeStampSequence ::= SEQUENCE OF
 ArchiveTimeStampChain

 EncryptionInfo ::= SEQUENCE {

Gondrom, et al. Standards Track [Page 28]

RFC 4998 ERS August 2007

 encryptionInfoType OBJECT IDENTIFIER,
 encryptionInfoValue ANY DEFINED BY encryptionInfoType}

 id-aa-er-internal OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) id-aa(2) 49 }

 id-aa-er-external OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) id-aa(2) 50 }

 END

Appendix C. ASN.1-Module with 1997 Syntax

 ASN.1-Module

 ERS {iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5)
 ltans(11) id-mod(0) id-mod-ers(1) id-mod-ers-v1(1) }
 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 -- Imports from PKCS-7
 ContentInfo
 FROM PKCS7
 {iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-7(7) modules(0)}

 -- Imports from AuthenticationFramework
 AlgorithmIdentifier
 FROM AuthenticationFramework
 {joint-iso-itu-t ds(5) module(1)
 authenticationFramework(7) 4}

 -- Imports from InformationFramework
 Attribute
 FROM InformationFramework
 {joint-iso-itu-t ds(5) module(1)
 informationFramework(1) 4}
 ;

 ltans OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) ltans(11) }

Gondrom, et al. Standards Track [Page 29]

RFC 4998 ERS August 2007

 EvidenceRecord ::= SEQUENCE {
 version INTEGER { v1(1) } ,
 digestAlgorithms SEQUENCE OF AlgorithmIdentifier,
 cryptoInfos [0] CryptoInfos OPTIONAL,
 encryptionInfo [1] EncryptionInfo OPTIONAL,
 archiveTimeStampSequence ArchiveTimeStampSequence
 }

 CryptoInfos ::= SEQUENCE SIZE (1..MAX) OF Attribute
 (WITH COMPONENTS {
 ...,
 valuesWithContext ABSENT
 })

 ArchiveTimeStamp ::= SEQUENCE {
 digestAlgorithm [0] AlgorithmIdentifier OPTIONAL,
 attributes [1] Attributes OPTIONAL,
 reducedHashtree [2] SEQUENCE OF PartialHashtree OPTIONAL,
 timeStamp ContentInfo}

 PartialHashtree ::= SEQUENCE OF OCTET STRING

 Attributes ::= SET SIZE (1..MAX) OF Attribute
 (WITH COMPONENTS {
 ...,
 valuesWithContext ABSENT
 })

 ArchiveTimeStampChain ::= SEQUENCE OF ArchiveTimeStamp

 ArchiveTimeStampSequence ::= SEQUENCE OF
 ArchiveTimeStampChain

 EncryptionInfo ::= SEQUENCE {
 encryptionInfoType ENCINFO-TYPE.&id
 ({SupportedEncryptionAlgorithms}),
 encryptionInfoValue ENCINFO-TYPE.&Type
 ({SupportedEncryptionAlgorithms}{@encryptionInfoType})
 }

 ENCINFO-TYPE ::= TYPE-IDENTIFIER

 SupportedEncryptionAlgorithms ENCINFO-TYPE ::= {...}

 id-aa-er-internal OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) id-aa(2) 49 }

 id-aa-er-external OBJECT IDENTIFIER ::= { iso(1) member-body(2)

Gondrom, et al. Standards Track [Page 30]

RFC 4998 ERS August 2007

 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) id-aa(2) 50 }

 END

Authors’ Addresses

 Tobias Gondrom
 Open Text Corporation
 Werner-von-Siemens-Ring 20
 Grasbrunn, Munich D-85630
 Germany

 Phone: +49 (0) 89 4629-1816
 Fax: +49 (0) 89 4629-33-1816
 EMail: tobias.gondrom@opentext.com

 Ralf Brandner
 InterComponentWare AG
 Industriestra?e 41
 Walldorf D-69119
 Germany

 EMail: ralf.brandner@intercomponentware.com

 Ulrich Pordesch
 Fraunhofer Gesellschaft
 Rheinstra?e 75
 Darmstadt D-64295
 Germany

 EMail: ulrich.pordesch@zv.fraunhofer.de

Gondrom, et al. Standards Track [Page 31]

RFC 4998 ERS August 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Gondrom, et al. Standards Track [Page 32]

