Net wor k Wor ki ng Group S. Legg
Request for Comments: 4911 eB2Bcom
Cat egory: Experi nental July 2007

Encodi ng Instructions for the
Robust XML Encodi ng Rul es (RXER)

Status of This Meno

This meno defines an Experinental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Di scussi on and suggestions for inprovenment are requested.
Distribution of this nenp is unlinited.

Copyright Notice
Copyright (C The | ETF Trust (2007).

Abstract

Thi s docunent defines encoding instructions that nay be used in an
Abstract Syntax Notation One (ASN. 1) specification to alter how ASN. 1
val ues are encoded by the Robust XM. Encodi ng Rul es (RXER) and
Canoni cal Robust XML Encodi ng Rul es (CRXER), for exanple, to encode a
component of an ASN. 1 val ue as an Extensi bl e Markup Language (XM)
attribute rather than as a child element. Sonme of these encoding
instructions also affect how an ASN. 1 specification is transl ated
into an Abstract Syntax Notation X (ASN. X) specification. Encoding
instructions that allow an ASN. 1 specification to reference
definitions in other XML scherma | anguages are al so defi ned.

Legg Experi ment al [Page 1]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Tabl e of Contents

1. IntroduCti On 3
2. CONVENLI ONS ..o 3
3. Defini ti ONS . 4
4. Notation for RXER Encoding Instructions 4
5. Conponent Encoding Instructions 6
6. Reference Encoding Instructions i, 8
7. Expanded Nanmes of Components, 10
8. The ATTRIBUTE Encoding Instruction 11
9. The ATTRIBUTE-REF Encoding Instruction 12
10. The COVPONENT- REF Encoding Instruction 13
11. The ELEMENT- REF Encoding Instruction 16
12. The LIST Encoding Instruction, 17
13. The NAME Encoding Instruction 19
14. The REF- AS-ELEMENT Encoding Instruction 19
15. The REF-AS-TYPE Encoding Instruction 20
16. The SCHEMA-I DENTITY Encoding Instruction 22
17. The SI MPLE- CONTENT Encoding Instruction 22
18. The TARGET- NAMESPACE Encoding Instruction 23
19. The TYPE- AS-VERSION Encoding Instruction 24
20. The TYPE-REF Encoding Instruction, 25
21. The UNION Encoding Instruction 26
22. The VALUES Encoding Instruction 0., 27
23. Insertion Encoding Instructions 29
24. The VERSI ON-|1 NDI CATOR Encoding Instruction 32
25. The GROUP Encoding Instruction, 34
25.1. Unanbi guous Encodings 36
25.1.1. Grammar Construction 37

25.1.2. Unique Conponent Attribution 47

25.1.3. Deterministic Gammars i 52

25.1.4. Attributes in Unknown Extensions 54

26. Security Considerati Ons 56
27. References 56
27.1. Normative References 56
27.2. Informative References i, 57
Appendi x A, GROUP Encoding Instruction Exanples 58
Appendi x B. Insertion Encoding Instruction Exanples 74
Appendi x C. Extension and Versioning Examples 87

Legg Experi ment al [Page 2]

RFC 4911 Encodi ng I nstructions for RXER July 2007

1

I ntroduction

Thi s docunent defines encoding instructions [X 680-1] that may be
used in an Abstract Syntax Notation One (ASN. 1) [X 680] specification
to alter how ASN. 1 val ues are encoded by the Robust XM. Encodi ng

Rul es (RXER) [RXER] and Canoni cal Robust XM. Encodi ng Rul es (CRXER)
[RXER], for exanple, to encode a conponent of an ASN. 1 val ue as an
Ext ensi bl e Markup Language (XM.) [XM.10] attribute rather than as a
child elenent. Some of these encoding instructions also affect how
an ASN. 1 specification is translated into an Abstract Syntax Notation
X (ASN. X) specification [ASN. X].

Thi s docunent al so defines encoding instructions that allow an ASN. 1
specification to incorporate the definitions of types, elenents, and
attributes in specifications witten in other XML schena | anguages.
Ref erences to XML Schema [XSD1] types, elenents, and attri butes,
RELAX NG [RNG naned patterns and el enents, and XML document type
definition (DTD) [XML10] el enent types are supported.

In nost cases, the effect of an encoding instruction is only briefly
mentioned in this document. The precise effects of these encoding
instructions are described fully in the specifications for RXER
[RXER] and ASN. X [ASN. X], at the points where they apply.

Conventi ons

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED' and "MAY" in this document are
to be interpreted as described in BCP 14, RFC 2119 [BCP14]. The key
word "OPTIONAL" is exclusively used with its ASN. 1 neani ng.

Thr oughout this docunment "type" shall be taken to nean an ASN. 1 type,
and "val ue" shall be taken to nean an ASN. 1 abstract val ue, unless
qual i fied otherw se

A reference to an ASN. 1 production [X 680] (e.g., Type, NanedType) is
a reference to text in an ASN. 1 specification corresponding to that
production. Throughout this docunent, "conponent" is synonynous wth
NamedType

Thi s docunent uses the namespace prefix "xsi:" to stand for the
nanespace nane [XMLNS10] "http://ww. w3. or g/ 2001/ XM_.Schena- i nst ance"

Exanpl e ASN. 1 definitions in this document are assumed to be defined
in an ASN. 1 nodule with a TagDefault of "AUTOVATIC TAGS' and an
Encodi ngRef erenceDefault [X 680-1] of "RXER | NSTRUCTI ONS".

Legg Experi ment al [Page 3]

RFC 4911 Encodi ng I nstructions for RXER July 2007

3.

Definitions

The following definition of base type is used in specifying a nunber
of encodi ng instructions.

Definition (base type): If a type, T, is a constrained type, then the
base type of T is the base type of the type that is constrained; else
if Tis a prefixed type, then the base type of T is the base type of
the type that is prefixed; else if T is a type notation that

ref erences or denotes another type (i.e., DefinedType,

hj ect A assFi el dType, Sel ecti onType, TypeFronthject, or

Val ueSet Fronthj ects), then the base type of T is the base type of the
type that is referenced or denoted; otherw se, the base type of Tis
T itself.

Aside: A tagged type is a special case of a prefixed type.
Not ati on for RXER Encodi ng Instructions

The grammar of ASN. 1 pernmits the application of encoding instructions
[X. 680-1], through type prefixes and encoding control sections, that
nmodi fy how abstract val ues are encoded by noni nated encodi ng rul es.

The generic notation for type prefixes and encodi ng control sections
is defined by the ASN. 1 basic notation [X 680] [X 680-1], and

i ncl udes an encoding reference to identify the specific encoding
rules that are affected by the encoding instruction.

The encoding reference that identifies the Robust XML Encodi ng rul es
is literally RXER. An RXER encoding instruction applies equally to
bot h RXER and CRXER encodi ngs.

The specific notation for an encoding instruction for a specific set
of encoding rules is left to the specification of those encodi ng
rules. Consequently, this conmpani on docunent to the RXER
specification [RXER] defines the notation for RXER encodi ng
instructions. Specifically, it elaborates the Encodingl nstruction
and Encodi ngl nstructi onAssi gnnment Li st pl acehol der productions of the
ASN. 1 basic notation.

In the context of the RXER encoding reference, the
Encodi ngl nstruction production is defined as foll ows, using the
conventions of the ASN. 1 basic notation

Legg Experi ment al [Page 4]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Encodi ngl nstruction ::=
Attributelnstruction
AttributeReflnstruction
Component Ref I nstructi on |
El ement Ref I nstruction |
Groupl nstruction
I nsertionslnstruction
Li stl nstruction |
Namel nstruction
Ref AsEl enent | nstruction |
Ref AsTypel nstruction
Si npl eContent I nstruction |
TypeAsVer si onl nstructi on
TypeRef I nstruction
Uni onl nstruction |
Val uesl nstruction |
Ver si onl ndi catorlnstruction

In the context of the RXER encoding reference, the
Encodi ngl nstructi onAssi gnnent Li st production (which only appears in
an encodi ng control section) is defined as foll ows:

Encodi ngl nst ructi onAssi gnnentList ::=
Schenal dentitylnstruction ?
Tar get Nanespacel nstruction ?
TopLevel Conponents ?

TopLevel Conponents ::= TopLevel Component ToplLevel Conponents ?
TopLevel Conponent ::= "COVPONENT" NanedType

Definition (top-level NamedType): A NamedType is a top-Ileve
NamedType (equivalently, a top-level conponent) if and only if it is
t he NanedType in a TopLevel Conponent. A NanedType nested within the
Type of the NanedType of a ToplLevel Conponent is not itself a

top-1 evel NamedType.

Asi de: Specification witers should note that non-trivial types
defined within a top-1evel NamedType will not be visible to ASN. 1
tool s that do not understand RXER

Al t hough a top-1level NanedType only appears in an RXER encodi ng
control section, the default encoding reference for the nodule
[X.680-1] still applies when parsing a top-level NanedType.

Each top-1evel NanmedType within a nodule SHALL have a distinct
identifier.

Legg Experi ment al [Page 5]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The NanedType production is defined by the ASN.1 basic notation. The
ot her productions are described in subsequent sections and make use
of the follow ng productions:

NCNaneVal ue ::= Val ue
AnyURI Val ue ::= Val ue
NaneVval ue :: = Val ue
NanmeVal ue ::= Val ue

The Val ue production is defined by the ASN. 1 basic notation

The governing type for the Value in an NCNaneVal ue is the NCNanme type
fromthe Additional Basi cDefinitions nodul e [RXER].

The governing type for the Value in an AnyURI Val ue is the AnyURl type
fromthe Additional Basi cDefinitions nodul e.

The governing type for the Value in a QNaneVal ue is the QNanme type
fromthe Additional Basi cDefinitions nodul e.

The governing type for the Value in a NaneVal ue is the Nanme type from
t he Additional Basi cDefinitions nodul e.

The Val ue in an NCNaneVal ue, AnyURI Val ue, QNaneVal ue, or NaneVal ue
SHALL NOT be a DunmyReference [X 683] and SHALL NOT textually contain
a nested DumyRef er ence.

Asi de: Thus, encoding instructions are not pernitted to be
paraneterized in any way. This restriction will becone inportant
if a future specification for ASN. X explicitly represents
paraneterized definitions and paraneterized references instead of
expandi ng out paraneterized references as in the current
specification. A paraneterized definition could not be directly
translated into ASN. X if it contai ned encoding instructions that
were not fully specified.

5. Conponent Encodi ng I nstructions

Certain of the RXER encoding instructions are categorized as
conponent encoding instructions. The conponent encoding instructions
are the ATTRI BUTE, ATTRI BUTE- REF, COVPONENT- REF, GROUP, ELEMENT- REF,
NAME, REF- AS- ELEMENT, SI MPLE-CONTENT, TYPE- AS-VERSI ON, and
VERSI ON- | NDI CATOR encodi ng i nstructions (whose notations are

descri bed respectively by Attributelnstruction
AttributeReflnstruction, ConponentReflnstruction, G ouplnstruction

Legg Experi ment al [Page 6]

RFC 4911 Encodi ng I nstructions for RXER July 2007

El enent Ref I nstructi on, Nanel nstruction, Ref AsEl ementlnstruction
Si mpl eCont ent | nstruction, TypeAsVersionlnstruction, and
Ver si onl ndi catorl nstruction).

The Type in the Encodi ngPrefi xedType for a conponent encodi ng
instruction SHALL be either

(1) the Type in a NanedType, or

(2) the Type in an Encodi ngPrefixedType in a PrefixedType in a
BuiltinType in a Type that is one of (1) to (4), or

(3) the Type in an TaggedType in a PrefixedType in a BuiltinType in a
Type that is one of (1) to (4), or

(4) the Type in a Constrai nedType (excluding a TypeWthConstraint) in
a Type that is one of (1) to (4).

Asi de: The effect of this condition is to force the conponent
encodi ng instructions to be textually within the NanedType to
which they apply. Only case (2) can be true on the first
iteration as the Type belongs to an Encodi ngPrefi xedType; however,
any of (1) to (4) can be true on subsequent iterations.

Case (4) is not pernmtted when the encoding instruction is the
ATTRI BUTE- REF, COMPONENT- REF, ELEMENT- REF, or REF- AS- ELEMENT encodi ng
i nstruction.

The NanedType in case (1) is said to be "subject to" the conmponent
encodi ng instruction.

A top-level NanmedType SHALL NOT be subject to an ATTRI BUTE- REF,
COVPONENT- REF, GROUP, ELEMENT- REF, REF- AS-ELEMENT, or SI MPLE- CONTENT
encodi ng instruction.

Asi de: This condition does not preclude these encoding
i nstructions being used on a nested NanedType.

A NamedType SHALL NOT be subject to two or nore conponent encodi ng
instructions of the same kind, e.g., a NanedType is not permtted to
be subject to two NAME encoding instructions.

The ATTRI BUTE, ATTRI BUTE- REF, COVPONENT- REF, GROUP, ELEMENT- REF,
REF- AS- ELEMENT, S| MPLE- CONTENT, and TYPE- AS- VERSI ON encodi ng
instructions are nutually exclusive. The NAVE, ATTRI BUTE- REF,
COVPONENT- REF, ELEMENT- REF, and REF- AS- ELEMENT encodi ng instructions
are nutually exclusive. A NanedType SHALL NOT be subject to two or
nore encoding instructions that are nutually exclusive.

Legg Experi ment al [Page 7]

RFC 4911 Encodi ng I nstructions for RXER July 2007

A Sel ectionType [X. 680] SHALL NOT be used to select the Type froma
NamedType that is subject to an ATTRI BUTE- REF, COVPONENT- REF,
ELEMENT- REF or REF- AS- ELEMENT encodi ng instruction. The other
conmponent encoding instructions are not inherited by the type denoted
by a Sel ectionType.

Definition (attribute conponent): An attribute conponent is a
NamedType that is subject to an ATTRI BUTE or ATTRI BUTE- REF encodi ng
i nstruction, or subject to a COMPONENT- REF encoding instruction that
references a top-level NanedType that is subject to an ATTRI BUTE
encodi ng instruction.

Definition (el enment conponent): An elenent conponent is a NanedType
that is not subject to an ATTRI BUTE, ATTRI BUTE- REF, GROUP, or

S| MPLE- CONTENT encodi ng i nstruction, and not subject to a
COVPONENT- REF encodi ng i nstruction that references a top-Ievel
NamedType that is subject to an ATTRI BUTE encodi ng i nstruction

Asi de: A NanedType subject to a GROUP or SI MPLE- CONTENT encodi ng
instruction is neither an attribute conponent nor an el enent
conmponent .

6. Reference Encoding Instructions

Certain of the RXER encoding instructions are categorized as
reference encoding instructions. The reference encoding instructions
are the ATTRI BUTE- REF, COVPONENT- REF, ELEMENT- REF, REF- AS- ELEMENT,
REF- AS- TYPE, and TYPE- REF encodi ng i nstructions (whose notations are
described respectively by AttributeReflnstruction
Conmponent Ref I nstructi on, El ement Refl nstruction,

Ref AsEl enent | nstruction, RefAsTypelnstruction, and
TypeReflnstruction). These encoding instructions (except
COMPONENT- REF) all ow an ASN. 1 specification to incorporate the
definitions of types, elenents, and attributes in specifications
written in other XM. schenma | anguages, through inplied constraints on
the markup that may appear in values of the Markup ASN. 1 type from

t he Additional Basi cDefinitions nmodul e [RXER] (for ELEMENT- REF,

REF- AS- ELEMENT, REF- AS-TYPE, and TYPE-REF) or the UTF8String type
(for ATTRIBUTE-REF). References to XML Schena [XSD1] types,

el ements, and attributes, RELAX NG [RNG naned patterns and el ements,
and XML docunent type definition (DTD) [XM.10] el ement types are
supported. References to ASN. 1 types and top-level conponents are

al so permitted. The COVMPONENT- REF encodi ng i nstruction provides a
nore direct nethod of referencing a top-Ilevel conponent.

The Type in the Encodi ngPrefi xedType for an ELEMENT- REF,

REF- AS- ELEMENT, REF- AS-TYPE, or TYPE-REF encodi ng instruction SHALL
be either:

Legg Experi ment al [Page 8]

RFC 4911 Encodi ng I nstructions for RXER July 2007

(1) a ReferencedType that is a DefinedType that is a typereference
(not a DummyRef erence) or External TypeReference that references
the Markup ASN. 1 type fromthe Additional BasicDefinitions nodul e
[RXER], or

(2) a BuiltinType that is a PrefixedType that is a TaggedType where
the Type in the TaggedType is one of (1) to (3), or

(3) a BuiltinType that is a PrefixedType that is an
Encodi ngPr efi xedType where the Type in the Encodi ngPrefixedType
is one of (1) to (3) and the EncodingPrefix in the
Encodi ngPr efi xedType does not contain a reference encoding
i nstruction.

Aside: Case (3) and sinilar cases for the ATTRI BUTE- REF and
COVMPONENT- REF encodi ng i nstructions have the effect of making the
ref erence encoding instructions nutually exclusive as well as
singly occurring.

Wth respect to the REF-AS-TYPE and TYPE- REF encodi ng i nstructions,
the DefinedType in case (1) is said to be "subject to" the encoding
i nstruction.

The restrictions on the Type in the Encodi ngPrefi xedType for an
ATTRI BUTE- REF encoding instruction are specified in Section 9. The
restrictions on the Type in the Encodi ngPrefixedType for a
COVMPONENT- REF encodi ng instruction are specified in Section 10.

The reference encoding instructions nmake use of a comon production
defined as foll ows:

Ref Par anet ers ::= Cont ext Paranmeter ?
Cont ext Paranmeter ::= "CONTEXT" AnyURI Val ue

A RefParaneters instance provides extra information about a reference
to a definition. A ContextParaneter is used when a reference is

anbi guous, i.e., refers to definitions in nore than one schena
document or external DTD subset. This situation would occur, for
exanpl e, when inporting types with the same nanme from i ndependently
devel oped XML Schemas defined without a target namespace [XSD1].

When used in conjunction with a reference to an elenent type in an
external DTD subset, the AnyURI Val ue in the ContextParaneter is the
systemidentifier (a Uniform Resource Identifier or URI [URI]) of the
external DITD subset; otherw se, the AnyURI Value is a UR that

i ndi cates the intended schema docunent, either an XM. Schena

speci fication, a RELAX NG specification, or an ASN.1 or ASN. X

speci fication.

Legg Experi ment al [Page 9]

RFC 4911 Encodi ng I nstructions for RXER July 2007

7.

Expanded Nanes of Conponents

Each NamedType has an associ ated expanded nane [XMLNS10], deterni ned
as follows:

(1) if the NamedType is subject to a NAME encoding instruction, then
the | ocal nanme of the expanded nane is the character string
specified by the NCNaneVal ue of the NAME encoding instruction

(2) else if the NanedType is subject to a COVPONENT- REF encodi ng
instruction, then the expanded nane is the sane as the expanded
nane of the referenced top-Ilevel NanedType

(3) else if the NanedType is subject to an ATTRI BUTE- REF or
ELEMENT- REF encodi ng instruction, then the namespace nanme of the
expanded nanme is equal to the namespace-nane conmponent of the
NaneVal ue of the encoding instruction, and the |ocal nane is
equal to the Il ocal -nane conponent of the QNaneVal ue,

(4) else if the NanedType is subject to a REF-AS- ELEMENT encodi ng
instruction, then the local name of the expanded name is the
Local Part [XMLNS10] of the qualified nane specified by the
NaneVal ue of the encoding instruction

(5) otherwise, the local nanme of the expanded nane is the identifier
of the NanmedType.

In cases (1) and (5), if the NanedType is a top-level NanmedType and

t he nodul e containing the NamedType has a TARGET- NAMESPACE encodi ng
instruction, then the nanespace nane of the expanded name is the
character string specified by the AnyURI Val ue of the TARGET- NAMESPACE
encodi ng instruction; otherw se, the namespace nane has no val ue.

Asi de: Thus, the TARGET- NAMESPACE encodi ng instruction applies to
a top-level NanedType but not to any other NanedType.

In case (4), if the encoding instruction contains a Namespace, then
t he nanespace nane of the expanded nane is the character string
specified by the AnyURI Val ue of the Nanespace; otherw se, the
nanespace nane has no val ue.

The expanded nanes for the attribute conponents of a CHO CE,
SEQUENCE, or SET type MUST be distinct. The expanded nanes for the
conmponents of a CHO CE, SEQUENCE, or SET type that are not attribute
conponents MUST be distinct. These tests are applied after the
COVPONENTS OF transformation specified in X 680, C ause 24.4 [X 680].

Legg Experi ment al [Page 10]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Asi de: Two conponents of the sane CHO CE, SEQUENCE, or SET type
may have the sane expanded name if one of themis an attribute
component and the other is not. Note that the "not" case includes
conmponents that are subject to a GROUP or SI MPLE- CONTENT encodi ng
i nstruction.

The expanded nane of a top-level NanedType subject to an ATTRI BUTE
encodi ng instruction MJST be distinct fromthe expanded nane of every
ot her top-level NamedType subject to an ATTRI BUTE encodi ng
instruction in the sanme nodul e.

The expanded nane of a top-level NanedType not subject to an

ATTRI BUTE encodi ng instruction MJST be distinct fromthe expanded
nane of every other top-level NanmedType not subject to an ATTRI BUTE
encodi ng instruction in the sane nodul e.

Aside: Two top-level conponents nmay have the sanme expanded nane if
one of themis an attribute conponent and the other is not.

8. The ATTRI BUTE Encodi ng I nstruction
The ATTRI BUTE encodi ng instruction causes an RXER encoder to encode a
val ue of the conponent to which it is applied as an XM. attribute
instead of as a child el enent.

The notation for an ATTRI BUTE encodi ng instruction is defined as
fol | ows:

Attributelnstruction ::= "ATTRI BUTE"

The base type of the type of a NanedType that is subject to an
ATTRI BUTE encodi ng instruction SHALL NOT be:

(1) a CHO CE, SET, or SET OF type, or

(2) a SEQUENCE type other than the one defining the QNane type from
the Additional BasicDefinitions nodule [RXER] (i.e., QNanme is
al | oned), or

(3) a SEQUENCE OF type where the SequenceXf Type is not subject to a
LI ST encodi ng i nstruction, or

(4) an open type.

Legg Experi ment al [Page 11]

RFC 4911 Encodi ng I nstructions for RXER July 2007

9.

Exanpl e

Personal Detail s ::= SEQUENCE ({
firstName [ATTRI BUTE] UTF8Stri ng,
m ddl eName [ATTRI BUTE] UTF8Stri ng,
sur name [ATTRI BUTE] UTF8Stri ng

}
The ATTRI BUTE- REF Encodi ng | nstruction

The ATTRI BUTE- REF encodi ng instruction causes an RXER encoder to
encode a val ue of the conponent to which it is applied as an XM
attribute instead of as a child element, where the attribute’s name
is aqualified name of the attribute declaration referenced by the
encodi ng instruction. In addition, the ATTRI BUTE- REF encodi ng

i nstruction causes values of the UTF8String type to be restricted to
conformto the type of the attribute declaration

The notation for an ATTRI BUTE- REF encodi ng instruction is defined as
fol | ows:

AttributeReflnstruction ::=
"ATTRI BUTE- REF" QNaneVal ue Ref Par anet ers

Taken together, the QNaneVal ue and t he ContextParaneter in the

Ref Parameters (if present) MJST reference an XML Schema attribute
declaration or a top-level NanmedType that is subject to an ATTRI BUTE
encodi ng instruction.

The type of a referenced XML Schenmm attribute declarati on SHALL NOT
be, either directly or by derivation, the XM. Schema type Nane,
NOTATI ON, ENTITY, ENTITIES, or anySi npl eType.

Asi de: Val ues of these types require information fromthe context
of the attribute for interpretation. Because an ATTRI BUTE- REF
encoding instruction is restricted to prefixing the ASN. 1
UTF8String type, there is no nechanismto capture such context.

The type of a referenced top-level NanedType SHALL NOT be, either
directly or by subtyping, the QNane type fromthe
Addi ti onal Basi cDefinitions nodul e [RXER].

The Type in the Encodi ngPrefixedType for an ATTRI BUTE- REF encodi ng
i nstruction SHALL be either

(1) the UTF8String type, or

Legg Experi ment al [Page 12]

RFC 4911 Encodi ng I nstructions for RXER July 2007

10.

(2) a BuiltinType that is a PrefixedType that is a TaggedType where
the Type in the TaggedType is one of (1) to (3), or

(3) a BuiltinType that is a PrefixedType that is an
Encodi ngPr efi xedType where the Type in the Encodi ngPrefixedType
is one of (1) to (3) and the EncodingPrefix in the
Encodi ngPr efi xedType does not contain a reference encoding
i nstruction.

The identifier of a NanmedType subject to an ATTRI BUTE- REF encodi ng
instruction does not contribute to the nane of attributes in an RXER
encodi ng. For the sake of consistency, the identifier SHOULD, where
possi bl e, be the sane as the | ocal nane of the referenced attribute
decl arati on.

The COVPONENT- REF Encodi ng I nstruction

The ASN. 1 basic notation does not have a concept of a top-Ieve
NanedType and therefore does not have a nechanismto reference a
top-1 evel NanmedType. The COVPONENT- REF encodi ng instruction provides
a way to specify that a NanmedType within a conbining type definition
is equivalent to a referenced top-Ievel NanmedType.

The notation for a COVMPONENT- REF encodi ng instruction is defined as
fol | ows:

Conponent Ref | nstruction ::= "COVWONENT- REF" Conponent Ref erence
Component Ref erence :: =

| nt er nal Conponent Ref er ence
Ext er nal Conponent Ref er ence

I nt er nal Conponent Ref erence ::= identifier FronmVodule ?
Fromvbdul e ::= "FROM' d obal Modul eRef erence
Ext er nal Conponent Ref erence ::= nodul ereference "." identifier

The G obal Modul eRef erence production is defined by the ASN. 1 basic
notation [X 680]. |If the d obal Modul eReference is absent from an

I nt er nal Conponent Ref erence, then the identifier MIJST be the
identifier of a top-level NanedType in the sane nodule. If the

d obal Mbdul eRef erence is present in an |nternal Conponent Ref er ence,
then the identifier MJST be the identifier of a top-level NanmedType
in the referenced nodul e.

Legg Experi ment al [Page 13]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The nodul ereference i n an External Conponent Ref erence is used in the
sane way as a nodul ereference in an External TypeReference. The
identifier in an External Conponent Ref erence MJUST be the identifier of
a top-level NanedType in the referenced nodul e.

The Type in the Encodi ngPrefixedType for a COVPONENT- REF encodi ng
i nstruction SHALL be either

(1) a ReferencedType that is a DefinedType that is a typereference
(not a DummyRef erence) or an External TypeReference, or

(2) a BuiltinType or ReferencedType that is one of the productions in
Table 1 in Section 5 of the specification for RXER [RXER], or

(3) a BuiltinType that is a PrefixedType that is a TaggedType where
the Type in the TaggedType is one of (1) to (4), or

(4) a BuiltinType that is a PrefixedType that is an
Encodi ngPr efi xedType where the Type in the Encodi ngPrefixedType
is one of (1) to (4) and the EncodingPrefix in the
Encodi ngPr ef i xedType does not contain a reference encoding
i nstruction.

The restrictions on the use of RXER encodi ng instructions are such
that no other RXER encoding instruction is pernitted within a
NamedType if the NamedType is subject to a COMPONENT- REF encodi ng
i nstruction.

The Type in the top-1level NanmedType referenced by the COVPONENT- REF
encodi ng instruction MJST be either

(a) if the preceding case (1) is used, a ReferencedType that is a
Defi nedType that is a typereference or External TypeReference that
references the sane type as the DefinedType in case (1), or

(b) if the preceding case (2) is used, a BuiltinType or
Ref erencedType that is the sane as the BuiltinType or
Ref erencedType in case (2), or

(c) a BuiltinType that is a PrefixedType that is an
Encodi ngPr efi xedType where the Type in the Encodi ngPrefixedType
is one of (a) to (c), and the EncodingPrefix in the
Encodi ngPr efi xedType contai ns an RXER encodi ng instruction.

In principle, the COMPONENT-REF encoding instruction creates a

noti onal NanmedType where the expanded nane is that of the referenced
top-1 evel NamedType and the Type in case (1) or (2) is substituted by
the Type of the referenced top-1level NanedType.

Legg Experi ment al [Page 14]

RFC 4911 Encodi ng I nstructions for RXER July 2007

In practice, it is sufficient for non-RXER encoders and decoders to
use the original NanedType rather than the notional NanedType because
the Type in case (1) or (2) can only differ fromthe Type of the
referenced top-level NanedType by having fewer RXER encodi ng

i nstructions, and RXER encoding instructions are ignored by non- RXER
encoders and decoders.

Al t hough any prefixes for the Type in case (1) or (2) would be
bypassed, it is sufficient for RXER encoders and decoders to use the
referenced top-level NanedType instead of the notional NanedType
because these prefixes cannot be RXER encodi ng instructions (except,
of course, for the COVPONENT- REF encoding instruction) and can have
no ef fect on an RXER encodi ng.

Exanpl e

Modul es ::= SEQUENCE OF
nodul e [COVPONENT- REF nodul e
FROM Abst r act Synt axNot ati on- X
{ 1361412147210 1}]
Modul eDef i nition

Note that the "nodul e" top-level NamedType in the
Abstract Synt axNotati on-X nodule is defined |Iike so:

COVPONENT nodul e Modul eDefinition

The ASN. X translation of the SEQUENCE OF type definition provides
a nore natural representation

<namedType xnl ns:asnx="urn:ietf: parans: xnl :ns:asnx"
name="Modul es" >
<sequenceCf >
<el ement ref="asnx: nodul e"/ >
</ sequence >
</ nanedType>

Asi de: The <namedType> el ement in ASN X corresponds to a
TypeAssi gnment, not a NanedType.

The identifier of a NanmedType subject to a COVPONENT- REF encodi ng
instruction does not contribute to an RXER encoding. For the sake of
consi stency with other encoding rules, the identifier SHOULD be the
sane as the identifier in the ConponentReflnstruction

Legg Experi ment al [Page 15]

RFC 4911 Encodi ng I nstructions for RXER July 2007

11.

The ELEMENT- REF Encodi ng | nstruction

The ELEMENT- REF encodi ng instruction causes an RXER encoder to encode
a value of the conponent to which it is applied as an el enment where
the element’s nane is a qualified nane of the el enment declaration
referenced by the encoding instruction. In addition, the ELEMENT- REF
encodi ng instruction causes val ues of the Markup ASN. 1 type to be
restricted to conformto the type of the el enent declaration.

The notation for an ELEMENT- REF encoding instruction is defined as
fol | ows:

El ement Ref I nstruction ::= "ELEMENT- REF" QNaneVal ue Ref Paraneters

Taken together, the QNaneVal ue and t he ContextParaneter in the

Ref Paranmeters (if present) MJST reference an XM. Schema el enment

decl aration, a RELAX NG el enent definition, or a top-level NanedType
that is not subject to an ATTRI BUTE encodi ng instruction.

A referenced XM. Schenma el enent declarati on MJUST NOT have a type that
requires the presence of values for the XM. Schema ENTITY or ENTI Tl ES

types.
Aside: Entity declarations are not supported by CRXER

Exanpl e

AnySchema ::= CHO CE {
nodul e [ELEMENT- REF {
namespace- nane
"urn:ietf:parans: xnl : ns: asnx",
| ocal - name "nodul e" }]
Mar kup,
schema [ELEMENT- REF {
namespace- nane
"http://ww. w3. org/ 2001/ XM_Schenma"
| ocal - name "schema" }]
Mar kup,
granmmar [ELEMENT- REF {
namespace- nane
"http://rel axng.org/ ns/structure/ 1. 0",
| ocal -name "granmar" }]
Mar kup

}

The ASN. X translation of the choice type definition provides a
nmore natural representation:

Legg Experi ment al [Page 16]

RFC 4911 Encodi ng I nstructions for RXER July 2007

12.

<namedType xnl ns:asnx="urn:ietf: parans: xn : ns:asnx"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
xm ns:rng="http://rel axng. org/ns/structure/1. 0"
nane=" AnySchema" >
<choi ce>
<el ement ref="asnx: nodul e" enbedded="true"/>
<el ement ref="xs:schema" enbedded="true"/>
<el enent ref="rng: gramar" enbedded="true"/>
</ choi ce>
</ nanedType>

The identifier of a NamedType subject to an ELEMENT- REF encodi ng
instruction does not contribute to the name of an elenment in an RXER
encodi ng. For the sake of consistency, the identifier SHOULD, where
possi bl e, be the sane as the | ocal nane of the referenced el enent
decl arati on.

The LI ST Encoding I nstruction
The LI ST encoding instruction causes an RXER encoder to encode a
val ue of a SEQUENCE OF type as a white-space-separated list of the
component val ues.
The notation for a LIST encoding instruction is defined as foll ows:

Li stlnstruction ::= "LIST"

The Type in an Encodi ngPrefixedType for a LIST encoding instruction
SHALL be either

(1) a BuiltinType that is a SequenceO Type of the
" SEQUENCE OF NanedType" form or

(2) a ConstrainedType that is a TypeWthConstraint of the
" SEQUENCE Constraint OF NamedType" form or
"SEQUENCE Si zeConstrai nt OF NanedType" form or

(3) a ConstrainedType that is not a TypeWthConstraint where the Type
in the Constrai nedType is one of (1) to (5), or

(4) a BuiltinType that is a PrefixedType that is a TaggedType where
the Type in the TaggedType is one of (1) to (5), or

(5) a BuiltinType that is a PrefixedType that is an
Encodi ngPr efi xedType where the Type in the Encodi ngPrefixedType
is one of (1) to (5).

Legg Experi ment al [Page 17]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The effect of this conditionis to force the LIST encodi ng
instruction to be textually co-located with the SequenceC™ Type or
TypeWthConstraint to which it applies.

Aside: This makes it clear to a reader that the encoding
instruction applies to every use of the type no matter how it
m ght be referenced.

The SequenceO Type in case (1) and the TypeWthConstraint in case (2)
are said to be "subject to" the LIST encoding instruction

A SequenceOf Type or TypeWthConstraint SHALL NOT be subject to nore
than one LI ST encoding instruction.

The base type of the conmponent type of a SequenceC Type or
TypeWt hConstraint that is subject to a LIST encoding instruction
MUST be one of the foll ow ng:

(1) the BOOLEAN, | NTEGER, ENUMERATED, REAL, OBJECT | DENTI FI ER,
RELATI VE-O D, GeneralizedTime, or UICTine type, or

(2) the NCNane, AnyURI, Nanme, or QNane type fromthe
Addi tional Basi cDefinitions nodul e [RXER].

Aside: Wiile it would be feasible to allow the conponent type to
al so be any character string type that is constrained such that

all its abstract values have a length greater than zero and none
of its abstract values contain any white space characters, testing
whet her this condition is satisfied can be quite involved. For
the sake of sinplicity, only certain inmedi ately usefu

constrai ned UTF8String types, which are known to be suitable, are
permitted (i.e., NCName, AnyURI, and Nane).

The NanedType in a SequenceOf Type or TypeWthConstraint that is
subject to a LIST encoding instruction MIJST NOT be subject to an
ATTRI BUTE, ATTRI BUTE- REF, COVMPONENT- REF, CROUP, ELEMENT- REF,
REF- AS- ELEMENT, SI MPLE- CONTENT, or TYPE- AS- VERSI ON encodi ng

i nstruction.

Exanpl e

Updat eTines ::= [LIST] SEQUENCE OF updateTi ne CGeneralizedTi ne

Legg Experi ment al [Page 18]

RFC 4911 Encodi ng I nstructions for RXER July 2007

13. The NAME Encodi ng I nstruction

The NAME encoding instruction causes an RXER encoder to use a
nom nated character string instead of a conmponent’s identifier
wherever that identifier would otherw se appear in the encodi ng
(e.g., as an elenent or attribute nane).

The notation for a NAME encoding instruction is defined as foll ows:
Nanel nstruction ::= "NAVE" "AS"'? NCNaneVal ue
Exanpl e

CHO CE {
foo-att [ATTRI BUTE] [NAME AS "Foo0"] | NTEGER,
foo-elem [NAME "Foo"] | NTEGER

}
14. The REF- AS- ELEMENT Encoding I nstruction

The REF- AS- ELEMENT encodi ng i nstruction causes an RXER encoder to
encode a val ue of the conponent to which it is applied as an el enent
where the elenent’s nane is the nane of the external DTD subset

el ement type declaration referenced by the encoding instruction. In
addi ti on, the REF-AS- ELEMENT encodi ng instruction causes val ues of
the Markup ASN.1 type to be restricted to conformto the content and
attributes permtted by that elenent type declaration and its

associ ated attribute-1list declarations.

The notation for a REF-AS-ELEMENT encodi ng instruction is defined as
fol | ows:

Ref AsEl enent I nstruction ::=
" REF- AS- ELEMENT" NaneVal ue Nanmespace ? Ref Paraneters

Nanespace ::= "NAMESPACE" AnyURI Val ue

Taken together, the NaneVal ue and the ContextParaneter in the

Ref Parameters (if present) MJST reference an el ement type declaration
in an external DTD subset that is conformant with Namespaces in XM
1.0 [XMLNS10] .

The Nanespace is present if and only if the Nanme of the referenced
el ement type declaration conforms to a PrefixedNane (a QNane)

[XMLNS10], in which case the Nanespace specifies the nanmespace name
to be associated with the Prefix of the PrefixedNane.

Legg Experi ment al [Page 19]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The referenced el ement type declaration MUST NOT require the presence
of attributes of type ENTITY or ENTITIES.

Aside: Entity declarations are not supported by CRXER
Exanpl e

Suppose that the followi ng external DTD subset has been defined
with a systemidentifier of "http://ww.exanple.coninventory":

<?xm version="1.0" ?>

<! ELEMENT product EMPTY>

<I ATTLI ST product
nane CDATA #I WPLI ED
par t Number CDATA #REQUI RED
quantity CDATA #REQUI RED >

The product el enent type declaration can be referenced as an
element in an ASN. 1 type definition

CHO CE {
product [REF- AS- ELEMENT "product”
CONTEXT "http://ww. exanpl e. conli nventory"]

Mar kup
}
Here is the ASN X translation of this ASN.1 type definition
<type>
<choi ce>

<el enent el enent Type="pr oduct"
context="http://ww. exanpl e. conli nventory"/>
</ choi ce>
</type>

The identifier of a NanedType subject to a REF- AS- ELEMENT encodi ng
instruction does not contribute to the name of an elenment in an RXER
encodi ng. For the sake of consistency, the identifier SHOULD, where
possi bl e, be the sanme as the Nane of the referenced el enment type
declaration (or the LocalPart if the Name conforns to a

Prefi xedNane) .

15. The REF- AS-TYPE Encoding I nstruction
The REF- AS- TYPE encodi ng instruction causes val ues of the Markup
ASN. 1 type to be restricted to conformto the content and attributes

permtted by a nom nated el enent type declaration and its associ ated
attribute-list declarations in an external DID subset.

Legg Experi ment al [Page 20]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The notation for a REF-AS-TYPE encoding instruction is defined as
fol | ows:

Ref AsTypel nstruction ::= "REF- AS-TYPE'" NaneVal ue Ref Paraneters

Taken together, the NaneVal ue and the ContextParaneter of the

Ref Paranmeters (if present) MJST reference an el ement type declaration
in an external DTD subset that is conformant with Namespaces in XM
1.0 [XMLNS10].

The referenced el enent type declaration MJUST NOT require the presence
of attributes of type ENTITY or ENTITIES.

Aside: Entity declarations are not supported by CRXER
Exanpl e

The product el enent type declaration can be referenced as a type
in an ASN. 1 definition:

SEQUENCE OF
i nventoryltem
[REF- AS- TYPE " product"”
CONTEXT "http://ww. exanpl e. conlinventory"]
Mar kup

Here is the ASN X translation of this definition:

<sequenceCf >
<el enent nane="inventorylteni>
<type el enent Type="product"”
context="http://ww. exanpl e. conli nventory"/>
</ el ement >
</ sequence >

Not e that when an el enent type declaration is referenced as a
type, the Nanme of the elenment type declaration does not contribute
to RXER encodi ngs. For exanple, child elenments in the RXER

encodi ng of values of the above SEQUENCE OF type would resenbl e
the foll ow ng:

<i nventoryltem nane="hanmer" part Nunber="1543" quantity="29"/>

Legg Experi ment al [Page 21]

RFC 4911 Encodi ng I nstructions for RXER July 2007

16.

17.

The SCHEMA- | DENTI TY Encodi ng I nstruction

The SCHEMA- | DENTI TY encodi ng instruction associ ates a uni que
identifier, a URl [URI], with the ASN. 1 nodul e contai ning the
encodi ng instruction. This encoding instruction has no effect on an
RXER encoder but does have an effect on the translation of an ASN. 1
specification into an ASN. X representation.

The notation for a SCHEMA- | DENTI TY encoding instruction is defined as
fol |l ows:

Schenal dentitylnstruction ::= "SCHEMA- | DENTI TY" AnyURI Val ue

The character string specified by the AnyURl Val ue of each
SCHEMA- | DENTI TY encodi ng instruction MJST be distinct. In
particul ar, successive versions of an ASN. 1 nodul e nust each have a
different schema identity URI val ue.

The S| MPLE- CONTENT Encodi ng I nstruction

The SI MPLE- CONTENT encodi ng i nstruction causes an RXER encoder to
encode a val ue of a conponent of a SEQUENCE or SET type wi thout
encapsul ation in a child el enent.

The notation for a SI MPLE- CONTENT encodi ng instruction is defined as
fol | ows:

Si mpl eContentl nstruction ::= "SI MPLE- CONTENT"

A NanmedType subject to a SI MPLE- CONTENT encodi ng i nstruction SHALL be
in a Conponent Type in a Conponent TypelLi st in a Root Conponent TypelLi st.
At nost one such NanedType of a SEQUENCE or SET type is permitted to
be subject to a SI MPLE- CONTENT encodi ng instruction. [If any
component i s subject to a SI MPLE- CONTENT encodi ng i nstruction, then
all other conponents in the sane SEQUENCE or SET type definition MJST
be attribute conponents. These tests are applied after the
COVPONENTS OF transformation specified in X 680, C ause 24.4 [X 680].

Aside: Child elenments and sinple content are nutual ly exclusive.
Specification witers should note that use of the SI MPLE- CONTENT
encodi ng instruction on a conmponent of an extensible SEQUENCE or
SET type neans that all future extensions to the SEQUENCE or SET
type are restricted to being attribute conponents with the linited
set of types that are pernitted for attribute conponents. Using
an ATTRI BUTE encodi ng instruction instead of a SI MPLE- CONTENT
encodi ng instruction avoids this limtation

Legg Experi ment al [Page 22]

RFC 4911 Encodi ng I nstructions for RXER July 2007

18.

The base type of the type of a NanedType that is subject to a
S| MPLE- CONTENT encodi ng i nstructi on SHALL NOT be:

(1) a SET or SET OF type, or

(2) a CHO CE type where the ChoiceType is not subject to a UNI ON
encodi ng instruction, or

(3) a SEQUENCE type other than the one defining the QNanme type from
the Additional BasicDefinitions nodule [RXER] (i.e., QNanme is
al | owed), or

(4) a SEQUENCE OF type where the SequenceCf Type is not subject to a
LI ST encodi ng instruction, or

(5) an open type.

If the type of a NanmedType subject to a S| MPLE- CONTENT encodi ng
instruction has abstract values with an enpty character data
translation [RXER] (i.e., an enpty encoding), then the NanmedType
SHALL NOT be marked OPTI ONAL or DEFAULT.

Exanpl e

SEQUENCE {
units [ATTRI BUTE] UTF8Stri ng,
amount [SI MPLE- CONTENT] | NTEGER

}
The TARGET- NAMESPACE Encodi ng I nstruction

The TARGET- NAMESPACE encodi ng i nstruction associ ates an XM. nanespace
nane [XMLNS10], a URI [URI], with the type, object class, value,

obj ect, and object set references defined in the ASN. 1 nodul e

contai ning the encoding instruction. In addition, it associates the
nanespace nane with each top-Ievel NanmedType in the RXER encodi ng
control section.

The notation for a TARGET- NAMESPACE encoding instruction is defined
as foll ows:

Tar get Nanespacel nstruction :: =
" TARGET- NAMESPACE" AnyURI Val ue Prefix ?

Prefix ::= "PREFI X" NCNameVal ue

The AnyURI Val ue SHALL NOT specify an enpty string.

Legg Experi ment al [Page 23]

RFC 4911 Encodi ng I nstructions for RXER July 2007

19.

Definition (target nanespace): |If an ASN. 1 nodul e contains a
TARGET- NAMESPACE encodi ng instruction, then the target nanespace of
the nmodule is the character string specified by the AnyURI Val ue of
t he TARGET- NAMESPACE encodi ng i nstruction; otherw se, the target
nanespace of the nodule is said to be absent.

Two or nore ASN. 1 nodul es MAY have t he sanme non-absent target
nanespace if and only if the expanded nanes of the top-Ieve
attribute conponents are distinct across all those nodul es, the
expanded nanmes of the top-level elenent conponents are distinct
across all those nodules, and the defined type, object class, value,
obj ect, and object set references are distinct in their category
across all those nodul es.

The Prefix, if present, suggests an NCNane to use as the namespace
prefix in nanespace declarations involving the target namespace. An
RXER encoder is not obligated to use the nom nated namespace prefix.

If there are no top-1level conponents, then the RXER encodi ngs
produced using a nodul e with a TARGET- NAMESPACE encodi ng instruction
are backward conpatible with the RXER encodi ngs produced by the sane
nmodul e wi t hout the TARGET- NAMESPACE encodi ng i nstruction

The TYPE- AS- VERSI ON Encodi ng I nstruction

The TYPE- AS- VERSI ON encodi ng instruction causes an RXER encoder to

i nclude an xsi:type attribute in the encoding of a value of the
component to which the encoding instruction is applied. This
attribute allows an XML Schema [XSD1] validator to select, if
avai |l abl e, the appropriate XM. Schenma translation for the version of
the ASN. 1 specification used to create the encoding.

Aside: Translations of an ASN. 1 specification into a conpatible
XML Schera are expected to be slightly different across versions
because of progressive extensions to the ASN. 1 specification. Any
i nconpatibilities between these translations can be accomvbdat ed
if each version uses a different target namespace. The target
nanespace will be evident in the value of the xsi:type attribute
and will cause an XML Schema validator to use the appropriate
version. This mechani sm al so accombdates an ASN. 1 type that is
renaned in a later version of the ASN. 1 specification.

The notation for a TYPE- AS- VERSI ON encodi ng instruction is defined as
fol | ows:

TypeAsVer si onl nstruction ::= "TYPE- AS- VERSI ON'

Legg Experi ment al [Page 24]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The Type in a NanedType that is subject to a TYPE-AS- VERSI ON encodi ng
i nstructi on MIUST be a nanespace-qualified reference [RXER].

The addition of a TYPE-AS-VERSI ON encodi ng i nstructi on does not
af fect the backward conpatibility of RXER encodi ngs.

Aside: In a translation of an ASN. 1 specification into XM. Schens,
any Type in a NamedType that is subject to a TYPE-AS- VERSI ON
encoding instruction is expected to be translated into the

XML Scherma anyType so that the xsi:type attribute acts as a switch
to select the appropriate version

20. The TYPE- REF Encoding Instruction

The TYPE- REF encoding instruction causes values of the Markup ASN. 1
type to be restricted to conformto a specific XM. Schema named type
RELAX NG nanmed pattern or an ASN. 1 defined type

Asi de: Referencing an ASN. 1 type in a TYPE-REF encodi ng

i nstruction does not have the effect of inposing a requirenment to
preserve the Infoset [INFOSET] representation of the RXER encodi ng
of an abstract value of the type. It is still sufficient to
preserve just the abstract val ue.

The notation for a TYPE-REF encoding instruction is defined as
fol | ows:

TypeRef I nstruction ::= "TYPE- REF" (QNaneVal ue Ref Paraneters

Taken together, the QNaneVal ue and t he Cont ext Paraneter of the
Ref Paranmeters (if present) MJST reference an XML Schena nanmed type, a
RELAX NG nanmed pattern, or an ASN. 1 defined type

A referenced XM. Schema type MUST NOT require the presence of val ues
for the XML Schema ENTITY or ENTITIES types

Aside: Entity declarations are not supported by CRXER

The NaneVal ue SHALL NOT be a direct reference to the XM. Schena
NOTATI ON type [XSD2] (i.e., the nanespace nane
"http://ww. w3. org/ 2001/ XM_Schema" and | ocal nane " NOTATI ON');
however, a reference to an XM. Schenm type derived fromthe NOTATI ON
type is permtted.

Aside: This restriction is to ensure that the | exical space [XSD2]

of the referenced type is actually populated with the nanes of
not ati ons [XSD1] .

Legg Experi ment al [Page 25]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Exanpl e
MyDeci mal ::=
[TYPE- REF {
nanespace- nane "http://ww. w3. or g/ 2001/ XM_.Schema"
| ocal - name "decimal " }]
Mar kup

Note that the ASN. X translation of this ASN. 1 type definition
provides a nore natural way to reference the XM. Schema deci nal

type:

<namedType xnl ns: xs="http://ww. w3. or g/ 2001/ XM_Schenma"
nane="MyDeci mal " >

<type ref="xs:deciml" enbedded="true"/>

</ nanedType>

21. The UNI ON Encoding Instruction

The UNI ON encoding instruction causes an RXER encoder to encode the
val ue of an alternative of a CHO CE type w thout encapsulation in a
child elenent. The chosen alternative is optionally indicated with a
menber attribute. The optional Precedencelist also allows a
specification witer to alter the order in which an RXER decoder wi ||l
consider the alternatives of the CHOCE as it deternines which
alternative has been used (if the actual alternative has not been
specified through the nenber attribute).

The notation for a UNION encoding instruction is defined as foll ows:

Unionlnstruction ::= "UNION' AlternativesPrecedence ?
Al ternati vesPrecedence ::= "PRECEDENCE" Precedenceli st
PrecedencelList ::= identifier PrecedencelList ?

The Type in the Encodi ngPrefixedType for a UNI ON encodi ng instruction
SHALL be either

(1) a BuiltinType that is a ChoiceType, or

(2) a ConstrainedType that is not a TypeWthConstraint where the Type
in the Constrai nedType is one of (1) to (4), or

(3) a BuiltinType that is a PrefixedType that is a TaggedType where
the Type in the TaggedType is one of (1) to (4), or

Legg Experi ment al [Page 26]

RFC 4911 Encodi ng I nstructions for RXER July 2007

22,

(4) a BuiltinType that is a PrefixedType that is an
Encodi ngPr efi xedType where the Type in the Encodi ngPrefixedType
is one of (1) to (4).

The ChoiceType in case (1) is said to be "subject to" the UNI ON
encodi ng instruction.

The base type of the type of each alternative of a ChoiceType that is
subject to a UNION encodi ng instruction SHALL NOT be:

(1) a CHO CE, SET, or SET OF type, or

(2) a SEQUENCE type other than the one defining the QNanme type from
the Additional BasicDefinitions nodule [RXER] (i.e., QNanme is
al | oned), or

(3) a SEQUENCE OF type where the SequenceOf Type is not subject to a
LI ST encodi ng i nstruction, or

(4) an open type.

Each identifier in the PrecedenceLi st MJUST be the identifier of a
NamedType in the Choi ceType.

A particular identifier SHALL NOT appear nore than once in the sane
Precedenceli st .

Every NanedType in a ChoiceType that is subject to a UNION encodi ng
instructi on MIST NOT be subject to an ATTRI BUTE, ATTRI BUTE- REF,
COVPONENT- REF, GROUP, ELEMENT- REF, REF- AS- ELEMENT, SI MPLE- CONTENT, or
TYPE- AS- VERSI ON encodi ng i nstructi on.

Exanpl e

[UNI ON PRECEDENCE basi cNane] CHO CE {
ext endedName UTF8Stri ng,
basi cNane PrintableString

}
The VALUES Encodi ng I nstruction

The VALUES encoding instruction causes an RXER encoder to use
nom nat ed nanes instead of the identifiers that would otherw se
appear in the encoding of a value of a BIT STRING ENUMERATED, or
I NTEGER t ype.

Legg Experi ment al [Page 27]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The notation for a VALUES encoding instruction is defined as foll ows:

Val uesl nstruction ::=
"VALUES" Al | Val uesMapped ? Val ueMappi ngLi st ?

Al | Val uesMapped ::= All Capitalized | Al Uppercased
Al'l Capitalized ::= "ALL" "CAPI TALI ZED"

Al'l Uppercased ::= "ALL" " UPPERCASED"

Val ueMappi ngLi st ::= Val ueMappi ng Val ueMappi ngLi st ?
Val ueMapping ::="," identifier "AS" NCNaneVal ue

The Type in the Encodi ngPrefixedType for a VALUES encodi ng
instruction SHALL be either

(1) a BuiltinType that is a BitStringType with a NanedBitList, or
(2) a BuiltinType that is an EnumneratedType, or
(3) a BuiltinType that is an IntegerType with a NamedNunberList, or

(4) a ConstrainedType that is not a TypeWthConstraint where the Type
in the Constrai nedType is one of (1) to (6), or

(5) a BuiltinType that is a PrefixedType that is a TaggedType where
the Type in the TaggedType is one of (1) to (6), or

(6) a BuiltinType that is a PrefixedType that is an
Encodi ngPr efi xedType where the Type in the Encodi ngPrefixedType
is one of (1) to (6).

The effect of this condition is to force the VALUES encodi ng
instruction to be textually co-located with the type definition to
which it applies.

The BitStringType, EnuneratedType, or IntegerType in case (1), (2),
or (3), respectively, is said to be "subject to" the VALUES encodi ng
i nstruction.

A BitStringType, EnuneratedType, or |ntegerType SHALL NOT be subj ect
to nmore than one VALUES encodi ng instruction

Each identifier in a Val ueMappi ng MUST be an identifier appearing in

the NanedBitList, Enunerations, or NanedNunberlist, as the case may
be.

Legg Experi ment al [Page 28]

RFC 4911 Encodi ng I nstructions for RXER July 2007

23.

The identifier in a Val ueMappi ng SHALL NOT be the sanme as the
identifier in any other ValueMapping for the sane Val ueMappi nglLi st.

Definition (replacenment nane): Each identifier in a BitStringType,
Enuner at edType, or IntegerType subject to a VALUES encodi ng
instruction has a replacenent nane. |If there is a Val ueMappi ng for
the identifier, then the replacenent nane is the character string
specified by the NCNameVal ue in the Val ueMappi ng; else if

All Capitalized is used, then the replacenent nanme is the identifier
with the first character uppercased; else if Al Uppercased is used,
then the replacenent nane is the identifier with all its characters
upper cased; otherwi se, the replacenent nane is the identifier

The replacenent names for the identifiers in a BitStringType subject
to a VALUES encoding instruction MJST be distinct.

The repl acenent nanes for the identifiers in an EnuneratedType
subject to a VALUES encoding instruction MJST be distinct.

The replacenent nanmes for the identifiers in an |IntegerType subject
to a VALUES encoding instruction MJST be distinct.

Exanpl e
Traffic-Light ::= [VALUES ALL CAPI TALI ZED, red AS "RED']
ENUVERATED {
red, -- Repl acenment nane is RED.
anber, -- Replacenment nane is Anmber.
green -- Repl acenment nane is G een.
}

I nsertion Encodi ng I nstructions

Certain of the RXER encoding instructions are categorized as
insertion encoding instructions. The insertion encoding instructions
are the NO I NSERTI ONS, HOLLOW I NSERTI ONS, SI NGULAR- | NSERTI ONS

UNI FORM | NSERTI ONS, and MULTI FORM | NSERTI ONS encodi ng i nstructions
(whose notations are described respectively by

Nol nsertionslnstruction, Hollow nsertionslnstruction,

Si ngul arl nsertionslnstruction, Uniformnsertionslnstruction, and

Mul tiform nsertionslnstruction).

The notation for the insertion encoding instructions is defined as
fol | ows:

Legg Experi ment al [Page 29]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Insertionslnstruction ::=
Nol nsertionslnstruction |
Hol I ow nsertionsl nstruction
Si ngul arl nsertionslnstruction |
Uni form nsertionslnstruction |
Mul tiform nsertionslnstruction

Nol nsertionslnstruction ::= "NO | NSERTI ONS"

Hol | ow nsertionslnstruction ::= "HOLLOMI NSERTI ONS"

Si ngul arl nsertionslnstruction ::= "SI NGULAR- | NSERTI ONS"
Uni form nsertionslnstruction ::= "UN FORM | NSERTI ONS"

Mul tiform nsertionslinstruction ::= "MJLTI FORM | NSERTI ONS"

Usi ng the GROUP encoding instruction on conponents with extensible
types can lead to situations where an unknown extension could be
associ ated with nore than one extension insertion point. The
insertion encoding instructions renmove this anbiguity by limting the
formthat extensions can take. That is, the insertion encoding
instructions indicate what extensions can be nmade to an ASN. 1
specification wi thout breaking forward conpatibility for RXER

encodi ngs.

Aside: Forward conpatibility neans the ability for a decoder to
successful ly decode an encodi ng contai ni ng extensions introduced
into a version of the specification that is nore recent than the
one used by the decoder

In the nost general case, an extension to a CHO CE, SET, or SEQUENCE
type will generate zero or nore attributes and zero or nore el enents,
due to the potential use of the GROUP and ATTRI BUTE encodi ng
instructions by the extension

The MULTI FORM | NSERTI ONS encodi ng instruction indicates that the RXER
encodi ngs produced by forward-conpatible extensions to a type wll

al ways consi st of one or nore elenments and zero or nore attributes.

No restriction is placed on the nanes of the el ements.

Aside: O necessity, the nanes of the attributes will all be
different in any given encoding.

The UNI FORM | NSERTI ONS encodi ng instruction indicates that the RXER
encodi ngs produced by forward-conpatible extensions to a type wll

al ways consi st of one or nore el enents having the sanme expanded nane,
and zero or nore attributes. The expanded nanme shared by the

Legg Experi ment al [Page 30]

RFC 4911 Encodi ng I nstructions for RXER July 2007

el ements in one particular encoding is not required to be the sane as
t he expanded name shared by the elenments in any other encoding of the
extension. For exanple, in one encoding of the extension the

el ements mght all be called "foo", while in another encoding of the
extension they mght all be called "bar"

The SI NGULAR- | NSERTI ONS encodi ng i nstruction indicates that the RXER
encodi ngs produced by forward-conpatible extensions to a type wll

al ways consist of a single elenent and zero or nore attributes. The
nane of the single element is not required to be the same in every
possi bl e encodi ng of the extension.

The HOLLOW I NSERTI ONS encodi ng instruction indicates that the RXER
encodi ngs produced by forward-conpatible extensions to a type wll
al ways consi st of zero elenents and zero or nore attributes.

The NO- I NSERTI ONS encodi ng instruction indicates that no forward-
conpati bl e extensions can be nade to a type.

Exanpl es of forward-conpatible extensions are provided in Appendix C

The Type in the Encodi ngPrefi xedType for an insertion encodi ng
instruction SHALL be either

(1) a BuiltinType that is a ChoiceType where the Choi ceType is not
subject to a UNION encodi ng instruction, or

(2) a BuiltinType that is a SequenceType or SetType, or

(3) a ConstrainedType that is not a TypeWthConstraint where the Type
in the Constrai nedType is one of (1) to (5), or

(4) a BuiltinType that is a PrefixedType that is a TaggedType where
the Type in the TaggedType is one of (1) to (5), or

(5) a BuiltinType that is a PrefixedType that is an
Encodi ngPr efi xedType where the Type in the Encodi ngPrefixedType
is one of (1) to (5).

Case (2) is not permtted when the insertion encoding instruction is

t he SI NGULAR- |1 NSERTI ONS, UNI FORM | NSERTI ONS, or MJLTI FORM | NSERTI ONS
encodi ng instruction.

Legg Experi ment al [Page 31]

RFC 4911 Encodi ng I nstructions for RXER July 2007

24,

Asi de: Because extensions to a SET or SEQUENCE type are serial and
ef fectively optional, the SINGULAR- I NSERTI ONS, UNI FORM | NSERTI ONS
and MULTI FORM | NSERTI ONS encodi ng i nstructions of fer no advant age
over unrestricted extensions (for a SET or SEQUENCE). For
exanpl e, an optional series of singular insertions generates zero
or nore elenents and zero or nore attributes, just like an
unrestricted extension.

The Type in case (1) or case (2) is said to be "subject to" the
i nsertion encoding instruction.

The Type in case (1) or case (2) MJST be extensible, either
explicitly or by default.

A Type SHALL NOT be subject to nore than one insertion encodi ng
i nstruction.

The insertion encoding instructions indicate what kinds of extensions
can be nade to a type wi thout breaking forward conpatibility, but
they do not prohibit extensions that do break forward conpatibility.
That is, it is not an error for a type’'s base type to contain
extensions that do not satisfy an insertion encoding instruction
affecting the type. However, if any such extensions are made, then a
new val ue SHOULD be introduced into the extensible set of permtted
values for a version indicator attribute, or attributes (see

Section 24), whose scope enconpasses the extensions. An exanple is
provi ded in Appendix C

The VERSI ON-1 NDI CATOR Encodi ng I nstruction

The VERSI ON-1 NDI CATOR encodi ng instruction provides a nechani smfor
RXER decoders to be alerted that an encodi ng contai ns extensions that
break forward conpatibility (see the precedi ng section).

The notation for a VERSI ON-1 NDI CATOR encodi ng instruction is defined
as foll ows:

Ver si onl ndi catorl nstruction ::= "VERSI ON-| NDI CATOR"

A NamedType that is subject to a VERSI ON-1 NDI CATOR encodi ng
instruction MIST al so be subject to an ATTRI BUTE encodi ng
i nstruction.

The type of the NanmedType that is subject to the VERSI ON-1 NDI CATOR
encodi ng instruction MJST be directly or indirectly a constrained
type where the set of permitted values is defined to be extensible.
Each val ue represents a different version of the ASN. 1 specification.
Odinarily, an application will set the value of a version indicator

Legg Experi ment al [Page 32]

RFC 4911 Encodi ng I nstructions for RXER July 2007

attribute to be the last of these permitted values. An application
MAY set the value of the version indicator attribute to the value
corresponding to an earlier version of the specification if it has
not used any of the extensions added in a subsequent version

I f an RXER decoder encounters a value of the type that is not one of
the root values or extension additions (but that is still allowed
since the set of pernitted values is extensible), then this indicates
that the decoder is using a version of the ASN. 1 specification that
is not conpatible with the version used to produce the encoding. In
such cases, the decoder SHOULD treat the el ement containing the
attribute as having an unknown ASN. 1 type.

Aside: A version indicator attribute only indicates an
inconpatibility with respect to RXER encodi ngs. O her encodings
are not affected because the GROUP encodi ng instruction does not
apply to them

Exanpl es

In this first exanple, the decoder is using an inconpatible ol der
version if the value of the version attribute in a received RXER
encoding is not 1, 2, or 3.

SEQUENCE {
version [ATTRI BUTE] [VERSI O\-1NDI CATOR]
I NTEGER (1, ..., 2..3),
nmessage MessageType

}

In this second exanple, the decoder is using an inconpatible ol der
version if the value of the format attribute in a received RXER
encoding is not "1.0", "1.1", or "2.0"

SEQUENCE ({
f or mat [ATTRI BUTE] [VERSI ON- | NDI CATOR]
UTF8String ("1.0", ..., "1.1" | "2.0"),
nmessage MessageType

}

An extensive exanple is provided in Appendi x C

It is not necessary for every extensible type to have its own version
indicator attribute. It would be typical for only the types of
top-1evel elenment conponents to include a version indicator
attribute, which would serve as the version indicator for all of the
nest ed conponents.

Legg Experi ment al [Page 33]

RFC 4911 Encodi ng I nstructions for RXER July 2007

25.

The GROUP Encodi ng I nstruction

The CGROUP encoding instruction causes an RXER encoder to encode a
val ue of the conponent to which it is applied w thout encapsul ation
as an element. It allows the construction of non-trivial content
nodel s for el ement content.

The notation for a GROUP encoding instruction is defined as foll ows:
G oupl nstruction ::="GROUP"

The base type of the type of a NanedType that is subject to a GROUP
encodi ng instruction SHALL be either

(1) a SEQUENCE, SET, or SET OF type, or

(2) a CHO CE type where the ChoiceType is not subject to a UNI ON
encodi ng instruction, or

(3) a SEQUENCE OF type where the SequenceCf Type is not subject to a
LI ST encodi ng i nstruction.

The SEQUENCE type in case (1) SHALL NOT be the associated type for a
built-in type, SHALL NOT be a type fromthe

Addi tional Basi cDefinitions nodule [RXER], and SHALL NOT contain a
conmponent that is subject to a S| MPLE- CONTENT encoding instruction

Asi de: Thus, the CHARACTER STRI NG EMBEDDED PDV, EXTERNAL, REAL,
and QNanme types are excl uded.

The CHO CE type in case (2) SHALL NOT be a type fromthe
Addi ti onal Basi cDefinitions nodul e.

Asi de: Thus, the Markup type is excluded.

Definition (visible conponent): Ignoring all type constraints, the
vi si bl e conponents for a type that is directly or indirectly a
conmbining ASN. 1 type (i.e., SEQUENCE, SET, CHO CE, SEQUENCE OF, or
SET OF) is the set of conponents of the conbining type definition
pl us, for each NanmedType (of the conmbining type definition) that is
subject to a GROUP encodi ng instruction, the visible conponents for
the type of the NamedType. The visible conponents are determ ned
after the COVPONENTS OF transformation specified in X 680, C ause
24.4 [X 680].

Legg Experi ment al [Page 34]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Asi de: The set of visible attribute and el enent conponents for a
type is the set of all the conponents of the type, and any nested
types, that describe attributes and child el enents appearing in
the RXER encodi ngs of values of the outer type.

A GROUP encodi ng instruction MUST NOT be used where it would cause a
NanedType to be a visible conponent of the type of that same
NamedType (which is only possible if the type definition is
recursive).

Asi de: Conponents subject to a GROUP encoding instruction m ght be
translated into a conpati ble XML Schema [XSD1] as group
definitions. A NanedType that is visible to its own type is

anal ogous to a circular group, which XM. Scherma disal | ows.

Section 25.1 inposes additional conditions on the use of the GROUP
encodi ng instruction.

In any use of the GROUP encoding instruction, there is a type, the

i ncluding type, that contains the conponent subject to the GROUP
encodi ng instruction, and a type, the included type, that is the base
type of that conponent. Either type can have an extensible content
nmodel , either by directly using ASN.1 extensibility or by including

t hrough anot her GROUP encoding instruction sone other type that is
ext ensi bl e.

The including and included types may be defined in different ASN. 1
nmodul es, in which case the owner of the including type, i.e., the
person or organization having the authority to add extensions to the
including type's definition, may be different fromthe owner of the
i ncl uded type.

If the owner of the including type is not using the nost recent
version of the included type's definition, then the owner of the
including type m ght add an extension to the including type that is
valid with respect to the older version of the included type, but is
|ater found to be invalid when the |atest versions of the including
and included type definitions are brought together (perhaps by a
third party). Al though the owner of the including type nust
necessarily be aware of the existence of the included type, the
reverse is not necessarily true. The owner of the included type
could add an extension to the included type without realizing that it
i nval i dat es soneone el se’s including type.

Legg Experi ment al [Page 35]

RFC 4911 Encodi ng I nstructions for RXER July 2007

25.

To avoid these problens, a GROUP encodi ng instruction MJST NOT be
used if:

(1) the included type is defined in a different nodule fromthe
i ncluding type, and

(2) the included type has an extensible content nodel, and

(3) changes to the included type are not coordi nated with the owner
of the including type.

Changes in the included type are coordinated with the owner of the
i ncluding type if:

(1) the owner of the included type is also the owner of the including
type, or

(2) the owner of the including type is collaborating with the owner
of the included type, or

(3) all changes will be vetted by a comon third party before being
approved and publi shed.

1. Unanbi guous Encodi ngs

Unregul at ed use of the GROUP encoding instruction can easily lead to
specifications in which distinct abstract val ues have

i ndi stingui shabl e RXER encodi ngs, i.e., anbiguous encodings. This
section inposes restrictions on the use of the GROUP encodi ng
instruction to ensure that distinct abstract values have distinct
RXER encodings. |In addition, these restrictions ensure that an
abstract value can be easily decoded in a single pass wthout
back-tracki ng.

An RXER decoder for an ASN. 1 type can be abstracted as a recogni zer
for a notional |anguage, consisting of elenent and attribute expanded
nanes, where the type definition describes the grammar for that

| anguage (in fact it is a context-free grammar). The restrictions on
a type definition to ensure easy, unanbi guous decodi ng are nore
conveniently, conpletely, and sinply expressed as conditions on this
associ ated grammar. Inplenmentations are not expected to verify type
definitions exactly in the manner to be described; however, the
procedure used MUST produce the sane result.

Section 25.1.1 describes the procedure for recasting as a gramar a
type definition containing conponents subject to the GROUP encodi ng
instruction. Sections 25.1.2 and 25.1.3 specify conditions that the

Legg Experi ment al [Page 36]

RFC 4911 Encodi ng I nstructions for RXER July 2007

25.

gramar nust satisfy for the type definition to be valid. Section
25.1. 4 describes how unrecogni zed attributes are accepted by the
grammar for an extensible type.

Appendi ces A and B have extensive exanpl es.
1.1. Ganmar Construction

A grammar consists of a collection of productions. A production has
a left-hand side and a right-hand side (in this docunent, separated
by the "::=" synbol). The left-hand side (in a context-free grammar)
is a single non-termnal synmbol. The right-hand side is a sequence
of non-term nal and term nal synbols. The terninal synbols are the

| exical itenms of the | anguage that the grammar describes. One of the
non-termnals is nomnated to be the start synbol. A valid sequence
of termnals for the |anguage can be generated fromthe granmar by
beginning with the start synbol and repeatedly replacing any
non-termnal with the right-hand side of one of the productions where
that non-terminal is on the production’s left-hand side. The fina
sequence of ternminals is achieved when there are no renaining
non-termnals to repl ace.

Asi de: X. 680 describes the ASN. 1 basic notation using a
context-free granmar.

Each NamedType has an associated primary and secondary non-term nal

Asi de: The secondary non-terminal for a NanedType is used when the
base type of the type in the NanmedType is a SEQUENCE CF type or
SET OF type

Each Ext ensi onAddition and Extensi onAdditionAlternative has an

associ ated non-ternminal. There is a non-termnminal associated with the
extension insertion point of each extensible type. There is also a
primary start non-termnal (this is the start synbol) and a secondary
start non-ternminal. The exact nature of the non-termnals is not

i mportant, however all the non-term nals MUST be nutually distinct.

It is adequate for nost of the exanples in this docunent (though not
in the nost general case) for the primary non-ternminal for a
NanmedType to be the identifier of the NamedType, for the primary
start non-terminal to be S, for the non-termnals for the instances
of ExtensionAddition and ExtensionAdditionAl ternative to be E1, E2,
E3, and so on, and for the non-terminals for the extension insertion
points to be 11, 12, 13, and so on. The secondary non-terminals are
| abel ed by appending a "'" character to the primary non-termn na

| abel, e.g., the primary and secondary start non-ternminals are S and
S, respectively.

Legg Experi ment al [Page 37]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Each NamedType and extension insertion point has an associ ated
termnal. There exists a termnal called the general extension
term nal that is not associated with any specific notation. The
general extension terminal and the ternminals for the extension
insertion points are used to represent elenments in unknown
extensions. The exact nature of the terminals is not inportant;
however, the aforenentioned terninals MIST be nutually distinct. The
termnals are further categorized as either elenment termnals or
attribute ternminals. A termnal for a NanmedType is an attribute
termnal if its associated NanedType is an attribute conponent;
otherwise, it is an element termnal. The general extension term na
and the terminals for the extension insertion points are categorized
as el enent termnals.

Term nals for attributes in unknown extensions are not explicitly
provided in the grammar. Certain productions in the gramar are
categori zed as insertion point productions, and their role in
accepting unknown attributes is described in Section 25.1.4.

In the exanples in this docunent, the ternminal for a conponent other
than an attribute conponent will be represented as the | ocal nane of
t he expanded nane of the conponent enclosed in double quotes, and the
termnal for an attribute conponent will be represented as the |oca
nane of the expanded nane of the conponent prefixed by the '@
character and enclosed in double quotes. The general extension
termnal will be represented as "*" and the terminals for the
extension insertion points will be represented as "*1", "*2",6 "*3"
and so on.

The productions generated froma NanedType depend on the base type of
the type of the NamedType. The productions for the start

non-term nals depend on the conbining type definition being tested.
In either case, the procedure for generating productions takes a
primary non-term nal, a secondary non-term nal (sonetines), and a
type definition.

The grammar is constructed beginning with the start non-terninals and
the conbi ning type definition being tested.

A grammar is constructed after the COVPONENTS OF transformation
specified in X 680, Cause 24.4 [X 680].

Gven a primary non-termnal, N, and a type where the base type is a
SEQUENCE or SET type, a production is added to the granmmar with N as
the left-hand side. The right-hand side is constructed from an
initial enpty state according to the follow ng cases considered in
order:

Legg Experi ment al [Page 38]

RFC 4911 Encodi ng I nstructions for RXER July 2007

(1) If an initial RootConponentTypelList is present in the base type,
then the sequence of primary non-termnals for the conponents
nested in that Root Conponent TypeLi st are appended to the right-
hand side in the order of their definition.

(2) If an ExtensionAdditions instance is present in the base type and
not enpty, then the non-ternminal for the first ExtensionAddition
nested in the ExtensionAdditions instance is appended to the
ri ght-hand side

(3) If an ExtensionAdditions instance is enpty or not present in the
base type, and the base type is extensible (explicitly or by
default), and the base type is not subject to a NO I NSERTI ONS or
HOLLOW | NSERTI ONS encodi ng i nstruction, then the non-termnal for
the extension insertion point of the base type is appended to the
ri ght-hand side

(4) If a final RootConponent TypelList is present in the base type,
then the primary non-termnals for the conponents nested in that
Root Conponent TypelLi st are appended to the right-hand side in the
order of their definition

The production is an insertion point production if an

Ext ensi onAddi ti ons instance is enpty or not present in the base type,
and the base type is extensible (explicitly or by default), and the
base type is not subject to a NO I NSERTIONS encoding instruction

If a conmponent in a Conponent TypeList (in either a

Root Conmponent TypelLi st or an Ext ensi onAddi ti onG oup) is nmarked

OPTI ONAL or DEFAULT, then a production with the prinary non-term na
of the conponent as the left-hand side and an enpty right-hand side
is added to the granmmar.

If a conmponent (regardless of the ASN.1 conbining type containing it)
is subject to a GROUP encoding instruction, then one or nore
productions constructed according to the conponent’s type are added
to the grammar. Each of these productions has the prinmary
non-term nal of the conponent as the |eft-hand side.

If a conmponent (regardless of the ASN.1 conbining type containing it)
is not subject to a GROUP encoding instruction, then a production is
added to the grammar with the prinmary non-term nal of the conponent
as the left-hand side and the term nal of the conponent as the

ri ght-hand side

Legg Experi ment al [Page 39]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Exanpl e
Consider the followi ng ASN. 1 type definition

SEQUENCE {
-- Start of initial RootConponent Typeli st.
one [ATTRI BUTE] UTF8Stri ng,
t wo BOOLEAN OPTI ONAL,
three | NTEGER
-- End of initial RootConponent TypelLi st.

}
Here is the grammar derived fromthis type:
S ::= one two three
one ::= "@ne"
two ::= "two"
two ;=
three ::= "three"

For each ExtensionAddition (of a SEQUENCE or SET base type), a
production is added to the grammar where the left-hand side is the
non-term nal for the ExtensionAddition and the right-hand side is
initially enpty. |If the ExtensionAddition is a Conponent Type, then
the primary non-termnal for the NanedType in the Conponent Type is
appended to the right-hand side; otherw se (an

Ext ensi onAddi ti onGroup), the sequence of primary non-termnals for
the conponents nested in the Conmponent TypeList in the

Ext ensi onAddi ti onGroup are appended to the right-hand side in the
order of their definition. |If the ExtensionAddition is followed by
anot her ExtensionAddition, then the non-term nal for the next

Ext ensi onAddi ti on is appended to the right-hand side; otherw se, if
the base type is not subject to a NO I NSERTI ONS or HOLLOW I NSERTI ONS
encodi ng instruction, then the non-terninal for the extension
insertion point of the base type is appended to the right-hand side.
If the ExtensionAddition is not foll owed by another ExtensionAddition
and the base type is not subject to a NO I NSERTI ONS encodi ng
instruction, then the production is an insertion point production

If the enpty sequence of terminals cannot be generated fromthe
production (it nmay be necessary to wait until the grammar is

ot herwi se conpl ete before nmaking this determ nation), then another
production is added to the grammar where the left-hand side is the
non-term nal for the ExtensionAddition and the right-hand side is

enpty.
Aside: An extension is always effectively optional since a sender

may be using an earlier version of the ASN. 1 specification where
none, or only sone, of the extensions have been defi ned.

Legg Experi ment al [Page 40]

RFC 4911 Encodi ng I nstructions for RXER July 2007

| f
def

Asi de: The granmar generated for ExtensionAdditions is structured
to take account of the condition that an extension can only be
used if all the earlier extensions are also used [X 680].

a SEQUENCE or SET base type is extensible (explicitly or by
ault) and is not subject to a NO I NSERTI ONS or HOLLOW I NSERTI ONS

encodi ng instruction, then

(1)

(2)

a production is added to the grammar where the left-hand side is
the non-term nal for the extension insertion point of the base
type and the right-hand side is the general extension term na
followed by the non-termnal for the extension insertion point,
and

a production is added to the grammar where the left-hand side is
the non-terminal for the extension insertion point and the
right-hand side is enpty.

Exanpl e

Legg

Consider the followi ng ASN. 1 type definition

SEQUENCE {
-- Start of initial RootConponent Typeli st.
one BOOLEAN
t wo | NTEGER OPTI ONAL,
-- End of initial RootConponent TypelLi st.

::.étart of Extensi onAddi tions.

four |INTEGER, -- First ExtensionAddition (El).
five BOOLEAN OPTIONAL, -- Second ExtensionAddition (E2).
[[-- An ExtensionAdditionG oup.

Si X UTF8Stri ng,
seven | NTEGER OPTI ONAL
11, -- Third ExtensionAddition (E3).
-- End of ExtensionAdditions.
-- The extension insertion point is here (11).

;;.étart of final RootConponent TypeLi st.
three | NTEGER

}
Here is the grammar derived fromthis type:
S::=one tw El three
El ::= four E2
El ::=
Experi ment al [Page 41]

RFC 4911 Encodi ng I nstructions for RXER July 2007

E2 ::=five E3
E3 ::=six seven |1
E3 ::=

11 ::="*" 11

11 ::=

one .= "one"

two ::= "two"

two ::=

three ::= "three"
f our = "four"
five ::= "five"
five ::=

six 1= "six"
seven ::= "seven"
seven ::=

If the SEQUENCE type were subject to a NO | NSERTI ONS or
HOLLOW | NSERTI ONS encodi ng i nstruction, then the productions for
1 woul d not appear, and the first production for E3 would be:

E3 ::= six seven

Gven a primary non-termnal, N, and a type where the base type is a
CHO CE type

(1)

(2)

(3)

Legg

A production is added to the granmar for each NanedType nested in
the Root AlternativeTypelLi st of the base type, where the left-hand
side is N and the right-hand side is the primary non-term nal for
t he NanedType.

A production is added to the gramar for each

Ext ensi onAddi ti onAlternative of the base type, where the left-
hand side is N and the right-hand side is the non-termnal for
t he ExtensionAdditionAlternative

If the base type is extensible (explicitly or by default) and the
base type is not subject to an insertion encoding instruction
t hen:

(a) A production is added to the granmar where the | eft-hand side
is Nand the right-hand side is the non-termnal for the
extension insertion point of the base type. This production
is an insertion point production.

Experi ment al [Page 42]

RFC 4911 Encodi ng I nstructions for RXER July 2007

(4)

(5)

(6)

Legg

(b) A production is added to the granmar where the | eft-hand side
is the non-terminal for the extension insertion point of the
base type and the right-hand side is the general extension
termnal followed by the non-term nal for the extension
i nsertion point.

(c) A production is added to the granmar where the | eft-hand side
is the non-terminal for the extension insertion point of the
base type and the right-hand side is enpty.

If the base type is subject to a HOLLOW | NSERTI ONS encodi ng
instruction, then a production is added to the grammar where the
| eft-hand side is N and the right-hand side is enpty. This
production is an insertion point production.

If the base type is subject to a SINGULAR- I NSERTI ONS encodi ng
instruction, then a production is added to the grammar where the
| eft-hand side is N and the right-hand side is the genera
extension ternminal. This production is an insertion point
producti on.

If the base type is subject to a UNI FORM | NSERTI ONS encodi ng
i nstruction, then:

(a) A production is added to the granmar where the | eft-hand side
is Nand the right-hand side is the general extension
ter m nal

Aside: This production is used to verify the correctness
of an ASN. 1 type definition, but would not be used in the
i mpl enent ati on of an RXER decoder. The next production
t akes precedence over it for accepting an unknown el enent.

(b) A production is added to the granmar where the |eft-hand side
is Nand the right-hand side is the termnal for the
extension insertion point of the base type followed by the
non-termnal for the extension insertion point. This
production is an insertion point production.

(c) A production is added to the granmar where the |eft-hand side
is the non-termnal for the extension insertion point of the
base type and the right-hand side is the terninal for the
extension insertion point followed by the non-term nal for
the extension insertion point.

(d) A production is added to the granmar where the |eft-hand side

is the non-termnal for the extension insertion point of the
base type and the right-hand side is enpty.

Experi ment al [Page 43]

RFC 4911 Encodi ng I nstructions for RXER July 2007

(7) If the base type is subject to a MITI FORM | NSERTI ONS encodi ng
i nstruction, then:

(a) A production is added to the granmar where the |eft-hand side
is Nand the right-hand side is the general extension
termnal followed by the non-termnal for the extension
insertion point of the base type. This production is an
i nsertion point production.

(b) A production is added to the granmar where the |eft-hand side
is the non-termnal for the extension insertion point of the
base type and the right-hand side is the general extension
termnal followed by the non-term nal for the extension
i nsertion point.

(c) A production is added to the granmar where the |eft-hand side
is the non-termnal for the extension insertion point of the
base type and the right-hand side is enpty.

I f an ExtensionAdditionAlternative is a NanedType, then a production
is added to the grammar where the left-hand side is the non-term na
for the ExtensionAdditionAlternative and the right-hand side is the
primary non-term nal for the NanedType

I f an ExtensionAdditionAlternative is an

Ext ensi onAddi ti onAl ternati vesG oup, then a production is added to the
grammar for each NanmedType nested in the

Ext ensi onAddi ti onAl ternati vesG oup, where the left-hand side is the
non-term nal for the ExtensionAdditionAlternative and the right-hand
side is the primary non-termnal for the NanedType.

Legg Experi nent al [Page 44]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Exanpl e

Legg

Consider the followi ng ASN. 1 type definition

CHO CE {
-- Start of RootAlternativeTypelist.
one BOOLEAN
t wo | NTEGER,
-- End of RootAlternativeTypeli st.

- Start of ExtensionAdditionAlternatives.
hree |INTEGER, -- First ExtensionAdditionAlternative (E1).
[-- An ExtensionAdditionAlternativesG oup.
four UTF8String,
five | NTEGER
]1 -- Second ExtensionAdditionAlternative (E2).
-- The extension insertion point is here (11).

t
[

}

Here is the gramar derived fromthis type:
S ::= one
S::=tw
S::= E1
S::= E2
S::=11
11 ::="*" 11
11 ::=
El ::= three
E2 ::= four
E2 ::=five
one ::= "one"
two ::= "two"
three ::= "three"
f our = "four"
five ::= "five"

If the CHO CE type were subject to a NO I NSERTI ONS encodi ng
instruction, then the fifth, sixth, and seventh productions woul d
be renoved

If the CHO CE type were subject to a HOLLOMI NSERTI ONS encodi ng

instruction, then the fifth, sixth, and seventh productions woul d
be replaced by:

Experi ment al [Page 45]

RFC 4911 Encodi ng I nstructions for RXER July 2007

S .=

If the CHO CE type were subject to a S| NGULAR-I NSERTI ONS encodi ng
instruction, then the fifth, sixth, and seventh productions woul d
be repl aced by:

S ="

If the CHO CE type were subject to a UNI FORM | NSERTI ONS encodi ng
instruction, then the fifth and sixth productions would be
repl aced by:

ngn

mxqro| 1

S
S ::

1 ::="*1" 11

If the CHO CE type were subject to a MILTI FORM | NSERTI ONS encodi ng
instruction, then the fifth production would be replaced by:

S::="*" 11

Constraints on a SEQUENCE, SET, or CHO CE type are ignored. They do
not affect the granmmar bei ng generated.

Asi de: This avoids an awkward situation where val ues of a subtype
have to be decoded differently fromvalues of the parent type. It
also sinplifies the verification procedure.

Gven a primary non-termnal, N, and a type that has a SEQUENCE OF or
SET OF base type and that permits a value of size zero (i.e., an
enpty sequence or set):

(1) a production is added to the granmar where the |eft-hand side of
the production is N and the right-hand side is the primry
non-term nal for the NanedType of the conponent of the
SEQUENCE OF or SET OF base type, followed by N, and

(2) a production is added to the granmar where the |eft-hand side of
the production is N and the right-hand side is enpty.

Gven a primary non-termnal, N, a secondary non-ternminal, N, and a

type that has a SEQUENCE OF or SET OF base type and that does not
pernmit a value of size zero:

Legg Experi ment al [Page 46]

RFC 4911 Encodi ng I nstructions for RXER July 2007

25.

(1) a production is added to the granmar where the | eft-hand side of
the production is N and the right-hand side is the primary
non-term nal for the NanedType of the conmponent of the
SEQUENCE OF or SET OF base type, followed by N, and

(2) a production is added to the granmar where the | eft-hand side of
the production is N and the right-hand side is the prinmary
non-term nal for the NanedType of the conponent of the
SEQUENCE OF or SET OF base type, followed by N, and

(3) a production is added to the granmar where the | eft-hand side of
the production is N and the right-hand side is enpty.

Exanpl e
Consider the following ASN. 1 type definition
SEQUENCE S| ZE(1..MAX) OF number | NTEGER
Here is the gramar derived fromthis type:
S ::= nunber S

S = nunber §

g =
number ::= "nunber"

Al'l inner subtyping (InnerTypeContraints) is ignored for the purposes

of deciding whether a value of size zero is permtted by a

SEQUENCE OF or SET OF type

This conpletes the description of the transformati on of ASN. 1
conbi ning type definitions into a gramar

1.2. Uni que Conponent Attribution

This section describes conditions that the grammar nust satisfy so
that each elenent and attribute in a received RXER encodi ng can be
uni quely associated with an ASN. 1 conponent definition

Definition (used by the grammar): A non-terminal, N, is used by the
gramar if:

(1) Nis the start synbol or

(2) N appears on the right-hand side of a production where the
non-termnal on the left-hand side is used by the grammar.

Legg Experi ment al [Page 47]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Definition (rmultiple derivation paths): A non-termnal, N, has
mul ti ple derivation paths if:

(1) N appears on the right-hand side of a production where the
non-term nal on the |eft-hand side has nultiple derivation paths,
or

(2) N appears on the right-hand side of nore than one production
where the non-terminal on the left-hand side is used by the
granmar, or

(3) Nis the start synbol and it appears on the right-hand side of a
producti on where the non-termnal on the |eft-hand side is used
by the gramar.

For every ASN.1 type with a base type containing conponents that are
subject to a GROUP encoding instruction, the grammar derived by the
net hod described in this document MUST NOT have:

(1) two or nore primary non-terminals that are used by the grammar
and are associated with el enent conponents having the sane
expanded nane, or

(2) two or nore prinmary non-terninals that are used by the grammar
and are associated with attribute conponents having the sane
expanded nane, or

(3) a primary non-termnal that has nultiple derivation paths and is
associated with an attribute conponent.

Aside: Case (1) is in response to conponent referencing notations
that are evaluated with respect to the XM. encodi ng of an abstract
val ue. Case (1) guarantees, without having to do extensive
testing (which would necessarily have to take account of encoding
instructions for all other encoding rules), that all sibling

el ements with the sane expanded nane will be associated with

equi val ent type definitions. Such equival ence allows a conmponent
referenced by el enment nanme to be re-encoded using a different set
of ASN. 1 encoding rules without anbiguity as to which type
definition and encoding instructions apply.

Cases (2) and (3) ensure that an attribute name is always uni quely

associ ated with one conponent that can occur at nost once and is
al ways nested in the same part of an abstract val ue.

Legg Experi ment al [Page 48]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Exanpl e

Legg

The followi ng exanple types illustrate various uses and m suses of
the GROUP encoding instruction with respect to uni que conponent
attribution:

TA :: = SEQUENCE {
a [GROUP] TB,
b [GROUP] CHO CE {
[GROUP] TB,
[NAME AS "c"] [ATTRIBUTE] | NTEGER,
| NTEGER,
TB,
[GROUP] TD,
[ATTRI BUTE] UTF8Stri ng

T D QOO T

}
¢ [ATTRI BUTE] | NTEGER,
d [GROUP] SEQUENCE OF
a [GROUP] SEQUENCE {
a [ATTRI BUTE] OBJECT | DENTI FI ER
b | NTEGER
},
e [NAME AS "c"] | NTEGER
COVPONENTS OF TD

}

TB :: = SEQUENCE {
a | NTEGER,
b [ATTRI BUTE] BOOLEAN
COVPONENTS OF TC

}

TC :: = SEQUENCE {
f OBJECT | DENTI FI ER

}
TD :: = SEQUENCE {

g OBJECT | DENTI FI ER
}

The grammar for TA is constructed after performng the

COVPONENTS OF transformation. The result of this transformation
is shown next. This exanple will depart fromthe usual convention
of using just the identifier of a NamedType to represent the
primary non-terminal for that NanedType. A label relative to the
outernost type will be used instead to better illustrate unique
conmponent attribution. The |abels used for the non-termnals are
shown down the right-hand side

Experi ment al [Page 49]

RFC 4911 Encodi ng I nstructions for RXER
TA :: = SEQUENCE {
a [GROUP] TB,
b [GROUP] CHO CE {
a [GROUP] TB,
b [NAME AS "c"] [ATTRI BUTE] | NTEGER,
c | NTEGER,
d TB,
e [GROUP] TD,
f [ATTRIBUTE] UTF8Stri ng
}
¢ [ATTRI BUTE] | NTEGER,
d [GROUP] SEQUENCE OF
a [GROUP] SEQUENCE ({
a [ATTRI BUTE] OBJECT | DENTI FI ER
b | NTEGER
} 3
e |[NAME AS "c"] | NTEGER
g OBJECT | DENTI FI ER
}
TB :: = SEQUENCE {
a | NTEGER,
b [ATTRI BUTE] BOOLEAN
f OBJECT | DENTI FI ER
}
-- Type TCis no longer of interest. --
TD :: = SEQUENCE {
g OBJECT | DENTI FI ER
}
The associated gramar is:
S::=TAa TA b TAc TAd TAe TA g
TA.a ::= TB.a TB.b TB.f
TB.a ::="a"
TB.b ::="@"
B.f ;= "f"
TA.b ::= TA b.a
TA.b ::= TA b.b
TA. b ::= TA b.c
TA.b ::= TA b.d
TA.b ::= TA b.e
TA. b ::= TA b.f

Legg

Experi ment al

TA.
TA.
TA.
TA.
TA.
TA
TA.
TA.

TA.
TA.
TA
TA.

TA.
TA.

TB.
TB.
TB.

TD.

Q @

Il @ 2 <)

TooooToOow
D OO T

coooo
Do
[@ 2]

July 2007

[Page 50]

RFC 4911 Encodi ng I nstructions for RXER July 2007

TA
TA.
TA.
TA.
TA.
TA.

TB.a TB.b TB.f

Cooooo
~nDoooTw

TD.g ::="¢g"

TA.

1
®

TA. d ::
TA. d ::

TA.d.a TA. d

TA.d.a ::= TA d.a.a TA d.a.b

TA. d. a.
TA. d. a.

=@
.:: Ilbll

oo

TA e ::="c"
TA g ::="¢"
Al'l the non-ternminals are used by the granmmar.

The type definition for TAis invalid because there are two
i nstances where two or nore prinmary non-termnals are associ ated
wi th el enent conponents having the sane expanded nane:

(1) TA b.c and TA e (both generate the termnal "c"), and

(2) TD.g and TA. g (both generate the ternminal "g").

In case (2), TD.g and TA. g are derived fromthe sanme instance of
NamedType notation, but becone distinct conponents follow ng the
COVPONENTS OF transformation. AUTOVATIC tagging is applied after
t he COVPONENTS OF transformati on, which neans that the types of

t he conponents corresponding to TD.g and TA. g will end up with
different tags, and therefore the types will not be equival ent.

The type definition for TAis also invalid because there is one

i nstance where two or nore primary non-termnals are associ ated

with attribute conponents having the sane expanded nane: TA b.b
and TA.c (both generate the terninal "@").

Legg Experi ment al [Page 51]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The non-terminals with nmultiple derivation paths are: TA d,
TA.d.a, TA d.a.a, TA d.a.b, TB.a, TB. b, and TB.f. The type
definition for TAis also invalid because TA . d.a.a and TB.b are
primary non-term nals that are associated with an attribute
conponent .

25.1.3. Deternministic Ganmars

Let the First Set of a production P, denoted First(P), be the set of
all element termnals T where T is the first elenent terninal in a
sequence of term nals that can be generated fromthe right-hand side
of P. There can be any nunber of leading attribute terninals before
T.

Let the Follow Set of a non-terminal N, denoted Follow(N), be the set
of all element terminals T where T is the first elenent ternina
following Nin a sequence of non-termnals and term nals that can be
generated fromthe grammar. There can be any nunber of attribute
termnals between Nand T. |f a sequence of non-terminals and

term nals can be generated fromthe grammar where Nis not foll owed
by any elenent terninals, then Follow(N) al so contains a special end
terninal, denoted by "$".

Aside: If N does not appear on the right-hand side of any
production, then Follow(N) will be enpty.

For a production P, let the predicate Enpty(P) be true if and only if
the enpty sequence of terminals can be generated fromP. O herw se
Empty(P) is false.

Definition (base gramar): The base grammar is a rewiting of the
granmar in which the non-termnals for every ExtensionAddition and
Ext ensi onAddi ti onAlternative are renmoved fromthe right-hand side of
al | productions.

For a production P, let the predicate Preselected(P) be true if and
only if every sequence of terminals that can be generated fromthe

right-hand side of P using only the base grammar contains at | east

one attribute termnal. Oherw se, Preselected(P) is false.

The Sel ect Set of a production P, denoted Select(P), is enpty if
Presel ected(P) is true; otherwise, it contains First(P). Let N be
the non-terminal on the left-hand side of P. If Enpty(P) is true,
then Select(P) also contains Foll owmN).

Legg Experi ment al [Page 52]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Aside: It may appear sonewhat dubious to include the attribute
conmponents in the grammar because, in reality, attributes appear
unordered within the start tag of an el enment, and not interspersed
with the child elenents as the granmar woul d suggest. This is why
attribute termnals are ignored in conposing the First Sets and
Fol | ow Sets. However, the attribute termnals are inportant in
conposi ng the Sel ect Sets because they can presel ect a production
and can prevent a production frombeing able to generate an enpty
sequence of ternminals. In real terms, this corresponds to an RXER
decoder using the attributes to determ ne the presence or absence
of optional conponents and to sel ect between the alternatives of a
CHO CE, even before considering the child el enents.

An attribute appearing in an extension isn't used to preselect a

production since, in general, a decoder using an earlier version

of the specification would not be able to associate the attribute
with any particular extension insertion point.

Let the Reach Set of a non-ternminal N, denoted Reach(N), be the set
of all element ternminals T where T appears in a sequence of termnals
that can be generated from N

Aside: It can be readily shown that all the optional attribute
conponents and all but one of the nandatory attribute conponents
of a SEQUENCE or SET type can be ignored in constructing the
gramar because their om ssion does not alter the First, Follow,
Sel ect, or Reach Sets, or the evaluation of the Presel ected and
Enpty predicates.

A grammar is deterministic (for the purposes of an RXER decoder) if
and only if:

(1) there do not exist two productions P and Q wth the sane
non-term nal on the | eft-hand side, where the intersection of
Select(P) and Select(Q is not enpty, and

(2) there does not exist a non-termnal E for an Extensi onAddition or
Ext ensi onAddi ti onAl ternative where the intersection of Reach(E)
and Follow(E) is not enpty

Aside: In case (1), if the intersection is not enpty, then a
decoder woul d have two or nore possible ways to attenpt to decode
the input into an abstract value. 1In case (2), if the
intersection is not enpty, then a decoder using an earlier version
of the ASN. 1 specification would confuse an elenment in an unknown
(to that decoder) extension with a known conmponent follow ng the
ext ensi on.

Legg Experi ment al [Page 53]

RFC 4911 Encodi ng I nstructions for RXER July 2007

25.

Aside: In the absence of any attribute conponents, case (1) is the
test for an LL(1) granmar.

For every ASN.1 type with a base type containing conponents that are
subject to a GROUP encoding instruction, the grammar derived by the
net hod described in this document MJUST be determninistic.

1.4. Attributes in Unknown Extensions

An insertion point production is able to accept unknown attributes if
the non-term nal on the |eft-hand side of the production does not
have nultiple derivation paths.

Aside: |If the non-terminal has multiple derivation paths, then any
future extension cannot possibly contain an attribute conponent
because that would violate the requirenents of Section 25.1.2.

For a deterministic grammar, there is only one possible way to
construct a sequence of elenent term nals matching the el enent
content of an element in a correctly formed RXER encoding. Any
unknown attributes of the element are accepted if at |east one
insertion point production that is able to accept unknown attributes
is used in that construction

Exanpl e
Consider this type definition
CHO CE {
one UTF8Stri ng,

two [GROUP] SEQUENCE {
three | NTEGER,

}
}
The associated gramar is:
S ::= one
S::=tw
two ::=three |11
11 ::="*" 11
11 ::=
one ::= "one"
three ::= "three"

Legg Experi ment al [Page 54]

RFC 4911 Encodi ng I nstructions for RXER July 2007

| f

The third production is an insertion point production, and it is
abl e to accept unknown attri butes.

When decoding a value of this type, if the el ement content
contains a <one> child elenment, then any unrecogni zed attribute

woul d be illegal as the insertion point production would not be
used to recognize the input (the "one" alternative does not adnit
an extension insertion point). |f the elenent content contains a

<three> el ement, then an unrecogni zed attribute would be accepted
because the insertion point production would be used to recognize
the input (the "two" alternative that generates the <three>

el ement has an extensible type).

I f the SEQUENCE type were prefixed by a NO | NSERTI ONS encodi ng
instruction, then the third, fourth, and fifth productions would
be replaced by:

two ::= three
Wth this change, any unrecogni zed attribute would be illegal for
the "two" alternative also, since the replacenent production is
not an insertion point production.

nore than one insertion point production that is able to accept

unknown attributes is used in constructing a matching sequence of
elenent terninals, then a decoder is free to associate an
unrecogni zed attribute with any one of the extension insertion points
corresponding to those insertion point productions. The
justification for doing so comes fromthe followi ng two observations:

(1

Legg

If the encoding of an abstract val ue contains an extension where
the type of the extension is unknown to the receiver, then it is
generally inpossible to re-encode the value using a different set
of encoding rules, including the canonical variant of the
received encoding. This is true no matter which encoding rul es
are being used. It is desirable for a decoder to be able to
accept and store the raw encoding of an extension w thout raising
an error, and to re-insert the raw encodi ng of the extension when
re-encodi ng the abstract val ue using the sane non-canoni ca
encoding rules. However, there is little nore that an
application can do with an unknown extension

An application using RXER can successfully accept, store, and

re-encode an unrecogni zed attri bute regardl ess of which extension
insertion point it mght be ascribed to.

Experi ment al [Page 55]

RFC 4911 Encodi ng I nstructions for RXER July 2007

26.

27.

27.

(2) EBEven if there is a single extension insertion point, an unknown
extension could still be the encoding of a value of any one of an
infinite nunber of valid type definitions. For exanple, an
attribute or element conmponent could be nested to any arbitrary
depth wi thin CHO CEs whose conponents are subject to GROUP
encodi ng instructions.

Aside: A sinmilar series of nested CHO CEs could describe an
unknown extension in a Basic Encoding Rul es (BER) encoding
[X. 690].

Security Considerations

ASN. 1 conpiler inmplementors should take special care to be thorough
i n checking that the GROUP encodi ng instruction has been correctly
used; otherw se, ASN. 1 specifications with anbi guous RXER encodi ngs
coul d be depl oyed.

Anbi guous encodi ngs nean that the abstract value recovered by a
decoder may differ fromthe original abstract value that was encoded.
If that is the case, then a digital signature generated with respect
to the original abstract value (using a canonical encoding other than
CRXER) will not be successfully verified by a receiver using the
decoded abstract value. Also, an abstract value may have
security-sensitive fields, and in particular, fields used to grant or
deny access. |If the decoded abstract value differs fromthe encoded
abstract value, then a receiver using the decoded abstract value wll
be applying different security policy than that enbodied in the
original abstract val ue.

Ref er ences
1. Normative References

[BCP14] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[URI'] Berners-Lee, T., Fielding, R and L. Masinter, "Uniform
Resource ldentifiers (URI): Ceneric Syntax", STD 66, RFC
3986, January 2005.

[RXER] Legg, S. and D. Prager, "Robust XM. Encodi ng Rul es (RXER)
for Abstract Syntax Notation One (ASN 1)", RFC 4910, July
2007.

[ASN. X] Legg, S., "Abstract Syntax Notation X (ASN. X)", RFC 4912,
July 2007

Legg Experi ment al [Page 56]

RFC 4911

[X. 680]

[X. 680- 1]

[X. 683]

[XML10]

[XMLNS10]

[XSD1]

[XSD2]

[RNG

Encodi ng I nstructions for RXER July 2007

| TUT Recomendation X 680 (07/02) | 1SOI|EC 8824-1,
Information technol ogy - Abstract Syntax Notation One
(ASN. 1): Specification of basic notation.

| TU-T Recommendati on X. 680 (2002) Amendnent 1 (10/03) |
| SO' | EC 8824-1: 2002/ Amd 1: 2004, Support for EXTENDED- XER

| TUT Recomendation X 683 (07/02) | 1SO | EC 8824-4,
I nformation technol ogy - Abstract Syntax Notation One
(ASN. 1): Paraneterization of ASN. 1 specifications.

Bray, T., Paoli, J., Sperberg-MQeen, C, Maler, E and
F. Yergeau, "Extensible Markup Language (XM.) 1.0 (Fourth
Edition)", WBC Recommendati on,

http://ww. w3. or g/ TR/ 2006/ REC- xnl - 20060816, August 2006.

Bray, T., Hollander, D., Layman, A., and R Tobin,
"Namespaces in XML 1.0 (Second Edition)", WBC
Recommendat i on,

http://ww. w3. or g/ TR/ 2006/ REC- xnl - nanes- 20060816, August
2006.

Thonpson, H., Beech, D., Maloney, M and N. Mendel sohn,
"XM. Schema Part 1: Structures Second Edition", WBC
Reconmrendat i on,

http://ww. w3. or g/ TR/ 2004/ REC- xnl schema- 1- 20041028/ ,
Cct ober 2004.

Biron, P. and A. Mal hotra, "XM. Schema Part 2: Datatypes
Second Edition", WBC Recommendati on,

http://ww. w3. or g/ TR/ 2004/ REC- xml schena- 2- 20041028/,

Cct ober 2004.

Cark, J. and M Makoto, "RELAX NG Tutorial", OASIS
Committee Specification, http://ww.oasis-open. org/
conmittees/rel ax-ng/tutorial-20011203. ht M, Decenber 2001.

27.2. Informative References

[| NFOSET]

[X. 690]

Legg

Cowan, J. and R Tobin, "XM. Information Set (Second
Edition)", WBC Recommendati on, http://ww. w3. org/
TR/ 2004/ REC- xm - i nf oset - 20040204, February 2004.

| TU-T Recomendation X 690 (07/02) | 1SO | EC 8825-1,

I nformation technology - ASN. 1 encoding rules:

Speci fication of Basic Encoding Rules (BER), Canoni cal
Encodi ng Rul es (CER) and Di stingui shed Encodi ng Rul es
(DER) .

Experi ment al [Page 57]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Appendi x A, GROUP Encodi ng I nstruction Exanpl es
Thi s appendi x i s non-normative.

Thi s appendi x contai ns exanpl es of both correct and incorrect use of
the GROUP encoding instruction, determined with respect to the
grammars derived fromthe exanple type definitions. The productions
of the grammars are | abeled for convenience. Sets and predicates for
non-terminals with only one production will be onmitted fromthe
exanpl es since they never indicate non-determ nism

The requirenents of Section 25.1.2 ("Unique Conponent Attribution")
are satisfied by all the exanples in this appendi x and the appendi ces
that followit.

A.l. Exanple 1
Consider this type definition

SEQUENCE {
one [GROUP] SEQUENCE {
t wo UTE8Stri ng OPTI ONAL
} OPTI ONAL,
three | NTEGER

}

The associ ated gramar is:
Pl: S ::= one three
P2: one ::=two
P3: one ::=
P4: two ::= "two"

P5: two ::=
P6: three ::= "three"

Sel ect Sets have to be evaluated to test the validity of the type
definition. The granmmar leads to the followi ng sets and predicates:

First(P2) { "two" }
Fi rst (P3) {1}
Presel ected(P2) = Presel ected(P3) = fal se
Enpty(P2) = Enpty(P3) = true

Fol low(one) = { "three" }

Sel ect (P2) First(P2) + Foll owone)
Sel ect (P3) First(P3) + Foll owone)

{ "two", "three" }
{ "three" }

Legg Experi ment al [Page 58]

RFC 4911 Encodi ng I nstructions for RXER July 2007

First(P4) { "two" }

Fi rst(P5) {1}

Presel ected(P4) = Presel ected(P5) = Enmpty(P4) = fal se
Empty(P5) = true

Fol low(tw) = { "three" }

Select(P4) = First(P4) = { "two" }

Select(P5) = First(P5) + Follow(two) = { "three" }

T T

The intersection of Select(P2) and Sel ect(P3) is not enpty; hence,
the grammar is not deterministic, and the type definition is not
valid. |If the RXER encoding of a value of the type does not have a
child elenent <two>, then it is not possible to determ ne whether the
"one" conponent is present or absent in the val ue.

Now consider this type definition with attributes in the
conponent :

one

SEQUENCE {
one [GROUP] SEQUENCE {
t wo UTF8Stri ng OPTI ONAL,
f our [ATTRI BUTE] BOCLEAN,
five [ATTRI BUTE] BOOLEAN OPTI ONAL
} OPTI ONAL,
three | NTEGER

}

The associ ated gramar is:
Pl: S ::= one three
P2: one ::=two four five
P3: one ::=
P4: two ::= "two"

P5: two ::=
P6: four ::="@our"
P7: five ::= "@ive"
P8: five ::=
P9: three ::= "three"

This grammar |leads to the follow ng sets and predicates:

First(P2) ={ "tw" }

First(P3) ={ }

Presel ect ed(P3) Enpty(P2) = fal se
Presel ect ed(P2) Enpty(P3) = true
Foll owm(one) = { "three" }

Sel ect (P2)
Sel ect (P3)

}
First(P3) + Followmone) = { "three" }

Legg Experi ment al [Page 59]

RFC 4911 Encodi ng I nstructions for RXER July 2007

First(P4) { "two" }

Fi rst(P5) {1}

Presel ected(P4) = Presel ected(P5) = Enmpty(P4) = fal se
Empty(P5) = true

Fol low(tw) = { "three" }

Select(P4) = First(P4) = { "two" }

Select(P5) = First(P5) + Follow(two) = { "three" }

First(P7) ={ }
First(P8) =1{ }
)
)

Presel ected(P8) = Empty(P7) = fal se

Presel ected(P7) = Enpty(P8) = true

Fol low(five) = "three" }

Select(P7) ={ }

Select(P8) = First(P8) + Follow(five) = { "three" }

The intersection of Select(P2) and Select(P3) is enpty, as is the
i ntersection of Select(P4) and Sel ect (P5) and the intersection of
Sel ect (P7) and Sel ect (P8); hence, the grammar is determnistic, and

the type definitionis valid. 1In a correct RXER encoding, the "one"
component will be present if and only if the "four" attribute is
present.

A 2. Exanple 2
Consider this type definition:

CHO CE {
one [GROUP] SEQUENCE {
two [ATTRI BUTE] BOOLEAN OPTI ONAL
} 1]

three | NTEGER,
f our [GROUP] SEQUENCE {
five BOOLEAN OPTI ONAL

}
}
The associated gramar is:
P1: S ::= one
P2: S ::=three
P3: S ::= four
P4: one ::=two
P5: two ::= "@wo"
P6: two ::=
P7: three ::= "three"
P8: four ::= five
P9: five ::= "five"

Legg Experi ment al [Page 60]

RFC 4911 Encodi ng I nstructions for RXER July 2007

P10: five ::=

This grammar |leads to the follow ng sets and predicates:

First(P1) ={ }

First(P2) ={ "three" }

First(P3) ={ "five" }

Presel ected(Pl) = Presel ected(P2) = Presel ected(P3) = fal se
Empty(P2) = fal se

Empty(P1) = Enpty(P3) = true

Follow(S) ={ "$" }

Select(P1) = First(P1) + Followm(S) ={ "$" }
Select(P2) = First(P2) ={ "three" }

Sel ect (P3) = First(P3) + Follow(S) ={ "five", "$" }
First(P5) ={}

First(P6) ={ }

Presel ected(P6) = Enpty(P5) = fal se

Presel ected(P5) = Enpty(P6) = true

Followm(two) ={ "$" }

Select(P5) ={ }

Select (P6) = First(P6) + Followmtw) ={ "$" }

First(P9) ={ "five" }

First(P10) = { }

Presel ected(P9) = Presel ected(P10) = Enpty(P9) = fal se
Enmpt y(P10) = true

Fol low(five) = { "$" }

Select(P9) = First(P9) = { "five" }

Sel ect (P10) = First(P10) + Follow(five) = { "$" }

The intersection of Select(P1l) and Sel ect(P3) is not enpty; hence,
the grammar is not deterministic, and the type definition is not
valid. |If the RXER encoding of a value of the type is enpty, then it
is not possible to determ ne whether the "one" alternative or the
"four" alternative has been chosen.

Now consider this slightly different type definition:
CHO CE {
one [GROUP] SEQUENCE {
t wo [ATTRI BUTE] BOOLEAN
}!
three | NTEGER,

four [GROUP] SEQUENCE {
five BOOLEAN OPTI ONAL
}

Legg Experi ment al [Page 61]

RFC 4911 Encodi ng I nstructions for RXER

The associated gramar is:

Thi

P1: S ::= one

P2: S ::=three

P3: S ::= four

P4: one ::=two

P5: two ::= "@wo"
P6: three ::= "three"
P7: four = five

P8: five ::="five"
P9: five ::=

s grammar |l eads to the follow ng sets and predicates:

First(P1) ={ }
First(P2) = { "three" }
First(P3) ={ "five"

Presel ected(P2) = Presel ected(P3) = fal se
Enpty(P1) = Enpty(P2) = fal se

Presel ected(Pl) = Enmpty(P3) = true
Followm(S) = { "$" }

Select(P1) ={ }
Select(P2) = First(P2) = { "three" }
Sel ect (P3) = First(P3) + Follow(S) ={ "five", "$" }

First(P8) = { "five" }

First(P9) ={ }

Presel ected(P8) = Presel ected(P9) = Enmpty(P8) = fal se
Empty(P9) = true

Follow(five) = { "$"

Select(P8) = First(P8) = { "five" }

Sel ect (P9) = First(P9) + Follow(five) = { "$" }

The intersection of Select(P1l) and Sel ect(P2) is enpty, the
intersection of Select(P1l) and Sel ect(P3) is enpty, the intersection

of
Sel

Sel ect (P2) and Select(P3) is enpty, and the intersection
ect (P8) and Sel ect (P9) is enpty; hence, the grammar is

deterministic, and the type definition is valid. The "one"
"four" alternatives can be distingui shed because the "one"
alternative has a mandatory attribute

Legg

Experi ment al

July 2007

of

and

[Page 62]

RFC 4911 Encodi ng I nstructions for RXER July 2007

A 3. Exanple 3
Consider this type definition

SEQUENCE {
one [GROUP] CHA CE {
t wo [ATTRI BUTE] BOCLEAN
three [GROUP] SEQUENCE OF nunber | NTEGER

} OPTI ONAL
}
The associ ated gramar is:
P1: S ::= one
P2: one ::=tw
P3: one ::= three
P4: one ::=
P5: two ::= "@wo"
P6: three ::= nunber three
P7: three ::=
P8: nunber ::= "nunber"

This grammar | eads to the follow ng sets and predicates:

First(P2) ={ }
First(P3) = { "nunber" }
First(P4) = { }

Presel ect ed(P3)
Presel ect ed(P2)

Presel ected(P4) = Empty(P2) = fal se
Empty(P3) = Enpty(P4) = true

Follow(one) ={ "$" }

Select(P2) ={ }

Sel ect (P3) = First(P3) + Follow(one) = { "nunber", "$" }
Select (P4) = First(P4) + Follow(one) ={ "$" }

First(P6) = { "nunber" }

First(P7) ={ }

Presel ected(P6) = Presel ected(P7) = Enmpty(P6) = fal se
Enpty(P7) = true

Followm(three) ={ "$" }

Select(P6) = First(P6) = { "nunber" }

Sel ect (P7) = First(P7) + Follow(three) = { "$" }

The intersection of Select(P3) and Sel ect (P4) is not enpty; hence,
the grammar is not deterministic, and the type definition is not
valid. |If the RXER encoding of a value of the type is enpty, then it
is not possible to deternine whether the "one" conponent is absent or
the enpty "three" alternative has been chosen

Legg Experi ment al [Page 63]

RFC 4911 Encodi ng I nstructions for RXER July 2007

A 4. Exanple 4
Consider this type definition

SEQUENCE {
one [GROUP] CHA CE {
t wo [ATTRI BUTE] BOCLEAN
three [ATTRI BUTE] BOOLEAN

} OPTI ONAL
}
The associ ated gramar is:
Pl: S ::= one
P2: one ::=tw
P3: one ::= three
P4: one ::=
P5: two ::="@wo"
P6: three ::= "@hree"

This grammar |leads to the follow ng sets and predicates:

First(P2) ={ }

First(P3) ={ }

First(P4) ={ }

Presel ected(P4) = Enmpty(P2) = Enpty(P3) = fal se
Presel ected(P2) = Presel ected(P3) = Enpty(P4) = true
Follow(one) = { "$" }

Select(P2) ={ }

Select(P3) ={ }

Sel ect (P4) = First(P4) + Follow(one) = { "$" }

The intersection of Select(P2) and Sel ect(P3) is enpty, the
i ntersection of Select(P2) and Sel ect(P4) is enpty, and the
intersection of Select(P3) and Sel ect (P4) is enpty; hence, the
grammar is deterministic, and the type definition is valid.

A 5. Exanple 5
Consider this type definition

SEQUENCE {
one [GROUP] SEQUENCE OF nunber | NTEGER OPTI ONAL
}

Legg Experi ment al [Page 64]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The associated gramar is:

P1: S ::= one

P2: one ::= nunber one
P3: one ::.=

P4: one .=

P5: nunber ::= "nunber"

P3 is generated during the processing of the SEQJENCE OF type. P4 is
gener at ed because the "one" conponent is optional

This grammar |leads to the followi ng sets and predicates:

First(P2) ={ "nunber" }
First(P3) ={ }
First(P4) ={ }

Presel ected(P2) = Presel ected(P3) = Presel ected(P4) = fal se
Enpty(P2) = fal se

Enpty(P3) = Enpty(P4) = true

Follow(one) = { "$" }

Select(P2) = First(P2) = { "nunber" }
Sel ect (P3) = First(P3) + Followone) ={ "$" }
Select (P4) = First(P4) + Follow(one) = { "$" }

The intersection of Select(P3) and Sel ect (P4) is not enpty; hence,
the grammar is not deterministic, and the type definition is not
valid. |If the RXER encoding of a value of the type does not have any
<nunber> child elements, then it is not possible to deterni ne whether
the "one" component is present or absent in the val ue.

Consider this simlar type definition with a SIZE constraint:

SEQUENCE {
one [GROUP] SEQUENCE SI ZE(1..MAX) OF nunber | NTEGER OPTI ONAL
}
The associated gramar is:
P1: S ::= one
P2: one ::= nunber one’
P3: one’ = nunber one
P4: one’ =
P5: one ::=
P6: nunber ::= "nunber"

Legg Experi ment al [Page 65]

RFC 4911 Encodi ng I nstructions for RXER July 2007

This grammar |leads to the follow ng sets and predicates:

First(P2) = { "nunber" }

First(P5) ={}

Presel ected(P2) = Presel ected(P5) = Empty(P2) = fal se
Enpty(P5) = true

Followmone) ={ "$" }

Select(P2) = First(P2) = { "nunber" }

Sel ect (P5) = First(P5) + Follow(one) ={ "$" }
First(P3) = { "nunber" }

First(P4) ={ }

Presel ected(P3) = Presel ected(P4) = Empty(P3) = fal se

Enmpty(P4) = true

Follow(one') ={ "$" }

Sel ect (P3) First(P3) = { "nunber" }

Sel ect (P4) First(P4) + Followone') ={ "$" }

The intersection of Select(P2) and Select(P5) is enpty, as is the
i ntersection of Select(P3) and Sel ect (P4); hence, the granmmar is
deterministic, and the type definition is valid. |If there are no
<nunber> child el ements, then the "one" conponent is necessarily
absent and there is no anbiguity.

A.6. Exanple 6

Consider this type definition

SEQUENCE {
begi nning [GROUP] List,
m ddl e UTF8Stri ng OPTI ONAL,
end [GROUP] Li st

}

Li st ::= SEQUENCE OF string UTF8String

The associated gramar is:

P1: S ::= beginning niddle end

P2: beginning ::= string beginning
P3: beginning ::=

P4: mddle ::= "niddle"

P5: mddle ::=

P6: end ::= string end

P7: end ::=

P8: string ::= "string"

Legg Experi ment al [Page 66]

RFC 4911 Encodi ng I nstructions for RXER July 2007

This grammar |leads to the follow ng sets and predicates:

First(P2) ={ "string" }
First(P3) ={}

Presel ected(P2) = Presel ected(P3) = Empty(P2) = fal se
Enpty(P3) = true
Foll owm(beginning) = { "mddle", "string", "$" }
Select(P2) = First(P2) ={ "string" }
Sel ect (P3) = First(P3) + Foll ow(begi nni ng)
={ "mddle", "string", "$" }
First(P4) = { "mddle" }
First(P5) ={ }
Presel ected(P4) = Presel ected(P5) = Enmpty(P4) = fal se

Empty(P5) = true

FollowW(niddle) = { "string", "$" }

Select(P4) = First(P4) = { "mddle" }

Sel ect (P5) = First(P5) + Follow(niddle) ={ "string", "$" }

First(P6) = { "string" }

First(P7) = { }

Presel ected(P6) = Presel ected(P7) = Enmpty(P6) = fal se
Empty(P7) = true

Follow(end) = { "$" }

Select(P6) = First(P6) = { "string" }

Sel ect (P7) = First(P7) + Follow(end) ={ "$" }

The intersection of Select(P2) and Sel ect(P3) is not enpty; hence,
the grammar is not determnistic, and the type definition is not
val i d.

Now consi der the follow ng type definition:

SEQUENCE {
begi nni ng [GROUP] List,
m ddl eAndEnd [GROUP] SEQUENCE {
m ddl e UTF8Stri ng,
end [GROUP] Li st
} OPTI ONAL
}
The associ ated gramar is:
P1: S ::= beginning niddl eAndEnd
P2: beginning ::= string beginning

P3: beginning ::
P4: m ddl eAndEnd ::
P5: middl eAndEnd ::

m ddl e end

Legg Experi ment al [Page 67]

RFC 4911 Encodi ng I nstructions for RXER

P6: mniddle ::= "niddle"
P7: end ::= string end
P8: end ::=

P9: string ::= "string"

This grammar |leads to the followi ng sets and predicates:

First(P2) = { "string" }

First(P3) ={ }

Presel ected(P2) = Presel ected(P3) = Empty(P2) = fal se
Empty(P3) = true

Fol | om beginning) = { "niddle", "$" }

Sel ect (P2) First(P2) ={ "string" }

Sel ect (P3) First(P3) + Followbeginning) = { "mniddle"

First(P4) = { "mddle" }
First(P5) ={ }

Presel ected(P4) = Presel ected(P5) = Enpty(P4) = fal se
Enpty(P5) = true

Fol | om m ddl eAndEnd) = { "$" }

Select(P4) = First(P4) = { "mddle" }
Select(P5) = First(P5) + Foll ow(m ddl eAndEnd)

={ 8"}
First(P7) = { "string" }
First(P8) ={ }
Presel ected(P7) = Presel ected(P8) = Enmpty(P7) = fal se

Enmpty(P8) = true

Follow(end) = { "$" }

Sel ect (P7) First(P7) ={ "string" }

Sel ect (P8) First(P8) + Followend) ={ "$" }

July 2007

n $I| }

The intersection of Select(P2) and Select(P3) is enpty, as is the
i ntersection of Select(P4) and Sel ect (P5) and the intersection of
Sel ect (P7) and Sel ect (P8); hence, the grammar is determnistic, and

the type definition is valid.
A 7. Example 7
Consi der the followi ng type definition
SEQUENCE SI ZE(1..MAX) OF

one [GROUP] SEQUENCE {
t wo | NTEGER OPTI ONAL
}

Legg Experi ment a

[Page 68]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The associated gramar is:

P1: S ::=one S

P2: S ::=one &
P3: S ::=

P4: one ::=two

P5: two ::= "two"
P6: two ::=

This grammar |leads to the followi ng sets and predicates:

First(P2) ={ "two" }
First(P3) ={ }

Presel ected(P2) = Presel ected(P3) = fal se

Empty(P2) = Enpty(P3) = true

Follow(S') ={ "$" }

Select(P2) = First(P2) + Follow(S') ={ "two", "$" }
Select(P3) = First(P3) + Followm(S) ={ "$" }
First(P5) ={ "two" }

First(P6) =

}
Presel ect ed(P5) = Presel ect ed(P6)
Empty(P6) = true
FollowW(two) = { "two", "$" }
Sel ect (P5) First(P5) ={ "two"
Sel ect (P6) First(P6) + Follow(tw) = { "two", "$" }

Empty(P5) = fal se

The intersection of Select(P2) and Sel ect(P3) is not enpty and the

i ntersection of Select(P5) and Sel ect(P6) is not enpty; hence, the

grammar is not determnistic, and the type definition is not valid.

The encoding of a value of the type contains an indeterm nate nunber
of enpty instances of the conmponent type.

A.8. Exanple 8
Consider the follow ng type definition:

SEQUENCE OF
list [GROUP] SEQUENCE SIZE(1..MAX) OF number | NTEGER

The associ ated gramar is:

Pl:. S::=1list S

P2: S ::=

P3: list ::= nunber Iist’
P4: [|ist’ = nunber |ist’
P5: list’ ::=

P6: nunber ::= "nunber"

Legg Experi ment al [Page 69]

RFC 4911 Encodi ng I nstructions for RXER July 2007

This grammar |leads to the follow ng sets and predicates:

First(P1) = { "nunber" }

First(P2) ={ }

Presel ected(Pl) = Presel ected(P2) = Empty(P1) = fal se
Enpty(P2) = true

Followm(S) = { "$" }

Select(P1) = First(P1) = { "nunber" }

Select (P2) = First(P2) + Followm(S) ={ "$" }
First(P4) = { "nunber" }

First(P5) =

fal se

}
Presel ected(P4) = Presel ected(P5) = Enpty(P4)
Enpty(P5) = true
Followm(list’) ={ "nunber", "$" }
Sel ect (P4) First(P4) = { "nunber" }
Sel ect (P5) First(P5) + Follow(list’) = { "nunber", "$" }

The intersection of Select(P4) and Sel ect (P5) is not enpty; hence,
the grammar is not deterministic, and the type definition is not
valid. The type describes a list of lists, but it is not possible
for a decoder to determi ne where the outer lists begin and end.

A 9. Exanple 9
Consi der the followi ng type definition:
SEQUENCE OF item [GROUP] SEQUENCE {
before [GROUP] OneAndTwo,

core UTF8Stri ng,
after [GROUP] OneAndTwo OPTI ONAL

}

OneAndTwo :: = SEQUENCE {
non-core UTF8String

}

The associated gramar is:

Pl: S::=item$S

P2: S .=

P3: item::= before core after

P4: before ::= non-core

P5: non-core .= "non-core"

P6: core ::= "core"

P7: after = non-core

P8: after =

Legg Experi ment al [Page 70]

RFC 4911 Encodi ng I nstructions for RXER July 2007

This grammar |leads to the follow ng sets and predicates:

First(P1) = { "non-core" }

First(P2) ={ }

Presel ected(Pl) = Presel ected(P2) = Empty(P1) = fal se
Enpty(P2) = true

Followm(S) = { "$" }

Select(P1l) = First(Pl) = { "non-core"

Select (P2) = First(P2) + Followm(S) ={ "$" }

First(P7) = { "non-core" }

First(P8) ={ }

Presel ected(P7) = Presel ected(P8) = Enpty(P7)
Enpty(P8) = true

Follow(after) = { "non-core", "$" }

Sel ect (P7) First(P7) = { "non-core" }

Sel ect (P8) First(P8) + Followafter) = { "non-core", "$" }

fal se

The intersection of Select(P7) and Sel ect (P8) is not enpty; hence,
the grammar is not deterministic, and the type definition is not
valid. There is anbiguity between the end of one itemand the start
of the next. Wthout |ooking ahead in an encoding, it is not

possi ble to determ ne whether a <non-core> el enent belongs with the
precedi ng or foll owi ng <core> el enent.

A. 10. Exanple 10
Consi der the follow ng type definition
CHO CE {
one [GROUP] List,
t wo [GROUP] SEQUENCE {

three [ATTRIBUTE] UTF8Stri ng,
f our [GROUP] Li st

}
List ::= SEQUENCE OF string UTF8String

The associ ated gramar is:

Pl: S ::= one

P2: S::=two

P3: one ::= string one
P4: one ::=

P5: two ::= three four
P6: three ::= "@hree"
P7: four ::= string four

Legg Experi ment al [Page 71]

RFC 4911 Encodi ng I nstructions for RXER July 2007

P8: four ::=
P9: string ::= "string"

This grammar |leads to the followi ng sets and predicates:

First(P1) ={ "string" }

First(P2) ={ "string" }

Presel ected(Pl) = Empty(P2) = fal se
Presel ected(P2) = Enmpty(P1) = true
Follow(S) ={ "$"

Select(P1) = First(P1) + Follow(S) = { "string", "$" }
Select(P2) ={ }

First(P3) ={ "string" }

First(P4) = { }

Presel ected(P3) = Preselected(P4) = Enmpty(P3) = fal se
Empty(P4) = true

Follow(one) = { "$" }

Select(P3) = First(P3) ={ "string" }

Select (P4) = First(P4) + Follow(one) ={ "$" }

First(P7) ={ "string" }

First(P8) ={ }

Presel ected(P7) = Presel ected(P8) = Empty(P7) = fal se
Enpty(P8) = true

Fol low(four) = { "$"

Select(P7) = First(P7) = { "string" }

Select (P8) = First(P8) + Follow(four) ={ "$" }

The intersection of Select(P1l) and Select(P2) is enpty, as is the

i ntersection of Select(P3) and Sel ect (P4) and the intersection of
Sel ect (P7) and Sel ect (P8); hence, the grammar is determnistic, and
the type definition is valid. Although both alternatives of the
CHO CE can begin with a <string> el enment, an RXER decoder woul d use
the presence of a "three" attribute to decide whether to select or
di sregard the "two" alternative.

However, an attribute in an extension cannot be used to sel ect
between alternatives. Consider the follow ng type definition:

Legg Experi ment al [Page 72]

RFC 4911

Encodi ng I nstructions for

RXER July 2007

[SI NGULAR- | NSERTI ONS] CHOI CE {

UTE8Stri ng,

Ext ensi onAddi ti onAl ternative (E1).

is here (11).

one [GROUP] List,
two [GROUP] SEQUENCE {
three [ATTRI BUTE]
f our [GROUP] Li st
}o--
-- The extension insertion point
}
Li st

The associated gramar is:

::= SEQUENCE OF string UTF8String

P1: S ::= one
P10: S ::=El1
P11: S ::= "*"
P12: E1 ::= two
P3: one ::= string one
P4: one ::=
P5: two ::= three four
P6: three ::= "@hree"
P7: four = string four
P8: four =
P9: string ::= "string"
This grammar |leads to the followi ng sets and predicates for Pl, P10
and P11:
First(P1) ={ "string" }
First(P10) = { "string" }
First(P11) = { "*"
Presel ected(Pl) = Presel ected(P10) = Presel ected(P11) = fal se
Empt y(P10) = Enpty(P11) = fal se
Empty(P1) = true
Follow(S) ={ "$" }
Select(P1) = First(P1) + Follow(S) ={ "string", "$" }
Sel ect (P10) = First(P10) = { "string" }
Sel ect (P11) = First(P11) = { "*" }
Presel ect ed(P10) evaluates to fal se because Presel ected(P10) is
eval uated on the base granmar, wherein P10 is rewitten as:
P10: S ::=
Legg Experi ment al [Page 73]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The intersection of Select(P1l) and Sel ect (P10) is not enpty; hence,
the grammar is not deterministic, and the type definition is not
valid. An RXER decoder using the original, unextended version of the
definition would not know that the "three" attribute sel ects between
the "one" alternative and the extension

Appendi x B. Insertion Encoding Instruction Exanples
Thi s appendi x i s non-normative.

Thi s appendi x cont ai ns exanpl es showi ng the use of insertion encoding
instructions to renove extension anbiguity arising fromuse of the
GROUP encodi ng instruction.

B.1. Exanple 1
Consi der the follow ng type definition

SEQUENCE {
one [GROUP] SEQUENCE {
t wo UTF8Stri ng,
-- Extension insertion point (11).
}
three | NTEGER OPTI ONAL,
-- Extension insertion point (12).

}

The associ ated gramar is:
Pl: S ::=one three |12
P2: one ::=tw I1
P3: two ::= "two"

P4: 11 ::="*" 11

P5: 11 ::=

P6: three ::= "three"
P7: three ::=

P8: 12 ::="*" 12

P9: 12 ::=

This grammar |leads to the followi ng sets and predicates:
First(P4)

{ "*" }
Fi rst(P5) }
Presel ected(P4) = Presel ected(P5) = Enpty(P4) = fal se
Enmpty(P5) = true

Follow(11) ={ "three", "*", "$" }
Select(P4) = First(P4) = { "*" }
Select(P5) = First(P5) + Follow(l1l) = { "three", "*", "$" }

Legg Experi ment al [Page 74]

RFC 4911 Encodi ng I nstructions for RXER July 2007

First(P6) = { "three" }

First(P7) = {}

Presel ected(P6) = Presel ected(P7) = Enpty(P6)
Empty(P7) = true

Follow(three) = { "*", "$"

Select(P6) = First(P6) = { "three" }

Sel ect (P7) = First(P7) + Follow(three) = { "*", "$" }
Fi rst (P8)

{ "}
Fi rst (P9) }
Presel ected(P8) = Presel ected(P9) = Empty(P8) = fal se
Enpty(P9) = true

fal se

Follow(12) = { "$" }
Select(P8) = First(P8) = { "*"
Sel ect(P9) = First(P9) + Follow(12) = { "$" }

The intersection of Select(P4) and Sel ect (P5) is not enpty; hence,
the granmmar is not deterministic, and the type definition is not
valid. |If an RXER decoder encounters an unrecogni zed el enent

i medi ately after a <two> elenment, then it will not know whether to
associate it with extension insertion point |1 or 12

The non-determ ni smcan be resolved with either a NO | NSERTI ONS or
HOLLOW | NSERTI ONS encodi ng i nstruction. Consider this revised type
definition:

SEQUENCE {
one [GROUP] [HOLLOW I NSERTI ONS] SEQUENCE {
t wo UTE8Stri ng,
-- Extension insertion point (11).
1
three | NTEGER OPTI ONAL,
-- Extension insertion point (I12).

}

The associ ated gramar is:
Pl: S ::=one three 12
P10: one ::=two
P3: two ::= "two"

P6: three ::= "three"
P7: three ::=

P8: 12 ::="*"]2

P9: 12 ::=

Wth the addition of the HOLLOMI NSERTI ONS encodi ng instruction, the
P4 and P5 productions are no | onger generated, and the conflict
bet ween Sel ect (P4) and Sel ect (P5) no | onger exists. The Select Sets

Legg Experi ment al [Page 75]

RFC 4911 Encodi ng I nstructions for RXER July 2007

for P6, P7, P8, and P9 are unchanged. A decoder will now assune that
an unrecogni zed elenent is to be associated with extension insertion
point 12. It is still free to associate an unrecogni zed attribute
with either extension insertion point. |If a NO INSERTI ONS encodi ng

i nstruction had been used, then an unrecogni zed attribute could only
be associated with extension insertion point |2.

The non-determi nismcould al so be resolved by addi ng a NO | NSERTI ONS
or HOLLOW I NSERTI ONS encodi ng instruction to the outer SEQUENCE:

[HOLLOW | NSERTI ONS] SEQUENCE {
one [GROUP] SEQUENCE {
t wo UTF8Stri ng,
-- Extension insertion point (I1).
13
three | NTEGER OPTI ONAL,
-- Extension insertion point (12).

}

The associated gramar is:
P11: S ::= one three
P2: one ::=tw |1
P3: two ::= "two"

P4: 11 ::="*" 11
P5: 11 ::=

P6: three ::= "three"
P7: three ::=

This grammar |leads to the followi ng sets and predicates:
Fi rst(P4)

{ "}
Fi rst (P5) }
Presel ected(P4) = Presel ected(P5) = Enmpty(P4) = fal se
Empty(P5) = true

Follow(11) ={ "three", "$"
Select(P4) = First(P4) = { "*"
Sel ect (P5) = First(P5) + Follow(l1) = { "three", "$" }

First(P6) ={ "three" }

First(P7) ={ }

Presel ected(P6) = Presel ected(P7) = Enmpty(P6) = fal se
Enpty(P7) = true

Follow(three) = { "$"

Select(P6) = First(P6) ={ "three" }

Sel ect (P7) First(P7) + Follow(three) = { "$" }

Legg Experi ment al [Page 76]

RFC 4911 Encodi ng I nstructions for RXER

July 2007

The intersection of Select(P4) and Select(P5) is enpty, as is the
i ntersection of Select(P6) and Sel ect (P7); hence, the grammar is
deterministic, and the type definition is valid. A decoder will now

assune that an unrecogni zed element is to be associated with

extension insertion point 11. It is still free to associate an
unrecogni zed attribute with either extension insertion point. If a

NO- | NSERTI ONS encodi ng i nstruction had been used, then an

unrecogni zed attribute could only be associated with extension

insertion point I1.
B.2. Example 2
Consider the follow ng type definition:

SEQUENCE {
one [GROUP] CHA CE {
two UTF8String,
-- Extension insertion point (11).

} OPTI ONAL
}
The associ ated gramar is:
P1: S ::= one
P2: one ::=two
P3: one ::=11
P4: one ::=
P5: two ::= "two"
P6: 11 ::="*" 11
P7: 11 ::=

This grammar |leads to the follow ng sets and predicates:

First(P2) ={ "tw" }

First(P3) = { "*" }

First(P4) ={ }

Presel ected(P2) = Presel ected(P3) = Presel ected(P4) = fal se

Enpty(P2) = fal se
Empty(P3) = Enpty(P4) = true
Follow(one) = { "$" }

Select(P2) = First(P2) = { "two" }

Select (P3) = First(P3) + Followone) = { "*", "$" }
Sel ect (P4) = First(P4) + Follow(one) = { "$" }
First(P6) = { "*" }

First(P7) =

}
Presel ected(P6) = Presel ected(P7) = Enmpty(P6) = fal se
Enpty(P7) = true

Legg Experi ment a

[Page 77]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Follow(11) ={ "$" }
Select(P6) = First(P6) ={ "*" }
Select(P7) = First(P7) + Follow(11) = { "$" }

The intersection of Select(P3) and Sel ect (P4) is not enpty; hence,
the granmmar is not deterministic, and the type definition is not
valid. |If the <two> elenent is not present, then a decoder cannot
determ ne whether the "one" alternative is absent, or present with an
unknown extension that generates no el ements.

The non-determ ni smcan be resolved with either a

SI NGULAR- | NSERTI ONS, UNI FORM | NSERTI ONS, or MJLTI FORM | NSERTI ONS
encodi ng instruction. The MJLTI FORM | NSERTI ONS encodi ng i nstruction
is the least restrictive. Consider this revised type definition:

SEQUENCE {
one [GROUP] [MULTI FORM | NSERTI ONS] CHO CE {
two UTF8String,
-- Extension insertion point (11).

} OPTI ONAL
}
The associ ated gramar is:
Pl: S ::= one
P2: one ::=two
P8: one ::="*" 1|1
P4: one ::=
P5: two ::= "two"
P6: 11 ::="*" 11
P7: 11 ::=

This grammar |leads to the follow ng sets and predicates:

First(P2) ={ "two" }
First(pP8) ={ "*" }
First(P4) =

{ }
Presel ected(P2) = Presel ected(P8) = Presel ected(P4) = fal se
Empty(P2) = Enpty(P8) = fal se
Empty(P4) = true
Fol low(one) = { "$" }

Select(P2) = First(P2) = { "two" }

Select(P8) = First(P8) = e

Sel ect (P4) = First(P4) + Followone) = { "$" }
First(P6) = { "*" }

First(P7) =

}
Presel ected(P6) = Presel ected(P7) = Enpty(P6) = fal se

Legg Experi ment al [Page 78]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Enpty(P7) = true

Follow(11) ={ "$" }
Select(P6) = First(P6) = { "*"
Select(P7) = First(P7) + Follow(11) = { "$" }

The intersection of Select(P2) and Select(P8) is enpty, as is the
i ntersection of Select(P2) and Sel ect (P4), the intersection of
Sel ect (P8) and Sel ect (P4), and the intersection of Select(P6) and
Sel ect (P7); hence, the grammar is deternministic, and the type

definition is valid. A decoder will now assunme the "one" alternative
is present if it sees at |east one unrecogni zed el enent, and absent
ot herw se.

B.3. Exanple 3
Consi der the follow ng type definition

SEQUENCE {
one [GROUP] CHA CE {
t wo UTF8Stri ng,
-- Extension insertion point (I1).
}
three [GROUP] CHO CE {
f our UTF8Stri ng,
-- Extension insertion point (12).

}
}

The associ ated gramar is:
Pl: S ::= one three
P2: one ::=two
P3: one ::=11
P4: two ::= "two"
P5: 11 ::="*"1]1
P6: 11 ::=
P7: three ::= four
P8: three ::=12
P9: four ::= "four"
P10: 12 ::="*" [2
P11: 12 ::=

This grammar |leads to the follow ng sets and predicates:

Fi rst (P2)
Fi rst (P3)
Presel ected(P2) = Presel ected(P3) = Empty(P2) = fal se
Enpty(P3) = true

{ "two")

"ngn

Legg Experi ment al [Page 79]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Follow(one) = { "four", "*", "$" }
Select(P2) = First(P2) = { "two" }

Sel ect (P3) = First(P3) + Follow(one) = { "*", "four", "$" }
First(P5) = { "*" }

First(P6) ={ }

Presel ect ed(P5) = Presel ected(P6) = Enpty(P5)
Enpty(P6) = true

fal se

Follow(I1l) ={ "four", "*", "$" }
Select(P5) = First(P5) = { "*"
Sel ect (P6) = First(P6) + Follow(l1) = { "four", "*", "$" }

First(P7) ={ "four" }

First(P8) = { "*"

Presel ected(P7) = Presel ected(P8) = Enpty(P7)
Empty(P8) = true

Follow(three) = { "$"

fal se

Select(P7) = First(P7) = { "four" }

Sel ect (P8) = First(P8) + Follow(three) = { "*", "$" }
First(P10) = { "*" }

First(P11) = { }

Presel ect ed(P10) = Presel ected(P11) = Enpty(P10) = fal se
Enpty(P11) = true

Followm(12) = { "$" }

Sel ect (P10)
Sel ect (P11)

= First(P10) = { "*"

= First(P11) + Follow(l2) ={ "$" }

The intersection of Select(P5) and Sel ect (P6) is not enpty; hence,
the granmmar is not deterministic, and the type definition is not
valid. |If the first child elenment is an unrecogni zed el ement, then a
decoder cannot determni ne whether to associate it with extension
insertion point 11, or to associate it with extension insertion point
I 2 by assumi ng that the "one" conponent has an unknown extension that
generates no el ements.

The non-determ ni smcan be resolved with either a Sl NGULAR-| NSERTI ONS

or UNI FORM | NSERTI ONS encodi ng instruction. Consider this revised
type definition using the SINGULAR-1 NSERTI ONS encodi ng i nstruction:

Legg Experi ment al [Page 80]

RFC 4911 Encodi ng I nstructions for RXER July 2007

SEQUENCE {
one [GROUP] [SI NGULAR- 1 NSERTI ONS] CHO CE {
t wo UTF8Stri ng,
-- Extension insertion point (11).
1
three [GROUP] CHA CE {
four UTF8Stri ng,
-- Extension insertion point (I12).

}
}

The associ ated gramar is:
Pl: S ::= one three
P2: one ::=tw
P12: one ::= "*"

P4: two ::= "two"
P7: three ::= four
P8: three ::=12
P9: four ::= "four"
P10: 12 ::="*" |2
P11: 12 ::=

Wth the addition of the SINGULAR-INSERTI ONS encodi ng i nstruction
the P5 and P6 productions are no |onger generated. The grammar | eads
to the followi ng sets and predicates for the P2 and P12 productions:

First(P2) ={ "tw" }

First(P12) = { "*"

Presel ected(P2) = Presel ected(P12) = fal se
Enpty(P2) = Enpty(P12) = fal se

Follow(one) = { "four", "*", "$" }
Select(P2) = First(P2) = { "two" }

Sel ect (P12) = First(P12) = { "*" }

The sets for P5 and P6 are no | onger generated, and the renaining
sets are unchanged.

The intersection of Select(P2) and Sel ect (P12) is enpty, as is the

i ntersection of Select(P7) and Sel ect (P8) and the intersection of

Sel ect (P10) and Sel ect (P11); hence, the granmar is determ nistic, and
the type definition is valid. |If the first child elenent is an
unrecogni zed el enment, then a decoder will now assunme that it is
associated with extension insertion point |1. Watever follows,

possi bly including anot her unrecogni zed el enent, will belong to the
"three" conponent.

Legg Experi ment al [Page 81]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Now consi der the type definition using the UNI FORM | NSERTI ONS
encodi ng i nstruction instead:

SEQUENCE {
one [GROUP] [UNI FORM | NSERTI ONS] CHO CE {
t wo UTF8Stri ng,
-- Extension insertion point (11).
1
three [GROUP] CHO CE {
f our UTF8Stri ng,
-- Extension insertion point (12).

}
}

The associated gramar is:
Pl: S ::= one three
P2: one ::=two
P13: one ::= "*"

P14: one ::= "*1" |1
P4: two ::= "two"
P15: 11 ::="*1" |1
P6: 11 ::=

P7: three = four
P8: three ::= 12
P9: four "four'
P10: 12 ::="*" |2
P11: 12 ::=

This grammar leads to the followi ng sets and predicates for the P2,
P13, P14, P15, and P6 producti ons:

First(P2) = { "two" }

First(P13) meroy

First(P14) "t

Presel ected(P2) = Presel ected(P13) = Presel ected(P14) = fal se
Enpty(P2) = Enpty(P13) = Enpty(Pl14) = fal se

Follow(one) = { "four", "*", "$" }

Select(P2) = First(P2) = { "two" }

Sel ect (P13) First(P13) { "*" 1}

Sel ect (P14) First(P14) { "*1" }

Legg Experi ment al [Page 82]

RFC 4911 Encodi ng I nstructions for RXER July 2007

First(P15) = { "*1" }

First(P6) ={ }

Presel ect ed(P15) = Presel ected(P6) = Enpty(P15) = fal se
Empty(P6) = true

Follow(11) ={ "four", "*", "$" }

Sel ect (P15) = First(P15) = { "*1" }

Sel ect (P6) = First(P6) + Follow(l1) = { "four", "*", "$" }

The remai ning sets are unchanged.

The intersection of Select(P2) and Sel ect (P13) is enpty, as is the

i ntersection of Select(P2) and Sel ect (P14), the intersection of

Sel ect (P13) and Sel ect(P14) and the intersection of Sel ect(P15) and
Sel ect (P6); hence, the grammar is deternministic, and the type
definition is valid. |If the first child elenment is an unrecogni zed
el ement, then a decoder will now assume that it and every subsequent
unrecogni zed el ement with the sanme name are associated with I1.

What ever foll ows, possibly including another unrecogni zed el enent
with a different nane, will belong to the "three" conponent.

A consequence of using the UNI FORM | NSERTI ONS encodi ng instruction is
that any future extension to the "three" conponent will be required
to generate elenents with nanes that are different fromthe nanmes of
the el enents generated by the "one" conponent. Wth the

SI NGULAR- | NSERTI ONS encodi ng i nstruction, extensions to the "three"
conponent are pernmitted to generate elenments with names that are the
sanme as the nanes of the elements generated by the "one" conponent.

B.4. Exanple 4
Consider the follow ng type definition:
SEQUENCE OF one [GROUP] CHO CE {

t wo UTF8Stri ng,
-- Extension insertion point (11).

}
The associated gramar is:
P1: S::=one S
P2: S .=
P3: one ::=two
P4: one ::=11
P5: two ::= "two"
P6: 11 ::="*" 11
P7: 11 ::=

Legg Experi ment al [Page 83]

RFC 4911 Encodi ng I nstructions for RXER July 2007

This grammar |leads to the follow ng sets and predicates:

Fi rst(P1)
Fi rst (P2) }
Presel ected(Pl) = Presel ected(P2) = fal se

{ "twor, "}

Enpty(P1) = Enpty(P2) = true

Followm(S) = { "$" }

Select(P1l) = First(Pl) + Follow(S) = { "two", "*", "$" }
Select (P2) = First(P2) + Followm(S) ={ "$" }

First(P3) ={ "tw" }

First(P4) = { "*"

Presel ected(P3) = Presel ected(P4) = Empty(P3) = fal se
Enpty(P4) = true

FOI I O\I\(One) = { n t \I\D” , "nen , n $ll }

Sel ect (P3) First(P3) ={ "tw" }

Sel ect (P4) First(P4) + Followone) = { "*", "two", "$" }

First(pPe) = { "*" }

First(P7) ={ }

Presel ected(P6) = Presel ected(P7) = Enpty(P6) = fal se
Empty(P7) = true

FOIIOV\(Il) = { "tV\D", "*", ll$l| }
Select (P6) = First(P6) = { "*" }
Select(P7) = First(P7) + Follow(11) = { "two", "*", "$" }

The intersection of Select(P1l) and Select(P2) is not enpty, as is the
i ntersection of Select(P3) and Sel ect (P4) and the intersection of

Sel ect (P6) and Sel ect (P7); hence, the grammar is not determnistic,
and the type definitionis not valid. |If a decoder encounters two or
nore unrecogni zed elenments in a row, then it cannot deterni ne whether
this represents one instance or nore than one instance of the "one"
conmponent. Even wi thout unrecognized el enents, there is still a
probl em that an encodi ng could contain an indeterninate nunber of
"one" conponents using an extension that generates no el ements.

The non-determ ni smcannot be resolved with a UN FORM | NSERTI ONS
encodi ng instruction. Consider this revised type definition using
t he UNI FORM | NSERTI ONS encodi ng i nstruction

SEQUENCE OF one [GROUP] [UNI FORM | NSERTI ONS] CHOI CE {

t wo UTF8Stri ng,
-- Extension insertion point (11).

Legg Experi ment al [Page 84]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The associated gramar is:

Pl1: S ::=o0one S

P2: S ::=

P3: one ::=two

P8: one ::="*"

P9: one ::="*1" |1
P5: two ::= "two"
P10: 11 ::="*1" |1
P7: 11 ::=

This grammar |leads to the followi ng sets and predicates:

First(P1) = { ' B

First(P2) = { }

Presel ected(Pl) = Presel ected(P2) = Enmpty(P1) = fal se
Empty(P2) = true

Followm(S) = { "$" }

Sel ect (P1) = Flrst(Pl) ={ "two", "*", "*1"

Sel ect (P2) First(P2) + Follow(S) ={ "$" }
First(P3) ={ "tw" }

First(Pg) = { "*"

First(P9) ={ "*1" }

Presel ect ed(P3) = Presel ect ed(P8) Presel ected(P9) = fal se

Enpty(P3) = Enpty(P8) = Enpty(P9) = false
FO”OV\(OI’]G) :{ "tV\D", "*", "*1", u$.. }

Select(P3) = First(P3) = { "two" }
Select(P8) = First(P8) = e
Select(P9) = First(P9) = { "*1" }
First(P10) = { "*1" }

First(P7) = { }

Presel ect ed(P10) = Presel ected(P7) = Enpty(P10) = fal se
Empty(P7) = true

FOI I OV\(I 1) - { "tV\D", u*u, u*lu, u$u }

Select(P10) = First(P10) = { "*1"

Sel ect (P7) = First(P7) + Follow(l1l) = { "two", "*", "*1" "g$" }

The intersection of Select(P1l) and Sel ect (P2) is now enpty, but the

i ntersection of Select(P10) and Sel ect(P7) is not; hence, the granmmar
is not deterministic, and the type definition is not valid. The
probl em of an indeterm nate nunber of "one" conponents from an

ext ensi on that generates no el enents has been solved. However, if a
decoder encounters a series of elenents with the same nanme, it cannot
determ ne whether this represents one instance or nore than one

i nstance of the "one" conponent.

Legg Experi ment al [Page 85]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The non-determ nismcan be fully resolved with a SI NGULAR- | NSERTI ONS
encodi ng instruction. Consider this revised type definition

SEQUENCE COF one [GROUP] [SI NGULAR-I NSERTI ONS] CHO CE {
t wo UTE8Stri ng,
-- Extension insertion point (11).

}
The associated gramar is:
P1: S ::=one S
P2:. S ::=
P3: one ::=two
P8: one ::="*"
P5: two ::= "two"

This grammar |eads to the followi ng sets and predicates:
First(P1) { "two", "*" }

Fi rst (P2) {1}

Presel ected(Pl) = Presel ected(P2) = Enpty(P1) = fal se
Empty(P2) = true

Fol I o S) { "$" }

Sel E‘Ct(Pl) = F| rSt(Pl) = { "tV\D", nmgn
Select(P2) = First(P2) + Follom(S) = { "$" }
First(P3) ={ "two" }

First(P8) = { "*"

Presel ected(P3) = Presel ected(P8) = fal se
Enpty(P3) = Enpty(P8) = fal se

FOI I OV\(One) = { " t V\D" , "neygen , " $I| }

Sel ect (P3) First(P3) { "two" }

Sel ect (P8) Fi rst (P8) { "*" }

The intersection of Select(P1l) and Select(P2) is enpty, as is the

i ntersection of Select(P3) and Sel ect (P8); hence, the granmmar is
determnistic, and the type definition is valid. A decoder now knows
that every extension to the "one" conponent will generate a single

el ement, so the correct nunber of "one" conponents will be decoded

Legg Experi ment al [Page 86]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Appendi x C. Extension and Versioni ng Exanpl es
Thi s appendi x i s non-normative.
C.1. Valid Extensions for Insertion Encoding Instructions

The first exanple shows extensions that satisfy the HOLLOW | NSERTI ONS
encodi ng instruction.

[HOLLOW | NSERTI ONS] CHO CE {
one BOCOLEAN,

t wo [ATTRI BUTE] | NTEGER,
three [GROUP] SEQUENCE ({
four [ATTRI BUTE] UTF8Stri ng,
five [ATTRI BUTE] | NTEGER OPTI ONAL,

}!

Si X [GROUP] CHA CE {
seven [ATTRI BUTE] BOOLEAN,
ei ght [ATTRI BUTE] | NTEGER

}

The "two" and "si x" conponents generate only attributes.

The "three" conponent in its current form does not generate el ements.
Any extension to the "three" conmponent will need to do |likew se to
avoi d breaking forward conpatibility.

The second exanpl e shows extensions that satisfy the
SI NGULAR- | NSERTI ONS encodi ng i nstruction.

[SI NGULAR- | NSERTI ONS] CHO CE {
one BOCOLEAN,

t wo | NTEGER,

three [GROUP] SEQUENCE ({
f our [ATTRI BUTE] UTF8Stri ng,
five | NTEGER

b
si X [GROUP] CHOI CE {

seven BOOLEAN,
ei ght | NTEGER

Legg Experi ment al [Page 87]

RFC 4911 Encodi ng I nstructions for RXER July 2007

The "two" conponent will always generate a single <two> el enent.

The "three" conponent will always generate a single <five> el enment.
It will also generate a "four" attribute, but any nunber of
attributes is allowed by the SINGULAR-I NSERTI ONS encodi ng

i nstruction.

The "six" conmponent will either generate a single <seven> el enent or
a single <eight> element. Either case will satisfy the requirenent
that there will be a single elenment in any given encodi ng of the

ext ensi on.

The third exanpl e shows extensions that satisfy the
UNI FORM | NSERTI ONS encodi ng i nstructi on.

[UNI FORM | NSERTI ONS] CHO CE {
one BOCOLEAN,

t wo | NTEGER,
three [GROUP] SEQUENCE SI ZE(1..MAX) OF four | NTEGER
five [GROUP] SEQUENCE {
Si X [ATTRI BUTE] UTF8String OPTI ONAL,
seven | NTEGER
b
eight [CGROUP] CHA CE {
ni ne BOCOLEAN,
ten [GROUP] SEQUENCE SI ZE(1..MAX) OF el even | NTEGER

}

The "two" conponent will always generate a single <two> el enent.

The "three" conponent will always generate one or nore <four>
el enent s.

The "five" conponent will always generate a single <seven> el enent.
It may al so generate a "six" attribute, but any nunber of attributes
is allowed by the UNI FORM | NSERTI ONS encodi ng i nstructi on.

The "eight" conponent will either generate a single <nine> elenment or
one or nore <eleven> elenents. Either case will satisfy the

requi renent that there nust be one or nore elenents with the same
nane in any given encodi ng of the extension.

Legg Experi ment al [Page 88]

RFC 4911 Encodi ng I nstructions for RXER July 2007

C. 2. Versioning Exanpl e

Maki ng extensions that are not forward conpatible is pernmitted
provided that the inconpatibility is signalled with a version
i ndi cator attribute.

Suppose that version 1.0 of a specification contains the follow ng
type definition:

MyMessageType ::= SEQUENCE {
version [ATTRI BUTE] [VERSI ON-1 NDI CATOR|
UTF8String ("1.0", ...) DEFAULT "1.0",
one [GROUP] [SI NGULAR- | NSERTI ONS] CHO CE {

two BOOLEAN,
}i
}

An attribute is to be added to the CHO CE for version 1.1. This
change is not forward conpatible since it does not satisfy the

SI NGULAR- | NSERTI ONS encodi ng instruction. Therefore, the version

i ndicator attribute nust be updated at the sane time (or added if it
wasn't already present). This results in the follow ng new type
definition for version 1.1:

MyMessageType ::= SEQUENCE {
version [ATTRI BUTE] [VERSI ON-1NDI CATOR]
UTF8String ("1.0", ..., "1.1") DEFAULT "1.0",
one [GROUP] [SI NGULAR- | NSERTI ONS] CHO CE {

t wo BOOLEAN,

three [ATTRI BUTE] | NTEGER -- Added in Version 1.1
}i
}

If a version 1.1 conformant application hasn't used the version 1.1
extension in a value of MyMessageType, then it is allowed to set the
val ue of the version attribute to "1.0".

A pair of elenents is added to the CHO CE for version 1.2. Again the
change does not satisfy the SI NGULAR-I NSERTI ONS encodi ng i nstructi on.
The type definition for version 1.2 is:

Legg Experi ment al [Page 89]

RFC 4911 Encodi ng I nstructions for RXER July 2007

MyMessageType ::= SEQUENCE {
version [ATTRI BUTE] [VERSI O\-1 NDI CATOR]
UTF8String ("1.0", ..., "1.1" | "1.2")
DEFAULT "1.0"
one [GROUP] [SI NGULAR- I NSERTI ONS] CHO CE {

t wo BOOLEAN,

three [ATTRIBUTE] | NTECER, -- Added in Version 1.1
four [GROUP] SEQUENCE {

five UTF8String,

Si X Cener al i zedTi e
} -- Added in version 1.2

}

If a version 1.2 conformant application hasn’t used the version 1.2
extension in a value of MyMessageType, then it is allowed to set the
val ue of the version attribute to "1.1". If it hasn’'t used either of
the extensions, then it is allowed to set the value of the version
attribute to "1.0".

Aut hor’ s Address

Dr. Steven Legg

eB2Bcom

Suite 3, Whodhouse Corporate Centre
935 Station Street

Box Hill North, Victoria 3129
AUSTRALI A

Phone: +61 3 9896 7830

Fax: +61 3 9896 7801
EMai | : steven. | egg@b2bcom com

Legg Experi ment al [Page 90]

RFC 4911 Encodi ng I nstructions for RXER July 2007

Ful I Copyright Statenent
Copyright (C The | ETF Trust (2007).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI'N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Legg Experi ment al [Page 91]

