
Network Working Group A. Surtees
Request for Comments: 4896 M. West
Updates: 3320, 3321, 3485 Siemens/Roke Manor Research
Category: Standards Track A.B. Roach
 Estacado Systems
 June 2007

 Signaling Compression (SigComp) Corrections and Clarifications

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document describes common misinterpretations and some
 ambiguities in the Signaling Compression Protocol (SigComp), and
 offers guidance to developers to resolve any resultant problems.
 SigComp defines a scheme for compressing messages generated by
 application protocols such as the Session Initiation Protocol (SIP).
 This document updates the following RFCs: RFC 3320, RFC 3321, and RFC
 3485.

Surtees, et al. Standards Track [Page 1]

RFC 4896 SigComp Corrections and Clarifications June 2007

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. Decompression Memory Size 3
 2.1. Bytecode within Decompression Memory Size 3
 2.2. Default Decompression Memory Size 4
 3. UDVM Instructions . 5
 3.1. Data Input Instructions 5
 3.2. MULTILOAD . 5
 3.3. STATE-FREE . 6
 3.4. Using the Stack . 6
 4. Byte Copying Rules . 7
 4.1. Instructions That Use Byte Copying Rules 9
 5. State Retention Priority 9
 5.1. Priority Values . 9
 5.2. Multiple State Retention Priorities 10
 5.3. Retention Priority 65535 (or -1) 10
 6. Duplicate State . 14
 7. State Identifier Clashes 14
 8. Message Misordering . 15
 9. Requested Feedback . 15
 9.1. Feedback When SMS Is Zero 15
 9.2. Updating Feedback Requests 16
 10. Advertising Resources . 16
 10.1. The I-bit and Local State Items 16
 10.2. Dynamic Update of Resources 17
 10.3. Advertisement of Locally Available State Items 17
 10.3.1. Basic SigComp . 18
 10.3.2. Dictionaries . 18
 10.3.3. SigComp Extended Mechanisms 19
 11. Uncompressed Bytecode . 19
 12. RFC 3485 SIP/SDP Static Dictionary 20
 13. Security Considerations 21
 14. IANA Considerations . 22
 15. Acknowledgements . 22
 16. References . 23
 16.1. Normative References 23
 16.2. Informative References 23
 Appendix A. Dummy Application Protocol (DAP) 24
 A.1. Introduction . 24
 A.2. Processing a DAP Message 24
 A.3. DAP Message Format in ABNF 26
 A.4. An Example of a DAP Message 26

Surtees, et al. Standards Track [Page 2]

RFC 4896 SigComp Corrections and Clarifications June 2007

1. Introduction

 SigComp [1] defines the Universal Decompressor Virtual Machine (UDVM)
 for decompressing messages sent by a compliant compressor. SigComp
 further describes mechanisms to deal with state handling, message
 structure, and other details. While the behavior of the decompressor
 is specified in great detail, the behavior of the compressor is left
 as a choice for the implementer. During implementation and
 interoperability tests, some areas of SigComp that need clarification
 have been identified. The sections that follow enumerate the problem
 areas identified in the specification, and attempt to provide
 clarification.

 Note that, as this document refers to sections in several other
 documents, the following notation is applied:

 "in Section 3.4" refers to Section 3.4 of this document
 "in RFC 3320-Section 3.4" refers to Section 3.4 of RFC 3320 [1]

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [5].

2. Decompression Memory Size

2.1. Bytecode within Decompression Memory Size

 SigComp [1] states that the default Decompression Memory Size (DMS)
 is 2K. The UDVM memory size is defined in RFC 3320-Section 7 to be
 (DMS - n), where n is the size of the SigComp message, for messages
 transported over UDP and (DMS / 2) for those transported over TCP.
 This means that when the message contains the bytecode (as it will
 for at least the first message) there will actually be two copies of
 the bytecode within the decompressor memory (see Figure 1). The
 presence of the second copy of bytecode in decompressor memory is
 correct in this case.

Surtees, et al. Standards Track [Page 3]

RFC 4896 SigComp Corrections and Clarifications June 2007

 |<----------------------------DMS--------------------------------->|
 |<-----SigComp message---->|<------------UDVM memory size--------->|
 +-+----------+-------------+-----+----------+----------------------+
 | | bytecode | comp msg | | bytecode | circular buffer |
 +-+----------+-------------+-----+----------+----------------------+
 ^ ^
 | |
 SigComp header Low bytes of UDVM

 Figure 1: Bytecode and UDVM memory size within DMS

2.2. Default Decompression Memory Size

 For many implementations, the length of decompression bytecode sent
 is in the range of three to four hundred bytes. Because SigComp
 specifies a default DMS of 2K, the described scheme seriously
 restricts the size of the circular buffer, and of the compressed
 message itself. In some cases, this set of circumstances has a
 damaging effect on the compression ratio; for others, it makes it
 completely impossible to send certain messages compressed.

 To address this problem, those mandating the use of SigComp need to
 also provide further specification for their application that
 mandates the use of an appropriately sized DMS. Sizing of such a DMS
 should take into account (1) the size of bytecode for algorithms
 likely to be employed in compressing the application messages, (2)
 the size of any buffers or structures necessary to execute such
 algorithms, (3) the size of application messages, and (4) the average
 entropy present within a single application message.

 For example, assume a typical compression algorithm requiring
 approximately 400 bytes of bytecode, plus about 2432 bytes of data
 structures. The required UDVM memory size is 400 + 2432 = 2832. For
 a TCP-based protocol, this means the DMS must be at least 5664 (2832
 * 2) bytes, which is rounded up to 8k. For a UDP-based protocol, one
 must take into account the size of the SigComp messages themselves.
 Assuming a text-based protocol with sufficient average entropy to
 compress a single message by 50% (without any previous message
 history), and messages that are not expected to exceed 8192 bytes in
 size, the protocol message itself will add 4096 bytes to the SigComp
 message size (on top of the 400 bytes of bytecode plus a 3-byte
 header), or 4096 + 400 + 3 = 4499. To calculate the DMS, one must
 add this to the required UDVM memory size: 2832 + 4499 = 6531, which
 is again rounded up to 8k of DMS.

Surtees, et al. Standards Track [Page 4]

RFC 4896 SigComp Corrections and Clarifications June 2007

3. UDVM Instructions

3.1. Data Input Instructions

 When inputting data from the compressed message, the INPUT-BYTES (RFC
 3320-Section 9.4.2) and INPUT-BITS (RFC 3320-Section 9.4.3)
 instructions both have the paragraph:

 "If the instruction requests data that lies beyond the end of the
 SigComp message, no data is returned. Instead the UDVM moves program
 execution to the address specified by the address operand."

 The intent is that if n bytes/bits are requested, but only m are left
 in the message (where m < n), then the decompression dispatcher MUST
 NOT return any bytes/bits to the UDVM, and the m bytes/bits that are
 there MUST remain in the message unchanged.

 For example, if the remaining bytes of a message are: 0x01 0x02 0x03
 and the UDVM encounters an INPUT-BYTES (6, a, b) instruction. Then
 the decompressor dispatcher returns no bytes and jumps to the
 instruction specified by b. This contains an INPUT-BYTES (2, c, d)
 instruction so the decompressor dispatcher successfully returns the
 bytes 0x01 and 0x02.

 In the case where an INPUT-BYTES instruction follows an INPUT-BITS
 instruction that has left a partial byte in the message, the partial
 byte should still be thrown away even if there are not enough bytes
 to input.

 INPUT-BYTES (0, a, b) can be used to flush out a partial byte.

3.2. MULTILOAD

 In order to make step-by-step implementation simpler, the MULTILOAD
 instruction is explicitly not allowed to write into any memory
 positions occupied by the MULTILOAD opcode or any of its parameters.
 Additionally, if there is any indirection of parameters, the
 indirection MUST be done at execution time.

 Any implementation technique other than a step-by-step implementation
 (e.g., decode all operands then execute, which is the model of all
 other instructions) MUST yield the same result as a step-by-step
 implementation would.

Surtees, et al. Standards Track [Page 5]

RFC 4896 SigComp Corrections and Clarifications June 2007

 For example:

 at (64)

 :location_a pad (2)
 :location_b pad (2)
 :location_c pad (2)
 pad (30)
 :udvm_memory_size pad (2)
 :circular_buffer pad (2)

 align (64)

 MULTILOAD (location_a, 3, circular_buffer,
 udvm_memory_size, $location_a)

 The step-by-step implementation would: write the address of
 circular_buffer into location_a (memory address 64); write the
 address of udvm_memory_size into location_a + 2 (memory address 66);
 write the value stored in location_a (accessed using indirection -
 that is now the address of circular_buffer) into location_a + 4
 (memory address 68). Therefore, at the end of the execution by a
 correct implementation, location_c will contain the address of
 circular_buffer.

3.3. STATE-FREE

 The STATE-FREE instruction does not check the minimum_access_length.
 This is correct because the state cannot be freed until the
 application has authenticated the message. The lack of checking does
 not pose a security risk because if the sender has enough information
 to create authenticated messages, then sending messages that save
 state can push previous state out of storage anyway.

 The STATE-FREE instruction can only free state in the compartment
 that corresponds to the message being decompressed. Attempting to
 free state that is either from another compartment, or that is not
 associated with any compartment, has no effect.

3.4. Using the Stack

 The instructions PUSH, POP, CALL, and RETURN make use of a stack that
 is set up using the well-known memory address stack_location to
 define where in memory the stack is located. Use of the stack is
 defined in RFC 3320-Section 8.3, which states: ’"Pushing" a value on
 the stack is an abbreviation for copying the value to

Surtees, et al. Standards Track [Page 6]

RFC 4896 SigComp Corrections and Clarifications June 2007

 stack[stack_fill] and then increasing stack_fill by 1.’ and
 ’stack_fill is an abbreviation for the 2-byte word at stack_location
 and stack_location + 1’.

 In the very rare case that the value of stack_fill is 0xFFFF when a
 value is pushed onto the stack, then the original stack_fill value
 MUST be increased by 1 to 0x0000 and written back to stack_location
 and stack_location + 1 (which will overwrite the value that has been
 pushed onto the stack).

 The new value pushed onto the stack has, in theory, been written
 to stack [0xFFFF] = stack_location. Stack_fill would then be
 increased by 1; however, the value at stack_location and
 stack_location + 1 has just been updated. To maintain the
 integrity of the stack with regard to over and underflow,
 stack_fill cannot be re-read at this point, and the pushed value
 is overwritten.

4. Byte Copying Rules

 RFC 3320-Section 8.4 states that "The string of bytes is copied in
 ascending order of memory address, respecting the bounds set by
 byte_copy_left and byte_copy_right." This is misleading in that it
 is perfectly legitimate to copy bytes outside of the bounds set by
 byte_copy_left and byte_copy_right. Byte_copy_left and
 byte_copy_right provide the ability to maintain a circular buffer as
 follows:

 For moving to the right

 if current_byte == ((byte_copy_right - 1) mod 2 ^ 16):
 next_byte = byte_copy_left
 else:
 next_byte = (current_byte + 1) mod 2 ^ 16

 which is equivalent to the algorithm given in RFC 3320-Section 8.4.

 For moving to the left

 if current_byte == byte_copy_left:
 previous_byte = (byte_copy_right - 1) mod 2 ^ 16
 else:
 previous_byte = (current_byte - 1) mod 2 ^ 16

 Moving to the left is only used for COPY_OFFSET.

 Consequently, copying could begin to the left of byte_copy_left and
 continue across it (and jump back to it according to the given

Surtees, et al. Standards Track [Page 7]

RFC 4896 SigComp Corrections and Clarifications June 2007

 algorithm if necessary) and could begin at or to the right of
 byte_copy_right (though care must be taken to prevent decompression
 failure due to writing to / reading from beyond the UDVM memory).

 For further clarity: consider the UDVM memory laid out as follows,
 with byte_copy_left and byte_copy_right in the locations indicated by
 "BCL" and "BCR", respectively:

 +--+
 | |
 +----------^------------^----------------+
 BCL BCR

 If an opcode read or wrote bytes starting to the left of
 byte_copy_left, it would do so in the following order:

 +--+
 | abcdefghijkl |
 +----------^------------^----------------+
 BCL BCR

 If the opcode continues to read or write until it reaches
 byte_copy_right, it would then wrap around to byte_copy_left and
 continue (letters after the wrap are capitalized for clarity):

 +--+
 | abcQRSTUVjklmnop |
 +----------^------------^----------------+
 BCL BCR

 Similarly, writing to the right of byte_copy_right is a perfectly
 valid operation for opcodes that honor byte copying rules:

 +--+
 | abcdefg |
 +----------^------------^----------------+
 BCL BCR

 A final, somewhat odd relic of the foregoing rules occurs when
 byte_copy_right is actually less than byte_copy_left. In this case,
 reads and writes will skip the memory between the pointers:

 +--+
 | abcde fghijkl |
 +----------^------------^----------------+
 BCR BCL

Surtees, et al. Standards Track [Page 8]

RFC 4896 SigComp Corrections and Clarifications June 2007

4.1. Instructions That Use Byte Copying Rules

 This document amends the list of instructions that obey byte copying
 rules in RFC 3320-Section 8.4 to include STATE-CREATE and CRC.

 RFC 3320-Section 8.4 specifies the byte copying rules and includes a
 list of the instructions that obey them. STATE-CREATE is not in this
 list but END-MESSAGE is. This caused confusion due to the fact that
 neither instruction actually does any byte copying; rather, both
 instructions give information to the state-handler to create state.
 Logically, both instructions should have the same information about
 byte copying.

 When state is created by the state-handler (whether from an END-
 MESSAGE or a STATE-CREATE instruction), the byte copying rules of RFC
 3320-Section 8.4 apply.

 Note that, if the contents of the UDVM changes between the occurrence
 of the STATE-CREATE instruction and the state being created, the
 bytes that are stored are those in the buffer at the time of creation
 (i.e., when the message has been decompressed and authenticated).

 CRC is not mentioned in RFC 3320-Section 8.4 in the list of
 instructions that obey byte copying rules, but its description in RFC
 3320-Section 9.3.5 states that these rules are to be obeyed. When
 reading data over which to perform the CRC check, byte copying rules
 apply as specified in RFC 3320-Section 8.4.

 When the partial identifier for a STATE-FREE instruction is read,
 (during the execution of END-MESSAGE) byte copying rules as per RFC
 3320-Section 8.4 apply.

 Given that reading the buffer for creating and freeing state within
 the END-MESSAGE instruction obeys byte copying rules, there may be
 some confusion as to whether reading feedback items should also obey
 byte copying rules. Byte copying rules do not apply for reading
 feedback items.

5. State Retention Priority

5.1. Priority Values

 For state_retention_priority, 65535 < 0 < 1 < ... < 65534. This is
 slightly counter intuitive, but is correct.

Surtees, et al. Standards Track [Page 9]

RFC 4896 SigComp Corrections and Clarifications June 2007

5.2. Multiple State Retention Priorities

 There may be confusion when the same piece of state is created at two
 different retention priorities. The following clarifies this:

 The retention priority MUST be associated with the compartment and
 not with the piece of state. For example, if endpoint A creates a
 piece of state with retention priority 1 and endpoint B creates
 exactly the same state with retention priority 2, there should be
 one copy (assuming the model of state management suggested in
 SigComp [1]) of the actual state, but each compartment should keep
 a record of this piece of state with its own priority. (If this
 does not happen then the state could be kept for longer than A
 anticipated or less time than B anticipated, depending on which
 priority is used. This could cause Decompression Failure to
 occur.)

 If the same piece of state is created within a compartment with a
 different priority, then one copy of it should be stored with the
 new priority and it MUST count only once against SMS. That is,
 the state creation updates the priority rather than creates a new
 piece of state.

5.3. Retention Priority 65535 (or -1)

 There is potentially a problem with storing multiple pieces of state
 with the minimum retention priority (65535) as defined in SigComp
 [1]. This can be shown by considering the following examples that
 are of shared mode, which is documented in SigComp Extended [2]. The
 key thing about state with retention priority 65535 is that it can be
 created by an endpoint in the decompressor compartment without the
 knowledge of the remote compressor (which controls state creation in
 the decompressor compartment).

Surtees, et al. Standards Track [Page 10]

RFC 4896 SigComp Corrections and Clarifications June 2007

 Example 1:

 [SMn state is shared mode state (priority 65535),
 BC is bytecode state (priority 1),
 BFn is buffer state (priority 0)]

 Endpoint A Endpoint B
 [decomp cpt] [comp cpt]

 [SM1]
 ------------------------------->
 [SM1]

 [SM1, SM2]
 --------------------X (message lost)

 [SM1, BC, BF1]
 <------------ref SM1------------
 [SM2, BC, BF1]
 endpoint B still believes SM1
 is at endpoint A

 [BC, BF1, BF2]
 <------------ref SM1------------

 decompression failure at A
 because SM1 has already been deleted

Surtees, et al. Standards Track [Page 11]

RFC 4896 SigComp Corrections and Clarifications June 2007

 Example 2:

 Endpoint A Endpoint B
 [decomp cpt] [comp cpt]

 [SM1]
 ------------------------------->
 [SM1]

 [SM1, BC, BF1]
 (message lost)X------ref SM1-----

 [SM1, SM2]
 ------------------------------->
 endpoint B does not create SM2
 because there is no space
 [SM1, BC, BF1]

 [SM1, BC, BF1, BF2]
 <------------ref SM1------------
 [SM2, BC, BF2]
 endpoint B still believes SM1
 is at endpoint A

 [BC, BF1, BF2, BF3]
 <------------ref SM1------------

 decompression failure at A
 because SM1 has already been deleted

 Figure 2: Retention priority 65535 examples

Surtees, et al. Standards Track [Page 12]

RFC 4896 SigComp Corrections and Clarifications June 2007

 Once there is more than one piece of minimum priority state created
 in a decompressor compartment, the corresponding compressor cannot be
 certain about which pieces of state are present in that
 (decompressor) compartment. If there is only one piece of state,
 then no such ambiguity exists.

 The problem is a consequence of the different rules for the creation
 of minimum priority state. In particular, the creation of the second
 piece of state without the knowledge of the compressor could mean
 that the first piece is pushed out earlier than the compressor
 expects (despite the fact that the state processing rules from
 SigComp [1] are being implemented correctly).

 SigComp [1] also states that a compressor MUST be certain that all of
 the data needed to decompress a SigComp message is available at the
 receiving endpoint. Thus, it SHOULD NOT reference any state unless
 it can be sure that the state exists. The fact that the compressor
 at B has no way of knowing how much state has been created at A can
 lead to a loss of synchronization between the endpoints, which is not
 acceptable.

 One observation is that it is always safe to reference a piece of
 minimum priority state following receipt of the advertisement of the
 state.

 If it is known that both endpoints are running SigComp version 2, as
 defined in NACK [3], then an endpoint MAY assume that the likelihood
 of a loss of synchronization is very small, and rely on the NACK
 mechanism for recovery.

 However, for a compressor to try and avoid causing the generation of
 NACKs, it has to be able to make some assumptions about the behavior
 of the peer compressor. Also, if one of the endpoints does not
 support NACK, then some other solution is needed.

 Consequently, where NACK is not supported or for NACK averse
 compressors, the recommendation is that only one piece of minimum
 priority state SHOULD be present in a compartment at any one time.
 If both endpoints support NACK [3], then this recommendation MAY be
 relaxed, but implementers need to think carefully about the
 consequences of creating multiple pieces of minimum priority state.
 In either case, if the behavior of the application restricts the
 message flow, this fact could be exploited to allow safe creation of
 multiple minimum priority states; however, care must still be taken.

 Note that if a compressor wishes the remote endpoint to be able to
 create a new piece of minimum priority state, it can use the STATE-
 FREE instruction to remove the existing piece of state.

Surtees, et al. Standards Track [Page 13]

RFC 4896 SigComp Corrections and Clarifications June 2007

6. Duplicate State

 If a piece of state is created in a compartment in which it already
 exists, the time of its creation SHOULD be updated as if it had just
 been created, irrespective of whether or not there is a new state
 retention priority.

7. State Identifier Clashes

 RFC 3320-Section 6.2 states that when creating a piece of state, the
 full 20-byte hash should be checked to see whether or not another
 piece of state with this identifier exists. If it does, and the
 state item is not identical, then the new creation MUST fail. It is
 stated that the probability of this occurring is vanishingly small
 (and so it is, see below).

 However, when state is accessed, only the first n bytes of the state
 identifier are used, where n could be as low as 6. At this point, if
 there are two pieces of state with the same first n bytes of state
 identifier, the STATE-ACCESS instruction will cause decompression
 failure. The compressor referencing the state will not expect this
 failure mode because the state creation succeeded without a clash.
 At a server endpoint where there could be thousands or millions of
 pieces of state, how likely is this to actually happen?

 Consider the birthday paradox (where there only have to be 23 people
 in a room to have a greater than 50% chance that two of them will
 have the same birthday (Birthday [8])).

 The naive calculation using factorials gives:

 N!
 Pd(N,s) = 1 - -------------
 (N - s)! N^s

 where N is the number of possible values and s is the sample size.

 However, due to dealing with large numbers, an approximation is
 needed:

 Pd(N,s) = 1 - e^(LnFact(N) - LnFact(N-s) - s Ln(N))

 where LnFact (x) is the log of x!, which can be approximated by:

Surtees, et al. Standards Track [Page 14]

RFC 4896 SigComp Corrections and Clarifications June 2007

 LnFact(x) ˜ (x + 1/2) Ln(x) - x + Ln(2*Pi)/2 +

 1 1 1 1
 --- - ------- + -------- - --------
 12x 360 x^3 1260 x^5 1680 x^7

 which using N = 2^48 [6 octet partial state identifier] gives:

 s = 1 000 000: Pd (N,s) = 0.018%
 s = 10 000 000: Pd (N,s) = 16.28%
 s = 100 000 000: Pd (N,s) = 100.00%

 so when implementing, thought should be given as to whether or not 6
 octets of state identifier is enough to ensure that state access will
 be successful (particularly at a server).

 The likelihood of a clash when using the full 20 octets of state
 identifier, does indeed have a vanishingly small probability:
 using N = 2^160 [full 20 octet state identifier] gives:

 s = 1 000 000: Pd (N,s) = 3.42E-35%
 s = 10 000 000: Pd (N,s) = 3.42E-33%
 s = 100 000 000: Pd (N,s) = 3.42E-31%

 Consequently, care must be taken when deciding how many octets of
 state identifier to use to access state at the server.

8. Message Misordering

 SigComp [1] makes only one reference to the possibility of misordered
 messages. However, the statement that the ’compressor MUST ensure
 that the message can be decompressed using the resources available at
 the remote endpoint’ puts the onus on the compressor to take account
 of the possibility of misordering occurring.

 Whether misordering can occur and whether that would have an impact
 depends on the compartment definition and the transport protocol in
 use. Therefore, it is up to the implementer of the compressor to
 take these factors into account.

9. Requested Feedback

9.1. Feedback When SMS Is Zero

 If an endpoint receives a request for feedback, then it SHOULD return
 the feedback even if its SMS is zero. The storage overhead of the
 requested feedback is NOT part of the SMS.

Surtees, et al. Standards Track [Page 15]

RFC 4896 SigComp Corrections and Clarifications June 2007

9.2. Updating Feedback Requests

 When an endpoint receives a valid message it updates the requested
 feedback data for that compartment. RFC 3320-Section 5 states that
 there is no need to transmit any requested feedback item more than
 once. However, there are cases where it would be beneficial for the
 feedback to be sent more than once (e.g., a retransmitted 200 OK SIP
 message [9] to an INVITE SIP message implies that the original 200
 OK, and the feedback it carried, might not have reached the remote
 endpoint). Therefore, an endpoint SHOULD transmit feedback
 repeatedly until it receives another valid message that updates the
 feedback.

 RFC 3320-Section 9.4.9 states that when requested_feedback_location
 equals zero, no feedback request is made. However, there is no
 indication of whether this means that the existing feedback data is
 left untouched or if this means that the existing feedback data
 SHOULD be overwritten to be ’no feedback data’. If
 requested_feedback_location equals zero, the existing feedback data
 SHOULD be left untouched and returned in any subsequent messages as
 before.

 RFC 3320-Section 9.4.9 also makes no statement about what happens to
 existing feedback data when requested_feedback_location does not
 equal zero but the Q flag indicating the presence/absence of a
 requested_feedback_item is zero. In this case, the existing feedback
 data SHOULD be overwritten to be ’no feedback data’.

10. Advertising Resources

10.1. The I-bit and Local State Items

 The I-bit in requested feedback is a mechanism by which a compressor
 can tell a remote endpoint that it is not going to access any local
 state items. By doing so, it gives the remote endpoint the option of
 not advertising them in subsequent messages. Setting the I-bit does
 not obligate the remote endpoint to cease sending advertisements.

 The remote endpoint SHOULD still advertise its parameters such as DMS
 and state memory size (SMS). (This is particularly important; if the
 sender of the first message sets the I-bit, it will still want the
 advertisement of parameters from the receiver. If it doesn’t receive
 these, it has to assume the default parameters which will affect
 compression efficiency.)

 The endpoint receiving an I-bit of 1 can reclaim the memory used to
 store the locally available state items. However, this has NO impact

Surtees, et al. Standards Track [Page 16]

RFC 4896 SigComp Corrections and Clarifications June 2007

 on any state that has been created by the sender using END-MESSAGE or
 STATE-CREATE instructions.

10.2. Dynamic Update of Resources

 Decompressor resources such as SMS and DMS can be dynamically updated
 at the compressor by use of the SMS and DMS bits in returned
 parameters feedback (see RFC 3320-Section 9.4.9). Changing resources
 dynamically (apart from initial advertisements for each compartment)
 is not expected to happen very often.

 If additional resources are advertised to a compressor, then it is up
 to the implementation at the compressor whether or not to make use of
 these resources. For example, if the decompressor advertises 8k SMS
 but the compressor only has 4k SMS, then the compressor MAY choose
 not to use the extra 4k (e.g., in order to monitor state saved at the
 decompressor). In this case, there is no synchronization problem.
 The compressor MUST NOT use more than the most recently advertised
 resources. Note that the compressor SMS is unofficial (it enables
 the compressor to monitor decompressor state) and is separate from
 the SMS advertised by the decompressor.

 Reducing the resources has potential synchronization issues and so
 SHOULD NOT be done unless absolutely necessary. If this is the case
 then the memory MUST NOT be reclaimed until the remote endpoint has
 acknowledged the message sent with the advertisement. If state is to
 be deleted to accommodate a reduction in SMS then both endpoints MUST
 delete it according to the state retention priority (see RFC 3320-
 Section 6.2). The compressor MUST NOT then use more than the amount
 of resources most recently advertised.

10.3. Advertisement of Locally Available State Items

 RFC 3320-Section 3.3.3 defines locally available state items to be
 the pieces of state that an endpoint has available but that have not
 been uploaded by the SigComp message. The examples given are
 dictionaries and well known pieces of bytecode; and the advertisement
 mechanism discussed in RFC 3320-Section 9.4.9 provides a way for the
 endpoint to advertise the pieces of locally available state that it
 has.

 However, SigComp [1] does not (nor was it ever intended to) fully
 define the use of locally available state items, in particular, the
 length of time for which they will be available. The use of locally
 available state items is left for definition in other documents.
 However, this fact, coupled with the fact that SigComp does contain
 some hooks for uses of locally available state items and the fact
 that some of the definitions of such uses (in SigComp Extended [2])

Surtees, et al. Standards Track [Page 17]

RFC 4896 SigComp Corrections and Clarifications June 2007

 are incomplete has caused some confusion. Therefore, this section
 clarifies the situation.

 Note that any definitions of uses of locally available state items
 MUST NOT conflict with any other uses.

10.3.1. Basic SigComp

 SigComp provides a mechanism for an endpoint to advertise locally
 available state (RFC 3320-Section 9.4.9). If the endpoint receiving
 the advertisement does not ’recognize’ it and therefore know the
 properties of the state e.g., its length and lifetime, the compressor
 needs to consider very carefully whether or not to access the state;
 especially if NACK [3] is not available.

 SigComp provides the following hooks for use in conjunction with
 locally available state items. Without further definition, locally
 available state SHOULD NOT be used.

 RFC 3320-Section 6.2 allows for the possibility to map locally
 available state items to a compartment and states that, if this is
 done, the state items MUST have state retention priority 65535 in
 order to not interfere with state created at the request of the
 remote compressor. Note that Section 5.3 also recommends that only
 one such piece of state SHOULD be created per compartment.

 The I-bit in the requested_feedback_location (see RFC 3320-Section
 9.4.9) allows a compressor to indicate to the remote endpoint that it
 will not reference any of the previously advertised locally available
 state. Depending on the implementation model for state handling at
 the remote endpoint, this could allow the remote endpoint to reclaim
 the memory being used by such state items.

10.3.2. Dictionaries

 The most basic use of the local state advertisement is the
 advertisement of a dictionary (e.g., the dictionary specified by SIP/
 SDP Static Dictionary [4]) or a piece of bytecode. In general, these
 pieces of state:

 o are not mapped to compartments
 o are local to the endpoint
 o are available for at least the duration of the compartment
 o do not have any impact on the compartment SMS

 However, for a given piece of state the exact lifetime needs to be
 defined e.g., in public specifications such as SigComp for SIP [7] or

Surtees, et al. Standards Track [Page 18]

RFC 4896 SigComp Corrections and Clarifications June 2007

 the 3GPP IMS specification [10]. Such a specification should also
 indicate whether or not advertisement of the state is needed.

10.3.3. SigComp Extended Mechanisms

 SigComp Extended [2] defines some uses of local state advertisements
 for which additional clarification is provided here.

 Shared-mode (see RFC 3321-Section 5.2) is well-defined (when combined
 with the clarification in Section 5.3). In particular, the states
 that are created and advertised are mapped into the compartment, have
 the minimum retention priority and persist only until they are
 deleted by the creation of new (non-minimum retention priority) state
 or use of a STATE-FREE instruction.

 The definition of endpoint initiated acknowledgments (RFC 3321-
 Section 5.1.2) requires clarification in order to ensure that the
 definition does not preclude advertisements being used to indicate
 that state will be kept beyond the lifetime of the compartment (as
 discussed in SigComp for SIP [7]). Thus the clarification is:

 Where Endpoint A requests state creation at Endpoint B, Endpoint B
 MAY subsequently advertise the hash of the created state item to
 Endpoint A. This conveys to Endpoint A (i) that the state has
 been successfully created within the compartment; and (ii) that
 the state will be available for at least the lifetime of the state
 as defined by the state deletion rules according to age and
 retention priority of SigComp [1]. If the state is available at
 Endpoint B after it would be deleted from the compartment
 according to [1], then the state no longer counts towards the SMS
 of the compartment. Since there is no guarantee of such state
 being available beyond its normally defined lifetime, endpoints
 SHOULD only attempt to access the state after this time where it
 is known that NACK [3] is available.

11. Uncompressed Bytecode

 It is possible to write bytecode that simply instructs the
 decompressor to output the entire message (effectively sending it
 uncompressed, but within a SigComp message). This is particularly
 useful if the bytecode is well-known (so that decompressors can
 recognize and output the bytes without running a VM if they wish);
 therefore, it is documented here.

Surtees, et al. Standards Track [Page 19]

RFC 4896 SigComp Corrections and Clarifications June 2007

 The mnemonic code is:

 at (0)
 :udvm_memory_size pad (2)
 :cycles_per_bit pad (2)
 :sigcomp_version pad (2)
 :partial_state_id_length pad (2)
 :state_length pad (2)
 :reserved pad (2)
 at (64)
 :byte_copy_left pad (2)
 :byte_copy_right pad (2)
 :input_bit_order pad (2)
 :stack_location pad (2)

 ; Simple loop
 ; Read a byte
 ; Output a byte
 ; Until there are no more bytes!

 at (128)
 :start
 INPUT-BYTES (1, byte_copy_left, end)
 OUTPUT (byte_copy_left, 1)
 JUMP (start)

 :end
 END-MESSAGE (0,0,0,0,0,0,0)

 which translates to give the following SigComp message:

 0xf8, 0x00, 0xa1, 0x1c, 0x01, 0x86, 0x09, 0x22, 0x86, 0x01, 0x16,
 0xf9, 0x23

12. RFC 3485 SIP/SDP Static Dictionary

 SIP/SDP Static Dictionary [4] provides a dictionary of strings
 frequently used in SIP and SDP messages. The format of the
 dictionary is the list of strings followed by a table of offset
 references to the strings so that a compressor can choose to
 reference the address of the string or the entry in the table. Both
 parts of the dictionary are divided into 5 prioritized sections to
 allow compressors to choose how much of it they use (which is
 particularly useful in the case where it has to be downloaded). If
 only part of the dictionary is used, then the corresponding sections
 of both parts (strings and offset table) are used.

Surtees, et al. Standards Track [Page 20]

RFC 4896 SigComp Corrections and Clarifications June 2007

 However, there are some minor bugs in the dictionary. In a number of
 places, the entry in the offset table refers to an address that is
 not in the corresponding priority section in the list of strings.
 Consequently, if the bytecode uses the offset table and limits use of
 the dictionary to priorities less than 4, then care must be taken not
 to use the following strings in the dictionary:

 ’application’ at 0x0334 is not at priority 2 (it’s priority 4)
 ’sdp’ at 0x064b is not at priority 2 (it’s priority 4)
 ’send’ at 0x089d is not at priority 2 (it’s priority 3)
 ’recv’ at 0x0553 is not at priority 2 (it’s priority 4)
 ’phone’ at 0x00f2 is not at priority 3 (it’s priority 4)

 This document does not correct the dictionary, as any changes to the
 dictionary itself would be non-backwards-compatible, and require all
 implementations to maintain two different copies of the dictionary.
 Such a cost is far too high for a bug that is trivial to work around
 and has a negligible effect on compression ratios. Instead, the flaw
 is pointed out to allow implementers to avoid any consequent
 problems. Specifically, if the bytecode sent to a remote endpoint
 contains instructions that load only a sub-portion of the SIP/SDP
 dictionary, then the input stream provided to that bytecode cannot
 reference any of these five offsets in the offset table, unless the
 corresponding string portion of the dictionary has also been loaded.
 For example, if bytecode loads only the first three priorities of the
 dictionary (both string and offset table), use of the offset for
 "send" (at 0x089d) would be valid; however, use of the offset for
 "phone" (at 0x00f2) would not.

13. Security Considerations

 This document updates SigComp [1], SigComp Extended [2], and the
 SigComp Static Dictionary [4]. The security considerations for [2]
 and [4] are the same as for [1]; therefore, this section discusses
 only how the security considerations for [1] are affected by the
 updates.

 Several security risks are discussed in [1]. These are discussed
 briefly here; however, this update does not change the security
 considerations of SigComp:

 Snooping into state of other users - this is mitigated by using at
 least 48 bits from the hash. This update does not reduce the
 minimum and recommends use of more bits under certain
 circumstances.

Surtees, et al. Standards Track [Page 21]

RFC 4896 SigComp Corrections and Clarifications June 2007

 Faking state or making unauthorized changes - this is mitigated by
 the fact that the application layer has to authorize state
 manipulation. This update does not change that mechanism.

 Use of SigComp as a tool in a Denial of Service (DoS) attack -
 this is mitigated by the fact that SigComp only generates one
 decompressed message per incoming compressed message. That is not
 changed by this update.

 Attacking SigComp as the DoS target by filling with state - this
 is mitigated by the fact that the application layer has to
 authorize state manipulation. This update does not change that
 mechanism.

 Attacking the UDVM by sending it looping code - this is mitigated
 by the upper limit of "UDVM cycles", which is unchanged by this
 update.

14. IANA Considerations

 This document updates SigComp [1], but does not change the version.
 Consequently, the IANA considerations are the same as those for [1].

 This document updates SigComp Extended [2], but does not change the
 version. Consequently, the IANA considerations are the same as those
 for [2].

 This document updates Static Dictionary [4], but does not change the
 version. Consequently, the IANA considerations are the same as those
 for [4].

15. Acknowledgements

 We would like to thank the following people who, largely through
 being foolish enough to be authors or implementors of SigComp, have
 provided us their confusion, suggestions, and comments:

 Richard Price
 Lajos Zaccomer
 Timo Forsman
 Tor-Erik Malen
 Jan Christoffersson
 Kwang Mien Chan
 William Kembery
 Pekka Pessi

Surtees, et al. Standards Track [Page 22]

RFC 4896 SigComp Corrections and Clarifications June 2007

16. References

16.1. Normative References

 [1] Price, R., Borman, C., Christoffersson, J., Hannu, H., Liu, Z.,
 and J. Rosenberg, "Signaling Compression (SigComp)", RFC 3320,
 January 2003.

 [2] Hannu, H., Christoffersson, J., Forsgren, S., Leung, K., Liu,
 Z., and R. Price, "Signaling Compression (SigComp) - Extended
 Operations", RFC 3321, January 2003.

 [3] Roach, A., "A Negative Acknowledgement Mechanism for Signaling
 Compression)", RFC 4077, October 2004.

 [4] Garcia-Martin, M., Borman, C., Ott, J., Price, R., and A.
 Roach, "The Session Initiation Protocol (SIP) and Session
 Description Protocol (SDP) Static Dictionary for Signaling
 Compression (SigComp)", RFC 3485, February 2003.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March 1997.

16.2. Informative References

 [6] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications (ABNF)", RFC 2234, November 1997.

 [7] Borman, C., Liu, Z., Price, R., and G. Camarillo, "Applying
 Signaling Compression (SigComp) to the Session Initiation
 Protocol (SIP)", Work in Progress, November 2006.

 [8] Ritter, T., "Estimating Population from Repetitions in
 Accumulated Random Samples", 1994,
 <http://www.ciphersbyritter.com/ARTS/BIRTHDAY.HTM>.

 [9] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [10] "IP Multimedia Call Control Protocol based on Session
 Initiation Protocol (SIP)", October 2006.

Surtees, et al. Standards Track [Page 23]

RFC 4896 SigComp Corrections and Clarifications June 2007

Appendix A. Dummy Application Protocol (DAP)

A.1. Introduction

 This appendix defines a simple dummy application protocol (DAP) that
 can be used for SigComp interoperability testing. This is handy for
 SigComp implementations that are not integrated with a SIP stack. It
 also provides some features that facilitate the testing of SigComp
 internal operations.

 The message format is quite simple. Each message consists of a
 8-line message-header, an empty line, and an OPTIONAL message-body.
 The style resembles that of SIP and HTTP.

 The exact message format is given later in augmented Backus-Naur Form
 (ABNF) [6]. Here are a few notes:

 Each line of message-header MUST be terminated with CRLF.

 The empty line MUST be present even if the message-body is not.

 Body-length is the length of the message-body, excluding the CRLF
 that separates the message-body from the message-header.

 All strings in the message-header are case-insensitive.

 For implementation according to this appendix, the DAP-version
 MUST be set to 1.

A.2. Processing a DAP Message

 A message with an invalid format will be discarded by a DAP receiver

 For testing purposes, a message with a valid format will be returned
 to the original sender (IP address, port number) in clear text, i.e.,
 without compression. This is the case even if the sender requests
 this receiver to reject the message. Note that the entire DAP
 message (message-header + CRLF + message-body) is returned. This
 allows the sender to compare what it sent with what the receiver
 decompressed.

 Endpoint-ID is the global identifier of the sending endpoint. It can
 be used to test the case where multiple SigComp endpoints communicate
 with the same remote SigComp endpoint. For simplicity, the IPv4
 address is used for this purpose.

 Compartment-ID is the identifier of the *compressor* compartment that
 the *sending* endpoint used to compress this message. It is assigned

Surtees, et al. Standards Track [Page 24]

RFC 4896 SigComp Corrections and Clarifications June 2007

 by the sender and therefore only unique per sending endpoint; i.e.,
 DAP messages sent by different endpoints MAY carry the same
 compartment-ID. Therefore, the receiver SHOULD use the (endpoint-ID,
 compartment-ID) pair carried in a message to determine the
 decompressor compartment identifier for that message. The exact
 local representation of the derived compartment identifier is an
 implementation choice.

 To test SigComp feedback [1], peer compartments between two endpoints
 are defined in DAP as those with the same compartment-ID. For
 example, (endpoint-A, 1) and (endpoint-B, 1) are peer compartments.
 That means, SigComp feedback for a DAP message sent from compartment
 1 of endpoint-A to endpoint-B will be piggybacked on a DAP message
 sent from compartment 1 of endpoint-B to endpoint-A.

 A DAP receiver will follow the instruction carried in message-header
 line-5 to either accept or reject a DAP message. Note: line-6 and
 line-7 will be ignored if the message is rejected.

 A DAP receiver will follow the instruction in line-6 to create or
 close the decompressor compartment that is associated with the
 received DAP message (see above).

 If line-7 of a received DAP message-header carries "TRUE", the
 receiver will send back a response message to the sender. This
 allows the test of SigComp feedback. As mentioned above, the
 response message MUST be compressed by, and sent from, the local
 compressor compartment that is a peer of the remote compressor
 compartment. Other than this constraint, the response message is
 just a regular DAP message that can carry arbitrary message-header
 and message-body. For example, the "need-response" field of the
 response can also be set to TRUE, which will trigger a response to
 response, and so on. Note that since each endpoint has control over
 the "need-response" field of its own messages, this does not lead to
 a dead loop. A sensible implementation of a DAP sender SHOULD NOT
 blindly set this field to TRUE unless a response is desired. For
 testing, the message-body of a response MAY contain the message-
 header of the original message that triggered the response.

 Message-seq can be used by a DAP sender to track each message it
 sends, e.g., in case of losses. Message loss can happen either on
 the path or at the receiving endpoint (i.e., due to decompression
 failure). The assignment of message-seq is up to the sender. For
 example, it could be either assigned per compartment or per endpoint.
 This has no impact on the receiving side.

Surtees, et al. Standards Track [Page 25]

RFC 4896 SigComp Corrections and Clarifications June 2007

A.3. DAP Message Format in ABNF

 (Note: see (ABNF) [6] for basic rules.)

DAP-message = message-header CRLF [message-body]

message-body = *OCTET

message-header = line-1 line-2 line-3 line-4 line-5 line-6 line-7 line-8

line-1 = "DAP-version" ":" 1*DIGIT CRLF
line-2 = "endpoint-ID" ":" IPv4address CRLF
line-3 = "compartment-ID" ":" 1*DIGIT CRLF
line-4 = "message-seq" ":" 1*DIGIT CRLF
line-5 = "message-auth" ":" ("ACCEPT" / "REJECT") CRLF
line-6 = "compartment-op" ":" ("CREATE" / "CLOSE" / "NONE") CRLF
line-7 = "need-response" ":" ("TRUE" / "FALSE")
line-8 = "body-length" ":" 1*DIGIT CRLF

IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT

A.4. An Example of a DAP Message

 DAP-version: 1
 endpoint-ID: 123.45.67.89
 compartment-ID: 2
 message-seq: 0
 message-auth: ACCEPT
 compartment-op: CREATE
 need-response: TRUE
 body-length: 228

 This is a DAP message sent from SigComp endpoint at IP address
 123.45.67.89. This is the first message sent from compartment 2.
 Please accept the message, create the associated compartment, and
 send back a response message.

Surtees, et al. Standards Track [Page 26]

RFC 4896 SigComp Corrections and Clarifications June 2007

Authors’ Addresses

 Abigail Surtees
 Siemens/Roke Manor Research
 Roke Manor Research Ltd.
 Romsey, Hants SO51 0ZN
 UK

 Phone: +44 (0)1794 833131
 EMail: abigail.surtees@roke.co.uk
 URI: http://www.roke.co.uk

 Mark A. West
 Siemens/Roke Manor Research
 Roke Manor Research Ltd.
 Romsey, Hants SO51 0ZN
 UK

 Phone: +44 (0)1794 833311
 EMail: mark.a.west@roke.co.uk
 URI: http://www.roke.co.uk

 Adam Roach
 Estacado Systems
 17210 Campbell Rd.
 Suite 250
 Dallas, TX 75252
 US

 Phone: sip:adam@estacado.net
 EMail: adam@estacado.net

Surtees, et al. Standards Track [Page 27]

RFC 4896 SigComp Corrections and Clarifications June 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Surtees, et al. Standards Track [Page 28]

