
Network Working Group M. Delany
Request for Comments: 4870 Yahoo! Inc
Obsoleted By: 4871 May 2007
Category: Historic

 Domain-Based Email Authentication Using Public Keys
 Advertised in the DNS (DomainKeys)

Status of This Memo

 This memo defines a Historic Document for the Internet community. It
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 "DomainKeys" creates a domain-level authentication framework for
 email by using public key technology and the DNS to prove the
 provenance and contents of an email.

 This document defines a framework for digitally signing email on a
 per-domain basis. The ultimate goal of this framework is to
 unequivocally prove and protect identity while retaining the
 semantics of Internet email as it is known today.

 Proof and protection of email identity may assist in the global
 control of "spam" and "phishing".

Delany Historic [Page 1]

RFC 4870 DomainKeys May 2007

Table of Contents

 1. Introduction ..3
 1.1. Lack of Authentication Is Damaging Internet Email3
 1.2. Digitally Signing Email Creates Credible Domain
 Authentication ...4
 1.3. Public Keys in the DNS4
 1.4. Initial Deployment Is Likely at the Border MTA5
 1.5. Conveying Verification Results to MUAs5
 1.6. Technical Minutiae Are Not Completely Covered5
 1.7. Motivation ...6
 1.8. Benefits of DomainKeys6
 1.9. Definitions ..7
 1.10. Requirements Notation8
 2. DomainKeys Overview ...8
 3. DomainKeys Detailed View ..8
 3.1. Determining the Sending Address of an Email9
 3.2. Retrieving the Public Key Given the Sending Domain10
 3.2.1. Introducing "selectors"10
 3.2.2. Public Key Signing and Verification Algorithm11
 3.2.3. Public key Representation in the DNS13
 3.2.4. Key Sizes ..14
 3.3. Storing the Signature in the Email Header15
 3.4. Preparation of Email for Transit and Signing17
 3.4.1. Preparation for Transit18
 3.4.2. Canonicalization for Signing18
 3.4.2.1. The "simple" Canonicalization Algorithm ...19
 3.4.2.2. The "nofws" Canonicalization Algorithm19
 3.5. The Signing Process20
 3.5.1. Identifying the Sending Domain20
 3.5.2. Determining Whether an Email Should Be Signed21
 3.5.3. Selecting a Private Key and Corresponding
 Selector Information21
 3.5.4. Calculating the Signature Value21
 3.5.5. Prepending the "DomainKey-Signature:" Header21
 3.6. Policy Statement of Sending Domain22
 3.7. The Verification Process23
 3.7.1. Presumption that Headers Are Not Reordered24
 3.7.2. Verification Should Render a Binary Result24
 3.7.3. Selecting the Most Appropriate
 "DomainKey-Signature:" Header24
 3.7.4. Retrieve the Public Key Based on the
 Signature Information26
 3.7.5. Verify the Signature27
 3.7.6. Retrieving Sending Domain Policy27
 3.7.7. Applying Local Policy27
 3.8. Conveying Verification Results to MUAs27

Delany Historic [Page 2]

RFC 4870 DomainKeys May 2007

 4. Example of Use ...29
 4.1. The User Composes an Email29
 4.2. The Email Is Signed29
 4.3. The Email Signature Is Verified30
 5. Association with a Certificate Authority31
 5.1. The "DomainKey-X509:" Header31
 6. Topics for Discussion ..32
 6.1. The Benefits of Selectors32
 6.2. Canonicalization of Email33
 6.3. Mailing Lists ...33
 6.4. Roving Users ..33
 7. Security Considerations ..34
 7.1. DNS ...34
 7.1.1. The DNS Is Not Currently Secure34
 7.1.2. DomainKeys Creates Additional DNS Load35
 7.2. Key Management ..35
 7.3. Implementation Risks35
 7.4. Privacy Assumptions with Forwarding Addresses35
 7.5. Cryptographic Processing Is Computationally Intensive36
 8. The Trial ..36
 8.1. Goals ...36
 8.2. Results of Trial ..37
 9. Note to Implementors Regarding TXT Records37
 10. References ..37
 10.1. Normative References37
 10.2. Informative References38
 Appendix A - Syntax Rules for the Tag=Value Format39
 Acknowledgments ..40

1. Introduction

 This document proposes an authentication framework for email that
 stores public keys in the DNS and digitally signs email on a domain
 basis. Separate documents discuss how this framework can be extended
 to validate the delivery path of email as well as facilitate per-user
 authentication.

 The DomainKeys specification was a primary source from which the
 DomainKeys Identified Mail [DKIM] specification has been derived.
 The purpose in submitting this document is as an historical reference
 for deployed implementations written prior to the DKIM specification.

1.1. Lack of Authentication Is Damaging Internet Email

 Authentication of email is not currently widespread. Not only is it
 difficult to prove your own identity, it is impossible to prevent
 others from abusing your identity.

Delany Historic [Page 3]

RFC 4870 DomainKeys May 2007

 While most email exchanges do not intrinsically need authentication
 beyond context, it is the rampant abuse of identity by "spammers",
 "phishers", and their criminal ilk that makes proof necessary. In
 other words, authentication is as much about protection as proof.

 Importantly, the inability to authenticate email effectively
 delegates much of the control of the disposition of inbound email to
 the sender, since senders can trivially assume any email address.
 Creating email authentication is the first step to returning
 dispositional control of email to the recipient.

 For the purposes of this document, authentication is seen from a user
 perspective, and is intended to answer the question "who sent this
 email?" where "who" is the email address the recipient sees and "this
 email" is the content that the recipient sees.

1.2. Digitally Signing Email Creates Credible Domain Authentication

 DomainKeys combines public key cryptography and the DNS to provide
 credible domain-level authentication for email.

 When an email claims to originate from a certain domain, DomainKeys
 provides a mechanism by which the recipient system can credibly
 determine that the email did in fact originate from a person or
 system authorized to send email for that domain.

 The authentication provided by DomainKeys works in a number of
 scenarios in which other authentication systems fail or create
 complex operational requirements. These include the following:

 o forwarded email

 o distributed sending systems

 o authorized third-party sending

 This base definition of DomainKeys is intended to primarily enable
 domain-level authenticity. Whether a given message is really sent by
 the purported user within the domain is outside the scope of the base
 definition. Having said that, this specification includes the
 possibility that some domains may wish to delegate fine-grained
 authentication to individual users.

1.3. Public Keys in the DNS

 DomainKeys differs from traditional hierarchical public key systems
 in that it leverages the DNS for public key management, placing
 complete and direct control of key generation and management with the

Delany Historic [Page 4]

RFC 4870 DomainKeys May 2007

 owner of the domain. That is, if you have control over the DNS for a
 given domain, you have control over your DomainKeys for that domain.

 The DNS is proposed as the initial mechanism for publishing public
 keys. DomainKeys is specifically designed to be extensible to other
 key-fetching services as they become available.

1.4. Initial Deployment Is Likely at the Border MTA

 For practical reasons, it is expected that initial implementations of
 DomainKeys will be deployed on Mail Transfer Agents (MTAs) that
 accept or relay email across administrative or organizational
 boundaries. There are numerous advantages to deployment at the
 border MTA, including:

 o a reduction in the number of MTAs that have to be changed to
 support an implementation of DomainKeys

 o a reduction in the number of MTAs involved in transmitting the
 email between a signing system and a verifying system, thus
 reducing the number of places that can make accidental changes
 to the contents

 o removing the need to implement DomainKeys within an internal
 email network.

 However, there is no necessity to deploy DomainKeys at the border as
 signing and verifying can effectively occur anywhere from the border
 MTA right back to the Mail User Agent (MUA). In particular, the best
 place to sign an email for many domains is likely to be at the point
 of SUBMISSION where the sender is often authenticated through SMTP
 AUTH or other identifying mechanisms.

1.5. Conveying Verification Results to MUAs

 It follows that testing the authenticity of an email results in some
 action based on the results of the test. Oftentimes, the action is
 to notify the MUA in some way -- typically via a header line.

 The "Domainkey-Status:" header is defined in this specification for
 recording authentication results in the email.

1.6. Technical Minutiae Are Not Completely Covered

 The intent of this specification is to communicate the fundamental
 characteristics of DomainKeys for an implementor. However, some
 aspects are derived from the functionality of the openssl command
 [OPENSSL] and, rather than duplicate that documentation, implementors

Delany Historic [Page 5]

RFC 4870 DomainKeys May 2007

 are expected to understand the mechanics of the openssl command,
 sufficient to complete the implementation.

1.7. Motivation

 The motivation for DomainKeys is to define a simple, cheap, and
 "sufficiently effective" mechanism by which domain owners can control
 who has authority to send email using their domain. To this end, the
 designers of DomainKeys set out to build a framework that:

 o is transparent and compatible with the existing email
 infrastructure

 o requires no new infrastructure

 o can be implemented independently of clients in order to reduce
 deployment time

 o does not require the use of a central certificate authority
 that might impose fees for certificates or introduce delays to
 deployment

 o can be deployed incrementally

 While we believe that DomainKeys meets these criteria, it is by no
 means a perfect solution. The current Internet imposes considerable
 compromises on any similar scheme, and readers should be careful not
 to misinterpret the information provided in this document to imply
 that DomainKeys makes stronger credibility statements than it is able
 to do.

1.8. Benefits of DomainKeys

 As the reader will discover, DomainKeys is solely an authentication
 system. It is not a magic bullet for spam, nor is it an
 authorization system, a reputation system, a certification system, or
 a trust system.

 However, a strong authentication system such as DomainKeys creates an
 unimpeachable framework within which comprehensive authorization
 systems, reputations systems, and their ilk can be developed.

Delany Historic [Page 6]

RFC 4870 DomainKeys May 2007

1.9. Definitions

 With reference to the following sample email:

 Line Data
 Number Bytes Content
 ---- --- --
 01 46 From: "Joe SixPack" <joe@football.example.com>
 02 40 To: "Suzie Q" <suzie@shopping.example.net>
 03 25 Subject: Is dinner ready?
 04 43 Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)
 05 40 Comment: This comment has a continuation
 06 51 because this line begins with folding white space
 07 60 Message-ID: <20030712040037.46341@football.example.com>
 08 00
 09 03 Hi.
 10 00
 11 37 We lost the game. Are you hungry yet?
 12 00
 13 04 Joe.
 14 00
 15 00

 Line 01 is the first line of the email and the first line of the
 headers.

 Lines 05 and 06 constitute the "Comment:" header.

 Line 06 is a continuation header line.

 Line 07 is the last line of the headers.

 Line 08 is the empty line that separates the header from the body.

 Line 09 is the first line of the body.

 Lines 10, 12, 14, and 15 are empty lines.

 Line 13 is the last non-empty line of the email.

 Line 15 is the last line of the body and the last line of the email.

 Lines 01 to 15 constitute the complete email.

 Line 01 is earlier than line 02, and line 02 is later than line 01.

Delany Historic [Page 7]

RFC 4870 DomainKeys May 2007

1.10. Requirements Notation

 This document occasionally uses terms that appear in capital letters.
 When the terms "MUST", "SHOULD", "RECOMMENDED", "MUST NOT", "SHOULD
 NOT", and "MAY" appear capitalized, they are being used to indicate
 particular requirements of this specification. A discussion of the
 meanings of these terms appears in [RFC2119].

2. DomainKeys Overview

 Under DomainKeys, a domain owner generates one or more private/public
 key pairs that will be used to sign messages originating from that
 domain. The domain owner places the public key in his domain
 namespace (i.e., in a DNS record associated with that domain), and
 makes the private key available to the outbound email system. When
 an email is submitted by an authorized user of that domain, the email
 system uses the private key to digitally sign the email associated
 with the sending domain. The signature is added as a header to the
 email, and the message is transferred to its recipients in the usual
 way.

 When a message is received with a DomainKey signature header, the
 receiving system can verify the signature as follows:

 1. Extract the signature and claimed sending domain from the
 email.

 2. Fetch the public key from the claimed sending domain namespace.

 3. Use public key to determine whether the signature of the email
 has been generated with the corresponding private key, and thus
 whether the email was sent with the authority of the claimed
 sending domain.

 In the event that an email arrives without a signature or when the
 signature verification fails, the receiving system retrieves the
 policy of the claimed sending domain to ascertain the preferred
 disposition of such email.

 Armed with this information, the recipient system can apply local
 policy based on the results of the signature test.

3. DomainKeys Detailed View

 This section discusses the specifics of DomainKeys that are needed to
 create interoperable implementations. This section answers the
 following questions:

Delany Historic [Page 8]

RFC 4870 DomainKeys May 2007

 Given an email, how is the sending domain determined?

 How is the public key retrieved for a sending domain?

 As email transits the email system, it can potentially go through
 a number of changes. Which parts of the email are included in the
 signature and how are they protected from such transformations?

 How is the signature represented in the email?

 If a signature is not present, or a verification fails, how does
 the recipient determine the policy intent of the sending domain?

 Finally, on verifying the authenticity of an email, how is that
 result conveyed to participating MUAs?

 While there are many alternative design choices, most lead to
 comparable functionality. The overriding selection criteria used to
 choose among the alternatives are as follows:

 o use deployed technology whenever possible

 o prefer ease of implementation

 o avoid trading risk for excessive flexibility or
 interoperability

 o include basic flexibility

 Adherence to these criteria implies that some existing email
 implementations will require changes to participate in DomainKeys.
 Ultimately, some hard choices need to be made regarding which
 requirements are more important.

3.1. Determining the Sending Address of an Email

 The goal of DomainKeys is to give the recipient confidence that the
 email originated from the claimed sender. As with much of Internet
 email, agreement over what constitutes the "sender" is no easy
 matter. Forwarding systems and mailing lists add serious
 complications to an overtly simple question. From the point of view
 of the recipient, the authenticity claim should be directed at the
 domain most visible to the recipient.

 In the first instance, the most visible address is clearly the RFC
 2822 "From:" address [RFC2822]. Therefore, a conforming email MUST
 contain a single "From:" header from which an email address with a
 domain name can be extracted.

Delany Historic [Page 9]

RFC 4870 DomainKeys May 2007

 A conforming email MAY contain a single RFC 2822 "Sender:" header
 from which an email address with a domain name can be extracted.

 If the email has a valid "From:" and a valid "Sender:" header, then
 the signer MUST use the sending address in the "Sender:" header.

 If the email has a valid "From:" and no "Sender:" header, then the
 signer MUST use the first sending address in the "From:" header.

 In all other cases, a signer MUST NOT sign the email. Implementors
 should note that an email with a "Sender:" header and no "From:"
 header MUST NOT be signed.

 The domain name in the sending address constitutes the "sending
 domain".

3.2. Retrieving the Public Key Given the Sending Domain

 To avoid namespace conflicts, it is proposed that the DNS namespace
 "_domainkey." be reserved within the sending domain for storing
 public keys, e.g., if the sending domain is example.net, then the
 public keys for that domain are stored in the _domainkey.example.net
 namespace.

3.2.1. Introducing "selectors"

 To support multiple concurrent public keys per sending domain, the
 DNS namespace is further subdivided with "selectors". Selectors are
 arbitrary names below the "_domainkey." namespace. A selector value
 and length MUST be legal in the DNS namespace and in email headers
 with the additional provision that they cannot contain a semicolon.

 Examples of namespaces using selectors are as follows:

 "coolumbeach._domainkey.example.net"
 "sebastopol._domainkey.example.net"
 "reykjavik._domainkey.example.net"
 "default._domainkey.example.net"

 and

 "2005.pao._domainkey.example.net"
 "2005.sql._domainkey.example.net"
 "2005.rhv._domainkey.example.net"

 Periods are allowed in selectors and are to be treated as component
 separators. In the case of DNS queries, that means the period
 defines subdomain boundaries.

Delany Historic [Page 10]

RFC 4870 DomainKeys May 2007

 The number of public keys and corresponding selectors for each domain
 is determined by the domain owner. Many domain owners will be
 satisfied with just one selector, whereas administratively
 distributed organizations may choose to manage disparate selectors
 and key pairs in different regions, or on different email servers.

 Beyond administrative convenience, selectors make it possible to
 seamlessly replace public keys on a routine basis. If a domain
 wishes to change from using a public key associated with selector
 "2005" to a public key associated with selector "2006", it merely
 makes sure that both public keys are advertised in the DNS
 concurrently for the transition period during which email may be in
 transit prior to verification. At the start of the transition
 period, the outbound email servers are configured to sign with the
 "2006" private key. At the end of the transition period, the "2005"
 public key is removed from the DNS.

 While some domains may wish to make selector values well known,
 others will want to take care not to allocate selector names in a way
 that allows harvesting of data by outside parties. For example, if
 per-user keys are issued, the domain owner will need to make the
 decision as to whether to make this selector associated directly with
 the user name or make it some unassociated random value, such as the
 fingerprint of the public key.

3.2.2. Public Key Signing and Verification Algorithm

 The default signature is an RSA signed SHA1 digest of the complete
 email.

 For ease of explanation, the openssl command is used throughout this
 document to describe the mechanism by which keys and signatures are
 managed.

 One way to generate a 768-bit private key suitable for DomainKeys is
 to use openssl like this:

 $ openssl genrsa -out rsa.private 768

Delany Historic [Page 11]

RFC 4870 DomainKeys May 2007

 which results in the file rsa.private containing the key information
 similar to this:

 -----BEGIN RSA PRIVATE KEY-----
 MIIByQIBAAJhAKJ2lzDLZ8XlVambQfMXn3LRGKOD5o6lMIgulclWjZwP56LRqdg5
 ZX15bhc/GsvW8xW/R5Sh1NnkJNyL/cqY1a+GzzL47t7EXzVc+nRLWT1kwTvFNGIo
 AUsFUq+J6+OprwIDAQABAmBOX0UaLdWWusYzNol++nNZ0RLAtr1/LKMX3tk1MkLH
 +Ug13EzB2RZjjDOWlUOY98yxW9/hX05Uc9V5MPo+q2Lzg8wBtyRLqlORd7pfxYCn
 Kapi2RPMcR1CxEJdXOkLCFECMQDTO0fzuShRvL8q0m5sitIHlLA/L+0+r9KaSRM/
 3WQrmUpV+fAC3C31XGjhHv2EuAkCMQDE5U2nP2ZWVlSbxOKBqX724amoL7rrkUew
 ti9TEjfaBndGKF2yYF7/+g53ZowRkfcCME/xOJr58VN17pejSl1T8Icj88wGNHCs
 FDWGAH4EKNwDSMnfLMG4WMBqd9rzYpkvGQIwLhAHDq2CX4hq2tZAt1zT2yYH7tTb
 weiHAQxeHe0RK+x/UuZ2pRhuoSv63mwbMLEZAjAP2vy6Yn+f9SKw2mKuj1zLjEhG
 6ppw+nKD50ncnPoP322UMxVNG4Eah0GYJ4DLP0U=
 -----END RSA PRIVATE KEY-----

 Once a private key has been generated, the openssl command can be
 used to sign an appropriately prepared email, like this:

 $ openssl dgst -sign rsa.private -sha1 <input.file

 which results in signature data similar to this when represented in
 Base64 [BASE64] format:

 aoiDeX42BB/gP4ScqTdIQJcpAObYr+54yvctqc4rSEFYby9+omKD3pJ/TVxATeTz
 msybuW3WZiamb+mvn7f3rhmnozHJ0yORQbnn4qJQhPbbPbWEQKW09AMJbyz/0lsl

 How this signature is added to the email is discussed later in this
 document.

 To extract the public key component from the private key, use openssl
 like this:

 $ openssl rsa -in rsa.private -out rsa.public -pubout -outform PEM

 which results in the file rsa.public containing the key information
 similar to this:

 -----BEGIN PUBLIC KEY-----
 MHwwDQYJKoZIhvcNAQEBBQADawAwaAJhAKJ2lzDLZ8XlVambQfMXn3LRGKOD5o6l
 MIgulclWjZwP56LRqdg5ZX15bhc/GsvW8xW/R5Sh1NnkJNyL/cqY1a+GzzL47t7E
 XzVc+nRLWT1kwTvFNGIoAUsFUq+J6+OprwIDAQAB
 -----END PUBLIC KEY-----

 This public key data is placed in the DNS.

Delany Historic [Page 12]

RFC 4870 DomainKeys May 2007

 With the signature, canonical email contents and public key, a
 verifying system can test the validity of the signature. The openssl
 invocation to verify a signature looks like this:

 $ openssl dgst -verify rsa.public -sha1 -signature sig.file <input.file

3.2.3. Public key Representation in the DNS

 There is currently no standard method defined for storing public keys
 in the DNS. As an interim measure, the public key is stored as a TXT
 record derived from a Privacy-Enhanced Mail (PEM) format [PEM], that
 is, as a Base64 representation of a DER encoded key. Here is an
 example of a 768-bit RSA key in PEM form:

 -----BEGIN PUBLIC KEY-----
 MHwwDQYJKoZIhvcNAQEBBQADawAwaAJhAKJ2lzDLZ8XlVambQfMXn3LRGKOD5o6l
 MIgulclWjZwP56LRqdg5ZX15bhc/GsvW8xW/R5Sh1NnkJNyL/cqY1a+GzzL47t7E
 XzVc+nRLWT1kwTvFNGIoAUsFUq+J6+OprwIDAQAB
 -----END PUBLIC KEY-----

 To save scarce DNS packet space and aid extensibility, the PEM
 wrapping MUST be removed and the remaining public key data along with
 other attributes relevant to DomainKeys functionality are stored as
 tag=value pairs separated by semicolons, for example, as in the
 following:

 brisbane._domainkey IN TXT "g=; k=rsa; p=MHww ... IDAQAB"

 Verifiers MUST support key sizes of 512, 768, 1024, 1536 and 2048
 bits. Signers MUST support at least one of the verifier supported
 key sizes.

 The current valid tags are as follows:

 g = granularity of the key. If present with a non-zero length
 value, this value MUST exactly match the local part of the
 sending address. This tag is optional.

 The intent of this tag is to constrain which sending address
 can legitimately use this selector. An email with a sending
 address that does not match the value of this tag constitutes
 a failed verification.

 k = key type (rsa is the default). Signers and verifiers MUST
 support the ’rsa’ key type. This tag is optional.

Delany Historic [Page 13]

RFC 4870 DomainKeys May 2007

 n = Notes that may be of interest to a human. No interpretation
 is made by any program. This tag is optional.

 p = public key data, encoded as a Base64 string. An empty value
 means that this public key has been revoked. This tag MUST be
 present.

 t = a set of flags that define boolean attributes. Valid
 attributes are as follows:

 y = testing mode. This domain is testing DomainKeys and
 unverified email MUST NOT be treated differently from
 verified email. Recipient systems MAY wish to track
 testing mode results to assist the sender.

 This tag is optional.

 (Syntax rules for the tag=value format are discussed in Appendix A.)

 Keeping the size of the TXT record to a minimum is important as some
 implementations of content and caching DNS servers are reported to
 have problems supporting large TXT records. In the example above,
 the encoding generates a 182-byte TXT record. That this encoding is
 less than 512 bytes is of particular significance as it fits within a
 single UDP response packet. With careful selection of query values,
 a TXT record can accommodate a 2048 bit key.

 For the same size restriction reason, the "n" tag SHOULD be used
 sparingly. The most likely use of this tag is to convey a reason why
 a public key might have been revoked. In this case, set the "n" tag
 to the explanation and remove the public key value from the "p" tag.

3.2.4. Key Sizes

 Selecting appropriate key sizes is a trade-off between cost,
 performance, and risk. This specification does not define either
 minimum or maximum key sizes -- that decision is a matter for each
 domain owner.

 Factors that should influence this decision include the following:

 o the practical constraint that a 2048-bit key is the largest key
 that fits within a 512-byte DNS UDP response packet

 o larger keys impose higher CPU costs to verify and sign email

 o keys can be replaced on a regular basis; thus, their lifetime
 can be relatively short

Delany Historic [Page 14]

RFC 4870 DomainKeys May 2007

 o the security goals of this specification are modest compared to
 typical goals of public key systems

 In general, it is expected that most domain owners will use keys that
 are no larger than 1024 bits.

3.3. Storing the Signature in the Email Header

 The signature of the email is stored in the "DomainKey-Signature:"
 header. This header contains all of the signature and key-fetching
 data.

 When generating the signed email, the "DomainKey-Signature:" header
 MUST precede the original email headers presented to the signature
 algorithm.

 The "DomainKey-Signature:" header is not included in the signature
 calculation.

 For extensibility, the "DomainKey-Signature:" header contains
 tag=value pairs separated by semicolons, for example, as in the
 following:

 DomainKey-Signature: a=rsa-sha1; s=brisbane; d=example.net;
 q=dns; c=simple

 The current valid tags are as follows:

 a = The algorithm used to generate the signature. The default is
 "rsa-sha1", an RSA signed SHA1 digest. Signers and verifiers
 MUST support "rsa-sha1".

 b = The signature data, encoded as a Base64 string. This tag MUST
 be present.

 Whitespace is ignored in this value and MUST be removed when
 reassembling the original signature. This is another way of
 saying that the signing process can safely insert folding
 whitespace in this value to conform to line-length limits.

 c = Canonicalization algorithm. The method by which the headers
 and content are prepared for presentation to the signing
 algorithm. This tag MUST be present. Verifiers MUST support
 "simple" and "nofws". Signers MUST support at least one of
 the verifier-supported algorithms.

Delany Historic [Page 15]

RFC 4870 DomainKeys May 2007

 d = The domain name of the signing domain. This tag MUST be
 present. In conjunction with the selector tag, this domain
 forms the basis of the public key query. The value in this
 tag MUST match the domain of the sending email address or MUST
 be one of the parent domains of the sending email address.
 Domain name comparison is case insensitive.

 The matching process for this tag is called subdomain
 matching, as the sending email address must be the domain
 or subdomain of the value.

 h = A colon-separated list of header field names that identify the
 headers presented to the signing algorithm. If present, the
 value MUST contain the complete list of headers in the order
 presented to the signing algorithm.

 If present, this tag MUST include the header that was used to
 identify the sending domain, i.e., the "From:" or "Sender:"
 header; thus, this tag can never contain an empty value.

 If this tag is not present, all headers subsequent to the
 signature header are included in the order found in the email.

 A verifier MUST support this tag. A signer MAY support this
 tag. If a signer generates this tag, it MUST include all
 email headers in the original email, as a verifier MAY remove
 or render suspicious, lines that are not included in the
 signature.

 In the presence of duplicate headers, a signer may include
 duplicate entries in the list of headers in this tag. If a
 header is included in this list, a verifier must include all
 occurrences of that header, subsequent to the "DomainKey-
 Signature:" header in the verification.

 If a header identified in this list is not found after the
 "DomainKey-Signature:" header in the verification process, a
 verifier may "look" for a matching header prior to the
 "DomainKey-Signature:" header; however, signers should not
 rely on this as early experience suggests that most verifiers
 do not try to "look" back before the "DomainKey-Signature:"
 header.

 Whitespace is ignored in this value and header comparisons are
 case insensitive.

Delany Historic [Page 16]

RFC 4870 DomainKeys May 2007

 q = The query method used to retrieve the public key. This tag
 MUST be present. Currently, the only valid value is "dns",
 which defines the DNS lookup algorithm described in this
 document. Verifiers and signers MUST support "dns".

 s = The selector used to form the query for the public key. This
 tag MUST be present. In the DNS query type, this value is
 prepended to the "_domainkey." namespace of the sending
 domain.

 (Syntax rules for the tag=value format are discussed in Appendix A.)

 Here is an example of a signature header spread across multiple
 continuation lines:

 DomainKey-Signature: a=rsa-sha1; s=brisbane; d=example.net;
 c=simple; q=dns;
 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZ
 VoG4ZHRNiYzR;

 Extreme care must be taken to ensure that any new tags added to this
 header are defined and used solely for the purpose of fetching and
 verifying the signature. Any semantics beyond verification cannot be
 trusted, as this header is not protected by the signature.

 If additional semantics not pertaining directly to signature
 verification are required, they must only be added as subsequent
 headers protected by the signature. Semantic additions might include
 audit information describing the initial submission.

3.4. Preparation of Email for Transit and Signing

 The fundamental purpose of a cryptographic signature is to ensure
 that the signed content matches the contents presented for
 verification. However, unlike just about every other Internet
 protocol, the email content is routinely modified as it enters and
 transits the email system.

 Fortunately most of the modifications typically made to email can be
 predicted and consequently accounted for when signing and verifying.

 To maximize the chance of a successful verification, submitted email
 should be prepared for transport prior to signing, and the data
 presented to the signing algorithm is canonicalized to exclude the
 most common and minor changes made to email.

Delany Historic [Page 17]

RFC 4870 DomainKeys May 2007

3.4.1. Preparation for Transit

 The SMTP protocol defines a number of potential limitations to email
 transport, particularly pertaining to line lengths and 8-bit content.

 While the editor has observed that most modern SMTP implementations
 accept 8-bit email and long lines, some implementations still do not.
 Consequently, a DomainKeys implementation SHOULD prepare an email to
 be suitable for the lowest common denominator of SMTP prior to
 presenting the email for signing.

3.4.2. Canonicalization for Signing

 DomainKeys is initially expected to be deployed at, or close to, the
 email borders of an organization rather than in MUAs or SUBMISSION
 servers. In other words, the signing and verifying algorithms
 normally apply after an email has been packaged, transmogrified, and
 generally prepared for transmission across the Internet via SMTP and,
 thus the likelihood of the email being subsequently modified is
 reduced.

 Nonetheless, empirical evidence suggests that some mail servers and
 relay systems modify email in transit, potentially invalidating a
 signature.

 There are two competing perspectives on such modifications. For most
 senders, mild modification of email is immaterial to the
 authentication status of the email. For such senders, a
 canonicalization algorithm that survives modest in-transit
 modification is preferred.

 For other senders however, any modification of the email - however
 minor -- results in a desire for the authentication to fail. In
 other words, such senders do not want a modified email to be seen as
 being authorized by them. These senders prefer a canonicalization
 algorithm that does not tolerate in-transit modification of the
 signed email.

 To satisfy both requirements, two canonicalization algorithms are
 defined. A "simple" algorithm that tolerates almost no modification
 and a "nofws" algorithm that tolerates common modifications as
 whitespace replacement and header line rewrapping.

 A sender may choose either algorithm when signing an email. A
 verifier MUST be able to process email using either algorithm.

 Either algorithm can be used in conjunction with the "h" tag in the
 "DomainKey-Signature:" header.

Delany Historic [Page 18]

RFC 4870 DomainKeys May 2007

 Canonicalization simply prepares the email for the signing or
 verification algorithm. It does not change the transmitted data in
 any way.

3.4.2.1. The "simple" Canonicalization Algorithm

 o Each line of the email is presented to the signing algorithm in
 the order it occurs in the complete email, from the first line of
 the headers to the last line of the body.

 o If the "h" tag is used, only those header lines (and their
 continuation lines if any) added to the "h" tag list are included.

 o The "h" tag only constrains header lines. It has no bearing on
 body lines, which are always included.

 o Remove any local line terminator.

 o Append CRLF to the resulting line.

 o All trailing empty lines are ignored. An empty line is a line of
 zero length after removal of the local line terminator.

 If the body consists entirely of empty lines, then the header/body
 line is similarly ignored.

3.4.2.2. The "nofws" Canonicalization Algorithm

 The "No Folding Whitespace" algorithm (nofws) is more complicated
 than the "simple" algorithm for two reasons; folding whitespace is
 removed from all lines and header continuation lines are unwrapped.

 o Each line of the email is presented to the signing algorithm in
 the order it occurs in the complete email, from the first line
 of the headers to the last line of the body.

 o Header continuation lines are unwrapped so that header lines
 are processed as a single line.

 o If the "h" tag is used, only those header lines (and their
 continuation lines if any) added to the "h" tag list are
 included.

 o The "h" tag only constrains header lines. It has no bearing on
 body lines, which are always included.

Delany Historic [Page 19]

RFC 4870 DomainKeys May 2007

 o For each line in the email, remove all folding whitespace
 characters. Folding whitespace is defined in RFC 2822 as being
 the decimal ASCII values 9 (HTAB), 10 (NL), 13 (CR), and 32
 (SP).

 o Append CRLF to the resulting line.

 o Trailing empty lines are ignored. An empty line is a line of
 zero length after removal of the local line terminator. Note
 that the test for an empty line occurs after removing all
 folding whitespace characters.

 If the body consists entirely of empty lines, then the
 header/body line is similarly ignored.

3.5. The Signing Process

 The previous sections defined the various components and mechanisms
 needed to sign an email. This section brings those together to
 define the complete process of signing an email.

 A signer MUST only sign email from submissions that are authorized to
 use the sending address.

 Once authorization of the submission has been determined, the signing
 process consists of the following steps:

 o identifying the sending domain

 o determining if an email should be signed

 o selecting a private key and corresponding selector information

 o calculating the signature value

 o prepending the "DomainKey-Signature:" header

 If an email cannot be signed for some reason, it is a local policy
 decision as to what to do with that email.

3.5.1. Identifying the Sending Domain

 The sending domain is determined by finding the email address in the
 "Sender:" header, or, if the "Sender:" header is not present, the
 first email address of the "From:" header is used to determine the
 sending domain.

Delany Historic [Page 20]

RFC 4870 DomainKeys May 2007

 If the email has an invalid "From:" or an invalid "Sender:" header,
 it MUST NOT be signed.

 If the signer adds the "h" tag to the "DomainKey-Signature:" header,
 that tag MUST include the header that was used to determine the
 sending domain.

3.5.2. Determining Whether an Email Should Be Signed

 A signer can obviously only sign email for domains for which it has a
 private key and the necessary knowledge of the corresponding public
 key and selector information, however there are a number of other
 reasons why a signer may choose not to sign an email.

 A signer MUST NOT sign an email if the email submission is not
 authorized to use the sending domain.

 A signer MUST NOT sign an email that already contains a "DomainKey-
 Signature:" header unless a "Sender:" header has been added that was
 not included in the original signature. The most obvious case where
 this occurs is with mailing lists.

 A signer SHOULD NOT remove an existing "DomainKey-Signature:" header.

3.5.3. Selecting a Private Key and Corresponding Selector Information

 This specification does not define the basis by which a signer should
 choose which private key and selector information to use. Currently,
 all selectors are equal as far as this specification is concerned, so
 the decision should largely be a matter of administrative
 convenience.

3.5.4. Calculating the Signature Value

 The signer MUST use one of the defined canonicalization algorithms to
 present the email to the signing algorithm. Canonicalization is only
 used to prepare the email for signing. It does not affect the
 transmitted email in any way.

 To avoid possible ambiguity, a signing server may choose to remove
 any pre-existing "DomainKey-Status:" headers from the email prior to
 preparation for signing and transmission.

3.5.5. Prepending the "DomainKey-Signature:" Header

 The final step in the signing process is that the signer MUST prepend
 the "DomainKey-Signature:" header prior to continuing with the
 process of transmitting the email.

Delany Historic [Page 21]

RFC 4870 DomainKeys May 2007

3.6. Policy Statement of Sending Domain

 While the disposition of inbound email is ultimately a matter for the
 receiving system, the introduction of authentication in email creates
 a need for the sender domain to indicate their signing policy and
 preferred disposition of unsigned email, in particular, whether a
 domain is participating in DomainKeys, whether it is testing, and
 whether it signs all outbound email.

 The sending domain policy is very simple and is expressed in the
 _domainkey TXT record in the DNS of the sending domain. For example,
 in the example.com domain, the record is called
 _domainkey.example.com.

 The contents of this TXT record are stored as tag=value pairs
 separated by semicolons, for example, as in the following:

 _domainkey IN TXT "t=y; o=-; n=notes; r=emailAddress"

 All tags are optional. The current valid tags are as follows:

 n = Notes that may be of interest to a human. No interpretation
 is made by any program.

 o = Outbound Signing policy ("-" means that this domain signs all
 email; "˜" is the default and means that this domain may sign
 some email with DomainKeys).

 r = A reporting email address. If present, this defines the email
 address where invalid verification results are reported. This
 tag is primarily intended for early implementers -- the
 content and frequency of the reports will be defined in a
 separate document.

 t = a set of flags that define boolean attributes. Valid
 attributes are as follows:

 y = testing mode. This domain is testing DomainKeys, and
 unverified email MUST NOT be treated differently from
 verified email. Recipient systems MAY wish to track
 testing mode results to assist the sender).

 Note that testing mode cannot be turned off by this tag;
 thus, policy cannot revert the testing mode setting of a
 Selector.

 This tag is optional.

Delany Historic [Page 22]

RFC 4870 DomainKeys May 2007

 (Syntax rules for the tag=value format are discussed in Appendix A.)

 Recipient systems SHOULD only retrieve this policy TXT record to
 determine policy when an email fails to verify or does not include a
 signature. Recipient systems SHOULD not retrieve this policy TXT
 record for email that successfully verifies. Note that "testing
 mode" SHOULD also be in the Selector TXT record if the domain owner
 is running a DomainKeys test.

 If the policy TXT record does not exist, recipient systems MUST
 assume the default values.

 There is an important implication when a domain states that it signs
 all email with the "o=-" setting, namely that the sending domain
 prefers that the recipient system treat unsigned mail with a great
 deal of suspicion. Such suspicion could reasonably extend to
 rejecting such email. A verifying system MAY reject unverified email
 if a domain policy indicates that it signs all email.

 Of course, nothing compels a recipient MTA to abide by the policy of
 the sender. In fact, during the trial, a sending domain would want
 to be very certain about setting this policy, as processing by
 recipient MTAs may be unpredictable. Nonetheless, a domain that
 states that it signs all email MUST expect that unverified email may
 be rejected by some receiving MTAs.

3.7. The Verification Process

 There is no defined or recommended limit on the lifetime of a
 selector and corresponding public key; however, it is recommended
 that verification occur in a timely manner with the most timely place
 being during acceptance or local delivery by the MTA.

 Verifying a signature consists of the following three steps:

 o extract signature information from the headers

 o retrieve the public key based on the signature information

 o check that the signature verifies against the contents

 In the event that any of these steps fails, the sending domain policy
 is ascertained to assist in applying local policy.

Delany Historic [Page 23]

RFC 4870 DomainKeys May 2007

3.7.1. Presumption that Headers Are Not Reordered

 Indications from deployment of previous versions of this
 specification suggest that the canonicalization algorithms in
 conjunction with the "h" tag in the "DomainKey-Signature:" header
 allows most email to cryptographically survive intact between signing
 and verifying.

 The one assumption that most of the early deployments make is that
 the headers included in the signature are not reordered prior to
 verification.

 While nothing in this specification precludes a verifier from
 "looking" for a header that may have been reordered, including being
 moved to a position prior to the "DomainKey-Signature:" header, such
 reordered email is unlikely to be successfully verified by most
 implementations.

 A second consequence of this assumption -- particularly in the
 presence of multiple "DomainKey-Signature:" headers -- is that the
 first "DomainKey-Signature:" header in the email was the last
 signature added to the email and thus is the one to be verified.

3.7.2. Verification Should Render a Binary Result

 While the symptoms of a failed verification are obvious -- the
 signature doesn’t verify -- establishing the exact cause can be more
 difficult. If a selector cannot be found, is that because the
 selector has been removed, or was the value changed somehow in
 transit? If the signature line is missing, is that because it was
 never there, or was it removed by an overzealous filter?

 For diagnostic purposes, the exact reason why the verification fails
 SHOULD be recorded; however, in terms of presentation to the end
 user, the result SHOULD be presented as a simple binary result:
 either the email is verified or it is not. If the email cannot be
 verified, then it SHOULD be rendered the same as all unverified email
 regardless of whether or not it looks like it was signed.

3.7.3. Selecting the Most Appropriate "DomainKey-Signature:" Header

 In most cases, a signed email is expected to have just one signature
 -- that is, one "DomainKey-Signature:" header. However, it is
 entirely possible that an email can contain multiple signatures. In
 such cases, a verifier MUST find the most appropriate signature to
 use and SHOULD ignore all other signatures.

Delany Historic [Page 24]

RFC 4870 DomainKeys May 2007

 The process of finding the most appropriate signature consists of the
 following "best match" rules. The rules are to be evaluated in
 order.

 1. Selecting the sending domain

 If the email contains a "Sender:" header, the sending domain is
 extracted from the "Sender:" address. If this extraction
 fails, the email SHALL fail verification.

 If no "Sender:" header is present, the sending domain is
 extracted from the first address of the "From:" header. If
 this extraction fails, the email SHALL fail verification.

 2. Domain matching

 A signature can only match if the sending domain matches the
 "d" tag domain -- according to the "d" tag subdomain matching
 rules.

 3. "h" tag matching

 If the signature contains the "h" tag list of headers, that
 list must include the header used to extract the sending domain
 in rule 1, above.

 4. Most secure signing algorithm

 While it is not yet the case, in the event that additional
 algorithms are added to this specification, a verifier MUST use
 the signature that contains the most secure algorithm as
 defined by the future specification. For current
 implementations, that means verifiers MUST ignore signatures
 that are coded with an unrecognized signing algorithm.

 5. Earlier signatures are preferred

 If multiple signatures are equal as far as these rules apply,
 the signature from the earlier header MUST be used in
 preference to later signature headers.

 Implementors MUST meticulously validate the format and values in the
 "DomainKey-Signature:" header; any inconsistency or unexpected values
 MUST result in ignoring that header. Being "liberal in what you
 accept" is definitely a bad strategy in this security context.

Delany Historic [Page 25]

RFC 4870 DomainKeys May 2007

 In all cases, if a verification fails, the "DomainKey-Status:" header
 SHOULD be generated and include a message to help explain the reason
 for failure.

3.7.4. Retrieve the Public Key Based on the Signature Information

 The public key is needed to complete the verification process. The
 process of retrieving the public key depends on the query type as
 defined by the "q" tag in the "DomainKey-Signature:" header line.
 Obviously, a public key should only be retrieved if the process of
 extracting the signature information is completely successful.

 Currently, the only valid query type is "dns". The public key
 retrieval process for this type is as follows:

 1. Using the selector name defined by the "s" tag, the
 "_domainkey" namespace and the domain name defined by the "d"
 tag, construct and issue the DNS TXT record query string.

 For example, if s=brisbane and d=example.net, the query string
 is "brisbane._domainkey.example.net".

 2. If the query for the public key fails to respond, the verifier
 SHOULD defer acceptance of this email (normally this will be
 achieved with a 4XX SMTP response code).

 3. If the query for the public key fails because the corresponding
 data does not exist, the verifier MUST treat the email as
 unverified.

 4. If the result returned from the query does not adhere to the
 format defined in this specification, the verifier MUST treat
 the email as unverified.

 5. If the public key data is not suitable for use with the
 algorithm type defined by the "a" tag in the "DomainKey-
 Signature:" header, the verifier MUST treat the email as
 unverified.

 Implementors MUST meticulously validate the format and values
 returned by the public key query. Any inconsistency or unexpected
 values MUST result in an unverified email. Being "liberal in what
 you accept" is definitely a bad strategy in this security context.

 Latency critical implementations may wish to initiate the public key
 query in parallel with calculating the SHA-1 hash, as the public key
 is not needed until the final RSA is calculated.

Delany Historic [Page 26]

RFC 4870 DomainKeys May 2007

3.7.5. Verify the Signature

 Armed with the signature information from the "DomainKey-Signature:"
 header and the public key information returned by the query, the
 signature of the email can now be verified.

 The canonicalization algorithm defined by the "c" tag in the
 "DomainKey-Signature:" header defines how the data is prepared for
 the verification algorithm, and the "a" tag in the same header
 defines which verification algorithm to use.

3.7.6. Retrieving Sending Domain Policy

 In the event that an email fails to verify, the policy of the sending
 domain MUST be consulted. For now, that means consulting the
 _domainkey TXT record in the DNS of the domain in the sending domain
 as defined in Section 3.5.1. For example, if example.net is the
 sending domain the TXT query is:

 _domainkey.example.net

 A verifier SHOULD consider the sending domain policy statement and
 act accordingly. The range of possibilities is up to the receiver,
 but it MAY include rejecting the email.

3.7.7. Applying Local Policy

 After all verification processes are complete, the recipient system
 has authentication information that can help it decide what to do
 with the email.

 It is beyond the scope of this specification to describe what actions
 a recipient system should take, but an authenticated email presents
 an opportunity to a receiving system that unauthenticated email
 cannot. Specifically, an authenticated email creates a predictable
 identifier by which other decisions can reliably be managed, such as
 trust and reputation.

 Conversely, unauthenticated email lacks a reliable identifier that
 can be used to assign trust and reputation. It is not unreasonable
 to treat unauthenticated email as lacking any trust and having no
 positive reputation.

3.8. Conveying Verification Results to MUAs

 Apart from the application of automated policy, the result of a
 signature verification should be conveyed to the user reading the
 email.

Delany Historic [Page 27]

RFC 4870 DomainKeys May 2007

 Most email clients can be configured to recognize specific headers
 and apply simple rules, e.g., filing into a particular folder. Since
 DomainKey signatures are expected to be initially verified at the
 border MTA, the results of the verification need to be conveyed to
 the email client. This is done with the "DomainKey-Status:" header
 line prepended to the email.

 The "DomainKey-Status:" header starts with a string that indicate the
 result of the verification. Valid values are as follows:

 "good" - the signature was verified at the time of testing
 "bad" - the signature failed the verification
 "no key" - the public key query failed as the key does not
 exist
 "revoked" - the public key query failed as the key has been
 revoked
 "no signature" - this email has no "DomainKey-Signature:" header
 "bad format" - the signature or the public key contains unexpected
 data
 "non-participant" - this sending domain has indicated that it does
 not participate in DomainKeys

 Verifiers may append additional data that expands on the reason for
 the particular status value.

 A client SHOULD just look for "good" and assume that all other values
 imply that the verification could not be performed for some reason.
 Policy action as a consequence of this header is entirely a local
 matter.

 Here are some examples:

 DomainKey-Status: good
 DomainKey-Status: bad format

 Although it is expected that MTAs will be DomainKey aware before
 MUAs, it is nonetheless possible that a DomainKey-aware MUA can be
 fooled by a spoofed "DomainKey-Status:" header that passes through a
 non-DomainKey-aware MTA.

 If this is perceived to be a serious problem, then it may make sense
 to preclude the "good" value and only have values that effectively
 demote the email as far as the UA is concerned. That way successful
 spoofing attempts can only serve to demote themselves.

Delany Historic [Page 28]

RFC 4870 DomainKeys May 2007

4. Example of Use

 This section shows the complete flow of an email from submission to
 final delivery, demonstrating how the various components fit
 together.

4.1. The User Composes an Email

 From: "Joe SixPack" <joe@football.example.com>
 To: "Suzie Q" <suzie@shopping.example.net>
 Subject: Is dinner ready?
 Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)
 Message-ID: <20030712040037.46341.5F8J@football.example.com>

 Hi.

 We lost the game. Are you hungry yet?

 Joe.

4.2. The Email Is Signed

 This email is signed by the football.example.com outbound email
 server and now looks like this:

 DomainKey-Signature: a=rsa-sha1; s=brisbane; d=football.example.com;
 c=simple; q=dns;
 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZ
 VoG4ZHRNiYzR;
 Received: from dsl-10.2.3.4.football.example.com [10.2.3.4]
 by submitserver.football.example.com with SUBMISSION;
 Fri, 11 Jul 2003 21:01:54 -0700 (PDT)
 From: "Joe SixPack" <joe@football.example.com>
 To: "Suzie Q" <suzie@shopping.example.net>
 Subject: Is dinner ready?
 Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)
 Message-ID: <20030712040037.46341.5F8J@football.example.com>

 Hi.

 We lost the game. Are you hungry yet?

 Joe.

 The signing email server requires access to the private key
 associated with the "brisbane" selector to generate this signature.
 Distribution and management of private keys are outside the scope of
 this document.

Delany Historic [Page 29]

RFC 4870 DomainKeys May 2007

4.3. The Email Signature Is Verified

 The signature is normally verified by an inbound SMTP server or
 possibly the final delivery agent. However, intervening MTAs can
 also perform this verification if they choose to do so.

 The verification process uses the domain "football.example.com"
 extracted from the "From:" header and the selector "brisbane" from
 the "DomainKey-Signature:" header to form the DNS TXT query for:

 brisbane._domainkey.football.example.com

 Since there is no "h" tag in the "DomainKey-Signature:" header,
 signature verification starts with the line following the
 "DomainKey-Signature:" line. The email is canonically prepared for
 verifying with the "simple" method.

 The result of the query and subsequent verification of the signature
 is stored in the "DomainKey-Status:" header line. After successful
 verification, the email looks like this:

 DomainKey-Status: good
 from=joe@football.example.com; domainkeys=pass
 Received: from mout23.brisbane.football.example.com (192.168.1.1)
 by shopping.example.net with SMTP;
 Fri, 11 Jul 2003 21:01:59 -0700 (PDT)
 DomainKey-Signature: a=rsa-sha1; s=brisbane; d=football.example.com;
 c=simple; q=dns;
 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZ
 VoG4ZHRNiYzR;
 Received: from dsl-10.2.3.4.network.example.com [10.2.3.4]
 by submitserver.example.com with SUBMISSION;
 Fri, 11 Jul 2003 21:01:54 -0700 (PDT)
 From: "Joe SixPack" <joe@football.example.com>
 To: "Suzie Q" <suzie@shopping.example.net>
 Subject: Is dinner ready?
 Date: Fri, 11 Jul 2003 21:00:37 -0700 (PDT)
 Message-ID: <20030712040037.46341.5F8J@football.example.com>

 Hi.

 We lost the game. Are you hungry yet?

 Joe.

Delany Historic [Page 30]

RFC 4870 DomainKeys May 2007

5. Association with a Certificate Authority

 A fundamental aspect of DomainKeys is that public keys are generated
 and advertised by each domain at no additional cost. This
 accessibility markedly differs from traditional Public Key
 Infrastructures where there is typically a Certificate Authority (CA)
 who validates an applicant and issues a signed certificate --
 containing their public key -- often for a recurring fee.

 While CAs do impose costs, they also have the potential to provide
 additional value as part of their certification process. Consider
 financial institutions, public utilities, law enforcement agencies,
 and the like. In many cases, such entities justifiably need to
 discriminate themselves above and beyond the authentication that
 DomainKeys offers.

 Creating a link between DomainKeys and CA-issued certificates has the
 potential to access additional authentication mechanisms that are
 more authoritative than domain-owner-issued authentication. It is
 well beyond the scope of this specification to describe such
 authorities apart from defining how the linkage could be achieved
 with the "DomainKey-X509:" header.

5.1. The "DomainKey-X509:" Header

 The "DomainKey-X509:" header provides a link between the public key
 used to sign the email and the certificate issued by a CA.

 The exact content, syntax, and semantics of this header are yet to be
 resolved. One possibility is that this header contains an encoding
 of the certificate issued by a CA. Another possibility is that this
 header contains a URL that points to a certificate issued by a CA.

 In either case, this header can only be consulted if the signature
 verifies and MUST be part of the content signed by the corresponding
 "DomainKey-Signature:" header. Furthermore, it is likely that MUAs
 rather than MTAs will confirm that the link to the CA-issued
 certificate is valid. In part, this is because many MUAs already
 have built-in capabilities as a consequence of Secure/Multipurpose
 Internet Mail Extensions (S/MIME) [SMIME] and Secure Socket Layer
 (SSL) [SSL] support.

 The proof of linkage is made by testing that the public key in the
 certificate matches the public key used to sign the email.

Delany Historic [Page 31]

RFC 4870 DomainKeys May 2007

 An example of an email containing the "DomainKey-X509:" header is:

 DomainKey-Signature: a=rsa-sha1; s=statements;
 d=largebank.example.com; c=simple; q=dns;
 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZ
 VoG4ZHRNiYzR;
 DomainKey-X509: https://ca.example.net/largebank.example.com
 From: "Large Bank" <statements@largebank.example.com>
 To: "Suzie Q" <suzie@shopping.example.net>
 Subject: Statement for Account: 1234-5678
 ...

 The format of the retrieved value from the URL is not yet defined,
 nor is the determination of valid CAs.

 The whole matter of linkage to CA-issued certificates is one aspect
 of DomainKeys that needs to be resolved with relevant CA’s and
 certificate-issuing entities. The primary point is that a link is
 possible to a higher authority.

6. Topics for Discussion

6.1. The Benefits of Selectors

 Selectors are at the heart of the flexibility of DomainKeys. A
 domain administrator is free to use a single DomainKey for all
 outbound mail. Alternatively, the domain administrator may use many
 DomainKeys differentiated by selector and assign each key to
 different servers.

 For example, a large outbound email farm might have a unique
 DomainKey for each server, and thus their DNS will advertise
 potentially hundreds of keys via their unique selectors.

 Another example is a corporate email administrator who might generate
 a separate DomainKey for each regional office email server.

 In essence, selectors allow a domain owner to distribute authority to
 send on behalf of that domain. Combined with the ability to revoke
 by removal or Time to Live (TTL) expiration, a domain owner has
 coarse-grained control over the duration of the distributed
 authority.

 Selectors are particularly useful for domain owners who want to
 contract a third-party mailing system to send a particular set of
 mail. The domain owner can generate a special key pair and selector
 just for this mail-out. The domain owner has to provide the private
 key and selector to the third party for the life of the mail-out.

Delany Historic [Page 32]

RFC 4870 DomainKeys May 2007

 However, as soon as the mail-out is completely delivered, the domain
 owner can revoke the public key by the simple expedient of removing
 the entry from the DNS.

6.2. Canonicalization of Email

 It is an unfortunate fact that some email software routinely (and
 often unnecessarily) transforms email as it transits through the
 network. Such transformations conflict with the fundamental purpose
 of cryptographic signatures - to detect modifications.

 While two canonicalization algorithms are defined in this
 specification, the primary goal of "nofws" is to provide a transition
 path to "simple". With a mixture of "simple" and "nofws" email, a
 receiver can determine which systems are modifying email in ways that
 cause the signature to fail and thus provide feedback to the
 modifying system.

6.3. Mailing Lists

 Integrating existing Mailing List Managers (MLMs) into the DomainKeys
 authentication system is a complicated area, as the behavior of MLMs
 is highly variable. Essentially, there are two types of MLMs under
 consideration: those that modify email to such an extent that
 verification of the original content is not possible, and those that
 make minimal or no modifications to an email.

 MLMs that modify email in a way that causes verification to fail MUST
 prepend a "Sender:" header and SHOULD prepend a "List-ID:" header
 prior to signing for distribution to list recipients.

 A participating SUBMISSION server can deduce the need to re-sign such
 an email by the presence of a "Sender:" or "List-ID:" header from an
 authorized submission.

 MLMs that do not modify email in a way that causes verification to
 fail MAY perform the same actions as a modifying MLM.

6.4. Roving Users

 One scenario that presents a particular problem with any form of
 email authentication, including DomainKeys, is the roving user: a
 user who is obliged to use a third-party SUBMISSION service when
 unable to connect to the user’s own SUBMISSION service. The classic
 example cited is a traveling salesperson being redirected to a hotel
 email server to send email.

Delany Historic [Page 33]

RFC 4870 DomainKeys May 2007

 As far as DomainKeys is concerned, email of this nature clearly
 originates from an email server that does not have authority to send
 on behalf of the domain of the salesperson and is therefore
 indistinguishable from a forgery. While DomainKeys does not
 prescribe any specific action for such email, it is likely that over
 time, such email will be treated as second-class email.

 The typical solution offered to roving users is to submit email via
 an authorized server for their domain -- perhaps via a Virtual
 Private Network (VPN) or a web interface or even SMTP AUTH back to a
 SUBMISSION server.

 While these are perfectly acceptable solutions for many, they are not
 necessarily solutions that are available or possible for all such
 users.

 One possible way to address the needs of this contingent of
 potentially disenfranchised users is for the domain to issue per-user
 DomainKeys. Per-user DomainKeys are identified by a non-empty "g"
 tag value in the corresponding DNS record.

7. Security Considerations

7.1. DNS

 DomainKeys is primarily a security mechanism. Its core purpose is to
 make claims about email authentication in a credible way. However,
 DomainKeys, like virtually all Internet applications, relies on the
 DNS, which has well-known security flaws [RFC3833].

7.1.1. The DNS Is Not Currently Secure

 While the DNS is currently insecure, it is expected that the security
 problems should and will be solved by DNS Security (DNSSEC) [DNSSEC],
 and all users of the DNS will reap the benefit of that work.

 Secondly, the types of DNS attacks relevant to DomainKeys are very
 costly and are far less rewarding than DNS attacks on other Internet
 applications.

 To systematically thwart the intent of DomainKeys, an attacker must
 conduct a very costly and very extensive attack on many parts of the
 DNS over an extended period. No one knows for sure how attackers
 will respond; however, the cost/benefit of conducting prolonged DNS
 attacks of this nature is expected to be uneconomical.

 Finally, DomainKeys is only intended as a "sufficient" method of
 proving authenticity. It is not intended to provide strong

Delany Historic [Page 34]

RFC 4870 DomainKeys May 2007

 cryptographic proof about authorship or contents. Other technologies
 such as GnuPG and S/MIME address those requirements.

7.1.2. DomainKeys Creates Additional DNS Load

 A second security issue related to the DNS revolves around the
 increased DNS traffic as a consequence of fetching selector-based
 data, as well as fetching sending domain policy. Widespread
 deployment of DomainKeys will result in a significant increase in DNS
 queries to the claimed sending domain. In the case of forgeries on a
 large scale, DNS servers could see a substantial increase in queries.

7.2. Key Management

 All public key systems require management of key pairs. Private keys
 in particular need to be securely distributed to each signing mail
 server and protected on those servers. For those familiar with SSL,
 the key management issues are similar to those of managing SSL
 certificates. Poor key management may result in unauthorized access
 to private keys, which in essence gives unauthorized access to your
 identity.

7.3. Implementation Risks

 It is well recognized in cryptographic circles that many security
 failures are caused by poor implementations rather than poor
 algorithms. For example, early SSL implementations were vulnerable
 because the implementors used predictable "random numbers".

 While some MTA software already supports various cryptographic
 techniques, such as TLS, many do not. This proposal introduces
 cryptographic requirements into MTA software that implies a much
 higher duty of care to manage the increased risk.

 There are numerous articles, books, courses, and consultants that
 help programming security applications. Potential implementors are
 strongly encouraged to avail themselves of all possible resources to
 ensure secure implementations.

7.4. Privacy Assumptions with Forwarding Addresses

 Some people believe that they can achieve anonymity by using an email
 forwarding service. While this has never been particularly true, as
 bounces, over-quota messages, vacation messages, and web bugs all
 conspire to expose IP addresses and domain names associated with the
 delivery path, the DNS queries that are required to verify DomainKeys
 signature can provide additional information to the sender.

Delany Historic [Page 35]

RFC 4870 DomainKeys May 2007

 In particular, as mail is forwarded through the mail network, the DNS
 queries for the selector will typically identify the DNS cache used
 by the forwarding and delivery MTAs.

7.5. Cryptographic Processing Is Computationally Intensive

 Verifying a signature is computationally significant. Early
 indications are that a typical mail server can expect to increase CPU
 demands by 8-15 percent. While this increased demand is modest
 compared to other common mail processing costs -- such as Bayesian
 filtering -- any increase in resource requirements can make a
 denial-of-service attack more effective against a mail system.

 A constraining factor of such attacks is that the net computational
 cost of verifying is bounded by the maximum key size allowed by this
 specification and is essentially linear to the rate at which mail is
 accepted by the verifying system. Consequently, the additional
 computational cost may augment a denial-of-service attack, but it
 does not add a non-linear component to such attacks.

8. The Trial

 The DomainKeys protocol was deployed as a trial to better understand
 the implications of deploying wide-scale cryptographic email
 authentication.

 Open Source implementations were made available at various places,
 particularly Source Forge [SOURCEFORGE], which includes links to
 numerous implementations, both Open Source and commercial.

8.1. Goals

 The primary goals of the trial were to:

 o understand the operational implications of running a DNS-based
 public key system for email

 o measure the effectiveness of the canonicalization algorithms

 o experiment with possible per-user key deployment models

 o fully define the semantics of the "DomainKey-X509:" header

Delany Historic [Page 36]

RFC 4870 DomainKeys May 2007

8.2. Results of Trial

 The DomainKeys trial ran for approximately 2 years, in which time
 numerous large ISPs and many thousands of smaller domains
 participated in signing or verifying with DomainKeys. The low order
 numbers are that at least one billion DomainKey signed emails transit
 the Internet each day between some 12,000 participating domains.

 The operational and development experience of that trial was applied
 to DKIM.

9. Note to Implementors Regarding TXT Records

 The DNS is very flexible in that it is possible to have multiple TXT
 records for a single name and for those TXT records to contain
 multiple strings.

 In all cases, implementors of DomainKeys should expect a single TXT
 record for any particular name. If multiple TXT records are
 returned, the implementation is free to pick any single TXT record as
 the authoritative data. In other words, if a name server returns
 different TXT records for the same name, it can expect unpredictable
 results.

 Within a single TXT record, implementors should concatenate multiple
 strings in the order presented and ignore string boundaries. Note
 that a number of popular DNS command-line tools render multiple
 strings as separately quoted strings, which can be misleading to a
 novice implementor.

10. References

10.1. Normative References

 [BASE64] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [PEM] Linn, J., "Privacy Enhancement for Internet Electronic
 Mail: Part I: Message Encryption and Authentication
 Procedures", RFC 1421 February, 1993.

Delany Historic [Page 37]

RFC 4870 DomainKeys May 2007

10.2. Informative References

 [DKIM] Allman, E., Callas, J., Delany, M., Libbey, M., Fenton,
 J., and M. Thomas, "DomainKeys Identified Mail (DKIM)
 Signatures", RFC 4871, May 2007.

 [DNSSEC] http://www.ietf.org/html.charters/dnsext-charter.html

 [OPENSSL] http://www.openssl.org

 [RFC2822] Resnick, P., Editor, "Internet Message Format", RFC
 2822, April 2001.

 [RFC3833] Atkins, D. and R. Austein, "Threat Analysis of the
 Domain Name System (DNS)", RFC 3833, August 2004.

 [SMIME] Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
 Extensions (S/MIME) Version 3.1 Message Specification",
 RFC 3851, July 2004.

 [SOURCEFORGE] http://domainkeys.sourceforge.net

 [SSL] http://wp.netscape.com/security/techbriefs/ssl.html

Delany Historic [Page 38]

RFC 4870 DomainKeys May 2007

Appendix A - Syntax Rules for the Tag=Value Format

 A simple tag=value syntax is used to encode data in the response
 values for DNS queries as well as headers embedded in emails. This
 section summarized the syntactic rules for this encoding:

 o A tag=value pair consists of three tokens, a "tag", the "="
 character, and the "value"

 o A tag MUST be one character long and MUST be a lowercase
 alphabetic character

 o Duplicate tags are not allowed

 o A value MUST only consist of characters that are valid in RFC
 2822 headers and DNS TXT records and are within the ASCII range
 of characters from SPACE (0x20) to TILDE (0x7E) inclusive.
 Values MUST NOT contain a semicolon but they may contain "="
 characters.

 o A tag=value pair MUST be terminated by a semicolon or the end
 of the data

 o Values MUST be processed as case sensitive unless the specific
 tag description of semantics imply case insensitivity.

 o Values MAY be zero bytes long

 o Whitespace MAY surround any of the tokens; however, whitespace
 within a value MUST be retained unless explicitly excluded by
 the specific tag description. Currently, the only tags that
 specifically ignore embedded whitespace are the "b" and "h"
 tags in the "DomainKey-Signature:" header.

 o Tag=value pairs that represent the default value MAY be
 included to aid legibility.

 o Unrecognized tags MUST be ignored

Delany Historic [Page 39]

RFC 4870 DomainKeys May 2007

Acknowledgments

 The editor wishes to thank Russ Allbery, Eric Allman, Edwin Aoki,
 Claus Asmann, Steve Atkins, Jon Callas, Dave Crocker, Michael Cudahy,
 Jutta Degener, Timothy Der, Jim Fenton, Duncan Findlay, Phillip
 Hallam-Baker, Murray S. Kucherawy, John Levine, Miles Libbey, David
 Margrave, Justin Mason, David Mayne, Russell Nelson, Juan Altmayer
 Pizzorno, Blake Ramsdell, Scott Renfro, the Spamhaus.org team, Malte
 S. Stretz, Robert Sanders, Bradley Taylor, and Rand Wacker for their
 valuable suggestions and constructive criticism.

Author’s Address

 Mark Delany
 Yahoo! Inc
 701 First Avenue
 Sunnyvale, CA 95087
 USA

 EMail: markd+domainkeys@yahoo-inc.com

Delany Historic [Page 40]

RFC 4870 DomainKeys May 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Delany Historic [Page 41]

