
Network Working Group J. Postel
Request for Comments: 48 S. Crocker
 UCLA
 April 21, 1970

 A Possible Protocol Plateau

I. Introduction

 We have been engaged in two activities since the network meeting of
 March 17, 1970 and, as promised, are reporting our results.

 First, we have considered the various modifications suggested from
 all quarters and have formed preferences about each of these. In
 Section II we give our preferences on each issue, together with our
 reasoning.

 Second, we have tried to formalize the protocol and algorithms for
 the NCP, we attempted to do this with very little specification of a
 particular implementation. Our attempts to date have been seriously
 incomplete but have led to a better understanding. We include here,
 only a brief sketch of the structure of the NCP. Section III gives
 our assumptions about the environment of the NCP and in Section IV
 the components of the NCP are described.

II. Issues and Preferences

 In this section we try to present each of the several questions which
 have been raised in recent NWG/RFC’s and in private conversations,
 and for each issue, we suggest an answer or policy. In many cases,
 good ideas are rejected because in our estimation they should be
 incorporated at a different level.

 A. Double Padding

 As BBN report #1822 explains, the Imp side of the Host-to-Imp
 interface concatenates a 1 followed by zero or more 0’s to fill
 out a message to an Imp word boundary and yet preserve the
 message length. Furthermore, the Host side of the Imp-to-Host
 interface extends a message with 0’s to fill out the message to
 a Host word boundary.

 BBN’s mechanism works fine if the sending Host wants to send an
 integral number of words, or if the sending Host’s hardware is
 capable of sending partial words. However, in the event that

Postel & Crocker [Page 1]

RFC 48 A Possible Protocol Plateau April 1970

 the sending Host wants to send an irregular length message and
 its hardware is only capable of sending word-multiple messages,
 some additional convention is needed.

 One of the simplest solutions is to modify the Imp side of the
 Host-to-Imp interface so that it appends only 0’s. This would
 mean that the Host software would have to supply the trailing
 1. BBN rejected the change because of an understandably strong
 bias against hardware changes. It was also suggested that a
 five instruction patch to the Imp program would remove the
 interface supplied 1, but this was also rejected on the new
 grounds that it seemed more secure to depend only upon the Host
 hardware to signal message end, and not to depend upon the Host
 software at all.

 Two other solutions are also available. One is to have "double
 padding", whereby the sending Host supplies 10* and the network
 also supplies 10*. Upon input, a receiving Host then strips
 the trailing 10* 10*. The other solution is to make use of the
 marking. Marking is a string of the form 0*1 inserted between
 the leader and the text of a message. The original intent of
 marking was to extend the leader so that the sending Host could
 begin its text on a word boundary. It is also possible to
 use the marking to expand a message so that it _ends_ on a word
 boundary.

 Notice that double padding could replace marking altogether by
 abutting the text beginning against the leader. For 32 bit
 machines, this is convenient and marking is not, while for
 other lengths, particularly 36 bit machines, marking is much
 more convenient than double padding.

 We have no strong preference, partially because we can send
 word fragments. Shoshani, et al in NWG/RFC #44 claim that
 adjusting the marking does not cause them any problems, and
 they have a 32 bit machine. Since the idea of marking has been
 accepted for some time, we suggest that double padding not be
 used and that marking be used to adjust the length of a
 message. We note that if BBN ever does remove the 1 from the
 hardware padding, only minimal change to Host software is
 needed on the send side.

 A much prettier (and more expensive) arrangement was suggested
 by W. Sutherland. He suggested that the Host/Imp interfaces be
 smart enough to strip padding or marking and might even parse
 the message upon input.

Postel & Crocker [Page 2]

RFC 48 A Possible Protocol Plateau April 1970

 B. Reconnection

 A very large population of networkers has beat upon us for
 including dynamic reconnection in the protocol. We felt it
 might be of interest to relate how it came to be included.

 After considering connections and their uses for a while, we
 wondered how the mechanism of connections compared to existing
 forms of intra-Host interprocess communication. Two aspects
 are of interest, what formalisms have been presented in the
 literature, and what mechanisms are in use. The formalisms are
 interesting because they lead to uniform implementations and
 parsimonious design. The existing mechanisms are interesting
 because they point out which problems need solving and
 sometimes indicate what an appropriate formalism might be. In
 particular, we have noticed that the mechanisms for connecting
 a console to the logger upon dial in, the mechanisms for
 creating a job, and the mechanisms for passing a console around
 to various processes within a job tend to be highly
 idiosyncratic and distinct from all other structures and
 mechanisms within an operating system.

 With respect to the literature, it appears there is only one
 idea with several variations, viz processes should share a
 portion of their address spaces and cooperatively wake up each
 other. Semaphores and event channels are handy extensions of
 wake up signals, but the intent is basically the same. (Event
 channels could probably function as connections, but it seems
 not to be within their intended use. In small systems, the
 efficiency and capacity of event channels are inversely
 related.)

 With respect to existing implementations, we note that several
 systems allow a process to appear to be a file to another
 process. Some systems, e.g. the SDS-940 at SRI impose a
 master/slave relationship between two processes so connected,
 but other systems provide for a coequal relationship e.g. the
 AI group’s PDP-6 system at MAC. The PDP-6 system also has a
 feature whereby a superior process can "surround" an inferior
 process with a mapping from device and file names to other
 device and file names. Consoles have nearly the same semantics
 as files, so it is quite reasonable for an inferior process to
 believe it is communicating with the console but in fact be
 communicating with another process.

 The similarity between network connections and existing
 sequential interprocess connections supports our belief that
 network connections are probably the correct structure for

Postel & Crocker [Page 3]

RFC 48 A Possible Protocol Plateau April 1970

 using the network. Moreover, the structure is clean enough and
 compatible with enough machines to pass as a formalism or
 theory, at least to the extent of the other forms of
 interprocess communication presented in the literature.

 Any new formalism, we believe, must meet at least the following
 two tests:

 1. What outstanding problems does it solve?
 2. Is it closed under all operations?

 In the case of network connections, the candidates for the
 first are the ones given above, i.e. all operations involving
 connecting a console to a job or a process. Also of interest
 are the modelling of sequential devices such as tape drives,
 printers and card readers, and the modeling of their buffering
 (spooling, symbiont) systems.

 The second question mentions closure. In applying the
 connection formalism to the dial-in and login procedures, we
 felt the need to include some sort of switching or
 reconnection, and an extremely mild form is presented in an
 SJCC paper, which is also NWG/RFC #33. This mild form permits
 only the substitution of AEN’s, and even then only at the time
 of connection establishment. However, it is a common experience
 that if an operation has a natural definition on an extended
 domain, it eventually becomes necessary or at least desirable
 to extend its definition. Therefore, we considered the
 following extensions:

 1. Switching to any other socket, possibly in another Host.
 2. Switching even after data flow has started.

 There is even some precedent for feeling these extensions might
 be useful. In one view of an operating system, we see all
 available phone lines as belonging to a live process known as
 the logger. The logger answers calls, screens users, and
 creates jobs and processes. One of the features of most
 telephone answering equipment is that many phone lines may
 serve the same phone number by using a block of sequential
 numbers and a rotary answering system. In our quest for
 accurate models of practical systems, we wanted to be able to
 provide equivalent service to network users, i.e. they should
 be able to call a single advertised number and get connected to
 the logger. Thus a prima facie case for switching is
 established.

Postel & Crocker [Page 4]

RFC 48 A Possible Protocol Plateau April 1970

 Next we see that after the logger interrogates a prospective
 user, it must connect the user to a newly created job. Data
 flow between the user and the logger has already commenced, so
 flow control has to be meshed with switching if it is desired
 not to lose or garble data in transit.

 With respect to inter-Host switching, we find it easy to
 imagine a utility service which is distributed throughout the
 network and which passes connections from one socket to another
 without the knowledge of the user. Also, it is similar to the
 more sophisticated telephone systems, to standard facilities of
 telephone company operators, and to distributed private
 systems.

 These considerations led us to investigate the possibility of
 finding one type of reconnection which provided a basis for all
 known models. The algorithm did not come easily, probably
 because of inexperience with finite state automata theory, but
 eventually we produced the algorithm presented in NWG/RFC #36.
 A short time later, Bill Crowther produced an equivalent
 algorithm which takes an alternate approach to race conditions.

 Networkers seem to have one of two reactions. Either it was
 pretty and (perhaps ipso facto) useful, or it was complex and
 (again perhaps ipso facto) unnecessary. The latter group was
 far more evident to us, and we were put into the defensive
 position of admitting that dynamic reconnection was only

 1. pretty
 2. useful for login and console passing

 In response to persistent criticism, we have made the following
 change in the protocol. Instead of calling socket <O,H,O> to
 login, sockets of the form <U,H,O> and <U,H,1> are the input
 and output sockets respectively of a copy of the logger or, if
 a job has been stared with user id U, these sockets are the
 console sockets. The protocol for login is thus to initiate a
 connection to <U,H,O> and <U,H,1>. If user U is not in use, a
 copy of the logger will respond and interrogate the caller. If
 user id U is in use, the call will be refused. This
 modification was suggested by Barry Wessler recently. (Others
 also suggested this change much earlier; but we rejected it
 then.)

 The logger may demand that the caller be from the same virtual
 net, i.e. the caller may have user id U in some other Host, or
 it may demand that the user supply a password matched to user

Postel & Crocker [Page 5]

RFC 48 A Possible Protocol Plateau April 1970

 id U, or it may demand both. Some systems may even choose to
 permit anybody to login to any user id.

 After login, AEN’s 0 and 1 remain the console AEN’s. Each
 system presumably has mechanisms for passing the console, and
 these would be extended to know about AEN’s 0 and 1 for network
 users. Passing the console is thus a matter of reconnecting
 sockets to ports, and happens within the Host and without the
 network.

 In conversations with Meyer and Skinner after NWG/RFC #46 was
 received, they suggested a login scheme different from both
 Meyer’s and ours in section above. Their new scheme seemed a
 little better and we look forward to their next note.

 It is generally agreed that login should be "third-level", that
 is, above the NCP level. We are beginning to be indifferent
 about particular logins schemes; all seem ok and none impress
 us greatly. We suggest that several be tried. It is some
 burden, of course, to modify the local login procedure, but we
 believe it imposes no extra hardship to deal with diverse login
 procedures. This is because the text sequences and interrupt
 conventions are so heterogenous that the additional burden of
 following, say, our scheme on our system and Meyer’s on Multics
 is minimal.

 We are agreed that reconnection should not be required in the
 initial protocol, and we will offer it later as an optional and
 experimental tool. In addition, we would like to be on record
 as predicting that general reconnection facilities will become
 useful and will provide a unifying framework for currently ad
 hoc operating system structures.

 C. Decoupling Connections and Links

 Bill Crowther (BBN) and Steve Wolfe (UCLA) independently have
 suggested that links not be assigned to particular connections.
 Instead, they suggest, include the destination socket as part
 of the text of the message and then send messages over any
 unblocked link.

 We discussed this question a little in NWG/RFC #37, and feel
 there is yet an argument for either case. With the current
 emphasis on simplicity, speed and small core requirements, it
 seems more efficient to leave links and connections coupled.
 We, therefore, recommend this.

Postel & Crocker [Page 6]

RFC 48 A Possible Protocol Plateau April 1970

 D. Error Reporting

 As mentioned by J. Heafner and E. Harslem of RAND, it is
 important to treat errors which might occur. A good philosophy
 is to guard against any input which destroys the consistency of
 the NCP’s data base.

 The specific formulation of the error command given by Heafner
 and Harslem in NWG/RFC #40 and by Meyer in NWG/RFC #46 seems
 reasonable and we recommend its adoption. Some comments are in
 order, however.

 A distinction should be made between resource errors and other
 types of errors. Resource errors are just the detection of
 overload conditions. Overload conditions are well-defined and
 valid, although perhaps undesirable. Other types of errors
 reflect errant software or hardware. We feel that resource
 errors should not be handled with error mechanisms, but with
 mechanisms specific to the problem. Thus the <CLS> command may
 be issued when there is no more room to save waiting <RFC>’s.
 Flow control protocol is designed solely to handle buffering
 overload.

 With respect to true errors, we are not certain what the value
 of the <ERR> command is to the recipient. Presumably his NCP
 is broken, and it may only aggravate the problem to bombard it
 with error commands. We therefore, recommend that error
 generation be optional, that all errors be logged locally in a
 chronological file and that <ERR> commands received likewise be
 logged in a chronological file. No corrective action is
 specified at this time.

 In the short time the network has been up at UCLA, we have
 become convinced that the network itself will generate very few
 errors. We have watched the BBN staff debug and test the IMP
 program, and it seemed that most of the errors affected timing
 and throughput rather than validity. Hence most errors will
 probably arise from broken Hosts and/or buggy NCP’s.

 E. Status Testing and Reporting

 A valuable debugging aid is to be able to get information about
 what a foreign NCP thinks is happening. A convenient way to do
 this is to permit NCP’s to send status whenever they wish, but
 to always have them do it whenever they receive a request.

Postel & Crocker [Page 7]

RFC 48 A Possible Protocol Plateau April 1970

 Since we view this feature as primarily a debugging tool, we
 suggest that a distinct link, like 255, be used. The intent is
 that processing of status requests and generating of status
 messages should use as little of the normal machinery as
 possible. Thus we suggest that link 255 be used to send
 "request status" and "status is" commands. The form follows
 the suggestion on page 2 of NWG/RFC #40.

 Meyer’s <ECO> command is easily implemented and serves the more
 basic function of testing whether a foreign NCP is alive. We
 suggest that the length of the <ECO> command be variable, as
 there seems to be no significance in this context to 48 bits.
 Also, the value of a (presumably) 8 bit binary switch is
 unclear, so we recommend a pair of commands:

 <ECO> <length> <text>
 and
 <ERP> <length> <text>
 where
 <length> is 8 bits.

 Upon receipt of an <ECO> command the NCP would echo with the
 <ERP> command.

 F. Expansion and Experimentation

 As Meyer correctly points out in NWG/RFC #46, network protocol
 is a layered affair. Three levels are apparent so far.

 1. IMP Network Protocol
 2. Network Control Program Protocol
 3. Special user level or Subsystem Level Protocol

 This last level should remain idiosyncratic to each Host (or
 even each user). The first level is well-specified by BBN, and
 our focus here is on level 2. We would like to keep level 2 as
 neutral and simple as possible, and in particular we agree that
 login protocol should be as much on level 3 as possible.

 Simplicity and foresight notwithstanding, there will arise
 occasions when the level 2 protocol should change or be
 experimented with. In order to provide for experimentation and
 change, we recommend that only link numbers 2 through 31 be
 assigned to regular connections, with the remaining link
 numbers, 32 to 255, used experimentally. We have already
 suggested that link 255 be used for status requests and
 replies, and this is in consonance with our view of the
 experimental aspects of that feature.

Postel & Crocker [Page 8]

RFC 48 A Possible Protocol Plateau April 1970

 We also recommend that control command prefixes from 255
 downward be used for experimentation.

 These two conventions are sufficient, we feel to permit
 convenient experimentation with new protocol among any subset
 of the sites. We thus do not favor inclusion of Ancona’s
 suggestion in NWG/RFC #42 for a message data type code as the
 first eight bits of the text of a message.

 G. Multiplexing Ports to Sockets

 Wolfe in NWG/RFC #38 and Shoshani et al in NWG/RFC #44 suggest
 that it should be possible to attach more than one port to a
 socket. While all of our diagrams and prototypical system
 calls have shown a one-to-one correspondence between sockets
 and ports, it is strictly a matter of local implementation. We
 note that sockets form a network-wide name space whose sole
 purpose is to interface between the idiosyncratic structures
 peculiar to each operating system. Our references to ports are
 intended to be suggestive only, and should be ignored if no
 internal structures corresponds to them. Most systems do have
 such structures, however, so we shall continue to use them for
 illustration.

 H. Echoing, Interrupts and Code Conversion

 1. Interrupts

 We had been under the impression that all operating systems
 scanned for a reserved character from the keyboard to
 interpret it as an interrupt signal. Tom Skinner and Ed
 Meyer of MIT inform us that model 37 TTY’s and IBM 2741
 generate a "long space" of 200-500 milliseconds which is
 detected by the I/O channel hardware and passed to the
 operating system as an interrupt. The "long space" is not a
 character -- it has no ASCII code and cannot be program
 generated.

 Well over a year ago, we considered the problem of
 simulating console interrupts and rejected the <INT> type
 command because it didn’t correctly model any system we
 knew. We now reverse our position and recommend the
 implementation of an INTERRUPT system call and an <INT>
 control command as suggested by Meyer in NWG/RFC #46.

Postel & Crocker [Page 9]

RFC 48 A Possible Protocol Plateau April 1970

 Two restrictions of the interrupt facility should be
 observed. First, when communicating with systems which scan
 for interrupt characters, this feature should not be used.
 Second, non-console-like connections probably should not
 have interrupts. We recommend that systems follow their own
 conventions, and if an <INT> arrives for a connection on
 which it shouldn’t the <INT> should be discarded and
 optionally returned as an error.

 2. Echoing and Code Conversion

 We believe that each site should continue its current
 echoing policy and that code conversion should be done by
 the using process. Standardization in this area should
 await further development.

 Ancona’s suggestion of a table-driven front-end transducer
 seems like the right thing, but we believe that such
 techniques are part of a larger discussion involving
 higher-level languages for the network.

 I. Broadcast Facilities

 Heafner and Harslem suggest in NWG/RFC #39 a broadcast
 facility, i.e. <TER> and <BDC>. We do not fully understand the
 value of this facility and are thus disposed against it. We
 suspect that we would understand its value better if we had
 more experience with OS/360. It is probably true in general
 that sites running OS/360 or similar systems will find less
 relevance in our suggestions for network protocol than sites
 running time-sharing systems. We would appreciate any cogent
 statement on the relationship between OS/360 and the concepts
 and assumptions underlying the network protocol.

 J. Instance Numbers

 Meyer in NWG/RFC #46 suggests extending a socket to include an
 instance code which identifies the process attached to the
 socket. We carefully arranged matters so that processes would
 be indistinguishable. We did this with the belief that both as
 a formal and as a practical matter it is of concern only within
 a Host whether a computation is performed by one or many
 processes. Thus we believe that all processes within a job
 should cooperate in allocating AEN’s. If an operating system
 has facilities for passing a console from process to process
 within a job, these facilities mesh nicely with the current
 network protocol, even within reconnection protocol; but
 instance numbers interfere with such a procedure.

Postel & Crocker [Page 10]

RFC 48 A Possible Protocol Plateau April 1970

 We suggest this matter be discussed fully because it relates to
 the basic philosophy of sockets and connections. Presently we
 recommend 40 bit socket numbers without instance codes.

 K. AEN’s

 Nobody, including us, is particularly happy with our name AEN
 for the low order 8 bits of the socket. We rejected _socket_
 number_, and are similarly unhappy with Meyer’s _socket_code_.
 The word socket should not be used as part of the field name,
 and we solicit suggestions.

III. Environment

 We assume that the typical host will have a time-sharing operating
 system in which the cpu is shared by processes.

 Processes

 We envision that each process is tagged with a _user_number_. There
 may be more than one process with the same user number, and if so,
 they should all be cooperating with respect to using the network.

 We envision that each process contains a set of _ports_ which are
 unique to the process. These ports are used for input to or output
 from the process, from or to files, devices or other processes.

 We also envision that each process has an event channel over which it
 can receive very short messages (several bits). We will use this
 mechanism to notify a process that some action external to the
 process has occurred.

 To engage in network activity, a process _attaches_ a _local_socket_
 to one of its ports. Sockets are identified by user number, host and
 AEN, and a socket is local to a process if their user numbers match
 and they are in the same host. A process need only specify an AEN
 when it is referring to a local socket.

 Each port has a status which is modified by system calls and by
 concurrent events outside the process. Whenever the status of a port
 is changed, the process is sent an event over its event channel which
 specifies which port’s status has changed. The process may then look
 at a port’s status.

 These assumptions are used descriptive material which follows.
 However, these assumptions are not imposed by the network protocol
 and the implementation suggested by section IV is in no way binding.

Postel & Crocker [Page 11]

RFC 48 A Possible Protocol Plateau April 1970

 We wish to make very clear that this material is offered only to
 provide clues as to what the implementation difficulties might be and
 not to impose any particular discipline.

 For example, we treat <RFC>’s which arrive for unattached local
 sockets as valid and queue them. If desired, an NCP may reject them,
 as Meyer suggests, or it might hold them for awhile and reject them
 if they’re not soon satisfied. The offered protocol supports all
 these options.

 Another local option is the one mentioned before of attaching
 multiple ports to a socket. We have shown one-one correspondence but
 this may be ignored. Similarly, the system calls are merely
 suggestive.

 System Calls

 These are typical system calls which a user process might execute.
 We show these only for completeness; each site will undoubtedly
 implement whatever equivalent set is convenient.

 We use the notation

 Syscall (arg , arg ...; val ...)
 1 2 1
 where
 Syscall is the system call
 arg etc. are the parameters supplied with the call, and
 1
 val etc. are any values returned by the system call.
 1

 Init (P,AEN,FS,Bsiz;C)

 P Specifies a port of the process.
 AEN Specifies a local socket. The user number of this
 process and host number of this host are implicit.
 FS Specifies a socket with any user number in any host,
 with any AEN.
 Bsiz Specified the amount of storage in bits the user wants
 to devote to buffering messages.
 C The condition code returned.

 Init attempts to attach the local socket specified by AEN to the port
 P and to initiate a connection with socket FS. Possible returned
 values of C are

Postel & Crocker [Page 12]

RFC 48 A Possible Protocol Plateau April 1970

 C = ok The Init was legal and the socket FS is being
 contacted. When the connection is established or
 when FS refuses, the process will receive an event.

 C = busy The local socket was in use by a port on this or
 some other process with the same user number. No
 action was taken.

 C = homosex The AEN and FS were either both send or both receive
 sockets.

 C = nohost The host designated within FS isn’t known.

 C = bufbig Bsiz is too large.

 Listen (P,AEN,Bsize;C)

 P Specifies a port of the process.
 AEN Specifies a local socket.
 Bsiz Specified a buffer size.
 C The returned legality code.

 Codes for C are

 C = ok
 C = busy
 C = bufbig

 The local socket specifies by AEN is attached to P. If there is a
 waiting call, it is processed; otherwise no action is taken. When a
 call comes in, a connection will be established and the process
 notified via an event.

 Close (P)

 P Specifies a port of the process.

 Any activity is stopped, and the port becomes free for other use.

 Transmit (P,M,L1;L2,C)

 P Specifies port with an open connection.
 M The text to be transmitted.
 L1 Specifies the length of the text.
 L2 The length actually transmitted.
 C The error code.

Postel & Crocker [Page 13]

RFC 48 A Possible Protocol Plateau April 1970

 Transmission between the processes on either side of the port takes
 place.

 Codes for C are

 C = ok
 or
 C = not open if no connection is currently open and
 otherwise uninhibited
 Status (P;C)

 The status of port P is returned as C.

IV. The NCP

 We view the NCP as having five component programs, three associative
 tables, some queues and buffers, and a link assignment table. Each
 site will of course, vary this design to meet its needs, so our
 design is only illustrative.

 The Component Programs

 1. The Input Handler

 This is an interrupt driven input routine. It initiates Imp-
 to-Host transmission into a resident buffer and wakes up the
 Input Interpreter when transmission is complete.

 2. The Output Handler

 This is an interrupt driven output routine. It initiates
 Host-to-Imp transmission out of a resident buffer and wakes up
 the Output Scheduler when transmission is complete.

 3. The Input Interpreter

 This program decides whether the input is a regular message
 intended for a user, a control message, an Imp-to-Host message,
 or an error. For each class of message, this program takes the
 appropriate action.

 4. The Output Scheduler

 Three classes of message are sent to the Imp

 (a) Host-to-Imp messages
 (b) Control messages
 (c) Regular messages

Postel & Crocker [Page 14]

RFC 48 A Possible Protocol Plateau April 1970

 We believe that a priority should be imposed among these
 classes. The priority we suggest is the ordering above. The
 Output Scheduler selects the highest priority message and
 gives it to the Output Handler.

 5. The System Call Interpreter

 This program interprets requests from the user.

 The two interesting components are the Input Interpreter and the
 System Call Interpreter. These are similar in that the Input
 Interpreter services foreign requests and the System Call Interpreter
 services local requests.

 Associative Tables

 We envision that the bulk of the NCP’s data base is in three
 associative tables. By "associative", we mean that there is some
 lookup routine which is presented with a key and either returns
 successfully with a pointer to the corresponding entry, or fails if
 no entry corresponds to the key.

 1. The Rendezvous Table

 "Requests-for-connection" and other attributes of a
 connection are held in this table. This table is accessed by
 local socket, but other tables have pointers to existing
 entries.

 The components of an entry are:

 (a) local socket (key)
 (b) foreign socket
 (c) link
 (d) queue of callers
 (e) text queue
 (f) connection state
 (g) flow state
 (h) pointer to attached port

 An entry is created when a user executes either an Init or a
 Listen system call or when a <RFC> is received. Some fields
 are unused until the connection is established, e.g. the
 foreign socket is not known until a <RFC> arrives if the
 user did a Listen.

Postel & Crocker [Page 15]

RFC 48 A Possible Protocol Plateau April 1970

 2. The Input Link Table

 The Input Interpreter uses the foreign host and link as a
 key to get a pointer to the entry in the rendezvous table
 for the connection using the incoming link.

 3. The Output Link Table

 In order to interpret RFNM’s, the Input Interpreter needs a
 table in the same form as the Input Link Table but using
 outgoing links.

 Link Assignment Table

 This is a very simple structure which keeps track of which links are
 in use for each host. One word per host probably suffices.

 The following diagram is our conception of the Network Control
 Program. Boxes represent tables and Buffers, boxes with angled
 corners and a double bottom represent Queues, and jagged boxes
 represent component programs, the arrows represent data paths.

 The abbreviated names have the following meanings.

 ILT - Input Link Table

 OLT - Output Link Table

 LAT - Link Assignment Table

 RT - Rendezvous Table

 HIQ - Host to Imp Queue

 OCCQ - Output Control Command Queue

 ORMQ - Output Regular Message Queue

 IHBuf - Buffer filled by the Input Handler from the IMP and
 emptied by the Input Interpreter

 OHBuf - Buffer of outgoing messages filled from the Queues
 by the Output Scheduler and emptied by the Output
 Handler.

Postel & Crocker [Page 16]

RFC 48 A Possible Protocol Plateau April 1970

 +---------+
 | I M P |
 +---------+
 v ^
 | |
 +---------------------------|-----|------------------------------+
 | | | |
 | /\/\/\/\/\/\/\ | | /\/\/\/\/\/\/\ |
 | \ / <--------+ +---< \ / |
 | / Input \ / Output \ |
 | \ Handler / \ Handler / <----+ |
 | / \ >------+ / \ | |
 | \/\/\/\/\/\/\/ | \/\/\/\/\/\/\/ ^ |
 | v +-----+ |
 | +-----+ | OH | | | |
 | | IM | | Buf | |
 | | Buf | +-----+ |
 | +-----+ /\/\/\/\/\/\/\/\ ^ |
 | /\/\/\/\/\/\/\/\ v +----> \ / | |
 | \ / | | / Output \ >--+ |
 | / \ <------+ ^ \ / |
 | \ Input / /-----\ / Scheduler \ |
 | / \ >-------->| HIQ | \ / |
 | \ Interpreter / |_____| / \ |
 | / \ >----+ _____/ \/\/\/\/\/\/\/\/ |
 | \/\/\/\/\/\/\/\/ | ^ v ^ | | | | | | | | | |
 | ^ ^ ^ \ | /-----\ | | | /-----\ |
 | | \ \ \ | | O | | | | | O | |
 | | \ \ \ +--->| C |>----+ | +---<| R | |
 | v v v \ | C | | | M | |
 | +---+ +---+ +---+ \ | Q | v | Q | |
 | | | | | | | \ |_____| +---------+ |_____| |
 | |ILT| |LAT| |OLT| \ _____/ | | _____/ |
 | | | | | | | \ ^ | R T | ^ |
 | +---+ +---+ +---+ +------|-------->| | | |
 | v | +---------+ | |
 | | ^ ^ | |
 | | /\/\/\/\/\/\/\/\ | | |
 | | \ / | | |
 | +----------->/ System \<-------+ | |
 | \ Call / | |
 | / Interpreter \>--------------------+ |
 | \ / |
 | +-->/ \>--+ |
 | | \/\/\/\/\/\/\/\/ | |
 +------------------|----------------------|----------------------+
 | |
 +---< system calls <---+

Postel & Crocker [Page 17]

RFC 48 A Possible Protocol Plateau April 1970

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Donald and Jill Eastlake 1999]

[Editor’s note: The original hand-drawn diagram represented
Queues by cylinders and component programs by "squishy ameoba
like things".]

Postel & Crocker [Page 18]

