Net wor k Wor ki ng Group M Nystroem
Request for Comments: 4758 RSA Security
Cat egory: | nformational Novenber 2006

Crypt ographi ¢ Token Key Initialization Protocol (CT-KIP)
Version 1.0 Revision 1

Status of This Meno

This meno provides infornmation for the Internet conmunity. It does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C The | ETF Trust (2006).
Abst r act

Thi s docunment constitutes Revision 1 of Cryptographic Token Key
Initialization Protocol (CT-KIP) Version 1.0 from RSA Laboratories
One-Ti ne Password Specifications (OTPS) series. The body of this
docunent, except for the intellectual property considerations
section, is taken fromthe CT-KIP Version 1.0 docunent, but conments
received during the | ETF review are reflected; hence, the status of a
revised version. As no "bits-on-the-wire" have changed, the protoco
specified herein is conpatible with CT-KIP Version 1.0.

CT-KIP is a client-server protocol for initialization (and
configuration) of cryptographic tokens. The protocol requires
neither private-key capabilities in the cryptographic tokens, nor an
est abl i shed public-key infrastructure. Provisioned (or generated)
secrets will only be available to the server and the cryptographic
token itself.

Nyst roem I nf or mat i onal [Page 1]

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

Tabl e of Contents

1

Introducti On 4
L. L. SCOPE .t 4
1.2, Background 4
1.3. Document Organi zation 5
Acronyns and Notation i, 5
2. 0. ACT ONYITB . ottt e 5
2.2, Notati ONn ... 5
CT- Kl P o e 6
3oL VeI VI BW .ot 6
3.2, ENtiti @S o 7
3.3. Principles of Operation iy 7
3.4. The CT-KIP One-Way Pseudorandom Function, CT-KIP-PRF 10
3.4.1. Introduction 10
3.4.2. Declaration 11
3.5. Generation of Cryptographic Keys for Tokens 11
3.6. Encryption of Pseudorandom Nonces Sent fromthe
CT-KIP Client e e 12
3.7. CT-KIP Schema BasiCS i e 13
3.7.1. Introduction 13
3.7.2. General XML Schema Requirenents 13
3.7.3. The Abstract Request Type Type 13
3.7.4. The Abstract ResponseType type 14
3.7.5. The StatusCode TYPettt 14
3.7.6. The ldentifierType Typet 16
3.7.7. The NonceType Typet 16
3.7.8. The ExtensionsType and the
Abstract Ext ensi onType Types 17
3.8, CT-KIP MESSageS . .ottt e e e e 17
3.8.1. Introduction 17
3.8.2. CT-KIP Initialization 17
3.8.3. The CT-KIP dient’s Initial PDU 18
3.8.4. The CT-KIP server’s initial PDU 20
3.8.5. The CT-KIP dient’s Second PDU 23
3.8.6. The CT-KIP Server’s Final PDU 24
3.9. Protocol EXtensions 27
3.9.1. The dientlnfoType Type 27
3.9.2. The ServerlnfoType Type 28
3.9.3. The OTPKeyConfigurationDataType Type 28
Protocol BindinNgs 29
4.1. General RequiremBNt e 29
4.2, HTTP/ 1.1 binding for CT-KIP, 29
4.2.1. Introduction 29
4.2.2. ldentification of CT-KIP Messages 29
4.2.3. HITP Headers e 29
4.2.4. HITP Qperati Ons e 30
4.2.5. HITP Status Codes, 30

Nyst roem I nf or mat i onal [Page 2]

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

4.2.6. HITP Authentication i, 31

4.2.7. Initialization of CT-KIP 31

4.2.8. Exanple MesSSagest 31

5. Security considerati Ons 32

5.1 General ... 32

5.2, Active AttacKs 32

5.2.1. Introduction 32

5.2.2. Message Modifications 32

5.2.3. Message Deletion i 34

5.2.4. Message Insertion 34

5.2.5. Message Replay 34

5.2.6. Message Reorderinguuiiiiiiininnnn.. 35

5.2.7. Man in the Mddle 35

5.3. Passive Attacks 35

5.4, Cryptographic Attacks 35
5.5. Attacks on the Interaction between CT-KI P and User

Authentication 36

6. Intellectual Property Considerationsu oo, 36

7. Ref ereNCesS .. 37

7.1. Normative References 37

7.2. Informative References 37

Appendi x A. CT-KIP Schema e 39

Appendi x B. Exanples of CT-KIP Messages, 46

B.1. IntroduCtion 46

B.2. Exanple of a CT-KIP Initialization (Trigger) Message 46

B.3. Exanple of a <ClientHello> Message 46

B.4. Exanple of a <ServerHello> Message 47

B.5. Exanple of a <ClientNonce> Messagec.couiiuuen... 47

B. 6. Exanple of a <ServerFinished> Message 48

Appendix C. Integration with PKCS #11 48

Appendi x D. Exanple CT-KIP-PRF Realizations 48

D.1. Introducti on e 48

D.2. CT-KIP-PRF-AES e e e e 48

D.2.1. ldentification i, 48

D.2.2. Definition 49

D. 2.3, EXanpl e e 50

D.3. CT-KIP-PRF-SHA256 e 50

D.3.1. ldentification i, 50

D.3.2. Definition 51

D.3.3. EXanpl e 52

Appendi x E. About OTPS 53

Nyst roem I nf or mat i onal [Page 3]

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

1. Introduction

Note: This document is Revision 1 of CT-KIP Version 1.0 [12] from RSA
Laboratories’ OIPS series.

1.1. Scope

Thi s docunent describes a client-server protocol for initialization

(and configuration) of cryptographic tokens. The protocol requires

neither private-key capabilities in the cryptographic tokens, nor an
est abl i shed public-key infrastructure.

The objectives of this protocol are:

o To provide a secure nethod of initializing cryptographic tokens
with secret keys w thout exposing generated, secret material to

any other entities than the server and the cryptographic token
itself,

0 To avoid, as rmuch as possible, any inpact on existing
crypt ographi ¢ token manufacturing processes,

0o To provide a solution that is easy to adm nister and scales well.

The mechanismis intended for general use within conputer and

communi cati ons systens enpl oyi ng connected cryptographic tokens (or
sof tware enul ati ons thereof).

1.2. Background

A cryptographi c token may be a handhel d hardware device, a hardware
devi ce connected to a personal conputer through an el ectronic
interface such as USB, or a software nodul e resi dent on a persona
comput er, which offers cryptographic functionality that may be used
e.g., to authenticate a user towards some service. Increasingly,
these tokens work in a connected fashion, enabling their programmtic
initialization as well as programmatic retrieval of their output

val ues. This docunment intends to neet the need for an open and

i nteroperabl e mechanismto progranmmatically initialize and configure
connected cryptographi c tokens. A conpani on docunment entitled "A
PKCS #11 Mechani sm for the Cryptographic Token Key Initialization

Protocol " [2] describes an application-progranmng interface suitable
for use with this nechani sm

Nyst roem I nf or mat i onal [Page 4]

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

1.3. Docunent Organization
The organi zation of this docunent is as follows:
0 Section 1 is an introduction.
0 Section 2 defines some notation used in this docunent.
0 Section 3 defines the protocol nmechanismin detail
0 Section 4 defines a binding of the protocol to transports.
0 Section 5 provides security considerations.
0 Appendix A defines the XM. scherma for the protocol nechani sm
Appendi x B gi ves exanpl e nmessages, and Appendi x C di scusses

integration with PKCS #11 [3].

0 Appendi x D provides exanple realizations of an abstract
pseudor andom function defined in Section 3.

0 Appendi x E provides general information about the One-Tine
Password Specifications.

2. Acronyns and Notation

2.1. Acronyns

MAC Message Aut henticati on Code
PDU Prot ocol Data Unit
PRF Pseudo- Random Functi on

CT-KIP Cryptographic Token Key Initialization Protocol (the
prot ocol mechani sm descri bed herein)

2.2. Notation

|] String concatenation

[X] Optional el enent x
A™B Excl usi ve-or operation on strings A and B (A and B of equa
| engt h)

K AUTH Secret key used for authentication purposes

Nyst roem I nf or mat i onal [Page 5]

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

3.

3.

K TOKEN Secret key used for token conputations, generated in CT-KIP
K_SERVER Public key of CT-KIP server

K _SHARED Secret key shared between the cryptographic token and the
CT-KI P server

K Key used to encrypt R C (either K SERVER or K SHARED)

R Pseudor andom val ue chosen by the cryptographi c token and
used for MAC conputati ons

RC Pseudor andom val ue chosen by the cryptographic token
RS Pseudor andom val ue chosen by the CT-KIP server

The foll owi ng typographical convention is used in the body of the
text: <XMLEl ement>.

CT-KI P
1. Overview

The CT-KIP is a client-server protocol for the secure initialization
of cryptographic tokens. The protocol is nmeant to provide high
assurance for both the server and the client (cryptographic token)
that generated keys have been correctly and random y generated and
not exposed to other entities. The protocol does not require the
exi stence of a public-key infrastructure.

S + S +
| CT-KIP client | | CT-KIP server
e . e .

I [<---- CT-KIP trigger ----] I

I ------- Cient Hello ------- > I

I <------ Server Hello -------- I

I ------- Client Nonce ------- > I

I <----- Server Finished ------ I

Figure 1: The 4-pass CT-KIP protocol (with optional preceding
trigger)

Nyst roem I nf or mat i onal [Page 6]

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

3.2. Entities

In principle, the protocol involves a CT-KIP client and a CT-KIP
server.

It is assuned that a desktop/laptop or a wireless device (e.g., a
nmobi | e phone or a PDA) will host an application comunicating wth
the CT-KIP server as well as the cryptographic token, and
collectively, the cryptographic token and the comruni cating
application formthe CT-KIP client. Wen there is a need to point
out if an action is to be perforned by the conmuni cating application
or by the token the text will nake this explicit.

The manner in which the comunicating application will transfer CT-
KIP protocol elenents to and fromthe cryptographic token is
transparent to the CI-KIP server. One nethod for this transfer is
described in [2].

3.3. Principles of Operation

To initiate a CI-KIP session, a user nay use a browser to connect to
a web server running on sonme host. The user may then identify (and
aut henticate) herself (through sone nmeans that essentially are out of
scope for this docunent) and possibly indicate how the CT-KIP client
shall contact the CT-KIP server. There are also other alternatives
for CT-KIP session initiation, such as the CT-KIP client being pre-
configured to contact a certain CT-KIP server, or the user being

i nformed out - of -band about the location of the CT-KIP server. 1In any
event, once the location of the CI-KIP server is known, the CT-KIP
client and the CT-KIP server engage in a 4-pass protocol in which

a. The CT-KIP client provides information to the CT-KIP server about
the cryptographic token's identity, supported CT-KIP versions,
cryptographic al gorithns supported by the token and for which
keys may be generated using this protocol, and encryption and MAC
al gorithns supported by the cryptographic token for the purposes
of this protocol

b. Based on this information, the CT-KIP server provides a random
nonce, RS, to the CT-KIP client, along with information about
the type of key to generate, the encryption algorithmchosen to
protect sensitive data sent in the protocol. |In addition, it
provi des either information about a shared secret key to use for
encrypting the cryptographic token's random nonce (see bel ow), or
its owmn public key. The length of the nonce RS may depend on
the sel ected key type.

Nyst roem I nf or mat i onal [Page 7]

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

c. The cryptographic token generates a random nonce R C and encrypts
it using the selected encryption algorithmand with a key K that
is either the CT-KIP server’s public key K SERVER, or a shared
secret key K SHARED as indicated by the CT-KIP server. The
I ength of the nonce R C may depend on the selected key type. The
CT-KIP client then sends the encrypted random nonce to the CT-KIP
server. The token also cal culates a cryptographic key K TOKEN of
the selected type fromthe conbination of the two random nonces
R S and R C, the encryption key K, and possibly some other data,
usi ng the CT-KI P-PRF function defined herein.

d. The CT-KIP server decrypts R C, calculates K TOKEN fromthe
conbi nation of the two random nonces R S and R C, the encryption
key K, and possibly sonme other data, using the CT-KIP-PRF
function defined herein. The server then associates K TOKEN with
the cryptographic token in a server-side data store. The intent
is that the data store later on will be used by sone service that
needs to verify or decrypt data produced by the cryptographic
t oken and the key.

e. Once the association has been nade, the CT-KIP server sends a
confirmation nmessage to the CT-KIP client. The confirnmation
message includes an identifier for the generated key and may al so
contain additional configuration infornation, e.g., the identity
of the CT-KIP server

f. Upon receipt of the CT-KIP server’s confirmation nessage, the
crypt ographi c token associates the provided key identifier with
the generated key K TOKEN, and stores the provided configuration
data, if any.

Not e: Conceptual ly, although R Cis one pseudorandomstring, it may
be viewed as consisting of two conponents, R Cl and R C2, where R Cl
is generated during the protocol run, and R C2 can be generated at
the cryptographi c token manufacturing tine and stored in the
cryptographic token. In that case, the latter string, R C2, should
be uni que for each cryptographic token for a given nmanufacturer

Nyst roem I nf or mat i onal [Page 8]

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

S + Fommnnan + S +
I to-ooooooooo + I I I I I
I | Server key | I I I I I
| +<-| Public [------ D D SRR + |
| | | Private | I I I I I ||
I R + I I I I I ||
|| I I I I I I ||
|V v I I I I v Vi
I R + I I I I to--oo---- +]
| | | Decrypt |<------- R R e L | Encrypt | |
I + I I I I to-o-o---- +]
|| e + | I I I n ||
|| | | Server | | I I I I ||
| | | | Random|--->------------- Se----- S +
|| | - + | I I | | | Qient | | |
|| I I I I I | | | Random | | |
|| I I I I I I +]
|| I I I I I || I ||
|| v v I I I |V v ||
I e + I I | oo + ||
| +-->] CT-KIP PRF | | | | | | CT-KIP PRF | <----+
I tomoomoooooo + I I | Ao + I
I I I I I I I I
I v I I I I v I
I to-o-- - + I I I |+ + I
I | Key | I I I | | Key | I
A REEEEE + .		- +	
oo + .		- +	
	Key Id [-------- S R T So-----	Key 1d	
s + o I B +			
e + N + e +
CT-KI P Server CT-KIP dient CT-KIP dient (Token)
(PC Host)

Figure 2: Principal data flow for CT-KIP key generation - using
public server key

The inclusion of the two random nonces R S and R Cin the key
generation provi des assurance to both sides (the token and the CT-KIP
server) that they have contributed to the key’'s randommess and t hat
the key is unique. The inclusion of the encryption key K ensures
that no man-in-the-niddle may be present, or else the cryptographic
token will end up with a key different fromthe one stored by the
legitimate CT-KIP server.

Note: A man-in-the mddle (in the formof corrupt client software or

a m stakenly contacted server) may present his own public key to the
token. This will enable the attacker to learn the client’s version

Nyst roem I nf or mat i onal [Page 9]

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

of K TOKEN. However, the attacker is not able to persuade the
legitimate server to derive the same value for K TOKEN, since K_TOKEN
is a function of the public key involved, and the attacker’s public
key nmust be different than the correct server’s (or else the attacker
woul d not be able to decrypt the information received fromthe
client). Therefore, once the attacker is no longer "in the nddle"
the client and server will detect that they are "out of synch" when
they try to use their keys. Therefore, in the case of encrypting R C
with K SERVER it is inportant to verify that K SERVER really is the
legitimate server’s key. One way to do this is to independently
validate a newy generated K TOKEN agai nst sone validation service at
the server (e.g., by using a connection independent fromthe one used
for the key generation).

The CT-KIP server may couple an initial user authentication to the
CT-KI P execution in several ways to ensure that a generated K TCKEN
ends up associated with the correct token and user. One way is to
provide a one-tine value to the user or CT-KIP client after
successful user authentication and require this value to be used when
contacting the CT-KIP service (in effect coupling the user

aut hentication with the subsequent CT-KIP protocol run). This value
could, for exanple, be placed in a <TriggerNonce> el ement of the CT-
KIP initialization trigger (if triggers are used; see Section 4.2.7).
Another way is for the user to provide a token identifier which will
|ater be used in the CT-KIP protocol to the server during the

aut henti cation phase. The server may then include this token
identifier in the CT-KIP initialization trigger. It is also
legitimate for a CT-KIP client to initiate a CI-KIP protocol run

wi t hout having received an initialization nessage froma server, but
in this case any provided token identifier shall not be accepted by
the server unless the server has access to a uni que token key for the
identified token and that key will be used in the protocol. Whatever
the method, the CT-KIP server nust ensure that a generated key is
associated with the correct token and, if applicable, the correct
user. For a further discussion of this and threats related to man-
in-the-mddle attacks in this context, see Section 5.5.

3.4. The CT-KIP One-Way Pseudorandom Functi on, CT-KI P-PRF
3.4.1. Introduction

The general requirenents on CT-KIP-PRF are the sane as on keyed hash
functions: It shall take an arbitrary length input, and be one-way
and collision-free (for a definition of these terns, see, e.g., [4]).
Furt her, the CT-KIP-PRF function shall be capable of generating a
vari abl e-1 ength output, and its output shall be unpredictable even if
other outputs for the sane key are known.

stroem I nf or mat i onal Page 10
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

It is assuned that any realization of CT-KIP-PRF takes three input
paraneters: A secret key k, some conbination of variable data, and
the desired length of the output. Exanples of the variable data
include, but are not linmted to, a current token counter value, the
current token tinme, and a challenge. The conbination of variable
data can, without |oss of generalization, be considered as a salt
val ue (see PKCS #5 Version 2.0 [5], Section 4), and this
characterization of CT-KIP-PRF should fit all actual PRF algorithms
i mpl enented by tokens. Fromthe point of view of this specification
CT-KIP-PRF is a "black-box" function that, given the inputs,
generates a pseudor andom val ue.

Separate specifications may define the inplenentation of CT-KIP-PRF
for various types of cryptographic tokens. Appendix D contains two
exanpl e realizations of CT-KIP-PRF.

3.4.2. Declaration
CT-KI P-PRF (k, s, dsLen)
I nput :

k secret key in octet string format

s octet string of varying length consisting of variable data
di stinguishing the particular string being derived

dsLen desired | ength of the output
Qut put :
DS pseudorandom string, dsLen-octets |ong

For the purposes of this docunent, the secret key k shall be 16
octets | ong.

3.5. Ceneration of Cryptographic Keys for Tokens

In CT-KIP, keys are generated using the CT-KIP-PRF function, a secret
random val ue R C chosen by the CT-KIP client, a randomvalue R S
chosen by the CT-KIP server, and the key k used to encrypt R C. The
i nput paraneter s of CTI-KIP-PRF is set to the concatenation of the
(ASCI1) string "Key generation", k, and R S, and the input paraneter
dsLen is set to the desired length of the key, K TOKEN (the |ength of
K_TCOKEN i s given by the key' s type):

stroem I nf or mat i onal Page 11
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

dsLen = (desired | ength of K TOKEN)
K_TCOKEN = CT-KIP-PRF (R_C, "Key generation” || k || R_S, dsLen)

When conputing K TOKEN above, the output of CT-KIP-PRF nmay be subject
to an al gorithm dependent transform before being adopted as a key of
the selected type. One exanple of this is the need for parity in DES
keys.

3.6. Encryption of Pseudorandom Nonces Sent fromthe CT-KIP dient

CT-KI P client random nonce(s) are either encrypted with the public
key provided by the CT-KIP server or by a shared secret key. For

exanple, in the case of a public RSA key, an RSA encryption schene
from PKCS #1 [6] may be used.

In the case of a shared secret key, to avoid dependence on ot her
algorithnms, the CT-KIP client nay use the CT-KIP-PRF function
described herein with the shared secret key K SHARED as i nput
paraneter k (in this case, K SHARED should be used solely for this
pur pose), the concatenation of the (ASCIl) string "Encryption" and
the server’s nonce R S as input paraneter s, and dsLen set to the
length of R C

dsLen = len(R_C
DS = CT-KI P- PRF(K_SHARED, "Encryption" || R_S, dslLen)

This will produce a pseudorandom string DS of |length equal to R C
Encryption of R C may then be achieved by XOR-ing DS with R C

Enc-R C=DS * RC

The CT-KIP server will then performthe reverse operation to extract
R C fromEnc-R C

Note: It nmay appear that an attacker, who |earns a previous val ue of
R C, may be able to replay the corresponding R S and, hence, learn a
new R C as well. However, this attack is mtigated by the
requirenent for a server to show know edge of K AUTH (see below) in
order to successfully conplete a key re-generation.

stroem I nf or mat i onal Page 12
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

3.7. CT-KIP Schena Basics
3.7.1. Introduction

Core parts of the XML schema for CT-KIP, found in Appendix A, are
explained in this section. Specific protocol nessage el enments are
defined in Section 3.8. Exanples can be found in Appendi x B

The XML format for CT-KIP nmessages have been designed to be

extensi ble. However, it is possible that the use of extensions wll
harminteroperability; therefore, any use of extensions should be
carefully considered. For exanple, if a particular inplenmentation
relies on the presence of a proprietary extension, then it may not be
able to interoperate with i ndependent inplenentations that have no
know edge of this extension

XML types defined in this sub-section are not CT-KIP nessages; rather
they provide building blocks that are used by CT-KI P nessages.

3.7.2. Ceneral XM. Schema Requirenents

Some CT-KIP elenments rely on the parties being able to conpare

recei ved values with stored values. Unless otherw se noted, all

el ements in this docunent that have the XML Schema "xs:string" type
or a type derived fromit, nust be conpared using an exact binary
conmparison. |In particular, CT-KIP inplenentations nust not depend on
case-insensitive string conparisons, normalization or trimnmng of
white space, or conversion of |ocale-specific formats such as
nunbers.

| npl enent ati ons that conpare val ues that are represented using

di fferent character encodi ngs nust use a conparison nethod that
returns the same result as converting both values to the Unicode
character encoding, Normalization Form C [1], and then perform ng an
exact binary conparison

No collation or sorting order for attributes or elenent values is
defined. Therefore, CT-KIP inplenentations nust not depend on
specific sorting orders for val ues.

3.7.3. The Abstract Request Type Type

Al'l CT-KIP requests are defined as extensions to the abstract
Abstract Request Type type. The el enments of the Abstract Request Type,
therefore, apply to all CT-KIP requests. All CT-KIP requests nust
contain a Version attribute. For this version of this specification
Version shall be set to "1.0"

stroem I nf or mat i onal Page 13
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

<xs: conpl exType nane="Abst ract Request Type" abstract="true">
<xs:attribute nanme="Version" type="VersionType"
use="required"/>
</ xs: conpl exType>

3.7.4. The Abstract ResponseType type

Al CT-KIP responses are defined as extensions to the abstract
Abstract ResponseType type. The elenents of the Abstract ResponseType,
therefore, apply to all CT-KIP responses. Al CT-KIP responses
contain a Version attribute indicating the version that was used. A
Status attribute, which indicates whether the precedi ng request was
successful or not nust also be present. Finally, all responses nay
contain a SessionlD attribute identifying the particular CT-KIP
session. The SessionlD attribute needs only be present if nore than
one roundtrip is required for a successful protocol run (this is the
case with the protocol version described herein).

<xs: conpl exType nane="Abst ract ResponseType" abstract="true">
<xs:attribute name="Version" type="VersionType" use="required"/>
<xs:attribute name="Sessionl D' type="IldentifierType"/>
<xs:attribute name="Status" type="StatusCode" use="required"/>
</ xs: conpl exType>

3.7.5. The StatusCode Type
The StatusCode type enunerates all possible return codes:

<xs: si npl eType nane=" St at usCode" >
<xs:restriction base="xs:string">
<xs:enuneration val ue="Conti nue"/>
<xs: enuneration val ue="Success"/>
<xs:enuneration val ue="Abort"/>
<xs:enuneration val ue="AccessDeni ed"/ >
<xs:enuneration val ue="Mal f or redRequest "/ >
<xs: enuneration val ue="UnknownRequest"/ >
<xs:enuneration val ue="UnknownCriti cal Ext ensi on"/>
<xs: enuneration val ue="UnsupportedVersion"/>
<xs:enuneration val ue="NoSupport edKeyTypes"/ >
<xs:enuneration val ue="NoSupport edEncrypti onAl gorithns"/>
<xs:enuneration val ue="NoSupport edVACAl gorithns"/>
<xs:enuneration value="InitializationFailed"/>
</xs:restriction>
</ xs: si npl eType>

Upon transm ssion or receipt of a nessage for which the Status

attribute’ s value is not "Success" or "Continue", the default
behavi or, unless explicitly stated otherwi se below, is that both the

stroem I nf or mat i onal Page 14
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

CT-KI P server and the CT-KIP client shall imrediately term nate the
CT-KI P session. CT-KIP servers and CT-KIP clients nust delete any
secret values generated as a result of failed runs of the CT-KIP
protocol. Session identifiers may be retained from successful or
failed protocol runs for replay detection purposes, but such retained
identifiers shall not be reused for subsequent runs of the protocol

Wien possible, the CT-KIP client should present an appropriate error
nmessage to the user.

These status codes are valid in all CT-KIP-Response nessages unl ess
explicitly stated otherw se.

o "Continue" indicates that the CT-KIP server is ready for a
subsequent request fromthe CT-KIP client. It cannot be sent in
the server’s final nessage

0 "Success" indicates successful conpletion of the CT-KIP session
It can only be sent in the server’s final nessage

o "Abort" indicates that the CI-KIP server rejected the CT-KIP
client’s request for unspecified reasons.

o "AccessDenied" indicates that the CT-KIP client is not authorized
to contact this CT-KIP server

o "Ml formedRequest" indicates that the CT-KIP server failed to
parse the CI-KIP client’s request.

0 "UnknownRequest" indicates that the CT-KIP client nade a request
that is unknown to the CT-KIP server

0o "UnknownCritical Extension" indicates that a critical CT-KIP
ext ension (see below) used by the CT-KIP client was not supported
or recogni zed by the CT-KIP server

0 "UnsupportedVersion" indicates that the CT-KIP client used a CT-
KI P protocol version not supported by the CT-KIP server. This
error is only valid in the CT-KI P server’s first response nessage.

0 "NoSupportedKeyTypes" indicates that the CT-KIP client only
suggest ed key types that are not supported by the CT-KIP server
This error is only valid in the CT-KIP server’s first response
nessage. Note that the error will only occur if the CT-KIP server
does not support any of the CT-KIP client’s suggested key types.

stroem I nf or mat i onal Page 15
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

0 "NoSupportedEncryptionAl gorithns" indicates that the CT-KIP client
only suggested encryption algorithns that are not supported by the
CT-KIP server. This error is only valid in the CI-KIP server’s
first response nessage. Note that the error will only occur if
the CT-KIP server does not support any of the CT-KIP client’s
suggest ed encryption al gorithns.

0 "NoSupport edMACAl gorithns" indicates that the CT-KIP client only
suggested MAC algorithns that are not supported by the CT-KIP
server. This error is only valid in the CT-KIP server’s first
response nmessage. Note that the error will only occur if the CT-
KIP server does not support any of the CI-KIP client’s suggested
MAC al gorit hns.

o "lInitializationFailed" indicates that the CT-KIP server could not
generate a valid key given the provided data. Wen this status
code is received, the CT-KIP client should try to restart CT-KIP
as it is possible that a new run will succeed.

3.7.6. The ldentifierType Type

The ldentifierType type is used to identify various CT-KIP el ements,
such as sessions, users, and services. Identifiers nust not be
| onger than 128 octets.

<xs:si npl eType name="IdentifierType">
<xs:restriction base="xs:string">
<xs: maxLengt h val ue="128"/>
</xs:restriction>
</ xs: si npl eType>

3.7.7. The NonceType Type

The NonceType type is used to carry pseudorandom values in CT-KIP
messages. A nonce, as the name inplies, nust be used only once. For
each CT-KIP nessage that requires a nonce elenent to be sent, a fresh
nonce shall be generated each tinme. Nonce values nust be at |east 16
octets | ong.

<xs: si npl eType nane="NonceType" >
<xs:restriction base="xs: base64Bi nary">
<xs: m nLength val ue="16"/>
</xs:restriction>
</ xs: si npl eType>

stroem I nf or mat i onal Page 16
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

3.7.8. The ExtensionsType and the Abstract Ext ensi onType Types

The ExtensionsType type is a list of type-value pairs that define
optional CT-KIP features supported by a CT-KIP client or server.
Extensi ons may be sent with any CT-KIP nessage. Please see the
description of individual CT-KIP nessages in Section 3.8 of this
docunent for applicable extensions. Unless an extension is narked as
Critical, a receiving party need not be able to interpret it. A
receiving party is always free to disregard any (non-critical)

ext ensi ons.

<xs: conpl exType nane="Abst r act Ext ensi onsType" >
<xs: sequence nmaxCccurs="unbounded" >
<xs: el enent nane="Extensi on" type="AbstractExtensi onType"/>
</ xs: sequence>
</ xs: conpl exType>

<xs: conpl exType nane="Abst ract Ext ensi onType" abstract="true">
<xs:attribute name="Critical" type="xs:bool ean"/>
</ xs: conpl exType>

3.8. CT-KIP Messages
3.8.1. Introduction

In this section, CT-KIP nessages, including their paraneters,
encodi ngs and semantics are defined.

3.8.2. CT-KIP Initialization

The CT-KIP server may initialize the CT-KI P protocol by sending a
<CT- Kl PTri gger> nmessage. This nessage nmay, e.g., be sent in response
to a user requesting token initialization in a browsing session

<xs: conpl exType name="InitializationTriggerType">
<XS:sequence>
<xs: el enent nane="Tokenl D' type="xs: base64Bi nary" m nCccurs="0"/>
<xs: el enent nane="Keyl D' type="xs: base64Bi nary" m nCccurs="0"/>
<xs: el ement nane="TokenPl at f or m nf 0"
type="TokenPl at f or M nf oType" m nCccurs="0"/>
<xs: el ement nane="Tri gger Nonce" type="NonceType"/>
<xs: el ement nane="CT-KI PURL" type="xs:anyURI " nmi nCccurs="0"/>
<xs:any namespace="##other" processContents="strict"
nm nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="id" type="xs:1D'/>
</ xs: conpl exType>

stroem I nf or mat i onal Page 17
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

<xs: el ement nane="CT-KI PTri gger" type="CT-KI PTrigger Type"/>

<xs: conpl exType name="CT- Kl PTri gger Type" >
<xs:annot ati on>
<xs:docunentation xn :|ang="en">
Message used to trigger the device to initiate a
CT-KI P run.
</ xs: docunent ati on>
</ xs:annot at i on>
<XSs: sequence>
<xs: choi ce>
<xs: el enent nane="lnitializationTrigger"
type="InitializationTriggerType"/>
<Xs:any naneSpace="##ot her" processContents="strict"/>
</ xs: choi ce>
</ xs: sequence>
<xs:attribute nanme="Version" type="ct-Kkip:VersionType"/>
</ xs: conpl exType>

The <CT-KIPTrigger> element is intended for the CT-KIP client and may
informthe CT-KIP client about the identifier for the token that is
to be initialized, and, optionally, of the identifier for the key on
that token. The latter would apply when re-seeding. The trigger

al ways contains a nonce to allow the server to couple the trigger
with a later CT-KIP <ClientHello> request. Finally, the trigger nay
contain a URL to use when contacting the CT-KIP server. The <xs:any>
elements are for future extensibility. Any provided <Tokenl D> or
<Keyl D> val ues shall be used by the CT-KIP client in the subsequent
<CientHell o> request. The optional <TokenPl atform nfo> el emrent
informs the CT-KIP client about the characteristics of the intended
token platform and applies in the public-key variant of CT-KIP in
situations when the client potentially needs to decide which one of
several tokens to initialize.

The Version attribute shall be set to "1.0" for this version of CT-
Kl P.

3.8.3. The CT-KIP dient’s Initial PDU

This message is the initial nmessage sent fromthe CT-KIP client to
the CT-KIP server.

<xs: el enment nane="CientHello" type="dientHelloPDU'/>
<xs: conpl exType nane="d i ent Hel | oPDU" >
<xs:annot ati on>

<xs:docunentation xn :|ang="en">
Message sent from CT-KIP client to CT-KIP server to

stroem I nf or mat i onal Page 18
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

initiate a CT-KI P session
</ xs: docunent ati on>
</ xs:annot at i on>
<xs: conpl exCont ent >
<xs: extensi on base="Abstract Request Type" >
<XS:sequence>
<xs: el enment nane="Tokenl D'
type="xs: base64Bi nary" mi nCccurs="0"/>
<xs: el enent nane="Keyl D'
type="xs: base64Bi nary" m nCccurs="0"/>
<xs: el ement nane="C i ent Nonce"
type="NonceType" mi nCccurs="0"/>
<xs: el ement nane= "Tri gger Nonce"
type="NonceType" mi nCccurs="0"/>
<xs: el ement nane="Support edKeyTypes"
type="Al gorithnsType"/>
<xs: el ement nane="SupportedEncryptionAl gorithns"
type="Al gorithnsType"/>
<xs: el ement nane=" Support edMACAI gorithns"
type="Al gorithnsType"/>
<xs: el enent nane="Ext ensi ons"
t ype="Ext ensi onsType" ni nCccurs="0"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

The conponents of this nessage have the foll owi ng neani ng:

0 Version: (attribute inherited fromthe Abstract Request Type type)
The hi ghest version of this protocol the client supports. Only
version one ("1.0") is currently specified.

0 <TokenID>: An identifier for the cryptographic token (allows the
server to find, e.g., a correct shared secret for MAC ng
purposes). The identifier shall only be present if such shared
secrets exist or if the identifier was provided by the server in a
<CT- Kl PTri gger> el enent (see Section 4.2.7 below). |In the latter
case, it must have the same value as the identifier provided in
that el ement.

0 <KeylD> An identifier for the key that will be overwitten if the

protocol run is successful. The identifier shall only be present
if the key exists or was provided by the server in a
<CT- Kl PTri gger> el enent (see Section 4.2.7 below). In the latter

case, it nust have the sane value as the identifier provided in
that el ement.

stroem I nf or mat i onal Page 19
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

0 <CientNonce>: This is the nonce R which, when present, shall be
used by the server when cal cul ati ng MAC val ues (see below). It is
reconmended that clients include this el ement whenever the <Keyl D>
el ement is present.

0 <TriggerNonce>: This optional elenment shall be present if and only
if the CT-KIP run was initialized with a <CT-KIPTri gger> nessage
(see Section 4.2.7 below), and shall, in that case, have the same
val ue as the <TriggerNonce> child of that message. A server using
nonces in this way nmust verify that the nonce is valid and that
any token or key identifier values provided in the <CT-KIPTrigger>
message match the corresponding identifier values in the
<dient Hel | 0> nessage.

0 <SupportedKeyTypes>: A sequence of URIs indicating the key types
for which the token is willing to generate keys through CT-KIP

0 <SupportedEncryptionAl gorithnms>: A sequence of URIs indicating the
encryption algorithns supported by the cryptographic token for the
purposes of CT-KIP. The CT-KIP client may indicate the sane
al gorithmboth as a supported key type and as an encryption
al gorithm

0 <SupportedMACAl gorithms>: A sequence of URIs indicating the MAC
al gorithnms supported by the cryptographic token for the purposes
of CT-KIP. The CT-KIP client nmay indicate the sane al gorithm both
as an encryption algorithmand as a MAC algorithm (e.g., http://
WWW. r sasecurity. com rsal abs/ ot ps/ schenmas/ 2005/ 12/
ct- ki p#ct-kip-prf-aes defined in Appendi x D)

0 <Extensions>. A sequence of extensions. One extension is defined
for this nmessage in this version of CT-KIP: the CientlnfoType
(see Section 3.9.1).

3.8.4. The CT-KIP server’s initial PDU

This nmessage is the first nessage sent fromthe CT-KIP server to the
CT-KIP client (assuming a trigger nessage has not been sent to
initiate the protocol, in which case, this nessage is the second
message sent fromthe CT-KIP server to the CT-KIP client). It is
sent upon reception of a <O ientHell o> nessage.

<xs: el ement nane="ServerHel | 0" type="ServerHel | oPDU'/ >
<xs: conpl exType nane="Server Hel | oPDU" >
<xs:annot ati on>

<xs:docunentation xn :|ang="en">
Message sent from CT-KIP server to CT-KIP

stroem I nf or mat i onal Page 20
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

client in response to a received ClientHello
PDU.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs: conpl exCont ent >
<xs: ext ensi on base="Abstract ResponseType" >
<xs: sequence ni nCccurs="0">
<xs: el enent nane="KeyType"
type="Al gorithnType"/>
<xs: el ement nane="EncryptionAl gorithnt
type="Al gorithnilype"/>
<xs: el ement nane="MacAl gorithni
type="Al gorithnlype"/ >
<xs: el ement nane="Encrypti onKey"
type="ds: Keyl nf oType"/ >
<xs: el enent nane="Payl oad"
type="Payl oadType"/ >
<xs: el enent nane="Ext ensi ons"
t ype="Ext ensi onsType" ni nCccurs="0"/>
<xs: el enent nane="Mac" type="MacType"
m nCccurs="0"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: conpl exType name="Payl oadType" >
<xs:annot ati on>
<xs: docunentation xnl:|lang="en">
Currently, only the nonce is defined. |In future versions,
ot her payl oads may be defined, e.g., for one-roundtrip
initialization protocols.
</ xs: docunent ati on>
</ xs: annot ati on>
<xs: choi ce>
<xs: el enent nane="Nonce" type="NonceType"/>
<any nanespace="##ot her" processContents="strict"/>
</ xs: choi ce>
</ xs: conpl exType>

<xs: conpl exType nane="MacType" >
<xs: si npl eCont ent >
<xs: extensi on base="xs: base64Bi nary" >
<xs:attribute name="MacAl gorithn type="xs:anyURl "/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

stroem I nf or mat i onal Page 21
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

The conponents of this nessage have the foll owi ng neani ng:

(o]

Version: (attribute inherited fromthe Abstract ResponseType type)

The version selected by the CT-KIP server. My be | ower than the

version indicated by the CT-KIP client, in which case, |oca

policy at the client will deterni ne whether or not to continue the
sessi on.

Sessionl D (attribute inherited fromthe Abstract ResponseType
type) An identifier for this session

Status: (attribute inherited fromthe abstract

Abstract ResponseType type) Return code for the <ClientHello> |If
Status is not "Continue", only the Status and Version attributes
will be present; otherwi se, all the other elenments nust be present
as wel | .

<KeyType>: The type of the key to be generated.

<Encrypti onAl gorithne: The encryption algorithmto use when
protecting R C

<MacAl gorithnr: The MAC algorithmto be used by the CT-KIP server

<EncryptionKey>: Information about the key to use when encrypting
RC It will either be the server’s public key (the <ds: KeyVal ue>
alternative of ds:KeylnfoType) or an identifier for a shared
secret key (the <ds: KeyNane> alternative of ds:KeylnfoType).

<Payl oad>: The actual payload. For this version of the protocol
only one payload is defined: the pseudorandom string R S.

<Extensions>: A list of server extensions. Two extensions are
defined for this nessage in this version of CI-KIP: the
AientlnfoType and the Serverl nfoType (see Section 3.9).

<Mac>: The MAC nust be present if the CT-KIP run will result in
the replacement of an existing token key with a new one (i.e., if
the <Keyl D> el ement was present in the <ClientHello> nessage). In
this case, the CT-KIP server nust prove to the cryptographic token
that it is authorized to replace it. The MAC val ue shall be
conputed on the (ASCII) string "MAC 1 conputation", the client’s
nonce R (if sent), and the server’s nonce R S using an

aut henti cation key K AUTH that should be a special authentication
key used only for this purpose but may be the current K _TOKEN.

stroem I nf or mat i onal Page 22
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

3.

8.

The MAC val ue nay be conputed by using the CT-KIP-PRF function of
Section 3.4, in which case the input paranmeter s shall be set to
the concatenation of the (ASCI1) string "MAC 1 conputation", R (if
sent by the client), and RS, and k shall be set to K AUTH The
i nput paraneter dsLen shall be set to the length of R S:

dsLen = len(R_S)

MAC = CT-KI P-PRF (K_AUTH, "MAC 1 conputation” || [R]|]] RS,
dslLen)

The CT-KIP client nmust verify the MACif the successful execution
of the protocol will result in the replacenment of an existing
token key with a newWy generated one. The CT-KIP client nust
term nate the CT-KIP session if the MAC does not verify, and nust

del ete any nonces, keys, and/or secrets associated with the failed

run of the CT-KIP protocol

The MacType’'s MacAlgorithmattribute shall, when present, identify

t he negotiated MAC al gorithm
5. The CT-KIP Client’s Second PDU

Thi s message contains the nonce chosen by the cryptographic token
R C, encrypted by the specified encryption key and encryption
al gorithm

<xs: el enment nane="C i ent Nonce" type="d ient NoncePDU'/ >

<xs: conpl exType nane="d i ent NoncePDU' >
<Xs:annot ati on>
<xs: docunentation xnm:|ang="en">
Second nessage sent from CT-KIP client to
CT-KIP server in a CT-KIP session
</ xs: docunent ati on>
</ xs:annot at i on>
<xs: conpl exCont ent >
<xs: ext ensi on base="Abstract Request Type" >
<Xs:sequence>
<xs: el ement nane="Encrypt edNonce"
type="xs: base64Bi nary"/ >
<xs: el enent nane="Ext ensi ons"
t ype="Ext ensi onsType" ni nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="Sessionl D' type="IldentifierType"
use="required"/>
</ xs: ext ensi on>
</ xs: conpl exCont ent >

stroem I nf or mat i onal Page 23
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

</ xs: conpl exType>
The conponents of this nmessage have the foll owi ng neaning:

o Version: (inherited fromthe Abstract Request Type type) Shall be
the sane version as in the <ServerHel |l o> nessage.

o0 SessionlD: Shall have the sane value as the SessionlD attribute in
the received <ServerHel | 0> nessage.

0 <EncryptedNonce>: The nonce generated and encrypted by the token
The encryption shall be nade using the sel ected encryption
algorithmand identified key, and as specified in Section 3.4.

0 <Extensions>: A list of extensions. Two extensions are defined
for this message in this version of CT-KIP: the CientlnfoType and
the Serverl nfoType (see Section 3.9).

3.8.6. The CT-KIP Server’'s Final PDU

This message is the |last nmessage of a two roundtrip CT-KIP exchange.
The CT-KIP server sends this nessage to the CT-KIP client in response
to the <dient Nonce> nessage.

<xs: el enent nane="Server Fi ni shed" type="ServerFi ni shedPDU'/ >

<xs: conpl exType nane="Server Fi ni shedPDU" >
<xs:annot ati on>
<xs:docunentation xn :|ang="en">
Fi nal message sent from CT-KIP server to
CT-KIP client in a CT-KIP session.
</ xs: docunent ati on>
</ xs:annot at i on>
<xs: conpl exCont ent >
<xs: extensi on base="Abstract ResponseType">
<xs: sequence ni nCccurs="0">
<xs: el enent nane="Tokenl D'
type="xs: base64Bi nary"/ >
<xs: el enent nane="Keyl D'
type="xs: base64Bi nary"/ >
<xs: el ement nane="KeyExpi ryDat e"
type="xs: dat eTi ne" m nCccurs="0"/>
<xs: el ement nane="Servicel D'
type="IdentifierType" nminCccurs="0"/>
<xs: el ement nane="Servi ceLogo"
type="LogoType" m nCccurs="0"/>
<xs: el ement nane="User| D'
type="IldentifierType" m nCccurs="0"/>

stroem I nf or mat i onal Page 24
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

<xs: el enent nane="Ext ensi ons"
t ype="Ext ensi onsType" ni nCccurs="0"/>
<xs: el enent nane="Mac"
type="MacType"/ >
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

The conponents of this nessage have the foll owi ng neani ng:

0 Version: (inherited fromthe Abstract ResponseType type) The CT-KIP
version used in this session.

0 SessionlD: (inherited fromthe Abstract ResponseType type) The
previously established identifier for this session

0 Status: (inherited fromthe Abstract ResponseType type) Return code
for the <ServerFini shed> nmessage. |If Status is not "Success"
only the Status, SessionlD, and Version attributes will be present
(the presence of the SessionlD attribute is dependent on the type
of reported error); otherwise, all the other el enents nust be
present as well. In this latter case, the <ServerFi ni shed>
nmessage can be seen as a "Conmmit" nessage, instructing the
cryptographic token to store the generated key and associate the
given key identifier with this key.

0 <TokenID>: An identifier for the token carrying the generated key.
Must have the sane val ue as the <Tokenl D> el ement of the
<O ientHell o> nessage, if one was provided. When assigned by the
CT-KI P server, the <Tokenl D> el enent shall be unique within the
domai n of the CT-KIP server.

0 <KeylD>: An identifier for the newy generated key. The
identifier shall be globally unique. Mist have the sane val ue as
any key identifier provided by the CT-KIP client in the
<dient Hel | 0> nessage.

The reason for requiring globally unique key identifiers is that
it avoids potential conflicts when associating key holders with
key identifiers. One way of achieving global uniqueness wth
reasonabl e certainty is to hash the conbination of the issuer’s
fully qualified domain name with an (issuer-specific) seria
nunber, assum ng that each issuer makes sure their serial nunbers
never repeat.

stroem I nf or mat i onal Page 25
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

CT-KIP clients nmust support key identifiers at |east 64 octets
long. CT-KIP servers should not generate key identifiers |onger
than 64 octets.

0 <KeyExpiryDate>: This optional elenent provides the date and tine
after which the generated key should be treated as expired and
i nval id.

0 <ServicelD>: An optional identifier for the service that has
stored the generated key. The cryptographic token may store this
identifier associated with the key in order to sinplify later
| ookups. The identifier shall be a printable string.

0 <ServicelLogo>. This optional elenent provides a graphical |ogo
i mage for the service that can be displayed in user interfaces,
e.g., to help a user select a certain key. The |ogo should
contain an image within the size range of 60 pixels w de by 45
pi xel s hi gh, and 200 pi xel s wi de by 150 pixels high. The required
M nmeType attribute of this type provides information about the
M ME type of the inmage. This specification supports both the JPEG
and G F image formats (with M ME types of "image/jpeg" and "image/
gif").

0 <UserlD>: An optional identifier for the user associated with the
generated key in the authentication service. The cryptographic
token may store this identifier associated with the generated key
in order to enhance | ater user experiences. The identifier shal
be a printable string.

0 <Extensions>. A list of extensions chosen by the CT-KIP server
For this nessage, this version of CT-KIP defines two extensions,
t he OTPKeyConfi gurati onbDataType and the CientlnfoType (see
Section 3.9).

0 <Mac>: To avoid a false "Conmit" message causing the token to end
up in an initialized state for which the server does not know the
stored key, <ServerFini shed> nessages nust al ways be authenti cated
with a MAC. The MAC shall be made using the already established
MAC al gorithm The MAC val ue shall be conmputed on the (ASCII)
string "MAC 2 conputation"” and R_C using an authentication key
K _AUTH. Again, this should be a special authentication key used
only for this purpose, but may al so be an existing K TOKEN. (In
this case, inplenentations nust protect against attacks where
K_TOKEN is used to pre-conpute MAC values.) |If no authentication
key is present in the token, and no K TOKEN exi sted before the CT-
KIP run, K AUTH shall be the newy generated K TOKEN

stroem I nf or mat i onal Page 26
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

If CT-KIP-PRF is used as the MAC algorithm then the input
paraneter s shall consist of the concatenation of the (ASCII)
string "MAC 2 conputation" and R C, and the paraneter dsLen shal
be set to the length of RC

dsLen = len(R_C
MAC = CT-KI P-PRF (K _AUTH, "MAC 2 conputation” || R C, dsLen)

When receiving a <ServerFini shed> nessage with Status = "Success"
for which the MAC verifies, the CI-KIP client shall associate the
generated key K TOKEN with the provided key identifier and store
this data permanently. After this operation, it shall not be
possible to overwite the key unless know edge of an authorizing
key is proven through a MAC on a |later <ServerHell o> (and
<Server Fi ni shed>) nessage

The CT-KIP client nmust verify the MAC. The CT-KIP client nust
termnate the CT-KIP session if the MAC does not verify, and nust,
in this case, also delete any nonces, keys, and/or secrets
associated with the failed run of the CT-KIP protocol

The MacType’s MacAlgorithmattribute shall, when present, identify
t he negotiated MAC al gorithm

3.9. Protocol Extensions
3.9.1. The dientlnfoType Type

When present in a <CientHello> or a <CientNonce> nessage, the
optional dientlnfoType extension contains CT-KIP client-specific
information. CT-KIP servers must support this extension. CT-KIP
servers nmust not attenpt to interpret the data it carries and, if
recei ved, nust include it unnodified in the current protocol run’s
next server response. Servers need not retain the dientlnfoType's
data after that response has been generated.

<xs: conpl exType nane="d i ent| nfoType">
<xs: conpl exCont ent >
<xs: extensi on base="Abstract Ext ensi onType" >
<Xs:sequence>
<xs: el enment nane="Data"
type="xs: base64Bi nary"/ >
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

stroem I nf or mat i onal Page 27
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

3.9.2. The ServerlnfoType Type

When present, the optional ServerlnfoType extension contains CT-KIP
server-specific information. This extension is only valid in
<ServerHel | o> nessages for which Status = "Continue". CT-KIP clients
nmust support this extension. CT-KIP clients nust not attenpt to
interpret the data it carries and, if received, nust include it
unnodified in the current protocol run’s next client request (i.e.
the <CientNonce> nessage). CT-KIP clients need not retain the
ServerInfoType’'s data after that request has been generated. This
ext ensi on may be used, e.g., for state managenent in the CT-KIP
server.

<xs: conpl exType nane="Server| nfoType">
<xs: conpl exCont ent >
<xs: extensi on base="Abstract Ext ensi onType" >
<Xs:sequence>
<xs: el ement nane="Data"
type="xs: base64Bi nary"/ >
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

3.9.3. The OTPKeyConfi gurati onDataType Type

The optional OTPKeyConfigurationDataType extension contains
addi tional key configuration data for OIP keys:

<xs: conpl exType nane=" OTPKeyConfi gur ati onDat aType" >
<Xs:annot ati on>
<xs: docunentation xnm:|ang="en">
This extension is only valid in ServerFinished
PDUs. It carries additional configuration data
that an OTP token should use (subject to |oca
policy) when generating OTP values with a newy
generated OIP key.
</ xs: docunent ati on>
</ xs:annot at i on>
<xs: conpl exCont ent >
<xs: extensi on base="Extensi onType">
<XS:sequence>
<xs: el ement nane=" OTPFor mat "
t ype=" OTPFor mat Type"/ >
<xs: el enent nane="OTPLengt h"
type="xs: positivel nteger"/>
<xs: el ement nane="OIPMbde"
t ype="OIPModeType" nmi nCccurs="0"/>

stroem I nf or mat i onal Page 28
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
This extension is only valid in <ServerFini shed> nessages. It
carries additional configuration data that the cryptographic token
shoul d use (subject to |l ocal policy) when generating OTP val ues from
the newly generated OTP key. The conponents of this extension have
the foll ow ng neani ng:
0 OTPFormat: The default format of OIPs produced with this key.
0 OTPLength: The default length of OIPs produced with this key.

o OTPMbde: The default node of operation when producing OTPs with
this key.

4. Protocol Bindings

4.1. General Requirenent
CT-KI P assunmes a reliable transport.

4.2, HITP/ 1.1 binding for CT-KIP

4.2.1. Introduction
This section presents a binding of the previous nessages to HITP/ 1.1
[7]. Note that the HITP client normally will be different fromthe
CT-KIP client, i.e., the HTTP client will only exist to "proxy" CT-
KIP nessages fromthe CT-KIP client to the CT-KIP server. Likew se,
on the HTTP server side, the CT-KIP server nay receive CT-KI P PDUs
froma "front-end" HITP server.

4.2.2. ldentification of CT-KIP Messages
The M ME-type for all CT-KIP nessages shall be
appl i cation/vnd. ot ps. ct - ki p+xm

4.2.3. HITP Headers

HTTP proxi es nust not cache responses carrying CT-KI P nessages. For
this reason, the foll ow ng hol ds:

stroem I nf or mat i onal Page 29
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

o Wien using HTTP/ 1.1, requesters shoul d:

* |nclude a Cache-Control header field set to "no-cache,
no-store".

* Include a Pragma header field set to "no-cache"
o When using HTTP/ 1.1, responders shoul d:

* | nclude a Cache-Control header field set to "no-cache,
no- must-reval i date, private"

* Include a Pragma header field set to "no-cache"

* NOT include a Validator, such as a Last-Mdified or ETag
header .

There are no other restrictions on HITP headers, besides the
requirenent to set the Content-Type header value to application/
vnd. ot ps. ct - ki p+xnm .

4.2.4. HITP Operations

Persi stent connections as defined in HTTP/1.1 are assunmed but not
required. CT-KIP requests are napped to HITP POST operations. CT-
KIP responses are nmapped to HTTP responses.

4.2.5. HTTP St at us Codes

A CT-KI P HTTP responder that refuses to performa nessage exchange
with a CT-KIP HTTP requester should return a 403 (Forbi dden)
response. In this case, the content of the HTTP body is not
significant. In the case of an HITP error while processing a CT-KIP
request, the HITP server nust return a 500 (Internal Server Error)
response. This type of error should be returned for HTTP-rel ated
errors detected before control is passed to the CT-KIP processor, or
when the CT-KIP processor reports an internal error (for exanple, the
CT-KI P XML nanmespace is incorrect, or the CT-KIP schema cannot be
located). |If the type of a CT-KIP request cannot be determnined, the
CT-KI P responder nust return a 400 (Bad request) response.

In these cases (i.e., when the HITP response code is 4xx or 5xx), the
content of the HTTP body is not significant.

Redi rection status codes (3xx) apply as usual

stroem I nf or mat i onal Page 30
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

Whenever the HTTP POST is successfully invoked, the CT-KIP HTTP
responder nust use the 200 status code and provide a suitable CT-KIP
nmessage (possibly with CT-KIP error information included) in the HITP
body.

4.2.6. HTTP Authentication
No support for HTTP/ 1.1 authentication is assuned.
4.2.7. Initialization of CT-KIP

The CT-KIP server may initialize the CT-KIP protocol by sending an
HTTP response with Content-Type set to application/

vnd. ot ps. ct - ki p+xm and response code set to 200 (OK). This nessage
may, e.d., be sent in response to a user requesting token
initialization in a browsing session. The initialization nessage may
carry data in its body. |If this is the case, the data shall be a
valid instance of a <CT-KIPTrigger> el enent.

4.2.8. Exanple Messages
a. Initialization from CT-KIP server:

HTTP/ 1.1 200 K

Cache-Control: no-store

Cont ent - Type: appli cation/vnd. ot ps. ct - ki p+xni
Cont ent - Lengt h: <sone val ue>

CT-KIP initialization data in XM. form ..

b. Initial request fromCT-KIP client:

POST http://exanple.cont cgi-bin/CT-KIP-server HTTP/ 1.1
Cache-Control: no-store

Pragma: no-cache

Host: exanpl e. com

Cont ent - Type: application/vnd. ot ps. ct - ki p+xni

Cont ent - Lengt h: <sone val ue>

CT-KIP data in XM. form (supported version, supported algorithms...)

stroem I nf or mat i onal Page 31
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

c. Initial response from CT-KIP server

HTTP/ 1.1 200 OK

Cache-Control: no-store

Cont ent - Type: application/vnd. ot ps. ct - ki p+xni
Cont ent - Lengt h: <sone ot her val ue>

CT-KIP data in XM. form (server random nonce, server public key, ...)
5. Security considerations
5.1. GCenera

CT-KIP is designed to protect generated key nmaterial from exposure.
No other entities than the CT-KIP server and the cryptographic token
wi |l have access to a generated K TOKEN if the cryptographic

al gorithnms used are of sufficient strength and, on the CT-KIP client
side, generation and encryption of R C and generation of K TCKEN take
pl ace as specified and in the token. This applies even if nalicious
software is present in the CT-KIP client. However, as discussed in
the follow ng, CT-KIP does not protect against certain other threats
resulting fromnman-in-the-niddl e attacks and other forns of attacks.
CT-KI P should, therefore, be run over a transport providing privacy
and integrity, such as HTTP over Transport Layer Security (TLS) with
a suitable ciphersuite, when such threats are a concern. Note that
TLS ci phersuites with anonynous key exchanges are not suitable in

t hose situations.

5.2. Active Attacks
5.2.1. Introduction

An active attacker nay attenpt to nodify, delete, insert, replay or
reorder messages for a variety of purposes including service denial
and conprom se of generated key material. Sections 5.2.2 through
5.2.7 anal yze these attack scenari os.

5.2.2. Message Modifications

Modi fications to a <CT-KIPTrigger> nmessage will either cause denial -
of -service (nodifications of any of the identifiers or the nonce) or
the CT-KIP client to contact the wong CT-KIP server. The latter is
in effect a man-in-the-nmddle attack and is discussed further in
Section 5.2.7.

An attacker may nodify a <CientHell o> message. This nmeans that the

attacker could indicate a different key or token than the one
i ntended by the CT-KIP client, and could al so suggest other

stroem I nf or mat i onal Page 32
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

cryptographic algorithns than the ones preferred by the CT-KIP
client, e.g., cryptographically weaker ones. The attacker could al so
suggest earlier versions of the CT-KIP protocol, in case these

versi ons have been shown to have vulnerabilities. These

nmodi fications could | ead to an attacker succeeding in initializing or
nodi fyi ng anot her token than the one intended (i.e., the server
assigning the generated key to the wong token), or gaining access to
a generated key through the use of weak cryptographic algorithns or
protocol versions. CT-KIP inplenmentations may protect against the
latter by having strict policies about what versions and al gorithns
they support and accept. The fornmer threat (assignment of a
generated key to the wong token) is not possible when the shared-key
variant of CT-KIP is enployed (assum ng existing shared keys are

uni que per token) but is possible in the public-key variant.
Therefore, CT-KIP servers nust not accept unilaterally provided token
identifiers in the public-key variant. This is also indicated in the
protocol description. In the shared-key variant, however, an
attacker may be able to provide the wong identifier (possibly also

| eading to the incorrect user being associated with the generated
key) if the attacker has real-time access to the token with the
identified key. In other words, the generated key is associated with
the correct token but the token is associated with the incorrect

user. See further Section 5.5 for a discussion of this threat and
possi bl e count er neasur es.

An attacker may al so nodify a <ServerHell o> nmessage. This nmeans that
the attacker could indicate different key types, algorithns, or
protocol versions than the legitimte server would, e.g.

cryptographi cally weaker ones. The attacker could al so provide a

di fferent nonce than the one sent by the legitinmate server. dients
will protect against the fornmer through strict adherence to policies
regardi ng permissible algorithms and protocol versions. The latter
(wong nonce) will not constitute a security problem as a generated
key will not match the key generated on the legitimte server. Also,
whenever the CT-KIP run would result in the replacenent of an

exi sting key, the <Mac> el enent protects agai nst nodifications of

R S.

Modi fi cations of <CientNonce> nessages are also possible. If an
attacker nodifies the SessionlD attribute, then, in effect, a switch
to another session will occur at the server, assuming the new
SessionlDis valid at that tine on the server. It still wll not

all ow the attacker to learn a generated K TOKEN since R C has been
wrapped for the legitimte server. Modifications of the

<Encrypt edNonce> el ement, e.g., replacing it with a value for which
the attacker knows an underlying RC, will not result in the client
changing its pre-CI-KIP state, since the server will be unable to
provide a valid MACin its final nessage to the client. The server

stroem I nf or mat i onal Page 33
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

may, however, end up storing K TOKEN rather than K TOKEN. If the

t oken has been associated with a particular user, then this could
constitute a security problem For a further discussion about this
threat, and a possible counterneasure, see Section 5.5 below. Note
that use of Secure Socket Layer (SSL) or TLS does not protect against
this attack if the attacker has access to the CT-KIP client (e.g.

t hrough nmalicious software, "trojans").

Finally, attackers may al so nodify the <ServerFi ni shed> nessage
Repl acing the <Mac> elenent will only result in denial-of-service.
Repl acenent of any other el enment may cause the CT-KIP client to
associate, e.g., the wong service with the generated key. CT-KIP
shoul d be run over a transport providing privacy and integrity when
this is a concern

5.2.3. Message Deletion

Message del etion will not cause any ot her harm than deni al - of -

service, since a token shall not change its state (i.e., "commit" to
a generated key) until it receives the final nmessage fromthe CT-KIP
server and successfully has processed that nessage, including
validation of its MAC. A del eted <ServerFini shed> nessage wi |l not

cause the server to end up in an inconsistent state vis-a-vis the
token if the server inplenents the suggestions in Section 5.5.

5.2.4. Message |nsertion

An active attacker may initiate a CT-KIP run at any time, and suggest
any token identifier. CT-KIP server inplenentations nmay receive sone
protection against inadvertently initializing a token or

i nadvertently replacing an existing key or assigning a key to a token
by initializing the CT-KIP run by use of the <CT-KIPTrigger>. The
<TriggerNonce> el ement allows the server to associate a CI-KIP
protocol run with, e.g., an earlier user-authenticated session. The
security of this nethod, therefore, depends on the ability to protect
the <TriggerNonce> elenent in the CT-KIP initialization nessage. |If
an eavesdropper is able to capture this nessage, he nmay race the
legitimate user for a key initialization. CT-KIP over a transport
providing privacy and integrity, coupled with the reconmendations in
Section 5.5, is recommended when this is a concern

I nsertion of other nmessages into an existing protocol run is seen as
equivalent to nodification of legitimtely sent nessages.

5.2.5. Message Repl ay

Attenpts to replay a previously recorded CT-KIP nessage will be
detected, as the use of nonces ensures that both parties are live.

stroem I nf or mat i onal Page 34
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

5.2.6. Message Reordering

An attacker may attenpt to re-order nessages but this will be
detected, as each nmessage is of a unique type.

5.2.7. WNMan in the Mddle

In addition to other active attacks, an attacker posing as a nan in
the mddle nay be able to provide his own public key to the CT-KIP
client. This threat and counterneasures to it are discussed in
Section 3.3. An attacker posing as a man-in-the-niddle my al so be
acting as a proxy and, hence, nay not interfere with CT-KIP runs but
still learn valuable information; see Section 5. 3.

5.3. Passive Attacks

Passi ve attackers may eavesdrop on CT-KIP runs to learn information
that later on nmay be used to inpersonate users, nount active attacks,
et c.

If CT-KIP is not run over a transport providing privacy, a passive
attacker may |earn:

0 What tokens a particular user is in possession of;

o0 The identifiers of keys on those tokens and other attributes
pertaining to those keys, e.g., the lifetime of the keys; and

o CT-KIP versions and cryptographic algorithms supported by a
particular CT-KIP client or server.

Whenever the above is a concern, CT-KIP should be run over a
transport providing privacy. |If man-in-the-middle attacks for the
pur poses descri bed above are a concern, the transport should al so
of fer server-side authentication

5.4. Cryptographic Attacks

An attacker with unlimted access to an initialized token may use the
token as an "oracle" to pre-conpute values that later on nmay be used
to inmpersonate the CT-KIP server. Sections 3.6 and 3.8 contain

di scussions of this threat and steps reconmmended to protect against
it.

stroem I nf or mat i onal Page 35
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

5.5. Attacks on the Interaction between CT-KI P and User Authentication

I f keys generated in CT-KIP will be associated with a particul ar user
at the CT-KIP server (or a server trusted by, and comunicating wth
the CT-KIP server), then in order to protect against threats where an
attacker replaces a client-provided encrypted RCwith his omm RC
(regardl ess of whether the public-key variant or the shared-secret
variant of CT-KIP is enployed to encrypt the client nonce), the
server should not conmmit to associate a generated K TOKEN with the

gi ven token (user) until the user simultaneously has proven both
possession of a token containing K TOKEN and some out - of - band

provi ded authenticating information (e.g., a tenporary password).

For exanple, if the token is a one-tine password token, the user
could be required to authenticate with both a one-tinme password
generated by the token and an out-of-band provided tenporary PIN in
order to have the server "commit" to the generated token val ue for
the given user. Preferably, the user should performthis operation
from anot her host than the one used to initialize the token, in order
to mninze the risk of nmalicious software on the client interfering
with the process

Anot her threat arises when an attacker is able to trick a user to
authenticate to the attacker rather than to the legiti mte service
before the CT-KIP protocol run. |If successful, the attacker will
then be able to inpersonate the user towards the legitimte service,
and subsequently receive a valid CT-KIP trigger. |If the public-key
variant of CT-KIP is used, this may result in the attacker being able
to (after a successful CT-KIP protocol run) inpersonate the user.
Ordinary precautions nust, therefore, be in place to ensure that
users authenticate only to legitimte services.

6. Intellectual Property Considerations
RSA and Securl D are regi stered trademarks or trademarks of RSA
Security Inc. in the United States and/or other countries. The nanes

of other products and services nentioned nay be the tradenmarks of
their respective owners

stroem I nf or mat i onal Page 36
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

7. References
7.1. Normative References

[1] Davis, M and M Duerst, "Unicode Nornmalization Forns",
March 2001
<ht t p: // ww. uni code. or g/ uni code/ reports/tr15/tr15-21. ht i >,

7.2. Informative References

[2] RSA Laboratories, "PKCS #11 Mechani snms for the Cryptographic
Token Key Initialization Protocol", PKCS #11 Version 2.20
Anendrent 2, Decenber 2005, <ftp://ftp.rsasecurity.coni pub/
pkcs/ pkcs-11/v2- 20/ pkcs- 11v2- 20a2. pdf >.

[3] RSA Laboratories, "Cryptographic Token Interface Standard"
PKCS #11 Version 2.20, June 2004, <ftp://ftp.rsasecurity.com
pub/ pkcs/ pkcs-11/v2- 20/ pkcs- 11v2- 20. pdf >.

[4] RSA Laboratories, "Frequently Asked Questions About Today’'s
Crypt ography. Version 4.1", 2000, <http://ww.rsasecurity.com
rsal abs/faq/fil es/rsal abs_faq4l. pdf >.

[5] RSA Laboratories, "Password-Based Cryptography Standard"
PKCS #5 Version 2.0, March 1999,
<ftp://ftp.rsasecurity.coni pub/pkcs/pkcs-5v2/ pkcs5v2-0. pdf >.

[6] RSA Laboratories, "RSA Cryptography Standard", PKCS #1 Version
2.1, June 2002,
<ftp://ftp.rsasecurity.coni pub/pkcs/pkcs-1/ pkcs-1v2-1. pdf >.

[7] Fielding, R, Gettys, J., Mgul, J., Frystyk, H, Msinter, L.
Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
HTTP/ 1. 1", RFC 2616, June 1999.

[8] National Institute of Standards and Technol ogy, "Specification
for the Advanced Encryption Standard (AES)", FIPS 197,
Novenmber 2001
<http://csrc.nist.gov/publications/fips/fipsl97/fips-197. pdf>.

[9] Krawzcyk, H., Bellare, M, and R Canetti, "HMAC. Keyed-Hashi ng
for Message Authentication", RFC 2104, February 1997.

[10] Iwata, T. and K Kurosawa, "OVAC. One-Key CBC MAC. In Fast
Sof tware Encryption, FSE 2003, pages 129 - 153.
Springer-Verlag", 2003,
<http://crypt.cis.ibaraki.ac.jp/omac/docs/onmac. pdf >.

stroem I nf or mat i onal Page 37
g

RFC 4758

[11]

[12]

Nystroem

CT-KIP Version 1.0 Revision 1 Novenber 2006

National Institute of Standards and Technol ogy, "Secure Hash
Standard", FIPS 197, February 2004, <http://csrc.nist.gov/
publications/fips/fipsl80-2/fipsl80-2w t hchangenoti ce. pdf >.

RSA Laboratories, "Cryptographic Token Key Initialization

Protocol ", OTPS Version 1.0, Decenber 2005,
<ftp://ftp.rsasecurity.coni pub/otps/ct-Kkip/ct-kip-vl-0.pdf>.

I nf or mat i onal [Page 38]

RFC 4758

Appendi x A

<xs:sche

CT-KIP Version 1.0 Revision 1

CT-KI P Schena

ma

t ar get Nanespace=

"http://ww.rsasecurity.

xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: ds="http://ww. w3. or g/ 2000/ 09/ xm dsi g#"

xm ns=

"http://ww. rsasecurity.

<xs:inmport namespace="http://ww. w3. org/ 2000/ 09/ xm dsi g#"
schemalLocat i on=
"http://ww. w3. org/ TR/ 2002/ REC- xm dsi g- cor e- 20020212/

xm dsi g- cor e- schenma. xsd"/ >

<I--

<xs: conpl exType nane="Abst ract Request Type" abstract="true">
<xs:attribute nanme="Version" type="VersionType"
</ xs: conpl exType>

<xs: conpl exType name="Abst ract ResponseType" abstract="true">
<xs:attribute nanme="Version" type="VersionType"
<xs:attribute name="Sessionl D' type="ldentifierType"/>
<xs:attribute name="Status" type="StatusCode"
</ xs: conpl exType>

Basic types -->

<xs: si npl eType nane=" St at usCode" >
<xs:restriction base="xs:string">

<XS.
<XS.
<XS
<XS:
<XS:
<XS.
<XS.
<XS.
<XS:
<XS
<XS:
<XS.

enumner at i
enuner at i

senunerati

enumner at i
enuner at i
enuner at i
enumner at i
enuner at i
enumner at i

enunerati

enuner at i
enuner at i

on
on
on
on
on
on
on
on
on
on
on
on

</xs:restriction>
</ xs: si npl eType>

val ue="Cont i nue"/ >

val ue="Success"/ >

val ue="Abort"/>

val ue="AccessDeni ed"/ >

val ue="Mal f or redRequest "/ >

val ue="UnknownRequest "/ >

val ue="UnknownCri ti cal Ext ensi on"/ >
val ue="Unsupport edVer si on"/ >

val ue="NoSupport edKeyTypes"/ >

Novenber 2006

coni r sal abs/ ot ps/ schemas/ 2005/ 12/ ct - ki p#"

con r sal abs/ ot ps/ schemas/ 2005/ 12/ ct - ki p#" >

use="required"/>

use="required"/>

use="required"/>

val ue="NoSupport edEncrypti onAl gorithns"/>

val ue="NoSupport edMACAl gorit hns"/ >
value="InitializationFailed"/>

<xs: si npl eType nanme="\Versi onType">

<xs:restriction base="xs:string">
<xs:pattern value="\d{1,2}\.\d{1,3}"/>
</xs:restriction>

Nystroem

I nf or mat i ona

[Page 39]

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

</ xs: si npl eType>

<xs:si npl eType name="IdentifierType">
<xs:restriction base="xs:string">
<xs: maxLengt h val ue="128"/>
</xs:restriction>
</ xs: si npl eType>

<xs: si npl eType nane="NonceType" >
<xs:restriction base="xs: base64Bi nary">
<xs:length val ue="16"/>
</xs:restriction>
</ xs: si npl eType>

<xs: conpl exType nanme="LogoType" >
<xs: si npl eCont ent >
<xs: extensi on base="xs: base64Bi nary" >
<xs:attribute name="M neType" type="M neTypeType"
use="required"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

<xs: si npl eType nane="M neTypeType" >
<xs:restriction base="xs:string">
<xs: enuneration val ue="i mage/j peg"/ >
<xs:enuneration value="image/gif"/>
</xs:restriction>
</ xs:si npl eType>

<l-- Algorithns are identified through URIs -->
<xs: conpl exType nane="Al gorithnsType">
<xs: sequence maxCccurs="unbounded" >
<xs: el ement nane="Al gorithm type="AlgorithnilType"/>
</ xs: sequence>
</ xs: conpl exType>

<xs:si npl eType name="Al gorit hniType">
<xs:restriction base="xs:anyURl "/>
</ xs:si npl eType>

<xs: conpl exType nane="MacType" >
<xs: si npl eCont ent >
<xs: extensi on base="xs: base64Bi nary" >
<xs:attribute name="MacAl gorithni
type="xs:anyURl "/ >
</ xs: ext ensi on>
</ xs: si npl eCont ent >

stroem I nf or mat i onal Page 40
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

</ xs: conpl exType>

<l-- CT-KIP extensions (for future use) -->
<xs: conpl exType name="Ext ensi onsType" >
<xs: sequence maxCccurs="unbounded" >
<xs: el enent nane="Ext ensi on" type="Abstract Extensi onType"/>
</ xs: sequence>
</ xs: conpl exType>

<xs: conpl exType name="Abst ract Ext ensi onType" abstract="true">
<xs:attribute nane="Critical" type="xs:bool ean"/>
</ xs: conpl exType>

<xs: conpl exType nane="d i ent| nfoType">
<xs: conpl exCont ent >
<xs: extensi on base="Abstract Ext ensi onType" >
<Xs:sequence>
<xs: el enent nane="Data" type="xs: base64Bi nary"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: conpl exType nane="Serverl nfoType">
<xs: conpl exCont ent >
<xs: ext ensi on base="Abst ract Ext ensi onType" >
<Xs:sequence>
<xs: el ement nane="Data" type="xs:base64Bi nary"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: conpl exType nanme=" OTPKeyConfi gurati onDat aType" >
<xs:annot ati on>
<xs: docunentation xnl:|lang="en">
This extension is only valid in ServerFinished PDUs. |t
carries additional configuration data that an OIP token shoul d
use (subject to local policy) when generating OTP values froma
newl y generated OIP key.
</ xs: docunent ati on>
</ xs:annot at i on>
<xs: conpl exCont ent >
<xs: ext ensi on base="Abst ract Ext ensi onType" >
<Xs:sequence>
<xs: el ement nane="OIPFormat" type="OTlPFormat Type"/>
<xs: el ement nane="OIPLengt h" type="xs:positivelnteger"/>
<xs: el enent nane="OTPMode" type="OIPModeType" ni nCccurs="0"/>

stroem I nf or mat i onal Page 41
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: si npl eType nane=" OTPFor mat Type" >
<xs:restriction base="xs:string">
<xs: enuneration val ue="Decimal"/>
<xs:enuneration val ue="Hexadeci mal "/ >
<xs:enuneration val ue="Al phanuneric"/>
<xs:enuneration value="Binary"/>
</xs:restriction>
</ xs: si npl eType>

<xs: conpl exType name="OTPMbdeType" >
<xs: choi ce maxQccur s="unbounded" >
<xs: el ement nane="Ti me" type="Ti meType"/>
<xs: el enment nane="Counter"/>
<xs: el enent nane="Chal | enge"/ >
<Xs:any nanespace="##other" processContents="strict"/>
</ xs: choi ce>
</ xs: conpl exType>

<xs: conpl exType nane="Ti neType" >
<xs: conpl exCont ent >
<xs:restriction base="xs:anyType">
<xs:attribute name="Tinelnterval" type="xs:positivelnteger"/>
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: conpl exType nanme="Payl oadType" >
<Xs:annot ati on>
<xs:docunentation xnm:|ang="en">
</ xs: docunent ati on>
</ xs:annot at i on>
<xs: choi ce>
<xs: el enent nane="Nonce" type="NonceType"/>
<xs:any nanespace="##other" processContents="strict"/>
</ xs: choi ce>
</ xs: conpl exType>

<xs: si npl eType nane="Pl at f or nifype" >
<xs:restriction base="xs:string">
<xs:enuneration val ue="Hardware"/>
<xs:enuneration val ue="Software"/ >
<xs:enuneration val ue="Unspecified"/>
</xs:restriction>

stroem I nf or mat i onal Page 42
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

</ xs: si npl eType>

<xs: conpl exType nane="TokenPl at f or ml nf oType" >
<xs:annot ati on>
<xs:docunentation xn :|ang="en">
Carries token platforminformation helping the client to select
a suitable token
</ xs: docunent ati on>
</ xs:annot at i on>
<xs:attribute name="KeylLocation" type="Pl atfornilype"/>
<xs:attribute name="Al gorithnliocation" type="FPl atfornlype"/>
</ xs: conpl exType>

<xs: conpl exType name="InitializationTriggerType">
<XS:sequence>
<xs: el ement nane="Tokenl D' type="xs:base64Bi nary" m nCccurs="0"/>
<xs: el ement nane="Keyl D' type="xs:base64Bi nary" m nCccurs="0"/>
<xs: el ement nane="TokenPl at f orm nfo" type="TokenPl atform nfoType"
m nCccurs="0"/>
<xs: el ement nane="Tri gger Nonce" type="NonceType"/>
<xs: el ement nane="CT-KI PURL" type="xs:anyURl" ni nCccurs="0"/>
<xs:any namespace="##other" processContents="strict"
m nOccur s="0"/ >
</ xs: sequence>
</ xs: conpl exType>

<l-- CT-KIP PDUs -->

<l-- CT-KIP trigger -->
<xs: el ement nane="CT-KI PTri gger" type="CT-KI PTrigger Type"/ >

<xs: conpl exType nanme="CT- Kl PTri gger Type" >
<Xs:annot ati on>
<xs:docunentation xnm:|ang="en">
Message used to trigger the device to initiate a CT-KIP run.
</ xs: docunent ati on>
</ xs:annot at i on>
<XS:sequence>
<xs: choi ce>
<xs:element nane="lnitializationTrigger"
type="InitializationTriggerType"/>
<xs:any namespace="##other" processContents="strict"/>
</ xs: choi ce>
</ xs: sequence>
<xs:attribute name="Version" type="VersionType"/>
</ xs: conpl exType>

<l-- ClientHello PDU -->

stroem I nf or mat i onal Page 43
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

<xs: el enment nane="CientHello" type="dientHelloPDU'/>

<xs: conpl exType nane="d i ent Hel | oPDU" >
<xs:annot ati on>
<xs:docunentation xn :|ang="en">
Message sent from CT-KIP client to CT-KIP server to initiate an
CT-KI P sessi on.
</ xs: docunent ati on>
</ xs:annot at i on>
<xs: conpl exCont ent >
<xs: extensi on base="Abstract Request Type" >
<XS:sequence>
<xs: el ement nane="Tokenl D' type="xs: base64Bi nary"
nm nCccurs="0"/>
<xs: el enent nane="Keyl D' type="xs:base64Bi nary"
m nOccur s="0"/ >
<xs: el ement nane="C i ent Nonce" type="NonceType"
m nCccurs="0"/>
<xs: el enent nane="Tri gger Nonce" type="NonceType"
nm nCccurs="0"/>
<xs: el enent nane="SupportedKeyTypes" type="Al gorithnsType"/>
<xs: el ement nane="SupportedEncryptionAl gorithns"
type="Al gorithnsType"/>
<xs: el ement nane=" Support edMACAI gorithns"
type="Al gorithnsType"/>
<xs: el enent nane="Ext ensi ons" type="Extensi onsType"
m nCccurs="0"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<!-- ServerHello PDU -->
<xs: el ement nane="ServerHel | 0" type="ServerHel |l oPDU'/>

<xs: conpl exType nane="Server Hel | oPDU' >
<Xs:annot ati on>
<xs: docunentation xnm:|ang="en">
Message sent from CT-KIP server to CT-KIP client in response to
a received dientHell o PDU
</ xs: docunent ati on>
</ xs:annot at i on>
<xs: conpl exCont ent >
<xs: ext ensi on base="Abstract ResponseType" >
<xs:sequence mi nCccurs="0">
<xs: el ement nane="KeyType" type="Algorithnilype"/>
<xs: el ement nane="EncryptionAl gorithnt type="Algorithmlype"/>
<xs: el ement nane="MacAl gorithm' type="Al gorithnilype"/>

stroem I nf or mat i onal Page 44
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

<xs: el enent nane="EncryptionKey" type="ds: Keyl nfoType"/ >
<xs: el enent nane="Payl oad" type="Payl cadType"/>
<xs: el enent nane="Extensi ons" type="Extensi onsType"
m nCccurs="0"/>
<xs: el ement nane="Mac" type="MacType" m nCccurs="0"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<lI-- dientNonce PDU -->
<xs: el enent nane="C i ent Nonce" type="d i ent NoncePDU'/ >

<xs: conpl exType nane="d i ent NoncePDU' >
<Xs:annot ati on>
<xs:docunentation xnm:|ang="en">
Second nessage sent from CT-KIP client to CT-KIP server to
convey the client’s chosen secret.
</ xs: docunent ati on>
</ xs:annot ati on>
<xs: conpl exCont ent >
<xs: extensi on base="Abstract Request Type" >
<XS: sequence>
<xs: el ement nane="Encrypt edNonce" type="xs: base64Bi nary"/>
<xs: el enent nane="Ext ensi ons" type="Extensi onsType"
nm nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="Sessionl D' type="IldentifierType"
use="required"/>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<l-- ServerFinished PDU -->
<xs: el ement nane="ServerFi ni shed" type="ServerFi ni shedPDU"/>
<xs: conpl exType nane="Server Fi ni shedPDU' >
<Xs:annot ati on>
<xs: docunentation xnm:|ang="en">
Fi nal message sent from CT-KIP server to CT-KIP client in an
CT-KI P sessi on
</ xs: docunent ati on>
</ xs:annot at i on>
<xs: conpl exCont ent >
<xs: ext ensi on base="Abstract ResponseType" >
<xs:sequence mi nCccurs="0">
<xs: el ement nane="Tokenl D' type="xs:base64Bi nary"/>
<xs: el ement nane="Keyl D' type="xs:base64Bi nary"/>
<xs: el enent nane="KeyExpiryDate" type="xs:dateTi ne"

stroem I nf or mat i onal Page 45
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

m nCccurs="0"/>

<xs: el enent nane="Servicel D' type="IdentifierType"
m nCccurs="0"/>

<xs: el ement nane="Servi ceLogo" type="LogoType"
m nOccur s="0"/ >

<xs: el enent nane="User| D' type="IldentifierType"
m nCccurs="0"/>

<xs: el enent nane="Ext ensi ons" type="Extensi onsType"
m nCccurs="0"/>

<xs: el ement nane="Mac" type="MacType"/>

</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

</ xs: schema>
Appendi x B. Exanples of CT-KIP Messages
B.1. Introduction

Al'l exanples are syntactically correct. MAC and ci pher values are

fictitious, however. The exanples illustrate a conplete CT-KIP
exchange, starting with an initialization (trigger) nmessage fromthe
server.

B.2. Exanple of a CT-KIP Initialization (Trigger) Message

<CT- Kl PTri gger
xm ns=
"http://ww.rsasecurity.conirsal abs/ ot ps/ schemas/ 2005/ 12/ ct - ki p#"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Versi on="1.0">
<InitializationTrigger>
<Tokenl D>12345678</ Tokenl D>
<Tri gger Nonce>112dsdf wf 312asder 394j w==</ Tr i gger Nonce>
</lnitializationTrigger>
</ CT- KI PTri gger >

B.3. Exanple of a <CientHello> Message

<?xm version="1.0" encodi ng="UTF-8"?>

<CientHello
xm ns=
"http://ww.rsasecurity.conirsal abs/ ot ps/ schemas/ 2005/ 12/ ct - ki p#"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Version="1.0">
<Tokenl D>12345678</ Tokenl D>

stroem I nf or mat i onal Page 46
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

<Tri gger Nonce>112dsdf wf 312asder 394j w==</ Tr i gger Nonce>
<Support edKeyTypes>
<Al gorithnmehttp://ww. rsasecurity. confrsal abs/ ot ps/ schenas
/ 2005/ 09/ ot ps- wst #Secur | D- AES</ Al gori t hme
</ Support edKeyTypes>
<Support edEncrypti onAl gorithnms>
<Al gorithnehttp://ww. w3. or g/ 2001/ 04/ xm enc#rsa-1_5</ Al gorithnp
<Al gorithmehttp://ww. rsasecurity. conirsal abs/ ot ps/ schemas/
2005/ 12/ ct - ki p#ct - ki p-prf-aes</ Al gorithne
</ Support edEncrypti onAl gorit hms>
<Support edMACAl gori t hms>
<Al gorithnehttp://ww.rsasecurity.conirsal abs/ ot ps/ schenas/
2005/ 12/ ct - ki p#ct-ki p-prf-aes</ Al gorithne
</ Support edMACAl gori t hns>
</dientHell o>

B.4. Exanple of a <ServerHell o> Message

<?xm version="1.0" encodi ng="UTF-8"?>
<ServerHello

xm ns=
"http://ww.rsasecurity.conrsal abs/ ot ps/ schemas/ 2005/ 12/ ct - ki p#"

xm ns: ds="http://ww. w3. org/ 2000/ 09/ xm dsi g#"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

Version="1.0" SessionlD="4114" Status="Success">

<KeyType>htt p: //ww. rsasecurity. conl rsal abs/ ot ps/ schenmas/ 2005/ 09/
ot ps- wst #Secur | D- AES</ KeyType>

<EncryptionAl gorithnehttp://ww.rsasecurity.conirsal abs/ ot ps/
schemas/ 2005/ 12/ ct - ki p#ct - ki p- prf-aes</ Encrypti onAl gorithmnpe

<MacAl gorithnphttp://ww. rsasecurity. confrsal abs/ ot ps/ schemas/
2005/ 12/ ct - ki p#ct - ki p- prf-aes</ MacAl gori t hne

<Encrypti onKey>

<ds: KeyName>KEY- 1</ ds: KeyName>
</ Encrypti onKey>
<Payl oad>
<Nonce>gw2ewasde3l1l2asder 394j w==</ Nonce>

</ Payl oad>

</ Server Hel | o>

B.5. Exanple of a <CientNonce> Message

<?xm version="1.0" encodi ng="UTF-8"?>
<d i ent Nonce
xm ns="http://ww.rsasecurity.conirsal abs/ ot ps/ schenas/
2005/ 12/ ct - ki p#"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Versi on="1. 0" Sessionl D="4114">
<Encr ypt edNonce>vXENc+UnT 9/ NvmyKi HDLaEr KOgk=</ Encr ypt edNonce>

stroem I nf or mat i onal Page 47
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

</ d i ent Nonce>
B.6. Exanple of a <ServerFi ni shed> Message

<?xm version="1.0" encodi ng="UTF-8"?>
<Ser ver Fi ni shed
xm ns="http://ww. rsasecurity.conirsal abs/ ot ps/ schenas/
2005/ 12/ ct - ki p#"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Versi on="1. 0" Sessionl D="4114" Status="Success">
<Tokenl D>12345678</ Tokenl D>
<KeyExpi r yDat e>2009- 09- 16T03: 02: 00Z</ KeyExpi r yDat e>
<Keyl D>43212093</ Key| D>
<Servi cel D>Exanpl e Enterprise Nanme</ Servicel D>
<User | D>exanpl eLogi nNane</ User | D>
<Ext ensi ons>
<Ext ensi on xsi:type="0OTlPKeyConfi gurationDataType">
<OTPFor mat >Deci mal </ OTPFor nat >
<OTPLengt h>6</ OTPLengt h>
<OTPMode><Ti e/ ></ OTPMbde>
</ Ext ensi on>
</ Ext ensi ons>
<Mac>mi i df asde312asder 394] w==</ Mac>
</ Server Fi ni shed>

Appendix C. Integration with PKCS #11
A CT-KIP client that needs to conmunicate with a connected
cryptographic token to performa CT-KIP exchange may use PKCS #11 [3]
as a programming interface. Wen performng CT-KIP with a
crypt ographi ¢ token using the PKCS #11 programing interface, the
procedure described in [2], Appendix B, is reconmrended.

Appendi x D. Exanple CT-KIP-PRF Realizations

D.1. Introduction

Thi s exanpl e appendi x defines CT-KIP-PRF in terms of AES [8] and HVAC
[9].

D. 2. CT-KI P-PRF- AES

D.2.1. ldentification

For tokens supporting this realization of CT-KIP-PRF, the follow ng
URI rmay be used to identify this algorithmin CT-KIP

http://ww. rsasecurity. con rsal abs/ ot ps/ schenas/ 2005/ 12/

stroem I nf or mat i onal Page 48
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

ct- ki p#ct-ki p-prf-aes

When this URI is used to identify the encryption algorithmto use,
the method for encryption of R C values described in Section 3.6
shal | be used

D. 2.

Definition

CT-KI P- PRF- AES (k, s, dsLen)

I nput :

k

S

encryption key to use

octet string consisting of random zing material. The length of
the string s is sLen

dsLen desired | ength of the out put

Cut put :

DS a pseudorandom string, dsLen-octets |ong

St eps:

1. Let bLen be the output block size of AES in octets:

bLen = (AES output block length in octets)
(normally, blLen = 16)

If dsLen > (2**32 - 1) * blLen, output "derived data too |long" and
st op

Let n be the nunber of blLen-octet blocks in the output data,
roundi ng up, and let j be the nunber of octets in the |ast block

n ROUND(dsLen / bLen)

j dsLen - (n - 1) * blLen

For each bl ock of the pseudorandom string DS, apply the function

F defined below to the key k, the string s and the block index to
conmput e the bl ock:

Bl

F (k, s, 1) ,

B2 F (k, s, 2),

stroem I nf or mat i onal Page 49
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

Bn = F (k, s, n)

The function F is defined in terns of the OMACL construction from
[10], using AES as the bl ock cipher:

F (k, s, i) = OVACLl-AES (k, INT (i) [] s)

where INT (i) is a four-octet encoding of the integer i, nost
significant octet first, and the output length of OMACL is set to
bLen.

Concatenate the blocks and extract the first dsLen octets to produce
the desired data string DS:

DS =Bl || B2 || ... || Bn<0..j-1>
Qut put the derived data DS.

D.2.3. Exanple
If we assune that dsLen = 16, then:

16 / 16 = 1

n

j =16 - (1 - 1) * 16 = 16

DS =Bl = F (k, s, 1)

OVACL- AES (k, INT (1) |] S)
D. 3. CT-KI P- PRF- SHA256
D.3.1. ldentification

For tokens supporting this realization of CT-KIP-PRF, the follow ng
URI nmay be used to identify this algorithmin CT-KIP;

http://ww. rsasecurity.conm rsal abs/ ot ps/ schenas/ 2005/ 12/
ct - ki p#ct - ki p- prf-sha256

When this URI is used to identify the encryption algorithmto use,

the nmethod for encryption of R C values described in Section 3.6
shal | be used.

stroem I nf or mat i onal Page 50
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

D.3.2. Definition
CT- KI P- PRF- SHA256 (k, s, dsLen)
I nput :
k encryption key to use

S octet string consisting of random zing material. The |ength of
the string s is sLen

dsLen desired | ength of the out put

Cut put :

DS a pseudorandom string, dsLen-octets |ong
St eps:

1. Let bLen be the output size in octets of SHA-256 [11] (no
truncation is done on the HVAC output):

bLen = 32

2. If dsLen > (2**32 - 1) blLen, output "derived data too |ong" and
st op

3. Let n be the nunber of blLen-octet blocks in the output data,
roundi ng up, and let j be the nunber of octets in the |ast block

n ROUND (dsLen / bLen)

i dsLen - (n - 1) * blLen

4. For each block of the pseudorandom string DS, apply the function
F defined below to the key k, the string s and the block index to
conput e the bl ock:

Bl = F (k1 Sa 1) 1
B2 = F (k, s, 2) ,
Bn = F (k, s, n)

stroem I nf or mat i onal Page 51
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006
The function F is defined in terns of the HVAC construction from[9],
usi ng SHA-256 as the digest algorithm
F (k, s, i) = HVAC-SHA256 (k, INT (i) || s)
where INT (i) is a four-octet encoding of the integer i, nost
significant octet first, and the output length of HVAC is set to

bLen.

Concat enate the bl ocks and extract the first dsLen octets to produce
the desired data string DS:

DS =B1 || B2 || ... || Bn<O..j-1>
Qut put the derived data DS.
D.3.3. Exanple

If we assune that sLen = 256 (two 128-octet |ong values) and dsLen =
16, then:

n=ROUND(16/ 32) =1

j =16 - (1- 1) * 32 =16

BL = F (k, s, 1) = HVAG SHA256 (k, INT (1) || s)
DS = B1<0 ... 15>

That is, the result will be the first 16 octets of the HVAC out put.

stroem I nf or mat i onal Page 52
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

Appendi x E. About OIPS

The One-Time Password Specifications are docunents produced by RSA
Laboratories in cooperation with secure systens devel opers for the
pur pose of sinmplifying integration and managenent of strong

aut henti cation technology into secure applications, and to enhance
the user experience of this technol ogy.

Furt her devel opment of the OTPS series will occur through mailing
list discussions and occasi onal workshops, and suggestions for

i nprovenent are welcome. As for our PKCS docunents, results may al so
be subnmitted to standards forums. For nore information, contact:

OTPS Edi t or

RSA Laboratories

174 M ddl esex Turnpi ke

Bedf ord, MA 01730 USA

ot ps-edi tor @sasecurity.com
http://ww. rsasecurity. con rsal abs/

Aut hor’ s Addr ess

Magnus Nystroem
RSA Security

EMai | : magnus@ sasecurity.com

stroem I nf or mat i onal Page 53
g

RFC 4758 CT-KIP Version 1.0 Revision 1 Novenber 2006

Ful I Copyright Statenent
Copyright (C The | ETF Trust (2006).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCRED BY (I F ANY), THE | NTERNET SOCI ETY, THE | ETF TRUST
AND THE | NTERNET ENGQ NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES
EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT
THE USE OF THE | NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY
| MPLI ED WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR
PURPCSE

Intell ectual Property

The I ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that night be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any i ndependent effort to identify any such rights. |Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be made available, or the result of an
attenpt nade to obtain a general |icense or permnission for the use of
such proprietary rights by inplenmenters or users of this
specification can be obtained fromthe I ETF on-line I PR repository at
http://ww.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that nmay be required to inpl enent
this standard. Please address the infornmation to the |IETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

stroem I nf or mat i onal Page 54
g

