
Network Working Group J. Lazzaro
Request for Comments: 4696 J. Wawrzynek
Category: Informational UC Berkeley
 November 2006

 An Implementation Guide for RTP MIDI

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2006).

Abstract

 This memo offers non-normative implementation guidance for the Real-
 time Protocol (RTP) MIDI (Musical Instrument Digital Interface)
 payload format. The memo presents its advice in the context of a
 network musical performance application. In this application two
 musicians, located in different physical locations, interact over a
 network to perform as they would if located in the same room.
 Underlying the performances are RTP MIDI sessions over unicast UDP.
 Algorithms for sending and receiving recovery journals (the
 resiliency structure for the payload format) are described in detail.
 Although the memo focuses on network musical performance, the
 presented implementation advice is relevant to other RTP MIDI
 applications.

Lazzaro & Wawrzynek Informational [Page 1]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

Table of Contents

 1. Introduction ..2
 2. Starting the Session ..3
 3. Session Management: Session Housekeeping6
 4. Sending Streams: General Considerations7
 4.1. Queuing and Coding Incoming MIDI Data11
 4.2. Sending Packets with Empty MIDI Lists12
 4.3. Congestion Control and Bandwidth Management13
 5. Sending Streams: The Recovery Journal14
 5.1. Initializing the RJSS16
 5.2. Traversing the RJSS19
 5.3. Updating the RJSS ...19
 5.4. Trimming the RJSS ...20
 5.5. Implementation Notes21
 6. Receiving Streams: General Considerations21
 6.1 The NMP Receiver Design22
 6.2 High-Jitter Networks, Local Area Networks24
 7. Receiving Streams: The Recovery Journal25
 7.1. Chapter W: MIDI Pitch Wheel (0xE)30
 7.2. Chapter N: MIDI NoteOn (0x8) and NoteOff (0x9)30
 7.3. Chapter C: MIDI Control Change (0xB)32
 7.4. Chapter P: MIDI Program Change (0xC)34
 8. Security Considerations ..35
 9. IANA Considerations ..35
 10. Acknowledgements ..35
 11. References ..35
 11.1. Normative References35
 11.2. Informative References36

1. Introduction

 [RFC4695] normatively defines a Real-time Transport Protocol (RTP,
 [RFC3550]) payload format for the MIDI (Musical Instrument Digital
 Interface) command language [MIDI], for use under any applicable RTP
 profile, such as the Audio/Visual Profile (AVP, [RFC3551]).

 However, [RFC4695] does not define algorithms for sending and
 receiving MIDI streams. Implementors are free to use any sending or
 receiving algorithm that conforms to the normative text in [RFC4695],
 [RFC3550], [RFC3551], and [MIDI].

 In this memo, we offer implementation guidance on sending and
 receiving MIDI RTP streams. Unlike [RFC4695], this memo is not
 normative.

Lazzaro & Wawrzynek Informational [Page 2]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 RTP is a mature protocol, and excellent RTP reference materials are
 available [RTPBOOK]. This memo aims to complement the existing
 literature by focusing on issues that are specific to the MIDI
 payload format.

 The memo focuses on one application: two-party network musical
 performance over wide-area networks, following the interoperability
 guidelines in Appendix C.7.2 of [RFC4695]. Underlying the
 performances are RTP MIDI sessions over unicast UDP transport.
 Resiliency is provided by the recovery journal system [RFC4695]. The
 application also uses the RTP Control Protocol (RTCP, [RFC3550]).

 The application targets a network with a particular set of
 characteristics: low nominal jitter, low packet loss, and occasional
 outlier packets that arrive very late. However, in Section 6.2 of
 this memo, we discuss adapting the application to other network
 environments.

 As defined in [NMP], a network musical performance occurs when
 musicians located at different physical locations interact over a
 network to perform as they would if located in the same room.

 Sections 2-3 of this memo describe session startup and maintenance.
 Sections 4-5 cover sending MIDI streams, and Sections 6-7 cover
 receiving MIDI streams.

2. Starting the Session

 In this section, we describe how the application starts a two-player
 session. We assume that the two parties have agreed on a session
 configuration, embodied by a pair of Session Description Protocol
 (SDP, [RFC4566]) session descriptions.

 One session description (Figure 1) defines how the first party wishes
 to receive its stream. The other session description (Figure 2)
 defines how the second party wishes to receive its stream.

 The session description in Figure 1 codes that the first party
 intends to receive a MIDI stream on IP4 number 192.0.2.94 (coded in
 the c= line) at UDP port 16112 (coded in the m= line). Implicit in
 the SDP m= line syntax [RFC4566] is that the first party also intends
 to receive an RTCP stream on 192.0.2.94 at UDP port 16113 (16112 +
 1). The receiver expects that the PT field of each RTP header in the
 received stream will be set to 96 (coded in the m= line).

 Likewise, the session description in Figure 2 codes that the second
 party intends to receive a MIDI stream on IP4 number 192.0.2.105 at
 UDP port 5004 and intends to receive an RTCP stream on 192.0.2.105 at

Lazzaro & Wawrzynek Informational [Page 3]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 UDP port 5005 (5004 + 1). The second party expects that the PT RTP
 header field of received stream will be set to 101.

v=0
o=first 2520644554 2838152170 IN IP4 first.example.net
s=Example
t=0 0
c=IN IP4 192.0.2.94
m=audio 16112 RTP/AVP 96
b=AS:20
b=RS:0
b=RR:400
a=rtpmap:96 mpeg4-generic/44100
a=fmtp:96 streamtype=5; mode=rtp-midi; config=""; profile-level-id=12;
cm_unused=ABFGHJKMQTVXYZ; cm_unused=C120-127; ch_never=ADEFMQTVX;
tsmode=buffer; linerate=320000; octpos=last; mperiod=44; rtp_ptime=0;
rtp_maxptime=0; guardtime=44100; render=synthetic; rinit="audio/asc";
url="http://example.net/sa.asc";
cid="xjflsoeiurvpa09itnvlduihgnvet98pa3w9utnuighbuk"

 (The a=fmtp line has been wrapped to fit the page to accommodate
 memo formatting restrictions; it constitutes a single line in SDP.)

 Figure 1. Session description for first participant

v=0
o=second 2520644554 2838152170 IN IP4 second.example.net
s=Example
t=0 0
c=IN IP4 192.0.2.105
m=audio 5004 RTP/AVP 101
b=AS:20
b=RS:0
b=RR:400
a=rtpmap:101 mpeg4-generic/44100
a=fmtp:101 streamtype=5; mode=rtp-midi; config=""; profile-level-id=12;
cm_unused=ABFGHJKMQTVXYZ; cm_unused=C120-127; ch_never=ADEFMQTVX;
tsmode=buffer; linerate=320000;octpos=last;mperiod=44; guardtime=44100;
rtp_ptime=0; rtp_maxptime=0; render=synthetic; rinit="audio/asc";
url="http://example.net/sa.asc";
cid="xjflsoeiurvpa09itnvlduihgnvet98pa3w9utnuighbuk"

 (The a=fmtp line has been wrapped to fit the page to accommodate
 memo formatting restrictions; it constitutes a single line in SDP.)

 Figure 2. Session description for second participant

Lazzaro & Wawrzynek Informational [Page 4]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 The session descriptions use the mpeg4-generic media type (coded in
 the a=rtpmap line) to specify the use of the MPEG 4 Structured Audio
 renderer [MPEGSA]. The session descriptions also use parameters to
 customize the stream (Appendix C of [RFC4695]). The parameter values
 are identical for both parties, yielding identical rendering
 environments for the two client hosts.

 The bandwidth (b=) AS parameter [RFC4566] [RFC3550] indicates that
 the total RTP session bandwidth is 20 kbs. This value assumes that
 the two players send 10 kbs streams concurrently. To derive the 10
 kbs value, we begin with the analysis of RTP MIDI payload bandwidth
 in Appendix A.4 of [NMP] and add in RTP and IP4 packet overhead and a
 small safety factor.

 The bandwidth RR parameter [RFC3556] indicates that the shared RTCP
 session bandwidth for the two parties is 400 bps. We set the
 bandwidth SR parameter to 0 bps, to signal that sending parties and
 non-sending parties equally share the 400 bps of RTCP bandwidth.
 (Note that in this particular example, the guardtime parameter value
 of 44100 ensures that both parties are sending for the duration of
 the session.) The 400 bps RTCP bandwidth value supports one RTCP
 packet per 5 seconds from each party, containing a Sender Report and
 CNAME information [RFC3550].

 We now show an example of code that implements the actions the
 parties take during the session. The code is written in C and uses
 the standard network programming techniques described in [STEVENS].
 We show code for the first party (the second party takes a symmetric
 set of actions).

 Figure 3 shows how the first party initializes a pair of socket
 descriptors (rtp_fd and rtcp_fd) to send and receive UDP packets.
 After the code in Figure 3 runs, the first party may check for new
 RTP or RTCP packets by calling recv() on rtp_fd or rtcp_fd.

 Applications may use recv() to receive UDP packets on a socket using
 one of two general methods: "blocking" or "non-blocking".

 A call to recv() on a blocking UDP socket puts the calling thread to
 sleep until a new packet arrives.

 A call to recv() on a non-blocking socket acts to poll the device:
 the recv() call returns immediately, with a return value that
 indicates the polling result. In this case, a positive return value
 signals the size of a new received packet, and a negative return
 value (coupled with an errno value of EAGAIN) indicates that no new
 packet was available.

Lazzaro & Wawrzynek Informational [Page 5]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 The choice of blocking or non-blocking sockets is a critical
 application choice. Blocking sockets offer the lowest potential
 latency (as the OS wakes the caller as soon as a packet has arrived).
 However, audio applications that use blocking sockets must adopt a
 multi-threaded program architecture, so that audio samples may be
 generated on a "rendering thread" while the "network thread" sleeps,
 awaiting the next packet. The architecture must also support a
 thread communication mechanism, so that the network thread has a
 mechanism to send MIDI commands the rendering thread.

 In contrast, audio applications that use non-blocking sockets may be
 coded using a single thread, that alternates between audio sample
 generation and network polling. This architecture trades off
 increased network latency (as a packet may arrive between polls) for
 a simpler program architecture. For simplicity, our example uses
 non-blocking sockets and presumes a single run loop. Figure 4 shows
 how the example configures its sockets to be non-blocking.

 Figure 5 shows how to use recv() to check a non-blocking socket for
 new packets.

 The first party also uses rtp_fd and rtcp_fd to send RTP and RTCP
 packets to the second party. In Figure 6, we show how to initialize
 socket structures that address the second party. In Figure 7, we
 show how to use one of these structures in a sendto() call to send an
 RTP packet to the second party.

 Note that the code shown in Figures 3-7 assumes a clear network path
 between the participants. The code may not work if firewalls or
 Network Address Translation (NAT) devices are present in the network
 path.

3. Session Management: Session Housekeeping

 After the two-party interactive session is set up, the parties begin
 to send and receive RTP packets. In Sections 4-7, we discuss RTP
 MIDI sending and receiving algorithms. In this section, we describe
 session "housekeeping" tasks that the participants also perform.

 One housekeeping task is the maintenance of the 32-bit
 Synchronization Source (SSRC) value that uniquely identifies each
 party. Section 8 of [RFC3550] describes SSRC issues in detail, as
 does Section 2.1 in [RFC4695]. Another housekeeping task is the
 sending and receiving of RTCP. Section 6 of [RFC3550] describes RTCP
 in detail.

Lazzaro & Wawrzynek Informational [Page 6]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 Another housekeeping task concerns security. As detailed in the
 Security Considerations section of [RFC4695], per-packet
 authentication is strongly recommended for use with MIDI streams,
 because the acceptance of rogue packets may lead to the execution of
 arbitrary MIDI commands.

 A final housekeeping task concerns the termination of the session.
 In our two-party example, the session terminates upon the exit of one
 of the participants. A clean termination may require active effort
 by a receiver, as a MIDI stream stopped at an arbitrary point may
 cause stuck notes and other indefinite artifacts in the MIDI
 renderer.

 The exit of a party may be signalled in several ways. Session
 management tools may offer a reliable signal for termination (such as
 the SIP BYE method [RFC3261]). The (unreliable) RTCP BYE packet
 [RFC3550] may also signal the exit of a party. Receivers may also
 sense the lack of RTCP activity and timeout a party or may use
 transport methods to detect an exit.

4. Sending Streams: General Considerations

 In this section, we discuss sender implementation issues.

 The sender is a real-time data-driven entity. On an ongoing basis,
 the sender checks to see if the local player has generated new MIDI
 data. At any time, the sender may transmit a new RTP packet to the
 remote player for the reasons described below:

 1. New MIDI data has been generated by the local player, and the
 sender decides that it is time to issue a packet coding the data.

 2. The local player has not generated new MIDI data, but the sender
 decides that too much time has elapsed since the last RTP packet
 transmission. The sender transmits a packet in order to relay
 updated header and recovery journal data.

 In both cases, the sender generates a packet that consists of an RTP
 header, a MIDI command section, and a recovery journal. In the first
 case, the MIDI list of the MIDI command section codes the new MIDI
 data. In the second case, the MIDI list is empty.

Lazzaro & Wawrzynek Informational [Page 7]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>

 int rtp_fd, rtcp_fd; /* socket descriptors */
 struct sockaddr_in addr; /* for bind address */

 /*********************************/
 /* create the socket descriptors */
 /*********************************/

 if ((rtp_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 ERROR_RETURN("Couldn’t create Internet RTP socket");

 if ((rtcp_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
 ERROR_RETURN("Couldn’t create Internet RTCP socket");

 /**********************************/
 /* bind the RTP socket descriptor */
 /**********************************/

 memset(&(addr.sin_zero), 0, 8);
 addr.sin_family = AF_INET;
 addr.sin_addr.s_addr = htonl(INADDR_ANY);
 addr.sin_port = htons(16112); /* port 16112, from SDP */

 if (bind(rtp_fd, (struct sockaddr *)&addr,
 sizeof(struct sockaddr)) < 0)
 ERROR_RETURN("Couldn’t bind Internet RTP socket");

 /***********************************/
 /* bind the RTCP socket descriptor */
 /***********************************/

 memset(&(addr.sin_zero), 0, 8);
 addr.sin_family = AF_INET;
 addr.sin_addr.s_addr = htonl(INADDR_ANY);
 addr.sin_port = htons(16113); /* port 16113, from SDP */

 if (bind(rtcp_fd, (struct sockaddr *)&addr,
 sizeof(struct sockaddr)) < 0)
 ERROR_RETURN("Couldn’t bind Internet RTCP socket");

 Figure 3. Setup code for listening for RTP/RTCP packets

Lazzaro & Wawrzynek Informational [Page 8]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 #include <unistd.h>
 #include <fcntl.h>

 /***************************/
 /* set non-blocking status */
 /***************************/

 if (fcntl(rtp_fd, F_SETFL, O_NONBLOCK))
 ERROR_RETURN("Couldn’t unblock Internet RTP socket");

 if (fcntl(rtcp_fd, F_SETFL, O_NONBLOCK))
 ERROR_RETURN("Couldn’t unblock Internet RTCP socket");

 Figure 4. Code to set socket descriptors to be non-blocking

 #include <errno.h>
 #define UDPMAXSIZE 1472 /* based on Ethernet MTU of 1500 */

 unsigned char packet[UDPMAXSIZE+1];
 int len, normal;

 while ((len = recv(rtp_fd, packet, UDPMAXSIZE + 1, 0)) > 0)
 {
 /* process packet[]. If (len == UDPMAXSIZE + 1), recv()
 * may be returning a truncated packet -- process with care
 */
 }

 /* line below sets "normal" to 1 if the recv() return */
 /* status indicates no packets are left to process */

 normal = (len < 0) && (errno == EAGAIN);

 if (!normal)
 {
 /*
 * recv() return status indicates an empty UDP payload
 * (len == 0) or an error condition (coded by (len < 0)
 * and (errno != EAGAIN)). Examine len and errno, and
 * take appropriate recovery action.
 */
 }

 Figure 5. Code to check rtp_fd for new RTP packets

Lazzaro & Wawrzynek Informational [Page 9]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 #include <arpa/inet.h>
 #include <netinet/in.h>

 struct sockaddr_in * rtp_addr; /* RTP destination IP/port */
 struct sockaddr_in * rtcp_addr; /* RTCP destination IP/port */

 /* set RTP address, as coded in Figure 2’s SDP */

 rtp_addr = calloc(1, sizeof(struct sockaddr_in));
 rtp_addr->sin_family = AF_INET;
 rtp_addr->sin_port = htons(5004);
 rtp_addr->sin_addr.s_addr = inet_addr("192.0.2.105");

 /* set RTCP address, as coded in Figure 2’s SDP */

 rtcp_addr = calloc(1, sizeof(struct sockaddr_in));
 rtcp_addr->sin_family = AF_INET;
 rtcp_addr->sin_port = htons(5005); /* 5004 + 1 */
 rtcp_addr->sin_addr.s_addr = rtp_addr->sin_addr.s_addr;

 Figure 6. Initializing destination addresses for RTP and RTCP

 unsigned char packet[UDPMAXSIZE]; /* RTP packet to send */
 int size; /* length of RTP packet */

 /* first fill packet[] and set size ... then: */

 if (sendto(rtp_fd, packet, size, 0, rtp_addr,
 sizeof(struct sockaddr)) == -1)
 {
 /*
 * try again later if errno == EAGAIN or EINTR
 *
 * other errno values --> an operational error
 */
 }

 Figure 7. Using sendto() to send an RTP packet

 Figure 8 shows the 5 steps a sender takes to issue a packet. This
 algorithm corresponds to the code fragment for sending RTP packets
 shown in Figure 7 of Section 2. Steps 1, 2, and 3 occur before the
 sendto() call in the code fragment. Step 4 corresponds to the
 sendto() call itself. Step 5 may occur once Step 3 completes.

Lazzaro & Wawrzynek Informational [Page 10]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 The algorithm for Sending a Packet is as follows:

 1. Generate the RTP header for the new packet. See Section 2.1 of
 [RFC4695] for details.

 2. Generate the MIDI command section for the new packet. See Section
 3 of [RFC4695] for details.

 3. Generate the recovery journal for the new packet. We discuss this
 process in Section 5.2. The generation algorithm examines the
 Recovery Journal Sending Structure (RJSS), a stateful coding of a
 history of the stream.

 4. Send the new packet to the receiver.

 5. Update the RJSS to include the data coded in the MIDI command
 section of the packet sent in step 4. We discuss the update
 procedure in Section 5.3.

 Figure 8. A 5 step algorithm for sending a packet

 In the sections that follow, we discuss specific sender
 implementation issues in detail.

4.1. Queuing and Coding Incoming MIDI Data

 Simple senders transmit a new packet as soon as the local player
 generates a complete MIDI command. The system described in [NMP]
 uses this algorithm. This algorithm minimizes the sender queuing
 latency, as the sender never delays the transmission of a new MIDI
 command.

 In a relative sense, this algorithm uses bandwidth inefficiently, as
 it does not amortize the overhead of a packet over several commands.
 This inefficiency may be acceptable for sparse MIDI streams (see
 Appendix A.4 of [NMP]). More sophisticated sending algorithms
 [GRAME] improve efficiency by coding small groups of commands into a
 single packet, at the expense of increasing the sender queuing
 latency.

 Senders assign a timestamp value to each command issued by the local
 player (Appendix C.3 of [RFC4695]). Senders may code the timestamp
 value of the first MIDI list command in two ways. The most efficient
 method is to set the RTP timestamp of the packet to the timestamp
 value of the first command. In this method, the Z bit of the MIDI
 command section header (Figure 2 of [RFC4695]) is set to 0, and the
 RTP timestamps increment at a non-uniform rate.

Lazzaro & Wawrzynek Informational [Page 11]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 However, in some applications, senders may wish to generate a stream
 whose RTP timestamps increment at a uniform rate. To do so, senders
 may use the Delta Time MIDI list field to code a timestamp for the
 first command in the list. In this case, the Z bit of the MIDI
 command section header is set to 1.

 Senders should strive to maintain a constant relationship between the
 RTP packet timestamp and the packet sending time: if two packets have
 RTP timestamps that differ by 1 second, the second packet should be
 sent 1 second after the first packet. To the receiver, variance in
 this relationship is indistinguishable from network jitter. Latency
 issues are discussed in detail in Section 6.

 Senders may alter the running status coding of the first command in
 the MIDI list, in order to comply with the coding rules defined in
 Section 3.2 of [RFC4695]. The P header bit (Figure 2 of [RFC4695])
 codes this alteration of the source command stream.

4.2. Sending Packets with Empty MIDI Lists

 During a session, musicians might refrain from generating MIDI data
 for extended periods of time (seconds or even minutes). If an RTP
 stream followed the dynamics of a silent MIDI source and stopped
 sending RTP packets, system behavior might be degraded in the
 following ways:

 o The receiver’s model of network performance may fall out of date.

 o Network middleboxes (such as Network Address Translators) may
 "time-out" the silent stream and drop the port and IP association
 state.

 o If the session does not use RTCP, receivers may misinterpret the
 silent stream as a dropped network connection.

 Senders avoid these problems by sending "keep-alive" RTP packets
 during periods of network inactivity. Keep-alive packets have empty
 MIDI lists.

 Session participants may specify the frequency of keep-alive packets
 during session configuration with the MIME parameter "guardtime"
 (Appendix C.4.2 of [RFC4695]). The session descriptions shown in
 Figures 1-2 use guardtime to specify a keep-alive sending interval of
 1 second.

 Senders may also send empty packets to improve the performance of the
 recovery journal system. As we describe in Section 6, the recovery
 process begins when a receiver detects a break in the RTP sequence

Lazzaro & Wawrzynek Informational [Page 12]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 number pattern of the stream. The receiver uses the recovery journal
 of the break packet to guide corrective rendering actions, such as
 ending stuck notes and updating out-of-date controller values.

 Consider the situation where the local player produces a MIDI NoteOff
 command (which the sender promptly transmits in a packet) but then 5
 seconds pass before the player produces another MIDI command (which
 the sender transmits in a second packet). If the packet coding the
 NoteOff is lost, the receiver is not aware of the packet loss
 incident for 5 seconds, and the rendered MIDI performance contains a
 note that sounds for 5 seconds too long.

 To handle this situation, senders may transmit empty packets to
 "guard" the stream during silent sections. The guard packet
 algorithm defined in Section 7.3 of [NMP], as applied to the
 situation described above, sends a guard packet after 100 ms of
 player inactivity, and sends a second guard packet 100 ms later.
 Subsequent guard packets are sent with an exponential backoff, with a
 limiting period of 1 second (set by the "guardtime" parameter in
 Figures 1-2). The algorithm terminates once MIDI activity resumes,
 or once RTCP receiver reports indicate that the receiver is up to
 date.

 The perceptual quality of guard packet-sending algorithms is a
 quality of implementation issue for RTP MIDI applications.
 Sophisticated implementations may tailor the guard packet sending
 rate to the nature of the MIDI commands recently sent in the stream,
 to minimize the perceptual impact of moderate packet loss.

 As an example of this sort of specialization, the guard packet
 algorithm described in [NMP] protects against the transient artifacts
 that occur when NoteOn commands are lost. The algorithm sends a
 guard packet 1 ms after every packet whose MIDI list contains a
 NoteOn command. The Y bit in Chapter N note logs (Appendix A.6 of
 [RFC4695]) supports this use of guard packets.

 Congestion control and bandwidth management are key issues in guard
 packet algorithms. We discuss these issues in the next section.

4.3. Congestion Control and Bandwidth Management

 The congestion control section of [RFC4695] discusses the importance
 of congestion control for RTP MIDI streams and references the
 normative text in [RFC3550] and [RFC3551] that concerns congestion
 control. To comply with the requirements described in those
 normative documents, RTP MIDI senders may use several methods to
 control the sending rate:

Lazzaro & Wawrzynek Informational [Page 13]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 o As described in Section 4.1, senders may pack several MIDI
 commands into a single packet, thereby reducing stream bandwidth
 (at the expense of increasing sender queuing latency).

 o Guard packet algorithms (Section 4.2) may be designed in a
 parametric way, so that the tradeoff between artifact reduction
 and stream bandwidth may be tuned dynamically.

 o The recovery journal size may be reduced by adapting the
 techniques described in Section 5 of this memo. Note that in all
 cases, the recovery journal sender must conform to the normative
 text in Section 4 of [RFC4695].

 o The incoming MIDI stream may be modified to reduce the number of
 MIDI commands without significantly altering the performance.
 Lossy "MIDI filtering" algorithms are well developed in the MIDI
 community and may be directly applied to RTP MIDI rate management.

 RTP MIDI senders incorporate these rate control methods into feedback
 systems to implement congestion control and bandwidth management.
 Sections 10 and 6.4.4 of [RFC3550] and Section 2 in [RFC3551]
 describe feedback systems for congestion control in RTP, and Section
 6 of [RFC4566] describes bandwidth management in media sessions.

5. Sending Streams: The Recovery Journal

 In this section, we describe how senders implement the recovery
 journal system. The implementation we describe uses the default
 "closed-loop" recovery journal semantics (Appendix C.2.2.2 of
 [RFC4695]).

 We begin by describing the Recovery Journal Sending Structure (RJSS).
 Senders use the RJSS to generate the recovery journal section for RTP
 MIDI packets.

 The RJSS is a hierarchical representation of the checkpoint history
 of the stream. The checkpoint history holds the MIDI commands that
 are at risk to packet loss (Appendix A.1 of [RFC4695] precisely
 defines the checkpoint history). The layout of the RJSS mirrors the
 hierarchical structure of the recovery journal bitfields.

 Figure 9 shows an RJSS implementation for a simple sender. The leaf
 level of the RJSS hierarchy (the jsend_chapter structures)
 corresponds to channel chapters (Appendices A.2-9 in [RFC4695]). The
 second level of the hierarchy (jsend_channel) corresponds to the
 channel journal header (Figure 9 in [RFC4695]). The top level of the
 hierarchy (jsend_journal) corresponds to the recovery journal header
 (Figure 8 in [RFC4695]).

Lazzaro & Wawrzynek Informational [Page 14]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 Each RJSS data structure may code several items:

 1. The current contents of the recovery journal bitfield associated
 with the RJSS structure (jheader[], cheader[], or a chapter
 bitfield).

 2. A seqnum variable. Seqnum codes the extended RTP sequence number
 of the most recent packet that added information to the RJSS
 structure. If the seqnum of a structure is updated, the seqnums
 of all structures above it in the recovery journal hierarchy are
 also updated. Thus, a packet that caused an update to a specific
 jsend_chapter structure would update the seqnum values of this
 structure and of the jsend_channel and jsend_journal structures
 that contain it.

 3. Ancillary variables used by the sending algorithm.

 A seqnum variable for a level is set to zero if the checkpoint
 history contains no information at the level of the seqnum variable,
 and no information at any level below the level of the seqnum
 variable. This coding scheme assumes that the first sequence number
 of a stream is normalized to 1, and limits the total number of stream
 packets to 2^32 - 1.

 The cm_unused and ch_never parameters in Figures 1-2 define the
 subset of MIDI commands supported by the sender (see Appendix C.2.3
 of [RFC4695] for details). The sender transmits most voice commands
 but does not transmit system commands. The sender assumes that the
 MIDI source uses note commands in the typical way. Thus, the sender
 does not use the Chapter E note resiliency tools (Appendix A.7 of
 [RFC4695]). The sender does not support Control Change commands for
 controller numbers with All Notes Off (123-127), All Sound Off (120),
 and Reset All Controllers (121) semantics and does not support
 enhanced Chapter C encoding (Appendix A.3.3 of [RFC4695]).

 We chose this subset of MIDI commands to simplify the example. In
 particular, the command restrictions ensure that all commands are
 active, that all note commands are N-active, and that all Control
 Change commands are C-active (see Appendix A.1 of [RFC4695] for
 definitions of active, N-active, and C-active).

 In the sections that follow, we describe the tasks a sender performs
 to manage the recovery journal system.

Lazzaro & Wawrzynek Informational [Page 15]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

5.1. Initializing the RJSS

 At the start of a stream, the sender initializes the RJSS. All
 seqnum variables are set to zero, including all elements of
 note_seqnum[] and control_seqnum[].

 The sender initializes jheader[] to form a recovery journal header
 that codes an empty journal. The S bit of the header is set to 1,
 and the A, Y, R, and TOTCHAN header fields are set to zero. The
 checkpoint packet sequence number field is set to the sequence number
 of the upcoming first RTP packet (per Appendix A.1 of [RFC4695]).

Lazzaro & Wawrzynek Informational [Page 16]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 typedef unsigned char uint8; /* must be 1 octet */
 typedef unsigned short uint16; /* must be 2 octet */
 typedef unsigned long uint32; /* must be 4 octets */

 /**/
 /* leaf level hierarchy: Chapter W, Appendix A.5 of [RFC4695] */
 /**/

 typedef struct jsend_chapterw { /* Pitch Wheel (0xE) */
 uint8 chapterw[2]; /* bitfield Figure A.5.1 [RFC4695] */
 uint32 seqnum; /* extended sequence number, or 0 */
 } jsend_chapterw;

 /**/
 /* leaf level hierarchy: Chapter N, Appendix A.6 of [RFC4695] */
 /**/

 typedef struct jsend_chaptern { /* Note commands (0x8, 0x9) */

 /* chapter N maximum size is 274 octets: a 2 octet header, */
 /* and a maximum of 128 2-octet logs and 16 OFFBIT octets */

 uint8 chaptern[274]; /* bitfield Figure A.6.1 [RFC4695] */
 uint16 size; /* actual size of chaptern[] */
 uint32 seqnum; /* extended seq number, or 0 */
 uint32 note_seqnum[128]; /* most recent note seqnum, or 0 */
 uint32 note_tstamp[128]; /* NoteOn execution timestamp */
 uint32 bitfield_ptr[128]; /* points to a chapter log, or 0 */
 } jsend_chaptern;

 /**/
 /* leaf level hierarchy: Chapter C, Appendix A.3 of [RFC4695] */
 /**/

 typedef struct jsend_chapterc { /* Control Change (0xB) */

 /* chapter C maximum size is 257 octets: a 1 octet header */
 /* and a maximum of 128 2-octet logs */

 uint8 chapterc[257]; /* bitfield Figure A.3.1 [RFC4695] */
 uint16 size; /* actual size of chapterc[] */
 uint32 seqnum; /* extended sequence number, or 0 */
 uint32 control_seqnum[128]; /* most recent seqnum, or 0 */
 uint32 bitfield_ptr[128]; /* points to a chapter log, or 0 */
 } jsend_chapterc;

 Figure 9. Recovery Journal Sending Structure (part 1)

Lazzaro & Wawrzynek Informational [Page 17]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 /**/
 /* leaf level hierarchy: Chapter P, Appendix A.2 of [RFC4695] */
 /**/

 typedef struct jsend_chapterp { /* MIDI Program Change (0xC) */

 uint8 chapterp[3]; /* bitfield Figure A.2.1 [RFC4695] */
 uint32 seqnum; /* extended sequence number, or 0 */

 } jsend_chapterp;

 /***/
 /* second-level of hierarchy, for channel journals */
 /***/

 typedef struct jsend_channel {

 uint8 cheader[3]; /* header Figure 9 [RFC4695]) */
 uint32 seqnum; /* extended sequence number, or 0 */

 jsend_chapterp chapterp; /* chapter P info */
 jsend_chapterc chapterc; /* chapter C info */
 jsend_chapterw chapterw; /* chapter W info */
 jsend_chaptern chaptern; /* chapter N info */

 } jsend_channel;

 /***/
 /* top level of hierarchy, for recovery journal header */
 /***/

 typedef struct jsend_journal {

 uint8 jheader[3]; /* header Figure 8, [RFC4695] */
 /* Note: Empty journal has a header */

 uint32 seqnum; /* extended sequence number, or 0 */
 /* seqnum = 0 codes empty journal */

 jsend_channel channels[16]; /* channel journal state */
 /* index is MIDI channel */

 } jsend_journal;

 Figure 9. Recovery Journal Sending Structure (part 2)

Lazzaro & Wawrzynek Informational [Page 18]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 In jsend_chaptern, elements of note_tstamp[] are set to zero. In
 jsend_chaptern and jsend_chapterc, elements of bitfield_ptr[] are set
 to the null pointer index value (bitfield_ptr[] is an array whose
 elements point to the first octet of the note or control log
 associated with the array index).

5.2. Traversing the RJSS

 Whenever an RTP packet is created (Step 3 of the algorithm defined in
 Figure 8), the sender traverses the RJSS to create the recovery
 journal for the packet. The traversal begins at the top level of the
 RJSS. The sender copies jheader[] into the packet and then sets the
 S bit of jheader[] to 1.

 The traversal continues depth-first, visiting every jsend_channel
 whose seqnum variable is non-zero. The sender copies the cheader[]
 array into the packet and then sets the S bit of cheader[] to 1.
 After each cheader[] copy, the sender visits each leaf-level chapter,
 in the order of its appearance in the chapter journal Table of
 Contents (first P, then C, then W, then N, as shown in Figure 9 of
 [RFC4695]).

 If a chapter has a non-zero seqnum, the sender copies the chapter
 bitfield array into the packet and then sets the S bit of the RJSS
 array to 1. For chaptern[], the B bit is also set to 1. For the
 variable-length chapters (chaptern[] and chapterc[]), the sender
 checks the size variable to determine the bitfield length.

 Before copying chaptern[], the sender updates the Y bit of each note
 log to code the onset of the associated NoteOn command (Figure A.6.3
 in [RFC4695]). To determine the Y bit value, the sender checks the
 note_tstamp[] array for note timing information.

5.3. Updating the RJSS

 After an RTP packet is sent, the sender updates the RJSS to refresh
 the checkpoint history (Step 5 of the sending algorithm defined in
 Figure 8). For each command in the MIDI list of the sent packet, the
 sender performs the update procedure we now describe.

 The update procedure begins at the leaf level. The sender generates
 a new bitfield array for the chapter associated with the MIDI command
 using the chapter-specific semantics defined in Appendix A of
 [RFC4695].

 For Chapter N and Chapter C, the sender uses the bitfield_ptr[] array
 to locate and update an existing log for a note or controller. If a
 log does not exist, the sender adds a log to the end of the

Lazzaro & Wawrzynek Informational [Page 19]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 chaptern[] or chapterc[] bitfield and changes the bitfield_ptr[]
 value to point to the log. For Chapter N, the sender also updates
 note_tstamp[].

 The sender also clears the S bit of the chapterp[], chapterw[], or
 chapterc[] bitfield. For chaptern[], the sender clears the S bit or
 the B bit of the bitfield, as described in Appendix A.6 of [RFC4695].

 Next, the sender refreshes the upper levels of the RJSS hierarchy.
 At the second level, the sender updates the cheader[] bitfield of the
 channel associated with the command. The sender sets the S bit of
 cheader[] to 0. If the new command forced the addition of a new
 chapter or channel journal, the sender may also update other
 cheader[] fields. At the top level, the sender updates the top-level
 jheader[] bitfield in a similar manner.

 Finally, the sender updates the seqnum variables associated with the
 changed bitfield arrays. The sender sets the seqnum variables to the
 extended sequence number of the packet.

5.4. Trimming the RJSS

 At regular intervals, receivers send RTCP receiver reports to the
 sender (as described in Section 6.4.2 of [RFC3550]). These reports
 include the extended highest sequence number received (EHSNR) field.
 This field codes the highest sequence number that the receiver has
 observed from the sender, extended to disambiguate sequence number
 rollover.

 When the sender receives an RTCP receiver report, it runs the RJSS
 trimming algorithm. The trimming algorithm uses the EHSNR to trim
 away parts of the RJSS. In this way, the algorithm reduces the size
 of recovery journals sent in subsequent RTP packets. The algorithm
 conforms to the closed-loop sending policy defined in Appendix
 C.2.2.2 of [RFC4695].

 The trimming algorithm relies on the following observation: if the
 EHSNR indicates that a packet with sequence number K has been
 received, MIDI commands sent in packets with sequence numbers J <= K
 may be removed from the RJSS without violating the closed-loop
 policy.

 To begin the trimming algorithm, the sender extracts the EHSNR field
 from the receiver report and adjusts the EHSNR to reflect the
 sequence number extension prefix of the sender. Then, the sender
 compares the adjusted EHSNR value with seqnum fields at each level of
 the RJSS, starting at the top level.

Lazzaro & Wawrzynek Informational [Page 20]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 Levels whose seqnum is less than or equal to the adjusted EHSNR are
 trimmed, by setting the seqnum to zero. If necessary, the jheader[]
 and cheader[] arrays above the trimmed level are adjusted to match
 the new journal layout. The checkpoint packet sequence number field
 of jheader[] is updated to match the EHSNR.

 At the leaf level, the sender trims the size of the variable-length
 chaptern[] and chapterc[] bitfields. The sender loops through the
 note_seqnum[] or control_seqnum[] array and removes chaptern[] or
 chapterc[] logs whose seqnum value is less than or equal to the
 adjusted EHSNR. The sender sets the associated bitfield_ptr[] to
 null and updates the LENGTH field of the associated cheader[]
 bitfield.

 Note that the trimming algorithm does not add information to the
 checkpoint history. As a consequence, the trimming algorithm does
 not clear the S bit (and for chaptern[], the B bit) of any recovery
 journal bitfield. As a second consequence, the trimming algorithm
 does not set RJSS seqnum variables to the EHSNR value.

5.5. Implementation Notes

 For pedagogical purposes, the recovery journal sender we describe has
 been simplified in several ways. In practice, an implementation
 would use enhanced versions of the traversing, updating, and trimming
 algorithms presented in Sections 5.2-5.4.

6. Receiving Streams: General Considerations

 In this section, we discuss receiver implementation issues.

 To begin, we imagine that an ideal network carries the RTP stream.
 Packets are never lost or reordered, and the end-to-end latency is
 constant. In addition, we assume that all commands coded in the MIDI
 list of a packet share the same timestamp (an assumption coded by the
 "rtp_ptime" and "rtp_maxptime" values in Figures 1-2; see Appendix
 C.4.1 of [RFC4695] for details).

 Under these conditions, a simple algorithm may be used to render a
 high-quality performance. Upon receipt of an RTP packet, the
 receiver immediately executes the commands coded in the MIDI command
 section of the payload. Commands are executed in the order of their
 appearance in the MIDI list. The command timestamps are ignored.

Lazzaro & Wawrzynek Informational [Page 21]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 Unfortunately, this simple algorithm breaks down once we relax our
 assumptions about the network and the MIDI list:

 1. If we permit lost and reordered packets to occur in the network,
 the algorithm may produce unrecoverable rendering artifacts,
 violating the mandate defined in Section 4 of [RFC4695].

 2. If we permit the network to exhibit variable latency, the
 algorithm modulates the network jitter onto the rendered MIDI
 command stream.

 3. If we permit a MIDI list to code commands with different
 timestamps, the algorithm adds temporal jitter to the rendered
 performance, as it ignores MIDI list timestamps.

 In this section, we discuss interactive receiver design techniques
 under these relaxed assumptions. Section 6.1 describes a receiver
 design for high-performance Wide Area Networks (WANs), and Section
 6.2 discusses design issues for other types of networks.

6.1. The NMP Receiver Design

 The Network Musical Performance (NMP) system [NMP] is an interactive
 performance application that uses an early version of the RTP MIDI
 payload format. NMP is designed for use between universities within
 the State of California, which use the high-performance CalREN2
 network.

 In the NMP system, network artifacts may affect how a musician hears
 the performances of remote players. However, the network does not
 affect how a musician hears his own performance.

 Several aspects of CalREN2 network behavior (as measured in 2001
 timeframe, as documented in [NMP]) guided the NMP system design:

 o The median symmetric latency (1/2 the round-trip time) of packets
 sent between network sites is comparable to the acoustic latency
 between two musicians located in the same room. For example, the
 latency between Berkeley and Stanford is 2.1 ms, corresponding to
 an acoustic distance of 2.4 feet (0.72 meters). These campuses
 are 40 miles (64 km) apart. Preserving the benefits of the
 underlying network latency at the application level was a key NMP
 design goal.

 o For most times of day, the nominal temporal jitter is quite short.
 For Berkeley-Stanford, the standard deviation of the round-trip
 time was under 200 microseconds.

Lazzaro & Wawrzynek Informational [Page 22]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 o For most times of day, a few percent (0-4%) of the packets sent
 arrive significantly late (> 40 ms), probably due to a queuing
 transient somewhere in the network path. More rarely (< 0.1%), a
 packet is lost during the transient.

 o At predictable times during the day (before lunchtime, at the end
 of the workday, etc.), network performance deteriorates (10-20%
 late packets) in a manner that makes the network unsuitable for
 low-latency interactive use.

 o CalREN2 has deeply over-provisioned bandwidth, relative to MIDI
 bandwidth usage.

 The NMP sender freely uses network bandwidth to improve the
 performance experience. As soon as a musician generates a MIDI
 command, an RTP packet coding the command is sent to the other
 players. This sending algorithm reduces latency at the cost of
 bandwidth. In addition, guard packets (described in Section 4.2) are
 sent at frequent intervals to minimize the impact of packet loss.

 The NMP receiver maintains a model of the stream and uses this model
 as the basis of its resiliency system. Upon receipt of a packet, the
 receiver predicts the RTP sequence number and the RTP timestamp (with
 error bars) of the packet. Under normal network conditions, about
 95% of received packets fit the predictions [NMP]. In this common
 case, the receiver immediately executes the MIDI command coded in the
 packet.

 Note that the NMP receiver does not use a playout buffer; the design
 is optimized for lowest latency at the expense of command jitter.
 Thus, the NMP receiver design does not completely satisfy the
 interoperability text in Appendix C.7.2 of [RFC4695], which requires
 that receivers in network musical performance applications be capable
 of using a playout buffer.

 Occasionally, an incoming packet fits the sequence number prediction,
 but falls outside the timestamp prediction error bars (see Appendix B
 of [NMP] for timestamp model details). In most cases, the receiver
 still executes the command coded in the packet. However, the
 receiver discards NoteOn commands with non-zero velocity. By
 discarding late commands that sound notes, the receiver prevents
 "straggler notes" from disturbing a performance. By executing all
 other late commands, the receiver quiets "soft stuck notes"
 immediately and updates the state of the MIDI system.

 More rarely, an incoming packet does not fit the sequence number
 prediction. The receiver keeps track of the highest sequence number
 received in the stream and predicts that an incoming packet will have

Lazzaro & Wawrzynek Informational [Page 23]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 a sequence number one greater than this value. If the sequence
 number of an incoming packet is greater than the prediction, a packet
 loss has occurred. If the sequence number of the received packet is
 less than the prediction, the packet has been received out of order.
 All sequence number calculations are modulo 2^16 and use standard
 methods (described in [RFC3550]) to avoid tracking errors during
 rollover.

 If a packet loss has occurred, the receiver examines the journal
 section of the received packet and uses it to gracefully recover from
 the loss episode. We describe this recovery procedure in Section 7
 of this memo. The recovery process may result in the execution of
 one or more MIDI commands. After executing the recovery commands,
 the receiver processes the MIDI command encoded in the packet using
 the timestamp model test described above.

 If a packet is received out of order, the receiver ignores the
 packet. The receiver takes this action because a packet received out
 of order is always preceded by a packet that signalled a loss event.
 This loss event triggered the recovery process, which may have
 executed recovery commands. The MIDI command coded in the out-of-
 order packet might, if executed, duplicate these recovery commands,
 and this duplication might endanger the integrity of the stream.
 Thus, ignoring the out-of-order packet is the safe approach.

6.2. High-Jitter Networks, Local Area Networks

 The NMP receiver targets a network with a particular set of
 characteristics: low nominal jitter, low packet loss, and occasional
 outlier packets that arrive very late. In this section, we consider
 how networks with different characteristics impact receiver design.

 Networks with significant nominal jitter cannot use the buffer-free
 receiver design described in Section 6.1. For example, the NMP
 system performs poorly for musicians that use dial-up modem
 connections, because the buffer-free receiver design modulates modem
 jitter onto the performances. Receivers designed for high-jitter
 networks should use a substantial playout buffer. References [GRAME]
 and [CCRMA] describe how to use playout buffers in latency-critical
 applications.

 Receivers intended for use on Local Area Networks (LANs) face a
 different set of issues. A dedicated LAN fabric built with modern
 hardware is in many ways a predictable environment. The network
 problems addressed by the NMP receiver design (packet loss and
 outlier late packets) might only occur under extreme network overload
 conditions.

Lazzaro & Wawrzynek Informational [Page 24]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 Systems designed for this environment may choose to configure streams
 without the recovery journal system (Appendix C.2.1 of [RFC4695]).
 Receivers may also wish to forego or simplify the detection of
 outlier late packets. Receivers should monitor the RTP sequence
 numbers of incoming packets to detect network unreliability.

 However, in some respects, LAN applications may be more demanding
 than WAN applications. In LAN applications, musicians may be
 receiving performance feedback from audio that is rendered from the
 stream. The tolerance a musician has for latency and jitter in this
 context may be quite low.

 To reduce the perceived jitter, receivers may use a small playout
 buffer (in the range of 100us to 2ms). The buffer adds a small
 amount of latency to the system, which may be annoying to some
 players. Receiver designs should include buffer tuning parameters to
 let musicians adjust the tradeoff between latency and jitter.

7. Receiving Streams: The Recovery Journal

 In this section, we describe the recovery algorithm used by the NMP
 receiver [NMP]. In most ways, the recovery techniques we describe
 are generally applicable to interactive receiver design. However, a
 few aspects of the design are specialized for the NMP system:

 o The recovery algorithm covers a subset of the MIDI command set.
 MIDI Systems (0xF), Poly Aftertouch (0xA), and Channel Aftertouch
 (0xD) commands are not protected, and Control Change (0xB) command
 protection is simplified. Note commands for a particular note
 number are assumed to follow the typical NoteOn->NoteOff->NoteOn
 ->NoteOff pattern. The cm_unused and ch_never parameters in
 Figures 1-2 specify this coverage.

 o The NMP system does not use a playout buffer. Therefore, the
 recovery algorithm does not address interactions with a playout
 buffer.

 At a high level, the receiver algorithm works as follows. Upon
 detection of a packet loss, the receiver examines the recovery
 journal of the packet that ends the loss event. If necessary, the
 receiver executes one or more MIDI commands to recover from the loss.

 To prepare for recovery, a receiver maintains a data structure, the
 Recovery Journal Receiver Structure (RJRS). The RJRS codes
 information about the MIDI commands the receiver executes (both
 incoming stream commands and self-generated recovery commands). At
 the start of the stream, the RJRS is initialized to code that no
 commands have been executed. Immediately after executing a MIDI

Lazzaro & Wawrzynek Informational [Page 25]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 command, the receiver updates the RJRS with information about the
 command.

 We now describe the recovery algorithm in detail. We begin with two
 definitions that classify loss events. These definitions assume that
 the packet that ends the loss event has RTP sequence number I.

 o Single-packet loss. A single-packet loss occurs if the last
 packet received before the loss event (excluding out-of-order
 packets) has the sequence number I-2 (modulo 2^16).

 o Multi-packet loss. A multi-packet loss occurs if the last packet
 received before the loss event (excluding out-of-order packets)
 has a sequence number less than I-2 (modulo 2^16).

 Upon detection of a packet loss, the recovery algorithm examines the
 recovery journal header (Figure 8 of [RFC4695]) to check for special
 cases:

 o If the header field A is 0, the recovery journal has no channel
 journals, so no action is taken.

 o If a single-packet loss has occurred, and if the header S bit is
 1, the lost packet has a MIDI command section with an empty MIDI
 list. No action is taken.

 If these checks fail, the algorithm parses the recovery journal body.
 For each channel journal (Figure 9 in [RFC4695]) in the recovery
 journal, the receiver compares the data in each chapter journal
 (Appendix A of [RFC4695]) to the RJRS data for the chapter. If the
 data are inconsistent, the algorithm infers that MIDI commands
 related to the chapter journal have been lost. The recovery
 algorithm executes MIDI commands to repair this loss and updates the
 RJRS to reflect the repair.

 For single-packet losses, the receiver skips channel and chapter
 journals whose S bits are set to 1. For multi-packet losses, the
 receiver parses each channel and chapter journal and checks for
 inconsistency.

 In the sections that follow, we describe the recovery steps that are
 specific to each chapter journal. We cover 4 chapter journal types:
 P (Program Change, 0xC), C (Control Change, 0xB), W (Pitch Wheel,
 0xE), and N (Note, 0x8 and 0x9). Chapters are parsed in the order of
 their appearance in the channel journal (P, then W, then N, then C).

Lazzaro & Wawrzynek Informational [Page 26]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 The sections below reference the C implementation of the RJRS shown
 in Figure 10. This structure is hierarchical, reflecting the
 recovery journal architecture. At the leaf level, specialized data
 structures (jrec_chapterw, jrec_chaptern, jrec_chapterc, and
 jrec_chapterp) code state variables for a single chapter journal
 type. A mid-level structure (jrec_channel) represents a single MIDI
 channel, and a top-level structure (jrec_stream) represents the
 entire MIDI stream.

Lazzaro & Wawrzynek Informational [Page 27]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 typedef unsigned char uint8; /* must be 1 octet */
 typedef unsigned short uint16; /* must be 2 octets */
 typedef unsigned long uint32; /* must be 4 octets */

 /***/
 /* leaf level of hierarchy: Chapter W, Appendix A.5 of [RFC4695] */
 /***/

 typedef struct jrec_chapterw { /* MIDI Pitch Wheel (0xE) */

 uint16 val; /* most recent 14-bit wheel value */

 } jrec_chapterw;

 /***/
 /* leaf level of hierarchy: Chapter N, Appendix A.6 of [RFC4695] */
 /***/

 typedef struct jrec_chaptern { /* Note commands (0x8, 0x9) */

 /* arrays of length 128 --> one for each MIDI Note number */

 uint32 time[128]; /* exec time of most recent NoteOn */
 uint32 extseq[128]; /* extended seqnum for that NoteOn */
 uint8 vel[128]; /* NoteOn velocity (0 for NoteOff) */

 } jrec_chaptern;

 /***/
 /* leaf level of hierarchy: Chapter C, Appendix A.3 of [RFC4695] */
 /***/

 typedef struct jrec_chapterc { /* Control Change (0xB) */

 /* array of length 128 --> one for each controller number */

 uint8 value[128]; /* Chapter C value tool state */
 uint8 count[128]; /* Chapter C count tool state */
 uint8 toggle[128]; /* Chapter C toggle tool state */

 } jrec_chapterc;

 Figure 10. Recovery Journal Receiving Structure (part 1)

Lazzaro & Wawrzynek Informational [Page 28]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 /***/
 /* leaf level of hierarchy: Chapter P, Appendix A.2 of [RFC4695] */
 /***/

 typedef struct jrec_chapterp { /* MIDI Program Change (0xC) */

 uint8 prognum; /* most recent 7-bit program value */
 uint8 prognum_qual; /* 1 once first 0xC command arrives */

 uint8 bank_msb; /* most recent Bank Select MSB value */
 uint8 bank_msb_qual; /* 1 once first 0xBn 0x00 arrives */

 uint8 bank_lsb; /* most recent Bank Select LSB value */
 uint8 bank_lsb_qual; /* 1 once first 0xBn 0x20 arrives */

 } jrec_chapterp;

 /***/
 /* second-level of hierarchy, for MIDI channels */
 /***/

 typedef struct jrec_channel {

 jrec_chapterp chapterp; /* Program Change (0xC) info */
 jrec_chapterc chapterc; /* Control Change (0xB) info */
 jrec_chapterw chapterw; /* Pitch Wheel (0xE) info */
 jrec_chaptern chaptern; /* Note (0x8, 0x9) info */

 } jrec_channel;

 /***/
 /* top level of hierarchy, for the MIDI stream */
 /***/

 typedef struct jrec_stream {

 jrec_channel channels[16]; /* index is MIDI channel */

 } jrec_stream;

 Figure 10. Recovery Journal Receiving Structure (part 2)

Lazzaro & Wawrzynek Informational [Page 29]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

7.1. Chapter W: MIDI Pitch Wheel (0xE)

 Chapter W of the recovery journal protects against the loss of MIDI
 Pitch Wheel (0xE) commands. A common use of the Pitch Wheel command
 is to transmit the current position of a rotary "pitch wheel"
 controller placed on the side of MIDI piano controllers. Players use
 the pitch wheel to dynamically alter the pitch of all depressed keys.

 The NMP receiver maintains the jrec_chapterw structure (Figure 10)
 for each voice channel in jrec_stream to code pitch wheel state
 information. In jrec_chapterw, val holds the 14-bit data value of
 the most recent Pitch Wheel command that has arrived on a channel.
 At the start of the stream, val is initialized to the default pitch
 wheel value (0x2000).

 At the end of a loss event, a receiver may find a Chapter W (Appendix
 A.5 in [RFC4695]) bitfield in a channel journal. This chapter codes
 the 14-bit data value of the most recent MIDI Pitch Wheel command in
 the checkpoint history. If the Chapter W and jrec_chapterw pitch
 wheel values do not match, one or more commands have been lost.

 To recover from this loss, the NMP receiver immediately executes a
 MIDI Pitch Wheel command on the channel, using the data value coded
 in the recovery journal. The receiver then updates the jrec_chapterw
 variables to reflect the executed command.

7.2. Chapter N: MIDI NoteOn (0x8) and NoteOff (0x9)

 Chapter N of the recovery journal protects against the loss of MIDI
 NoteOn (0x9) and NoteOff (0x8) commands. If a NoteOn command is
 lost, a note is skipped. If a NoteOff command is lost, a note may
 sound indefinitely. Recall that NoteOn commands with a velocity
 value of 0 have the semantics of NoteOff commands.

 The recovery algorithms in this section only work for MIDI sources
 that produce NoteOn->NoteOff->NoteOn->NoteOff patterns for a note
 number. Piano keyboard and drum pad controllers produce these
 patterns. MIDI sources that use NoteOn->NoteOn->NoteOff->NoteOff
 patterns for legato repeated notes, such as guitar and wind
 controllers, require more sophisticated recovery strategies. Chapter
 E (not used in this example) supports recovery algorithms for
 atypical note command patterns (see Appendix A.7 of [RFC4695] for
 details).

 The NMP receiver maintains a jrec_chaptern structure (Figure 10) for
 each voice channel in jrec_stream to code note-related state
 information. State is kept for each of the 128 note numbers on a

Lazzaro & Wawrzynek Informational [Page 30]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 channel, using three arrays of length 128 (vel[], seq[], and time[]).
 The arrays are initialized to zero at the start of a stream.

 The vel[n] array element holds information about the most recent note
 command for note number n. If this command is a NoteOn command,
 vel[n] holds the velocity data for the command. If this command is a
 NoteOff command, vel[n] is set to 0.

 The time[n] and extseq[n] array elements code information about the
 most recently executed NoteOn command. The time[n] element holds the
 execution time of the command, referenced to the local timebase of
 the receiver. The extseq[n] element holds the RTP extended sequence
 number of the packet associated with the command. For incoming
 stream commands, extseq[n] codes the packet of the associated MIDI
 list. For commands executed to perform loss recovery, extseq[n]
 codes the packet of the associated recovery journal.

 The Chapter N recovery journal bitfield (Figure A.6.1 in [RFC4695])
 consists of two data structures: a bit array coding recently sent
 NoteOff commands that are vulnerable to packet loss, and a note log
 list coding recently sent NoteOn commands that are vulnerable to
 packet loss.

 At the end of a loss event, Chapter N recovery processing begins with
 the NoteOff bit array. For each set bit in the array, the receiver
 checks the corresponding vel[n] element in jrec_chaptern. If vel[n]
 is non-zero, a NoteOff command or a NoteOff->NoteOn->NoteOff command
 sequence has been lost. To recover from this loss, the receiver
 immediately executes a NoteOff command for the note number on the
 channel and sets vel[n] to 0.

 The receiver then parses the note log list, using the S bit to skip
 over "safe" logs in the single-packet loss case. For each at-risk
 note log, the receiver checks the corresponding vel[n] element.

 If vel[n] is zero, a NoteOn command or a NoteOn->NoteOff->NoteOn
 command sequence has been lost. The receiver may execute the most
 recent lost NoteOn (to play the note) or may take no action (to skip
 the note), based on criteria we describe at the end of this section.
 Whether the note is played or skipped, the receiver updates the
 vel[n], time[n], and extseq[n] elements as if the NoteOn executed.

 If vel[n] is non-zero, the receiver performs several checks to test
 if a NoteOff->NoteOn sequence has been lost.

 o If vel[n] does not match the note log velocity, the note log must
 code a different NoteOn command, and thus a NoteOff->NoteOn
 sequence has been lost.

Lazzaro & Wawrzynek Informational [Page 31]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 o If extseq[n] is less than the (extended) checkpoint packet
 sequence numbed coded in the recovery journal header (Figure 8 of
 [RFC4695]), the vel[n] NoteOn command is not in the checkpoint
 history, and thus a NoteOff->NoteOn sequence has been lost.

 o If the Y bit is set to 1, the NoteOn is musically "simultaneous"
 with the RTP timestamp of the packet. If time[n] codes a time
 value that is clearly not recent, a NoteOff->NoteOn sequence has
 been lost.

 If these tests indicate a lost NoteOff->NoteOn sequence, the receiver
 immediately executes a NoteOff command. The receiver decides if the
 most graceful action is to play or to skip the lost NoteOn, using the
 criteria we describe at the end of this section. Whether or not the
 receiver issues a NoteOn command, the vel[n], time[n], and extseq[n]
 arrays are updated as if it did.

 Note that the tests above do not catch all lost NoteOff->NoteOn
 commands. If a fast NoteOn->NoteOff->NoteOn sequence occurs on a
 note number with identical velocity values for both NoteOn commands,
 a lost NoteOff->NoteOn does not result in the recovery algorithm
 generating a NoteOff command. Instead, the first NoteOn continues to
 sound, to be terminated by the future NoteOff command. In practice,
 this (rare) outcome is not musically objectionable.

 The number of tests in this resiliency algorithm may seem excessive.
 However, in some common cases, a subset of the tests is not useful.
 For example, MIDI streams that assigns the same velocity value to all
 note events are often produced by inexpensive keyboards. The vel[n]
 tests are not useful for these streams.

 Finally, we discuss how the receiver decides whether to play or to
 skip a lost NoteOn command. The note log Y bit is set if the NoteOn
 is "simultaneous" with the RTP timestamp of the packet holding the
 note log. If Y is 0, the receiver does not execute a NoteOn command.
 If Y is 1, and if the packet has not arrived late, the receiver
 immediately executes a NoteOn command for the note number, using the
 velocity coded in the note log.

7.3. Chapter C: MIDI Control Change (0xB)

 Chapter C (Appendix A.3 in [RFC4695]) protects against the loss of
 MIDI Control Change commands. A Control Change command alters the
 7-bit value of one of the 128 MIDI controllers.

 Chapter C offers three tools for protecting a Control Change command:
 the value tool (for graded controllers such as sliders), the toggle
 tool (for on/off switches), and the count tool (for momentary-contact

Lazzaro & Wawrzynek Informational [Page 32]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 switches). Senders choose a tool to encode recovery information for
 a controller and encode the tool type along with the data in the
 journal (Figures A.3.2 and A.3.3 in [RFC4695]).

 A few uses of Control Change commands are not solely protected by
 Chapter C. The protection of controllers 0 and 32 (Bank Select MSB
 and Bank Select LSB) is shared between Chapter C and Chapter P
 (Section 7.4).

 Chapter M (Appendix A.4 of [RFC4695]) also protects the Control
 Change command. However, the NMP system does not use this chapter,
 because MPEG 4 Structured Audio [MPEGSA] does not use the controllers
 protected by this chapter.

 The Chapter C bitfield consists of a list of controller logs. Each
 log codes the controller number, the tool type, and the state value
 for the tool.

 The NMP receiver maintains the jrec_chapterc structure (Figure 10)
 for each voice channel in jrec_stream to code Control Change state
 information. The value[] array holds the most recent data values for
 each controller number. At the start of the stream, value[] is
 initialized to the default controller data values specified in
 [MPEGSA].

 The count[] and toggle[] arrays hold the count tool and toggle tool
 state values. At the start of a stream, these arrays are initialized
 to zero. Whenever a Control Command executes, the receiver updates
 the count[] and toggle[] state values, using the algorithms defined
 in Appendix A.3 of [RFC4695].

 At the end of a loss event, the receiver parses the Chapter C
 controller log list, using the S bit to skip over "safe" logs in the
 single-packet loss case. For each at-risk controller number n, the
 receiver determines the tool type in use (value, toggle, or count)
 and compares the data in the log to the associated jrec_chapterc
 array element (value[n], toggle[n], or count[n]). If the data do not
 match, one or more Control Change commands have been lost.

 The method the receiver uses to recover from this loss depends on the
 tool type and the controller number. For graded controllers
 protected by the value tool, the receiver executes a Control Change
 command using the new data value.

 For the toggle and count tools, the recovery action is more complex.
 For example, the Damper Pedal (Sustain) controller (number 64) is
 typically used as a sustain pedal for piano-like sounds and is
 typically coded using the toggle tool. If Damper Pedal (Sustain)

Lazzaro & Wawrzynek Informational [Page 33]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 Control Change commands are lost, the receiver takes different
 actions depending on the starting and ending state of the lost
 sequence, to ensure that "ringing" piano notes are "damped" to
 silence.

 After recovering from the loss, the receiver updates the value[],
 toggle[], and count[] arrays to reflect the Chapter C data and the
 executed commands.

7.4. Chapter P: MIDI Program Change (0xC)

 Chapter P of the recovery journal protects against the loss of MIDI
 Program Change (0xC) commands.

 The 7-bit data value of the Program Change command selects one of 128
 possible timbres for the channel. To increase the number of possible
 timbres, Control Change (0xB) commands may be issued prior to the
 Program Change command to select a "program bank". The Bank Select
 MSB (number 0) and Bank Select LSB (number 32) controllers specify
 the 14-bit bank number that subsequent Program Change commands
 reference.

 The NMP receiver maintains the jrec_chapterp structure (Figure 10)
 for each voice channel in jrec_stream to code Program Change state
 information.

 The prognum variable of jrec_chapterp holds the data value for the
 most recent Program Change command that has arrived on the stream.
 The bank_msb and bank_lsb variables of jrec_chapterp code the Bank
 Select MSB and Bank Select LSB controller data values that were in
 effect when that Program Change command arrived. The prognum_qual,
 bank_msb_qual, and bank_lsb_qual variables are initialized to 0 and
 are set to 1 to qualify the associated data values.

 Chapter P fields code the data value for the most recent Program
 Change command, and the MSB and LSB bank values in effect for that
 command.

 At the end of a loss event, the receiver checks Chapter P to see if
 the recovery journal fields match the data stored in jrec_chapterp.
 If these checks fail, one or more Program Change commands have been
 lost.

 To recover from this loss, the receiver takes the following steps.
 If the B bit in Chapter P is set (Figure A.2.1 in [RFC4695]), Control
 Change bank commands have preceded the Program Change command. The
 receiver compares the bank data coded by Chapter P with the current
 bank data for the channel (coded in jrec_channelc).

Lazzaro & Wawrzynek Informational [Page 34]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 If the bank data do not agree, the receiver issues Control Change
 commands to align the stream with Chapter P. The receiver then
 updates jrec_channelp and jrec_channelc variables to reflect the
 executed command(s). Finally, the receiver issues a Program Change
 command that reflects the data in Chapter P and updates the prognum
 and qual_prognum fields in jrec_channelp.

 Note that this method relies on Chapter P recovery to precede Chapter
 C recovery during channel journal processing. This ordering ensures
 that lost Bank Select Control Change commands that occur after a lost
 Program Change command in a stream are handled correctly.

8. Security Considerations

 Security considerations for the RTP MIDI payload format are discussed
 in the Security Considerations section of [RFC4695].

9. IANA Considerations

 IANA considerations for the RTP MIDI payload format are discussed in
 the IANA Considerations section of [RFC4695].

10. Acknowledgements

 This memo was written in conjunction with [RFC4695], and the
 Acknowledgements section of [RFC4695] also applies to this memo.

11. References

11.1. Normative References

 [RFC4695] Lazzaro, J. and J. Wawrzynek, "RTP Payload Format for
 MIDI", RFC 4695, November 2006.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3551] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
 Video Conferences with Minimal Control", STD 65, RFC 3551,
 July 2003.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [MIDI] MIDI Manufacturers Association. "The Complete MIDI 1.0
 Detailed Specification", 1996.

Lazzaro & Wawrzynek Informational [Page 35]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

 [MPEGSA] International Standards Organization. "ISO/IEC 14496
 MPEG-4", Part 3 (Audio), Subpart 5 (Structured Audio),
 2001.

 [RFC3556] Casner, S., "Session Description Protocol (SDP) Bandwidth
 Modifiers for RTP Control Protocol (RTCP) Bandwidth", RFC
 3556, July 2003.

11.2. Informative References

 [NMP] Lazzaro, J. and J. Wawrzynek. "A Case for Network Musical
 Performance", 11th International Workshop on Network and
 Operating Systems Support for Digital Audio and Video
 (NOSSDAV 2001) June 25-26, 2001, Port Jefferson, New York.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E. Schooler,
 "SIP: Session Initiation Protocol", RFC 3261, June 2002.

 [GRAME] Fober, D., Orlarey, Y. and S. Letz. "Real Time Musical
 Events Streaming over Internet", Proceedings of the
 International Conference on WEB Delivering of Music 2001,
 pages 147-154.

 [CCRMA] Chafe C., Wilson S., Leistikow R., Chisholm D., and G.
 Scavone. "A simplified approach to high quality music and
 sound over IP", COST-G6 Conference on Digital Audio Effects
 (DAFx-00), Verona, Italy, December 2000.

 [RTPBOOK] Perkins, C. "RTP: Audio and Video for the Internet",
 Addison-Wesley, ISBN 0-672-32249-8, 2003.

 [STEVENS] Stevens, R. W, Fenner, B., and A. Rudoff. "Unix Network
 Programming: The Sockets Networking API", Addison-Wesley,
 2003.

Lazzaro & Wawrzynek Informational [Page 36]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

Authors’ Addresses

 John Lazzaro (corresponding author)
 UC Berkeley
 CS Division
 315 Soda Hall
 Berkeley CA 94720-1776

 EMail: lazzaro@cs.berkeley.edu

 John Wawrzynek
 UC Berkeley
 CS Division
 631 Soda Hall
 Berkeley CA 94720-1776

 EMail: johnw@cs.berkeley.edu

Lazzaro & Wawrzynek Informational [Page 37]

RFC 4696 An Implementation Guide for RTP MIDI November 2006

Full Copyright Statement

 Copyright (C) The IETF Trust (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
 AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Lazzaro & Wawrzynek Informational [Page 38]

