Net wor k Wor ki ng Group J. Lazzaro
Request for Comments: 4696 J. Wawr zynek
Cat egory: | nformational UC Ber kel ey

Novenber 2006

An | nmpl enentation Guide for RTP M DI
Status of This Meno

This meno provides infornmation for the Internet conmunity. It does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C The | ETF Trust (2006).
Abst r act

This meno offers non-normative inplenentation gui dance for the Real -
time Protocol (RTP) M DI (Misical Instrunent Digital Interface)

payl oad fornmat. The nmeno presents its advice in the context of a
net work nusi cal performance application. |In this application two
musi ci ans, located in different physical |ocations, interact over a
network to performas they would if located in the same room

Underl ying the performances are RTP M DI sessions over unicast UDP
Al gorithns for sending and receiving recovery journals (the
resiliency structure for the payload fornmat) are described in detail.
Al t hough the neno focuses on network nusical performance, the
presented inpl enentation advice is relevant to other RTP M DI
applications.

Lazzaro & Waw zynek I nf or mat i onal [Page 1]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

Tabl e of Contents

1. IntroduCti On 2
2. Starting the SessSiOn 3
3. Session Managenent: Session Housekeeping 6
4. Sending Streans: General Considerations 7
4.1. Queuing and Coding Inconming MDI Data 11
4.2. Sending Packets with Enpty MDI Lists 12
4.3. Congestion Control and Bandwi dth Managenent 13
5. Sending Streams: The Recovery Journal 14
5.1. Initializing the RISS 16
5.2. Traversing the RISS i 19
5.3. Updating the RISS e 19
5.4, Trimming the RISS 20
5.5. Inplenentation Notes i, 21
6. Receiving Streanms: General Considerations 21
6.1 The NWMP Receiver Design 22
6.2 High-Jitter Networks, Local Area Networks 24
7. Receiving Streans: The Recovery Journal 25
7.1. Chapter W MDI Pitch Wheel (OXE) 30
7.2. Chapter NN M D NoteOn (0x8) and NoteOff (O0x9) 30
7.3. Chapter C MDI Control Change (OxB) 32
7.4. Chapter P: M DI Program Change (0OxC) 34
8. Security Considerati oOnst e 35
9. TANA Considerati ONS 35
10. AcknOowW edgemBnt St 35
11, References 35
11.1. Normative References 35
11.2. Informative References i, 36

1. Introduction

[RFC4695] normatively defines a Real-tine Transport Protocol (RTP

[RFC3550]) payload format for the M D (Misical Instrunent Digita
Interface) conmand | anguage [M D], for use under any applicable RTP
profile, such as the Audio/Visual Profile (AVP, [RFC3551]).

However, [RFC4695] does not define algorithnms for sending and
receiving MDI streans. |Inplenentors are free to use any sending or
receiving algorithmthat conforns to the normative text in [RFC4695],
[RFC3550], [RFC3551], and [MDI].

In this neno, we offer inplenentation gui dance on sendi ng and

receiving M DI RTP streans. Unlike [RFC4695], this neno is not
normati ve.

Lazzaro & Waw zynek I nf or mat i onal [Page 2]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

RTP is a mature protocol, and excellent RTP reference materials are
avai l able [RTPBOOK]. This nmeno ains to conpl enent the existing
literature by focusing on issues that are specific to the MD

payl oad format.

The nmeno focuses on one application: two-party network nusica
performance over wi de-area networks, following the interoperability
gui delines in Appendix C 7.2 of [RFC4695]. Underlying the
performances are RTP M DI sessions over unicast UDP transport.
Resiliency is provided by the recovery journal system][RFC4695]. The
application also uses the RTP Control Protocol (RTCP, [RFC3550]).

The application targets a network with a particular set of
characteristics: low nomnal jitter, |ow packet |oss, and occasi ona
outlier packets that arrive very late. However, in Section 6.2 of
this meno, we discuss adapting the application to other network
envi ronment s.

As defined in [NMP], a network nusical perfornance occurs when
musi ci ans | ocated at different physical locations interact over a
network to performas they would if located in the same room

Sections 2-3 of this nmeno describe session startup and mai nt enance.
Sections 4-5 cover sending MDI streans, and Sections 6-7 cover
receiving M DI streans.

2. Starting the Session

In this section, we describe how the application starts a two-player
session. W assune that the two parties have agreed on a session
configuration, enbodied by a pair of Session Description Protoco
(SDP, [RFC4566]) session descriptions.

One session description (Figure 1) defines how the first party w shes
to receive its stream The other session description (Figure 2)
defines how the second party wi shes to receive its stream

The session description in Figure 1 codes that the first party
intends to receive a M D streamon | P4 nunber 192.0.2.94 (coded in
the c=1ine) at UDP port 16112 (coded in the n=1line). Inplicit in
the SDP n= |ine syntax [RFC4566] is that the first party also intends
to receive an RTCP streamon 192.0.2.94 at UDP port 16113 (16112 +
1). The receiver expects that the PT field of each RTP header in the
received streamw |l be set to 96 (coded in the m= line).

Li kewi se, the session description in Figure 2 codes that the second

party intends to receive a M DI streamon |P4 nunmber 192.0.2.105 at
UDP port 5004 and intends to receive an RTCP stream on 192.0.2. 105 at

Lazzaro & Waw zynek I nf or mat i onal [Page 3]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

UDP port 5005 (5004 + 1). The second party expects that the PT RTP
header field of received streamw ||l be set to 101

v=0

o=first 2520644554 2838152170 IN I P4 first.exanpl e. net

s=Exanpl e

t=0 0

c=IN1P4 192.0.2.94

mFaudi o 16112 RTP/ AVP 96

b=AS: 20

b=RS: 0

b=RR: 400

a=rtpnmap: 96 npeg4-generic/ 44100

a=fmp: 96 streantype=5; node=rtp-nidi; config=""; profile-level-id=12;
cm unused=ABFGHIKMQTVXYZ; cm unused=C120-127; ch_never =ADEFMJTVX

t srode=buffer; |inerate=320000; octpos=last; nperiod=44; rtp_ptinme=0;

rtp_maxpti me=0; guardti ne=44100; render=synthetic; rinit="audi o/asc"
url ="http://exanpl e. net/sa. asc"
ci d="xj fl soei urvpa09i t nvl dui hgnvet 98pa3wdut nui ghbuk"

(The a=fnmtp line has been wapped to fit the page to acconmnodate
meno formatting restrictions; it constitutes a single line in SDP.)

Figure 1. Session description for first participant

v=0

o=second 2520644554 2838152170 I N | P4 second. exanpl e. net

s=Exanpl e

t=0 0

c=IN P4 192.0.2.105

mraudi o 5004 RTP/ AVP 101

b=AS: 20

b=RS: 0

b=RR: 400

a=rtpnmap: 101 npeg4- generic/ 44100

a=fm p: 101 streamype=5; node=rtp-nmidi; config=""; profile-Ilevel-id=12;
cm unused=ABFGHIKMQTVXYZ; cm unused=C120-127; ch_never =ADEFMQTVX;

t snrode=buffer; |inerate=320000; oct pos=Il ast; nperi od=44; guardti me=44100;
rtp_ptine=0; rtp_maxptine=0; render=synthetic; rinit="audio/asc"

url ="http://exanpl e. net/sa. asc"

ci d="xj fl soei urvpa09i t nvl dui hgnvet 98pa3wdut nui ghbuk"

(The a=fmtp line has been wapped to fit the page to acconmnodate
meno formatting restrictions; it constitutes a single line in SDP.)

Figure 2. Session description for second parti ci pant

Lazzaro & Waw zynek I nf or mat i onal [Page 4]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

The session descriptions use the npeg4-generic nmedia type (coded in
the a=rtpmap line) to specify the use of the MPEG 4 Structured Audio
renderer [MPEGSA]. The session descriptions also use paraneters to
custom ze the stream (Appendi x C of [RFC4695]). The paraneter val ues
are identical for both parties, yielding identical rendering
environnments for the two client hosts.

The bandwi dth (b=) AS paraneter [RFC4566] [RFC3550] indicates that
the total RTP session bandwidth is 20 kbs. This value assunes that
the two players send 10 kbs streams concurrently. To derive the 10
kbs value, we begin with the analysis of RTP M DI payl oad bandw dt h
in Appendix A.4 of [NMP] and add in RTP and | P4 packet overhead and a
smal | safety factor.

The bandwi dth RR paraneter [RFC3556] indicates that the shared RTCP
session bandwidth for the two parties is 400 bps. W set the

bandwi dth SR paraneter to O bps, to signal that sending parties and
non-sendi ng parties equally share the 400 bps of RTCP bandw dth.
(Note that in this particular exanple, the guardtine paraneter val ue
of 44100 ensures that both parties are sending for the duration of
the session.) The 400 bps RTCP bandwi dth val ue supports one RTCP
packet per 5 seconds from each party, containing a Sender Report and
CNAME i nformati on [RFC3550].

We now show an exanpl e of code that inplenents the actions the
parties take during the session. The code is witten in C and uses
the standard networ k progranm ng techni ques described in [STEVENS].
We show code for the first party (the second party takes a symmetric
set of actions).

Figure 3 shows how the first party initializes a pair of socket
descriptors (rtp_fd and rtcp_fd) to send and recei ve UDP packets.
After the code in Figure 3 runs, the first party may check for new
RTP or RTCP packets by calling recv() on rtp_fd or rtcp_fd.

Applications may use recv() to receive UDP packets on a socket using
one of two general nethods: "blocking" or "non-bl ocking"

A call to recv() on a blocking UDP socket puts the calling thread to
sleep until a new packet arrives.

A call to recv() on a non-blocking socket acts to poll the device:
the recv() call returns imediately, with a return val ue that

i ndicates the polling result. In this case, a positive return val ue
signals the size of a new received packet, and a negative return

val ue (coupled with an errno value of EAGAIN) indicates that no new
packet was avail abl e.

Lazzaro & Waw zynek I nf or mat i onal [Page 5]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

The choi ce of bl ocking or non-bl ocking sockets is a critica
application choice. Blocking sockets offer the | owest potentia

| atency (as the OS wakes the caller as soon as a packet has arrived).
However, audi o applications that use bl ocking sockets nmust adopt a
mul ti-threaded program architecture, so that audi o sanples may be
generated on a "rendering thread" while the "network thread" sl eeps,
awai ti ng the next packet. The architecture nmust al so support a

t hread conmmuni cation nechanism so that the network thread has a
mechanismto send M DI conmrands the rendering thread.

In contrast, audio applications that use non-bl ocki ng sockets may be
coded using a single thread, that alternates between audi o sanple
generation and network polling. This architecture trades off

i ncreased network | atency (as a packet may arrive between polls) for
a sinmpler programarchitecture. For sinmplicity, our exanple uses
non- bl ocki ng sockets and presumes a single run [oop. Figure 4 shows
how t he exanpl e configures its sockets to be non-bl ocki ng.

Fi gure 5 shows how to use recv() to check a non-bl ocki ng socket for
new packets.

The first party also uses rtp_fd and rtcp_fd to send RTP and RTCP
packets to the second party. In Figure 6, we show howto initialize
socket structures that address the second party. |In Figure 7, we
show how to use one of these structures in a sendto() call to send an
RTP packet to the second party.

Note that the code shown in Figures 3-7 assunes a clear network path
bet ween the participants. The code may not work if firewalls or

Net wor k Address Transl ati on (NAT) devices are present in the network
pat h.

3. Session Managenent: Session Housekeeping

After the two-party interactive session is set up, the parties begin
to send and receive RTP packets. In Sections 4-7, we discuss RTP

M DI sending and receiving algorithns. 1In this section, we describe
session "housekeepi ng" tasks that the participants also perform

One housekeeping task is the maintenance of the 32-bit
Synchroni zati on Source (SSRC) val ue that uniquely identifies each
party. Section 8 of [RFC3550] describes SSRC i ssues in detail, as
does Section 2.1 in [RFC4695]. Another housekeeping task is the
sendi ng and receiving of RTCP. Section 6 of [RFC3550] describes RTCP
in detail.

Lazzaro & Waw zynek I nf or mat i onal [Page 6]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

Anot her housekeepi ng task concerns security. As detailed in the
Security Considerations section of [RFC4695], per-packet

aut hentication is strongly recomended for use with M Dl streans,
because the acceptance of rogue packets may lead to the execution of
arbitrary M D conmmands

A final housekeeping task concerns the termi nation of the session

In our two-party exanple, the session terminates upon the exit of one
of the participants. A clean termination may require active effort
by a receiver, as a MDI stream stopped at an arbitrary point may
cause stuck notes and other indefinite artifacts in the MDI

renderer.

The exit of a party may be signalled in several ways. Session
managenment tools may offer a reliable signal for termination (such as
the SI P BYE nmet hod [RFC3261]). The (unreliable) RTCP BYE packet

[RFC3550] may al so signal the exit of a party. Receivers may al so
sense the lack of RTCP activity and timeout a party or may use
transport nmethods to detect an exit.

4. Sending Streans: Ceneral Considerations
In this section, we discuss sender inplenmentation issues.

The sender is a real-tine data-driven entity. On an ongoi ng basis,
the sender checks to see if the |ocal player has generated new M DI
data. At any tinme, the sender may transmit a new RTP packet to the
renote player for the reasons described bel ow

1. New M DI data has been generated by the |l ocal player, and the
sender decides that it is time to issue a packet coding the data.

2. The local player has not generated new M DI data, but the sender
decides that too nuch time has el apsed since the | ast RTP packet
transm ssion. The sender transmits a packet in order to relay
updat ed header and recovery journal data.

In both cases, the sender generates a packet that consists of an RTP

header, a M D comrand section, and a recovery journal. |In the first
case, the MD Ilist of the MDI command section codes the new M DI
data. 1In the second case, the MD list is enpty.

Lazzaro & Waw zynek I nf or mat i onal [Page 7]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in. h>

int rtp_fd, rtcp_fd; /* socket descriptors */
struct sockaddr in addr; /* for bind address */

/*********************************/

/* create the socket descriptors */
/*********************************/

if ((rtp_fd = socket(AF_I NET, SOCK DGRAM 0)) < 0)
ERROR RETURN("Coul dn’t create Internet RTP socket");

if ((rtcp_fd = socket (AF_I NET, SOCK DGRAM 0)) < 0)
ERROR_RETURN("Coul dn’t create Internet RTCP socket");

/**********************************/

/* bind the RTP socket descriptor */

/**********************************/

menset (& addr.sin_zero), 0, 8);

addr.sin _famly = AF_| NET;

addr . sin_addr.s_addr = htonl (| NADDR_ANY) ;

addr.sin_port = htons(16112); /* port 16112, from SDP */

if (bind(rtp_fd, (struct sockaddr *)&addr,
si zeof (struct sockaddr)) < 0)
ERROR_RETURN(" Coul dn’t bind Internet RTP socket");

/***********************************/

/* bind the RTCP socket descriptor */

/***********************************/

menset (&(addr.sin_zero), 0, 8);

addr.sin_fanmly = AF_| NET;

addr. sin_addr.s_addr = htonl (| NADDR_ANY) ;

addr.sin_port = htons(16113); /* port 16113, from SDP */

if (bind(rtcp_fd, (struct sockaddr *)&addr,
si zeof (struct sockaddr)) < 0)
ERROR_RETURN(" Coul dn’t bind Internet RTCP socket");

Figure 3. Setup code for listening for RTP/ RTCP packets

Lazzaro & Waw zynek I nf or mat i onal [Page 8]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

#i ncl ude <uni std. h>
#i nclude <fcntl. h>

/***************************/

/* set non-Dbl ocking status */

/***************************/

if (fentl(rtp_fd, F_SETFL, O_NONBLOCK))
ERROR_RETURN(" Coul dn’t unbl ock I nternet RTP socket");

if (fentl(rtcp_fd, F_SETFL, O _NONBLOCK))
ERROR_RETURN(" Coul dn’ t unbl ock Internet RTCP socket");

Figure 4. Code to set socket descriptors to be non-bl ocking
#i ncl ude <errno. h>
#def i ne UDPMAXSI ZE 1472 /* based on Ethernet MIU of 1500 */

unsi gned char packet [UDPMAXSI ZE+1] ;
int len, normal;

while ((len = recv(rtp_fd, packet, UDPMAXSIZE + 1, 0)) > 0)

/* process packet[]. If (len == UDPMAXSIZE + 1), recv()
* may be returning a truncated packet -- process with care
*/
}

/* line below sets "normal" to 1 if the recv() return */
/* status indicates no packets are left to process */

normal = (len < 0) && (errno == EAGAIN);

if (!'normal)

/*

* recv() return status indicates an enpty UDP payl oad
(len == 0) or an error condition (coded by (len < 0)
and (errno != EAGAIN)). Exanmine len and errno, and

take appropriate recovery action

Figure 5. Code to check rtp_fd for new RTP packets

Lazzaro & Waw zynek I nf or mat i onal [Page 9]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006
#i ncl ude <arpal/inet.h>
#i ncl ude <netinet/in. h>
struct sockaddr _in * rtp_addr; /* RTP destination |P/port */
struct sockaddr_in * rtcp_addr; /* RTCP destination |P/ port */
/* set RTP address, as coded in Figure 2's SDP */
rtp_addr = calloc(1l, sizeof(struct sockaddr_in));
rtp_addr->sin_famly = AF_I NET;
rtp_addr->sin_port = htons(5004);
rtp_addr->sin_addr.s_addr = inet_addr("192.0.2.105");
/* set RTCP address, as coded in Figure 2's SDP */
rtcp_addr = calloc(1, sizeof(struct sockaddr_in));
rtcp_addr->sin _famly = AF_| NET;
rtcp_addr->sin_port = htons(5005); /* 5004 + 1 */
rtcp_addr->sin_addr.s_addr = rtp_addr->sin_addr.s_addr;
Figure 6. Initializing destination addresses for RTP and RTCP
unsi gned char packet[UDPMAXSI ZE]; /* RTP packet to send */
int size; /* length of RTP packet */

/* first fill packet[] and set size ... then: */

if (sendto(rtp_fd, packet, size, 0, rtp_addr

si zeof (struct sockaddr)) == -1)
{
/*
* try again later if errno == EAGAIN or EINTR
*
* other errno values --> an operational error
*/
}

Figure 7. Using sendto() to send an RTP packet

Figure 8 shows the 5 steps a sender takes to issue a packet. This
al gorithm corresponds to the code fragnent for sendi ng RTP packets
shown in Figure 7 of Section 2. Steps 1, 2, and 3 occur before the
sendto() call in the code fragnent. Step 4 corresponds to the
sendto() call itself. Step 5 nmay occur once Step 3 conpl etes.

Lazzaro & Waw zynek I nf or mat i onal [Page 10]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

The al gorithm for Sending a Packet is as follows:

1. Cenerate the RTP header for the new packet. See Section 2.1 of
[RFC4A695] for details.

2. CGenerate the M DI conmmand section for the new packet. See Section
3 of [RFC4695] for details.

3. Generate the recovery journal for the new packet. W discuss this
process in Section 5.2. The generation al gorithm examni nes the
Recovery Journal Sending Structure (RJSS), a stateful coding of a
history of the stream

4. Send the new packet to the receiver

5. Update the RISS to include the data coded in the M D conmand
section of the packet sent in step 4. W discuss the update
procedure in Section 5.3.

Figure 8. A5 step algorithmfor sending a packet

In the sections that follow, we discuss specific sender
i npl ementation issues in detail.

4.1. Queuing and Coding Incomng MDI Data

Sinpl e senders transnmit a new packet as soon as the |ocal player
generates a conplete M DI command. The system described in [NVP]
uses this algorithm This algorithmmnimzes the sender queuing
| atency, as the sender never delays the transm ssion of a new M DI
commrand.

In a relative sense, this algorithmuses bandwi dth inefficiently, as
it does not anortize the overhead of a packet over several comands.
This inefficiency may be acceptable for sparse MDI streans (see
Appendi x A 4 of [NMP]). More sophisticated sending algorithns

[GRAME] i nprove efficiency by coding small groups of commands into a
singl e packet, at the expense of increasing the sender queuing

| at ency.

Senders assign a tinestanp value to each conmand i ssued by the |oca
pl ayer (Appendi x C 3 of [RFC4695]). Senders nmmy code the tinestanp

value of the first MDI |ist command in two ways. The nost efficient
method is to set the RTP tinestanp of the packet to the tinmestanp
value of the first command. |In this nethod, the Z bit of the MD

command section header (Figure 2 of [RFC4695]) is set to 0, and the
RTP timestanps increnment at a non-uniformrate.

Lazzaro & Waw zynek I nf or mat i onal [Page 11]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

However, in sonme applications, senders may wi sh to generate a stream
whose RTP timestanps increment at a uniformrate. To do so, senders
may use the Delta Time MDI list field to code a tinestanp for the
first command in the list. |In this case, the Z bit of the MD
command section header is set to 1

Senders should strive to naintain a constant relationship between the
RTP packet tinestanp and the packet sending tinme: if two packets have
RTP timestanps that differ by 1 second, the second packet should be
sent 1 second after the first packet. To the receiver, variance in
this relationship is indistinguishable fromnetwork jitter. Latency
i ssues are discussed in detail in Section 6.

Senders may alter the running status coding of the first command in
the MD list, in order to conply with the coding rules defined in
Section 3.2 of [RFC4695]. The P header bit (Figure 2 of [RFC4695])
codes this alteration of the source conmand stream

4.2. Sending Packets with Enpty M DI Lists

During a session, nusicians mght refrain fromgenerating MD data
for extended periods of time (seconds or even minutes). |If an RTP
stream fol |l owed the dynamics of a silent M D source and stopped
sendi ng RTP packets, system behavior m ght be degraded in the

foll owi ng ways:

0 The receiver’s nodel of network performance rmay fall out of date.

0 Network m ddl eboxes (such as Network Address Transl ators) may
"time-out" the silent streamand drop the port and | P association
st at e.

o |If the session does not use RTCP, receivers may misinterpret the
silent streamas a dropped network connection

Senders avoid these problens by sending "keep-alive" RTP packets
during periods of network inactivity. Keep-alive packets have enpty
MDl lists.

Session participants may specify the frequency of keep-alive packets
during session configuration with the M ME paraneter "guardtine"
(Appendi x C 4.2 of [RFC4695]). The session descriptions shown in
Figures 1-2 use guardtine to specify a keep-alive sending interval of
1 second.

Senders may al so send enpty packets to inprove the performance of the

recovery journal system As we describe in Section 6, the recovery
process begins when a receiver detects a break in the RTP sequence

Lazzaro & Waw zynek I nf or mat i onal [Page 12]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

nunber pattern of the stream The receiver uses the recovery journa
of the break packet to guide corrective rendering actions, such as
endi ng stuck notes and updating out-of-date controller val ues.

Consi der the situation where the | ocal player produces a M D NoteOf
command (which the sender pronptly transmits in a packet) but then 5
seconds pass before the player produces another M DI comand (which
the sender transmits in a second packet). |f the packet coding the
NoteOff is lost, the receiver is not aware of the packet |oss

i ncident for 5 seconds, and the rendered M DI perfornmance contains a
note that sounds for 5 seconds too |ong.

To handle this situation, senders may transnit enpty packets to
"guard" the streamduring silent sections. The guard packet
algorithmdefined in Section 7.3 of [NWP], as applied to the
situation described above, sends a guard packet after 100 nms of

pl ayer inactivity, and sends a second guard packet 100 ns | ater
Subsequent guard packets are sent with an exponential backoff, with a
limting period of 1 second (set by the "guardtine" paraneter in
Figures 1-2). The algorithmterm nates once M Dl activity resunes,

or once RTCP receiver reports indicate that the receiver is up to

dat e.

The perceptual quality of guard packet-sending algorithns is a
quality of inplenentation issue for RTP M DI applications.

Sophi sticated inplenentations may tailor the guard packet sending
rate to the nature of the M D conmmands recently sent in the stream
to mnimze the perceptual inpact of noderate packet | oss.

As an exanple of this sort of specialization, the guard packet

al gorithm described in [NWP] protects against the transient artifacts
that occur when NoteOn commands are lost. The algorithmsends a
guard packet 1 ns after every packet whose MDI list contains a
NoteOn command. The Y bit in Chapter N note | ogs (Appendix A 6 of

[RFC4695]) supports this use of guard packets.

Congestion control and bandw dt h managenent are key issues in guard
packet algorithns. W discuss these issues in the next section

4.3. Congestion Control and Bandw dt h Managenent

The congestion control section of [RFC4695] discusses the inportance
of congestion control for RTP M DI streans and references the
normative text in [RFC3550] and [RFC3551] that concerns congestion
control. To conply with the requirements described in those
normati ve docunents, RTP M DI senders may use several nethods to
control the sending rate:

Lazzaro & Waw zynek I nf or mat i onal [Page 13]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

0 As described in Section 4.1, senders nmay pack several M Dl
commands into a single packet, thereby reduci ng stream bandw dth
(at the expense of increasing sender queuing |atency).

0 Cuard packet algorithms (Section 4.2) may be designed in a
paranetric way, so that the tradeoff between artifact reduction
and stream bandwi dth nmay be tuned dynam cally.

0 The recovery journal size may be reduced by adapting the
techni ques described in Section 5 of this neno. Note that in al
cases, the recovery journal sender nust conformto the normative
text in Section 4 of [RFC4695].

o The inconing MDI streammay be nodified to reduce the nunber of
M DI comands wit hout significantly altering the perfornance.
Lossy "M DI filtering" algorithns are well developed in the M DI
community and may be directly applied to RTP M DI rate nmanagenent.

RTP M DI senders incorporate these rate control nmethods into feedback
systens to inplenment congestion control and bandw dth nanagenent.
Sections 10 and 6.4.4 of [RFC3550] and Section 2 in [RFC3551]
descri be feedback systems for congestion control in RTP, and Section
6 of [RFC4566] describes bandw dth managenent in nedi a sessions.

5. Sending Streans: The Recovery Journa

In this section, we describe how senders inplenment the recovery
journal system The inplenentation we describe uses the default
"cl osed-1 oop" recovery journal semantics (Appendix C 2.2.2 of

[RFC4695]) .

We begin by describing the Recovery Journal Sending Structure (RISS)
Senders use the RISS to generate the recovery journal section for RTP
M DI packets.

The RISS is a hierarchical representation of the checkpoint history
of the stream The checkpoint history holds the M D conmands that
are at risk to packet |oss (Appendix A 1 of [RFC4695] precisely
defines the checkpoint history). The layout of the RISS mirrors the
hi erarchi cal structure of the recovery journal bitfields.

Figure 9 shows an RISS i npl enentation for a sinple sender. The |eaf

| evel of the RISS hierarchy (the jsend _chapter structures)
corresponds to channel chapters (Appendices A 2-9 in [RFC4695]). The
second |l evel of the hierarchy (jsend_channel) corresponds to the
channel journal header (Figure 9 in [RFC4695]). The top level of the
hi erarchy (jsend_journal) corresponds to the recovery journal header
(Figure 8 in [RFC4695]).

Lazzaro & Waw zynek I nf or mat i onal [Page 14]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

Each RISS data structure nmay code several itens:

1. The current contents of the recovery journal bitfield associated
with the RISS structure (jheader[], cheader[], or a chapter
bitfield).

2. A segnum vari abl e. Seqnum codes the extended RTP sequence nunber
of the nost recent packet that added information to the RISS
structure. |If the segnumof a structure is updated, the seqnuns
of all structures above it in the recovery journal hierarchy are
al so updated. Thus, a packet that caused an update to a specific
j send_chapter structure would update the seqnum val ues of this
structure and of the jsend channel and jsend journal structures
that contain it.

3. Ancillary variables used by the sending al gorithm

A segnumvariable for a level is set to zero if the checkpoint
history contains no information at the | evel of the seqnum vari abl e,
and no information at any |evel below the |evel of the segnum
variable. This coding scheme assunes that the first sequence number
of a streamis normalized to 1, and linits the total nunber of stream
packets to 2732 - 1.

The cm unused and ch_never paraneters in Figures 1-2 define the
subset of M DI commands supported by the sender (see Appendix C 2.3
of [RFC4695] for details). The sender transnits nost voi ce conmands
but does not transmit system conmmands. The sender assunes that the
M DI source uses note commands in the typical way. Thus, the sender
does not use the Chapter E note resiliency tools (Appendix A 7 of

[RFC4695]). The sender does not support Control Change comuands for
controller nunbers with AIl Notes Of (123-127), Al Sound Of (120),
and Reset Al Controllers (121) semantics and does not support
enhanced Chapter C encodi ng (Appendi x A 3.3 of [RFC4695]).

We chose this subset of MDI comuands to sinplify the exanple. In
particular, the conmand restrictions ensure that all commands are
active, that all note commands are N-active, and that all Control
Change conmands are C-active (see Appendix A 1 of [RFC4695] for
definitions of active, Nactive, and C active).

In the sections that follow, we describe the tasks a sender perforns
to nmanage the recovery journal system

Lazzaro & Waw zynek I nf or mat i onal [Page 15]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

5.1. Initializing the RISS

At the start of a stream the sender initializes the RISS. Al
segnum vari ables are set to zero, including all elenents of
note_seqnuni{] and control _seqnuni].

The sender initializes jheader[] to forma recovery journal header
that codes an enpty journal. The S bit of the header is set to 1,
and the A, Y, R and TOTCHAN header fields are set to zero. The
checkpoi nt packet sequence nunber field is set to the sequence nunber
of the upcoming first RTP packet (per Appendix A 1 of [RFC4695]).

Lazzaro & Waw zynek I nf or mat i onal [Page 16]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

t ypedef unsi gned char uint8; /* nmust be 1 octet */
t ypedef unsi gned short uint16; /* must be 2 octet */
typedef unsigned | ong uint32; /* must be 4 octets */

/**/

/* leaf level hierarchy: Chapter W Appendix A 5 of [RFC4695] */

/**/

typedef struct jsend chapterw { /* Pitch Weel (OxE) */
uint8 chapterw2]; /* bitfield Figure A 5.1 [RFC4695] */
ui nt 32 seqnum /* extended sequence nunber, or 0 */
} jsend_chapterw,

/**/

/* leaf level hierarchy: Chapter N, Appendix A 6 of [RFC4695] */

/**/

typedef struct jsend chaptern { /* Note commands (0x8, 0x9) */

/* chapter N maxi mum size is 274 octets: a 2 octet header, */
/* and a maxi mum of 128 2-octet |logs and 16 OFFBI T octets */

uint8 chaptern[274]; /* bitfield Figure A 6.1 [RFC4695] */
uint16 size; /* actual size of chaptern[] */
ui nt 32 seqnum /* extended seq nunber, or O */

ui nt 32 note_seqnun{ 128]; [/* nobst recent note seqnum or 0 */

uint 32 note_tstanp[128]; [/* NoteOn execution tinmestanp */

uint32 bitfield ptr[128]; /* points to a chapter log, or 0 */
} jsend_chaptern

/**/

/* leaf level hierarchy: Chapter C, Appendix A 3 of [RFC4695] */

/**/

typedef struct jsend_chapterc { /* Control Change (0xB) */
/* chapter C nmaxinmum size is 257 octets: a 1 octet header */
/* and a maxi mum of 128 2-octet |ogs */
uint8 chapterc[257]; /* bitfield Figure A 3.1 [RFC4695] */
uint16 size; /* actual size of chapterc[] */
ui nt 32 seqnum /* extended sequence nunber, or 0 */
uint 32 control _seqnun{ 128]; /* nobst recent seqnum or O */

uint32 bitfield_ptr[128]; /* points to a chapter log, or 0 */
} jsend_chapterc

Figure 9. Recovery Journal Sending Structure (part 1)

Lazzaro & Waw zynek I nf or mat i onal [Page 17]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

/**/

/* leaf level hierarchy: Chapter P, Appendix A 2 of [RFC4695] */

/**/

typedef struct jsend _chapterp { /* M D Program Change (0xC) */

uint8 chapterp[3]; /* bitfield Figure A 2.1 [RFC4695] */
ui nt 32 segnum / * extended sequence nunber, or 0 */

} jsend_chapterp

/***/

/* second-|evel of hierarchy, for channel journals */

/***/

typedef struct jsend_channel {

uint8 cheader[3]; /* header Figure 9 [RFC4695]) */

ui nt 32 seqnum /* extended sequence nunber, or 0 */
j send_chapterp chapterp; /* chapter P info */
j send_chapterc chapterc; /* chapter Cinfo */
j send_chapt erw chapt erw; /* chapter Winfo */
j send_chaptern chaptern; /* chapter Ninfo */

} jsend_channel

/***/

/* top level of hierarchy, for recovery journal header */

/***/

typedef struct jsend journal {

uint8 jheader[3]; /* header Figure 8, [RFC4695] */
/* Note: Enpty journal has a header */

ui nt 32 seqnum /* extended sequence nunber, or O */
/* seqnum = 0 codes enpty journal */

j send_channel channel s[16]; /* channel journal state */
/* index is MDI channel */

} jsend_journal

Figure 9. Recovery Journal Sending Structure (part 2)

Lazzaro & Waw zynek I nf or mat i onal [Page 18]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

In jsend _chaptern, elenents of note tstanp[] are set to zero. In
jsend_chaptern and jsend chapterc, elenents of bitfield ptr[] are set
to the null pointer index value (bitfield ptr[] is an array whose

el ements point to the first octet of the note or control |og
associated with the array index).

5.2. Traversing the RISS

Whenever an RTP packet is created (Step 3 of the algorithmdefined in
Figure 8), the sender traverses the RISS to create the recovery
journal for the packet. The traversal begins at the top level of the
RISS. The sender copies jheader[] into the packet and then sets the
S bit of jheader[] to 1.

The traversal continues depth-first, visiting every jsend_channe
whose seqgnum variable is non-zero. The sender copies the cheader[]
array into the packet and then sets the S bit of cheader[] to 1.
After each cheader[] copy, the sender visits each |eaf-I|evel chapter
in the order of its appearance in the chapter journal Table of
Contents (first P, then C, then W then N, as shown in Figure 9 of

[RFC4695]) .

If a chapter has a non-zero segnum the sender copies the chapter
bitfield array into the packet and then sets the S bit of the RISS
array to 1. For chaptern[], the B bit is also set to 1. For the
vari abl e-1 ength chapters (chaptern[] and chapterc[]), the sender
checks the size variable to deternmine the bitfield Iength.

Bef ore copying chaptern[], the sender updates the Y bit of each note
log to code the onset of the associated NoteOn conmand (Figure A 6.3
in [RFC4695]). To deternine the Y bit value, the sender checks the
note tstanp[] array for note tining infornmation.

5.3. Updating the RISS

After an RTP packet is sent, the sender updates the RISS to refresh
the checkpoint history (Step 5 of the sending algorithmdefined in
Figure 8). For each command in the MDI list of the sent packet, the
sender perfornms the update procedure we now descri be.

The update procedure begins at the leaf level. The sender generates
a new bitfield array for the chapter associated with the M D conmand
using the chapter-specific semantics defined in Appendi x A of

[RFC4695] .

For Chapter N and Chapter C, the sender uses the bitfield_ptr[] array

to |l ocate and update an existing log for a note or controller. If a
| og does not exist, the sender adds a log to the end of the

Lazzaro & Waw zynek I nf or mat i onal [Page 19]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

chaptern[] or chapterc[] bitfield and changes the bitfield ptr[]
value to point to the log. For Chapter N, the sender al so updates
note_tstanmp[].

The sender also clears the S bit of the chapterp[], chapterw], or
chapterc[] bitfield. For chaptern[], the sender clears the S bit or
the B bit of the bitfield, as described in Appendi x A 6 of [RFC4695].

Next, the sender refreshes the upper levels of the RISS hierarchy.

At the second level, the sender updates the cheader[] bitfield of the
channel associated with the command. The sender sets the S bit of
cheader[] to 0. |If the new conmand forced the addition of a new
chapter or channel journal, the sender nay al so update other
cheader[] fields. At the top level, the sender updates the top-Ieve
jheader[] bitfield in a similar nmanner.

Finally, the sender updates the seqnum variabl es associated with the
changed bitfield arrays. The sender sets the seqnumvariables to the
ext ended sequence nunber of the packet.

5.4. Trimmng the RISS

At regular intervals, receivers send RTCP receiver reports to the
sender (as described in Section 6.4.2 of [RFC3550]). These reports
i nclude the extended hi ghest sequence nunber received (EHSNR) field.
This field codes the highest sequence nunber that the receiver has
observed fromthe sender, extended to di sanbi guate sequence nunber
rol |l over.

When the sender receives an RTCP receiver report, it runs the RISS
trimmng algorithm The trimmng algorithmuses the EHSNR to trim
away parts of the RISS. In this way, the algorithmreduces the size
of recovery journals sent in subsequent RTP packets. The algorithm
conforns to the closed-1oop sending policy defined in Appendi x

C. 2.2.2 of [RFC4695].

The trimming algorithmrelies on the followi ng observation: if the
EHSNR i ndi cates that a packet with sequence nunber K has been
received, M Dl comands sent in packets with sequence nunbers J <= K
may be renmoved fromthe RISS w thout violating the closed-1oop

policy.

To begin the trimring algorithm the sender extracts the EHSNR field
fromthe receiver report and adjusts the EHSNR to reflect the
sequence nunmber extension prefix of the sender. Then, the sender
conmpares the adjusted EHSNR value with segnum fiel ds at each | evel of
the RISS, starting at the top |evel

Lazzaro & Waw zynek I nf or mat i onal [Page 20]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

Level s whose seqnumis |less than or equal to the adjusted EHSNR are
trimred, by setting the seqnumto zero. |If necessary, the jheader[]
and cheader[] arrays above the trinmed |evel are adjusted to match
the new journal |ayout. The checkpoint packet sequence nunber field
of jheader[] is updated to match the EHSNR

At the leaf level, the sender trins the size of the variable-length
chaptern[] and chapterc[] bitfields. The sender |oops through the
note_seqnuni] or control _segnun{] array and renoves chaptern[] or
chapterc[] |ogs whose seqnumvalue is less than or equal to the
adjusted EHSNR. The sender sets the associated bitfield_ptr[] to
nul | and updates the LENGTH field of the associ ated cheader|[]
bitfield.

Note that the trinmm ng algorithmdoes not add information to the
checkpoint history. As a consequence, the trinm ng al gorithm does
not clear the S bit (and for chaptern[], the B bit) of any recovery
journal bitfield. As a second consequence, the trimmng al gorithm
does not set RJSS segnum vari ables to the EHSNR val ue.

5.5. Inplenentati on Notes

For pedagogi cal purposes, the recovery journal sender we describe has
been sinplified in several ways. |In practice, an inplenentation
woul d use enhanced versions of the traversing, updating, and trinm ng
al gorithms presented in Sections 5.2-5.4.

6. Receiving Streanms: General Considerations
In this section, we discuss receiver inplenentation issues.

To begin, we inagine that an ideal network carries the RTP stream
Packets are never |lost or reordered, and the end-to-end latency is
constant. In addition, we assunme that all commands coded in the M D
list of a packet share the same tinmestanp (an assunption coded by the
"rtp_ptinme" and "rtp_nmaxptinme" values in Figures 1-2; see Appendi X

C. 4.1 of [RFC4695] for details).

Under these conditions, a sinple algorithmmay be used to render a
hi gh-quality performance. Upon receipt of an RTP packet, the

recei ver inmmedi ately executes the conmands coded in the M DI command
section of the payload. Commands are executed in the order of their
appearance in the MDI list. The command tinmestanps are ignored.

Lazzaro & Waw zynek I nf or mat i onal [Page 21]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

6.

1

Unfortunately, this sinple algorithm breaks down once we rel ax our
assunpti ons about the network and the M DI |ist:

1. If we permt |lost and reordered packets to occur in the network
the al gorithm may produce unrecoverable rendering artifacts,
viol ating the nmandate defined in Section 4 of [RFC4695].

2. If we permit the network to exhibit variable |latency, the
al gorithm nodul ates the network jitter onto the rendered M D
command stream

3. If we pernit a MDI list to code conmands with different
ti mestanps, the algorithmadds tenporal jitter to the rendered
performance, as it ignores MDI |ist tinestanps.

In this section, we discuss interactive receiver design techniques
under these rel axed assunptions. Section 6.1 describes a receiver
design for high-performance Wde Area Networks (WANs), and Section
6.2 di scusses design issues for other types of networks.

The NWMP Recei ver Design

The Networ k Musical Performance (NW) system [NWMP] is an interactive
performance application that uses an early version of the RTP M DI
payl oad format. NWP is designed for use between universities within
the State of California, which use the high-performance Cal REN2

net wor k.

In the NWP system network artifacts may affect how a nusician hears
the performances of renote players. However, the network does not
af fect how a nusician hears his own perfornmance

Several aspects of Cal REN2 network behavior (as measured in 2001
ti meframe, as documented in [NMP]) guided the NWP system design

0 The nedian symetric latency (1/2 the round-trip tinme) of packets
sent between network sites is conparable to the acoustic |atency
bet ween two nusicians located in the sane room For exanple, the
| at ency between Berkeley and Stanford is 2.1 nms, corresponding to
an acoustic distance of 2.4 feet (0.72 meters). These campuses
are 40 mles (64 km) apart. Preserving the benefits of the
underlying network latency at the application |evel was a key NW
desi gn goal

o For nost tines of day, the nomi nal tenporal jitter is quite short.
For Berkel ey-Stanford, the standard deviation of the round-trip
time was under 200 mi croseconds.

Lazzaro & Waw zynek I nf or mat i onal [Page 22]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

o For nost tines of day, a few percent (0-4% of the packets sent
arrive significantly late (> 40 ns), probably due to a queuing
transi ent somewhere in the network path. Mre rarely (< 0.1%, a
packet is lost during the transient.

0o At predictable tinmes during the day (before lunchtinme, at the end
of the workday, etc.), network performance deteriorates (10-20%
| ate packets) in a manner that nakes the network unsuitable for
| owl atency interactive use.

0 Cal REN2 has deeply over-provisioned bandwi dth, relative to M DI
bandwi dt h usage.

The NMP sender freely uses network bandwi dth to inprove the
performance experience. As soon as a nusician generates a M DI
command, an RTP packet coding the command is sent to the other

pl ayers. This sending algorithmreduces |atency at the cost of

bandwi dth. In addition, guard packets (described in Section 4.2) are
sent at frequent intervals to mninize the inpact of packet |oss.

The NMP receiver naintains a nodel of the stream and uses this node
as the basis of its resiliency system Upon receipt of a packet, the
recei ver predicts the RTP sequence nunber and the RTP timestanp (wth
error bars) of the packet. Under nornmal network conditions, about
95% of received packets fit the predictions [NWP]. 1In this conmon
case, the receiver imedi ately executes the M D conmand coded in the
packet .

Note that the NWP receiver does not use a playout buffer; the design
is optimzed for |lowest |latency at the expense of conmand jitter
Thus, the NWP receiver design does not conpletely satisfy the
interoperability text in Appendix C. 7.2 of [RFC4695], which requires
that receivers in network rusical perfornance applications be capable
of using a playout buffer.

Cccasional ly, an incom ng packet fits the sequence nunber prediction
but falls outside the tinmestanp prediction error bars (see Appendix B
of [NMP] for timestanp nodel details). |In nost cases, the receiver
still executes the command coded in the packet. However, the

recei ver discards NoteOn commands with non-zero velocity. By

di scarding |l ate commands that sound notes, the receiver prevents
"straggl er notes" fromdisturbing a performance. By executing all
other late commands, the receiver quiets "soft stuck notes"

i medi ately and updates the state of the MDI system

More rarely, an incom ng packet does not fit the sequence nunber

prediction. The receiver keeps track of the highest sequence nunber
received in the streamand predicts that an incom ng packet will have

Lazzaro & Waw zynek I nf or mat i onal [Page 23]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

a sequence nunber one greater than this value. |If the sequence
nunber of an incom ng packet is greater than the prediction, a packet
| oss has occurred. |If the sequence nunmber of the received packet is

| ess than the prediction, the packet has been received out of order.
Al'l sequence nunber cal cul ations are nodul o 216 and use standard
met hods (described in [RFC3550]) to avoid tracking errors during
roll over.

If a packet |oss has occurred, the receiver exanmines the journa
section of the received packet and uses it to gracefully recover from
the | oss episode. W describe this recovery procedure in Section 7
of this nmeno. The recovery process nmay result in the execution of
one or nore M DI comands. After executing the recovery conmands,
the receiver processes the M D comand encoded in the packet using
the tinestanp nodel test described above.

If a packet is received out of order, the receiver ignores the
packet. The receiver takes this action because a packet received out
of order is always preceded by a packet that signalled a | oss event.
This loss event triggered the recovery process, which may have
execut ed recovery conmands. The M DI comand coded in the out-of-
order packet might, if executed, duplicate these recovery comands,
and this duplication m ght endanger the integrity of the stream
Thus, ignoring the out-of-order packet is the safe approach

6.2. High-Jitter Networks, Local Area Networks

The NWP receiver targets a network with a particular set of
characteristics: low nomnal jitter, |ow packet |oss, and occasi ona
outlier packets that arrive very late. |In this section, we consider
how networks with different characteristics inpact receiver design

Networ ks with significant nominal jitter cannot use the buffer-free
recei ver design described in Section 6.1. For exanple, the NW
system perfornms poorly for nusicians that use dial-up nodem
connections, because the buffer-free receiver design nodul ates nodem
jitter onto the performances. Receivers designed for high-jitter

net wor ks shoul d use a substantial playout buffer. References [GRAME]
and [CCRVA] describe how to use playout buffers in latency-critica
appl i cations.

Recei vers intended for use on Local Area Networks (LANs) face a
different set of issues. A dedicated LAN fabric built with nodern
hardware is in nmany ways a predictable environnent. The network
probl ens addressed by the NWP receiver design (packet |oss and
outlier late packets) m ght only occur under extreme network overl oad
condi tions.

Lazzaro & Waw zynek I nf or mat i onal [Page 24]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

Systens designed for this environnent nay choose to configure streans
wit hout the recovery journal system (Appendix C 2.1 of [RFC4695]).
Receivers may al so wish to forego or sinplify the detection of
outlier late packets. Receivers should nonitor the RTP sequence
nunbers of incom ng packets to detect network unreliability.

However, in sone respects, LAN applications nmay be nore demandi ng
than WAN applications. In LAN applications, nusicians may be

recei ving performance feedback fromaudio that is rendered fromthe
stream The tol erance a nusician has for latency and jitter in this
context rmay be quite | ow

To reduce the perceived jitter, receivers may use a snall playout
buffer (in the range of 100us to 2ms). The buffer adds a snall

anount of latency to the system which nmay be annoying to sone

pl ayers. Receiver designs should include buffer tuning paranmeters to
| et nusicians adjust the tradeoff between latency and jitter

7. Receiving Streans: The Recovery Journa

In this section, we describe the recovery algorithmused by the NWP
receiver [NMP]. In nost ways, the recovery techni ques we descri be
are generally applicable to interactive receiver design. However, a
few aspects of the design are specialized for the NWP system

0 The recovery algorithmcovers a subset of the MD comrand set.
M DI Systems (OxF), Poly Aftertouch (0xA), and Channel Aftertouch
(0xD) commands are not protected, and Control Change (0xB) comrand
protection is sinplified. Note commands for a particular note
nunber are assuned to follow the typical NoteOn->NoteO f->NoteOn
->NoteOFf pattern. The cmunused and ch_never paraneters in
Figures 1-2 specify this coverage

o0 The NWP system does not use a playout buffer. Therefore, the
recovery algorithm does not address interactions with a playout
buffer.

At a high level, the receiver algorithmworks as follows. Upon
detection of a packet |oss, the receiver exam nes the recovery
journal of the packet that ends the |oss event. |If necessary, the
receiver executes one or nore M D conmmands to recover fromthe | oss

To prepare for recovery, a receiver namintains a data structure, the
Recovery Journal Receiver Structure (RIRS). The RIRS codes

i nformati on about the M DI commands the receiver executes (both

i ncom ng stream conmands and sel f-generated recovery commands). At
the start of the stream the RIRSis initialized to code that no
conmmands have been executed. |Immediately after executing a M D

Lazzaro & Waw zynek I nf or mat i onal [Page 25]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

command, the receiver updates the RIRS with informati on about the
command.

We now describe the recovery algorithmin detail. W begin with two
definitions that classify |oss events. These definitions assune that
t he packet that ends the | oss event has RTP sequence nunber |

0 Single-packet loss. A single-packet loss occurs if the |ast
packet received before the | oss event (excluding out-of-order
packets) has the sequence nunber |-2 (nmodul o 2716).

o Milti-packet loss. A nulti-packet loss occurs if the |ast packet
recei ved before the | oss event (excluding out-of-order packets)
has a sequence nunber |ess than |1-2 (nodul o 2716).

Upon detection of a packet |oss, the recovery algorithm exam nes the
recovery journal header (Figure 8 of [RFC4695]) to check for specia
cases:

o If the header field Ais 0, the recovery journal has no channe
journals, so no action is taken

o |If a single-packet |oss has occurred, and if the header S bit is
1, the lost packet has a MDI conmmand section with an enpty M DI
list. No action is taken

If these checks fail, the algorithm parses the recovery journal body.
For each channel journal (Figure 9 in [RFC4695]) in the recovery
journal, the receiver conpares the data in each chapter journa
(Appendi x A of [RFC4695]) to the RIRS data for the chapter. [If the
data are inconsistent, the algorithminfers that M D conmmands
related to the chapter journal have been |ost. The recovery

al gorithm executes M DI commands to repair this |oss and updates the
RIRS to reflect the repair.

For singl e-packet |osses, the receiver skips channel and chapter
journals whose S bits are set to 1. For nulti-packet |osses, the
recei ver parses each channel and chapter journal and checks for

i nconsi st ency.

In the sections that follow, we describe the recovery steps that are
specific to each chapter journal. W cover 4 chapter journal types
P (Program Change, 0xC), C (Control Change, 0xB), W /(Pitch Weel
OxE), and N (Note, 0Ox8 and 0x9). Chapters are parsed in the order of
their appearance in the channel journal (P, then W then N, then Q)

Lazzaro & Waw zynek I nf or mat i onal [Page 26]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

The sections bel ow reference the C inplenentation of the RIRS shown
in Figure 10. This structure is hierarchical, reflecting the
recovery journal architecture. At the |leaf level, specialized data
structures (jrec_chapterw, jrec_chaptern, jrec_chapterc, and
jrec_chapterp) code state variables for a single chapter journal
type. A md-level structure (jrec_channel) represents a single M DI
channel, and a top-level structure (jrec_strean) represents the
entire MDI stream

Lazzaro & Waw zynek I nf or mat i onal [Page 27]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

t ypedef unsi gned char uint8; /* nmust be 1 octet */
t ypedef unsi gned short uint16; /* must be 2 octets */
typedef unsigned | ong uint32; /* must be 4 octets */

/***/

/* leaf level of hierarchy: Chapter W Appendix A 5 of [RFC4695] */

[KRk kK ko Kk Kk ko ko ok kK kK Kok Kk kK ko ok ok Kk ko ko ok ok ok kK ko Kok kK kK ko Kk Kk

typedef struct jrec_chapterw { /* MDI Pitch Weel (OxE) */
uint16 val; /* nmost recent 14-bit wheel value */

} jrec_chapterw

/***/

/* leaf level of hierarchy: Chapter N, Appendix A 6 of [RFC4695] */

/***/

typedef struct jrec_chaptern { /* Note commands (0x8, 0x9) */

/* arrays of length 128 --> one for each M DI Note nunber */

uint32 tinme[128]; /* exec tinme of nost recent NoteOn */
ui nt 32 extseq[128]; [/* extended seqnum for that NoteOn */
uint8 vel[128]; /* NoteOn velocity (0 for NoteOFf) */

} jrec_chaptern

/***/

/* leaf level of hierarchy: Chapter C, Appendix A 3 of [RFC4695] */

/***/

typedef struct jrec_chapterc { /* Control Change (0xB) */
/* array of length 128 --> one for each controller nunber */
ui nt 8 val ue[128]; /* Chapter C value tool state */
uint8 count[128]; /* Chapter C count tool state */
uint8 toggle[128]; [/* Chapter C toggle tool state */

} jrec_chapterc;

Fi gure 10. Recovery Journal Receiving Structure (part 1)

Lazzaro & Waw zynek I nf or mat i onal [Page 28]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

/***/

/* leaf level of hierarchy: Chapter P, Appendix A 2 of [RFC4695] */

/***/

typedef struct jrec_chapterp { /* MDI Program Change (0xC) */

ui nt 8 prognum /* nost recent 7-bit programvalue */
uint8 prognumaqual; /* 1 once first OxC command arrives */
ui nt 8 bank_nsb; /* nost recent Bank Sel ect MSB val ue */
ui nt 8 bank_nsb_qual ; /* 1 once first 0xBn 0x00 arrives */
ui nt 8 bank_I sb; /* nost recent Bank Sel ect LSB val ue */
ui nt 8 bank_I sb_qual ; /* 1 once first OxBn 0x20 arrives */

} jrec_chapterp

/***/

/* second-1level of hierarchy, for MD channels */
/***/

typedef struct jrec_channel {

jrec_chapterp chapterp; [/* Program Change (0xC) info */
jrec_chapterc chapterc; /* Control Change (0xB) info */
jrec_chapterw chapterw, /* Pitch \Weel (OxE) info */
jrec_chaptern chaptern; /* Note (0x8, 0x9) info */

} jrec_channel

/***/

/* top level of hierarchy, for the M DI stream*/
/***/

typedef struct jrec_stream {
jrec_channel channel s[16]; /* index is MDI channel */
} jrec_stream

Fi gure 10. Recovery Journal Receiving Structure (part 2)

Lazzaro & Waw zynek I nf or mat i onal [Page 29]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

7.1. Chapter W MD Pitch Weel (0xE)

Chapter Wof the recovery journal protects against the loss of MDI
Pitch Wheel (OxE) commands. A common use of the Pitch \Weel conmand
is totransnmt the current position of a rotary "pitch wheel"
controller placed on the side of MDI piano controllers. Players use
the pitch wheel to dynamically alter the pitch of all depressed keys.

The NWP receiver maintains the jrec_chapterw structure (Figure 10)
for each voice channel in jrec_streamto code pitch wheel state
information. In jrec_chapterw, val holds the 14-bit data val ue of
the nmost recent Pitch Wheel command that has arrived on a channel

At the start of the stream val is initialized to the default pitch
wheel val ue (0x2000).

At the end of a loss event, a receiver may find a Chapter W (Appendi x
A.5 in [RFC4695]) bitfield in a channel journal. This chapter codes
the 14-bit data value of the nost recent MD Pitch Wieel command in
the checkpoint history. |If the Chapter Wand jrec_chapterw pitch
wheel val ues do not match, one or nore conmands have been | ost.

To recover fromthis loss, the NWP receiver inmmedi ately executes a

M DI Pitch Wheel command on the channel, using the data val ue coded
in the recovery journal. The receiver then updates the jrec_chapterw
variables to reflect the executed command.

7.2. Chapter N: MD NoteOn (0x8) and NoteCOff (0x9)

Chapter N of the recovery journal protects against the |loss of MDI
Not eOn (0x9) and NoteOrf (0x8) commands. |If a NoteOn command is
lost, a note is skipped. |If a NoteOFf conmand is |lost, a note may
sound indefinitely. Recall that NoteOn commands with a velocity
val ue of 0 have the semantics of NoteOf comrands.

The recovery algorithnms in this section only work for M Dl sources
that produce NoteOn->NoteO f->NoteOn->NoteOFf patterns for a note
nunber. Piano keyboard and drum pad controllers produce these
patterns. M D sources that use NoteOn->Not eOn->Not ek f - >Not e f
patterns for | egato repeated notes, such as guitar and w nd
controllers, require nore sophisticated recovery strategies. Chapter
E (not used in this exanple) supports recovery algorithns for
atypical note command patterns (see Appendi x A 7 of [RFC4695] for
details).

The NWP receiver maintains a jrec_chaptern structure (Figure 10) for

each voice channel in jrec_streamto code note-related state
information. State is kept for each of the 128 note nunbers on a

Lazzaro & Waw zynek I nf or mat i onal [Page 30]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

channel, using three arrays of length 128 (vel[], seq[], and time[]).
The arrays are initialized to zero at the start of a stream

The vel[n] array element holds information about the nbst recent note
command for note nunber n. If this conmand is a NoteOn command,
vel[n] holds the velocity data for the command. |If this command is a
Not eOf f comand, vel[n] is set to O.

The tinme[n] and extseq[n] array el ements code information about the
nmost recently executed NoteOn command. The tine[n] element holds the
execution tine of the command, referenced to the local tinebase of
the receiver. The extseq[n] elenent holds the RTP extended sequence
nunber of the packet associated with the comand. For incom ng
stream commands, extseq[n] codes the packet of the associated M DI
list. For commands executed to performloss recovery, extseq[n]
codes the packet of the associated recovery journal

The Chapter N recovery journal bitfield (Figure A 6.1 in [RFC4695])
consists of two data structures: a bit array coding recently sent
Not eOf f commands that are vul nerable to packet |oss, and a note | og
list coding recently sent NoteOn conmands that are vulnerable to
packet | oss.

At the end of a |oss event, Chapter N recovery processing begins with
the NoteOFf bit array. For each set bit in the array, the receiver
checks the corresponding vel[n] element in jrec_chaptern. [|f vel[n]
is non-zero, a NoteOFf command or a NoteO f->NoteOn->NoteOf f conmand
sequence has been lost. To recover fromthis |oss, the receiver

i medi atel y executes a NoteOFf conmmand for the note nunber on the
channel and sets vel[n] to O.

The receiver then parses the note log list, using the Sbhit to skip
over "safe" logs in the single-packet |oss case. For each at-risk
note log, the receiver checks the corresponding vel[n] element.

If vel[n] is zero, a NoteOn command or a NoteOn->Not e f->Not eOn
command sequence has been lost. The receiver nay execute the nost
recent lost NoteOn (to play the note) or nay take no action (to skip
the note), based on criteria we describe at the end of this section
Whet her the note is played or skipped, the receiver updates the
vel[n], tinme[n], and extseq[n] elenents as if the NoteOn execut ed.

If vel[n] is non-zero, the receiver perforns several checks to test
if a NoteOFf->NoteOn sequence has been | ost.

o If vel[n] does not match the note log velocity, the note | og nust

code a different NoteOn conmand, and thus a NoteO f->NoteOn
sequence has been | ost.

Lazzaro & Waw zynek I nf or mat i onal [Page 31]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

o If extseq[n] is less than the (extended) checkpoint packet
sequence nunbed coded in the recovery journal header (Figure 8 of
[RFC4695]), the vel[n] NoteOn command is not in the checkpoint
history, and thus a NoteO f->NoteOn sequence has been | ost.

o If the Y bit is set to 1, the NoteOn is nusically "sinultaneous"

with the RTP tinestanp of the packet. |If tine[n] codes a tine
value that is clearly not recent, a NoteOf->NoteOn sequence has
been | ost.

If these tests indicate a | ost NoteO f->NoteOn sequence, the receiver
i medi ately executes a NoteOFf command. The receiver decides if the
nost graceful action is to play or to skip the | ost NoteOn, using the
criteria we describe at the end of this section. Whether or not the
receiver issues a NoteOn conmand, the vel[n], time[n], and extseq[n]
arrays are updated as if it did.

Note that the tests above do not catch all |ost NoteO f->NoteOn
commands. |f a fast NoteOn->NoteO f->NoteOn sequence occurs on a
note nunber with identical velocity values for both NoteOn comuands,
a lost NoteOFf->NoteOn does not result in the recovery algorithm
generating a NoteO'f command. |Instead, the first NoteOn continues to
sound, to be terminated by the future NoteOFf conmmand. In practice,
this (rare) outconme is not nusically objectionable.

The nunber of tests in this resiliency algorithmnmy seem excessive.
However, in some common cases, a subset of the tests is not useful
For exanple, MDI streans that assigns the same velocity value to all
note events are often produced by inexpensive keyboards. The vel[n]
tests are not useful for these streans.

Finally, we discuss how the receiver decides whether to play or to
skip a lost NoteOn command. The note log Y bit is set if the NoteOn
is "simultaneous" with the RTP tinestanp of the packet hol ding the
note log. If Yis O, the receiver does not execute a NoteOn command.
If Yis 1, and if the packet has not arrived late, the receiver

i medi ately executes a NoteOn command for the note nunmber, using the
velocity coded in the note |og.

7.3. Chapter C. M D Control Change (0xB)
Chapter C (Appendix A 3 in [RFC4695]) protects against the | oss of
M DI Control Change commands. A Control Change conmmand alters the
7-bit value of one of the 128 M DI controllers.
Chapter C offers three tools for protecting a Control Change comand:

the value tool (for graded controllers such as sliders), the toggle
tool (for on/off switches), and the count tool (for nonentary-contact

Lazzaro & Waw zynek I nf or mat i onal [Page 32]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

switches). Senders choose a tool to encode recovery information for
a controller and encode the tool type along with the data in the
journal (Figures A 3.2 and A 3.3 in [RFC4695]).

A few uses of Control Change commands are not solely protected by
Chapter C. The protection of controllers 0 and 32 (Bank Sel ect MSB
and Bank Select LSB) is shared between Chapter C and Chapter P
(Section 7.4).

Chapter M (Appendix A 4 of [RFC4695]) also protects the Contro

Change conmand. However, the NMP system does not use this chapter
because MPEG 4 Structured Audi o [MPEGSA] does not use the controllers
protected by this chapter.

The Chapter C bitfield consists of a list of controller logs. Each
| og codes the controller nunmber, the tool type, and the state val ue
for the tool

The NWP receiver maintains the jrec_chapterc structure (Figure 10)
for each voice channel in jrec_streamto code Control Change state
information. The value[] array holds the nost recent data values for
each controller nunmber. At the start of the stream value[] is
initialized to the default controller data values specified in

[MPEGSA] .

The count[] and toggle[] arrays hold the count tool and toggle too
state values. At the start of a stream these arrays are initialized
to zero. \Wenever a Control Command executes, the receiver updates
the count[] and toggle[] state values, using the algorithnms defined

i n Appendi x A 3 of [RFC4695].

At the end of a |oss event, the receiver parses the Chapter C
controller log list, using the S bit to skip over "safe" logs in the
si ngl e- packet | oss case. For each at-risk controller nunber n, the
recei ver determnes the tool type in use (value, toggle, or count)
and conpares the data in the log to the associated jrec_chapterc
array elenent (value[n], toggle[n], or count[n]). |If the data do not
mat ch, one or nore Control Change conmands have been | ost.

The nmet hod the receiver uses to recover fromthis | oss depends on the
tool type and the controller nunber. For graded controllers
protected by the value tool, the receiver executes a Control Change
command usi ng the new data val ue.

For the toggle and count tools, the recovery action is nore conplex.
For exanple, the Danmper Pedal (Sustain) controller (number 64) is
typically used as a sustain pedal for piano-like sounds and is
typically coded using the toggle tool. |If Danper Pedal (Sustain)

Lazzaro & Waw zynek I nf or mat i onal [Page 33]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

Control Change conmands are | ost, the receiver takes different
actions depending on the starting and ending state of the | ost
sequence, to ensure that "ringing" piano notes are "danped" to
sil ence.

After recovering fromthe | oss, the receiver updates the value[],
toggle[], and count[] arrays to reflect the Chapter C data and the
execut ed comands.

7.4. Chapter P:. M DI Program Change (0xC)

Chapter P of the recovery journal protects against the |oss of MDI
Pr ogram Change (0xC) conmmands

The 7-bit data value of the Program Change conmmand sel ects one of 128
possible tinbres for the channel. To increase the nunber of possible
ti mbres, Control Change (0xB) conmands may be issued prior to the

Pr ogram Change conmand to sel ect a "program bank". The Bank Sel ect
MSB (number 0) and Bank Sel ect LSB (nunber 32) controllers specify
the 14-bit bank number that subsequent Program Change commands
reference

The NWP receiver maintains the jrec_chapterp structure (Figure 10)
for each voice channel in jrec_streamto code Program Change state
i nformation.

The prognum vari able of jrec_chapterp holds the data value for the
nost recent Program Change command that has arrived on the stream
The bank_nsb and bank_I sb variables of jrec_chapterp code the Bank
Sel ect MSB and Bank Sel ect LSB controller data values that were in
ef fect when that Program Change command arrived. The prognum qual
bank_msb_qual, and bank_I sb_qual variables are initialized to 0 and
are set to 1 to qualify the associated data val ues.

Chapter P fields code the data value for the nost recent Program
Change command, and the MSB and LSB bank values in effect for that
conmmand.

At the end of a |loss event, the receiver checks Chapter P to see if
the recovery journal fields match the data stored in jrec_chapterp
If these checks fail, one or nore Program Change commands have been
| ost.

To recover fromthis loss, the receiver takes the follow ng steps.

If the B bit in Chapter Pis set (Figure A.2.1 in [RFC4695]), Contro
Change bank commands have preceded the Program Change command. The

recei ver conpares the bank data coded by Chapter P with the current

bank data for the channel (coded in jrec_channelc).

Lazzaro & Waw zynek I nf or mat i onal [Page 34]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

10.

11.

11.

If the bank data do not agree, the receiver issues Control Change
commands to align the streamwith Chapter P. The receiver then
updates jrec_channelp and jrec_channelc variables to reflect the
executed command(s). Finally, the receiver issues a Program Change
command that reflects the data in Chapter P and updates the prognum
and qual _prognum fields in jrec_channel p.

Note that this method relies on Chapter P recovery to precede Chapter
C recovery during channel journal processing. This ordering ensures
that | ost Bank Sel ect Control Change commands that occur after a | ost
Program Change command in a stream are handl ed correctly.

Security Considerations

Security considerations for the RTP M D payl oad format are di scussed
in the Security Considerations section of [RFC4695].

| ANA Consi der ati ons

| ANA considerations for the RTP M DI payl oad format are discussed in
the |1 ANA Consi derations section of [RFC4695].

Acknowl edgenent s

This meno was written in conjunction with [RFC4695], and the
Acknow edgenents section of [RFC4695] al so applies to this neno.

Ref er ences
1. Nornmtive References

[RFC4695] Lazzaro, J. and J. Wawrzynek, "RTP Payl oad Format for
M DI ", RFC 4695, Novenber 2006.

[RFC3550] Schul zrinne, H., Casner, S., Frederick, R, and V.
Jacobson, "RTP: A Transport Protocol for Real -Tine
Applications", STD 64, RFC 3550, July 2003.

[RFC3551] Schul zrinne, H and S. Casner, "RTP Profile for Audio and
Vi deo Conferences with Mnimal Control", STD 65, RFC 3551
July 2003

[RFC4566] Handl ey, M, Jacobson, V., and C Perkins, "SDP:. Session
Descri ption Protocol", RFC 4566, July 2006.

[MD] M DI Manuf acturers Association. "The Conplete MDI 1.0
Det ai | ed Specification", 1996.

Lazzaro & Waw zynek I nf or mat i onal [Page 35]

RFC 4696

[MPEGSA]

[RFC3556]

An I nmpl enentation Guide for RTP M DI Novernber 2006

I nternational Standards Organi zation. "1SQO|EC 14496
MPEG 4", Part 3 (Audio), Subpart 5 (Structured Audio),
2001.

Casner, S., "Session Description Protocol (SDP) Bandw dth
Modi fiers for RTP Control Protocol (RTCP) Bandwi dth", RFC
3556, July 2003.

11.2. Informati ve References

[NVP]

[RFC3261]

[GRAME]

[CCRVA]

[RTPBOOK]

[STEVENS]

Lazzaro, J. and J. Wawr zynek. "A Case for Network Muisi cal
Performance", 11th International Wrkshop on Network and
Qperating Systens Support for Digital Audio and Video
(NCSSDAV 2001) June 25-26, 2001, Port Jefferson, New York.

Rosenberg, J., Schul zrinne, H, Canarillo, G, Johnston,
A., Peterson, J., Sparks, R, Handley, M, and E. School er,
"SI P: Session Initiation Protocol", RFC 3261, June 2002.

Fober, D., Olarey, Y. and S. Letz. "Real Tine Misical
Events Streaning over Internet", Proceedings of the

I nternational Conference on WEB Delivering of Misic 2001,
pages 147-154.

Chafe C., Wlson S., Leistikow R, ChisholmD., and G
Scavone. "A sinplified approach to high quality music and
sound over |P', COST-G6 Conference on Digital Audio Effects
(DAFx-00), Verona, Italy, Decenber 2000.

Perkins, C. "RTP: Audio and Video for the Internet",
Addi son- Wesl ey, | SBN 0-672-32249-8, 2003.

Stevens, R W Fenner, B., and A Rudoff. "Unix Network
Programm ng: The Sockets Networking API", Addi son-Wesl ey,
2003.

Lazzaro & Waw zynek I nf or mat i onal [Page 36]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

Aut hors’ Addr esses

John Lazzaro (correspondi ng aut hor)
UC Ber kel ey

CS Division

315 Soda Hal |

Ber kel ey CA 94720-1776

EMai |l : |l azzaro@s. berkel ey. edu
John WWawr zynek

UC Ber kel ey

CS Division

631 Soda Hal l

Ber kel ey CA 94720-1776

EMai | : j ohnw@s. ber kel ey. edu

Lazzaro & Waw zynek I nf or mat i onal [Page 37]

RFC 4696 An I nmpl enentation Guide for RTP M DI Novernber 2006

Ful I Copyright Statenent
Copyright (C The | ETF Trust (2006).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCRED BY (I F ANY), THE | NTERNET SOCI ETY, THE | ETF TRUST
AND THE | NTERNET ENGQ NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES
EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT
THE USE OF THE | NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY
| MPLI ED WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR
PURPCSE

Intell ectual Property

The I ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that night be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any i ndependent effort to identify any such rights. |Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be made available, or the result of an
attenpt nade to obtain a general |icense or permnission for the use of
such proprietary rights by inplenmenters or users of this
specification can be obtained fromthe I ETF on-line I PR repository at
http://ww.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that nmay be required to inpl enent
this standard. Please address the infornmation to the |IETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Lazzaro & Waw zynek I nf or mat i onal [Page 38]

