Net wor k Wor ki ng Group J. Burchfi el
Request for Comments: 467 R Tom inson
NI C. 14741 Bolt Beranek and Newmran

20 February 1973

Proposed Change To Host-Host Protoco
Resynchroni zati on O Connection Status

I. Introduction

The current Host-Host protocol (N C #8246) contains no provisions for
resynchroni zing the status information kept at the two ends of each
connection. In particular, if either host suffers a service
interruption, or if a control message is lost or corrupted in an
interface or in the subnet, the status information at the two ends of
the connection will be inconsistent.

Since the current protocol provides no way to correct this condition
the NCP's at the two ends stay "confused" forever. A frequent and
frustrating synptomof this effect is the "lost allocate" phenonenon
where the receiving NCP believes that it has bit and nmessage

al | ocati ons outstanding, while the sending NCP believes that it does
not have any allocation. As a result, information flow over that
connection can never be restarted.

Use of the Host-Host RST (reset) command is inappropriate here, as it
destroys all connections between the two hosts. What is needed is a
way to reset only the affected connection w thout disturbing any

ot hers.

A second troubl esomre synptom of inconsistency in status infornmation
is the "half-closed" connection: after a service interruption or
network partitioning, one NCP may believe that a connection is stil
open, while the other believes that the connection is closed. (Does
not exist.) Wen such an inconsistency is discovered, the "open" end
of the connection should be closed.

Bur chfi el [Page 1]

RFC 467 February 1973

Il. The RCR and RCS Commands

To achi eve resynchronization of allocation, we propose the addition
of the following two commands to the host-host protocol

8 8
. . +
RCS | link | Reset connection by sender
- - +
8 8
S S +
| RCR | Iink | Reset connection by receiver
N N +
The RCS command is sent fromthe host sending on "link" to the host
receiving on "link". This command may be sent whenever the sending

host desires to re-synch the status infornation associated with the
connection. Sone circunstances in which the sending Host may choose
to do this are:

1.) After a timeout when there is traffic to nove but no
al l ocation. (Assunes that an allocation has been |ost)

2.) Wen an inconsistent event occurs associated with that
connection (e.g. an outstanding allocation in excess of 27232 bits
or 2716 nessages.

The mechani cs of re-synchronizing the allocations is sinply:

1.) Enpty all nessages and all ocates fromthe "pipeline"

2.) Zero the variables at both ends indicating bit and nmessage
al l ocati on.

3.) Restart allocatel/nessage exchanges in the normal way.

Thi s resynchroni zati on scheme is race-free because the RCS and RCR
conmands are used as a positive acknow edgenment pair.

I1l. Resynchronization by Sender
To initiate resynchroni zation, the sending NCP shoul d:
1.) Put the connection in a "waiting-for-RCR-reply" state. No

nmore regul ar messages may be transmitted over this connection
until the RCR reply is received.

Bur chfi el [Page 2]

RFC 467 February 1973

2.) Wait until the nessage pipeline is enpty, i.e. until a RFNM
has been received for each regul ar nessage sent over this
connection. This synchronizes the control and data activity, and
al so assures that the data streamw |l not be corrupted during the
control re-synchronization exchange

3.) Send the RCS comand.

4.) Continue to process allocates nornmally, updating the variables
whi ch indicate outstanding bit and nmessage all ocati on.

When the receiving NCP receives the RCS, it shoul d:

1.) Zero the variables indicating outstanding bit and nessage
al I ocati on.

2.) Reset the connection to the state which indicates readi ness to
accept a message.

3.) Confirmthe re-synchroni zation by sending the RCR reply.

4.) Reconsider bit and nessage allocation, and send an ALL conmand
for any allocation it cares to do.

When t he sendi ng host receives the RCR reply, it shoul d:

1.) Zero the variables indicating outstanding bit and nessage
al | ocat e.

2.) Put the connection into the "ready-to-send-nessage" state in
preparation for any forthcom ng ALL conmmands.

At this point, the "pipeline" contains no nmessages and no all ocates,
and the outstanding allocation variables at both ends are in
agreement. (Wth val ue zero)

Resynchroni zati on By Receiver

The re-synchroni zati on sequence may be triggered by the receiving
NCP. Such resynchronization could be initiated manually by TIP and
TELNET users who are expecting output but receiving none. Again
assunm ng that allocation has been |lost, the appropriate action is to
reset the connection by sending an RCR conmand. This action is also
appropriate if an inconsistent event occurs with respect to the
connection. (e.g. arrival of a message which exceeds allocation).

Bur chfi el [Page 3]

RFC 467 February 1973

To initiate re-synchronization, the receiving NCP shoul d:

1.) Put the connection into a "waiting-for-RCS-reply" state. No
nore allocates may be transnmitted for this connection until the
RCS reply is received

2.) Send the RCR comand.

3.) Continue to process regul ar nessages normally, updating the
vari abl es whi ch indicate outstanding bit and nessage all ocati on.

When the sending NCP receives the RCR conmand, it shoul d:

1.) Vit until the nessage pipeline is enpty, i.e. until the RFNM
has been received for each regular nessage sent over the
connection. This synchronizes the control and data activity, and
al so assures that the data streamw || not be corrupted during the
control re-synchronization exchange

2.) Zero the variables indicating outstanding bit and nessage
al I ocati on.

3.) Put the connection into the "ready-to-send-nessage" state in
preparation for any forthcom ng ALL comrmands.

4.) Confirmthe re-synchronization by sending the RCS reply.
When the receiving host receives the RCS reply, it shoul d:

1.) Zero the variables indicating outstanding bit and nessage
al | ocati on.

2.) Reset the connection to the state which indicates readiness to
accept a nessage.

3.) Reconsider bit and nessage allocation, and send an ALL comand
for any allocation it cares to do.

V. Simul taneous Resynchroni zation

This specification for a re-synchronization exchange is guaranteed to
restore the allocation information at the two ends to a consistent
state. This happens correctly whether the re-synchronization is
triggered by the sender, the receiver, or both at the sane tine.

When both ends initiate a cormand at the same tinme, (the RCS and RCR
commands cross in the pipeline) each interprets the other’s command
as a confirmation reply; thus, the resynchronizati on happens
correctly independent of the relative timng

Bur chfi el [Page 4]

RFC 467 February 1973

The essential factor here is that when either end receives the reset
request, it is sure that the other end will take no further actions
which could affect the allocation variables. The activity which
occurs during sinmultaneous resynchronization by both ends is as
fol | ows:

The sendi ng NCP

1. Puts the connection into a "waiting-for-RCR-reply" state. No
nmore regul ar messages may be transmitted over this connection
until the RCR reply is received.

2. Waits until the nessage pipeline is enpty, i.e. until a RFNM
has been received for each regul ar nessage sent over this
connection. This synchronizes the control and data activity, and
al so assures that the data streamw ||l not be corrupted during the
control re-synchronization exchange

3. Sends the RCS command.

4. Continues to process allocates nornmally, updating the variables
whi ch indicate outstanding bit and nmessage all ocati on.

Concurrently with 1, 2, 3 and 4 above, the receiving NCP
5. Puts the connection into a "waiting-for-RCS-reply" state. No
nore allocates nay be transmitted for this connection until the
RCS reply is received
6. Sends the RCR command.
7. Continues to process regular messages normally.
The RCS and RCR commands cross somewhere in the pipeline. Wen the
sender receives the RCR command, it interprets it as a reply to its
own RCS comand. It then

8. Zeroes the variables indicating outstanding bit and nessage
al I ocati on.

9. Puts the connection into the "ready-to-send-nessage" state in
preparation for any forthcom ng ALL commands.

Concurrently with 8 and 9 above, the receiving NCP will receive the

RCS command. It will interpret it as a reply to its own RCR comuand
I't then:

Bur chfi el [Page 5]

RFC 467 February 1973

Vi .

VI,

10. Zeroes the variables indicating outstanding bit and nessage
al | ocati on.

11. Resets the connection to the state whi ch indi cates readi ness
to accept a nessage.

12. Reconsiders bit and nessage allocation, and sends an ALL
command for any allocation it cares to do.

The Problem O Hal f-cl osed Connecti ons

The above procedures provide a way to resynchroni ze a connection
after a brief |apse by a communi cations conponent, which results in
| ost messages or allocates for an open connecti on.

A longer and nore severe interruption of conmunication may result
froma partitioning of the subnet or froma service interruption on
one of the communicating hosts. It is undesirable to tie up
resources indefinitely under such circunstances, so the user is
provided with the option of freeing up these resources (including
himsel f) by unilaterally dissolving the connection. Here

"unil ateral l y" nmeans sending the CLS command and cl osing the
connection wi thout receiving the CLS acknow edgenent. Note that this
is legal only if the subnet indicates that the destination is dead.

When service is restored after such an interruption, the status
information at the two ends of the connection is out of

synchroni zation. One end believes that the connection is open, and
may proceed to use the connection. The disconnecting end believes
that the connection is closed (does not exist), and may proceed to
re-initialize conmunication by opening a new connection (RTS or STR
command) using the sanme |ocal socket.

The re-synchroni zati on needed here is to properly close the open end
of the connection when the inconsistency is detected. W propose to
acconplish this by changing the semantics of three existing host-host
prot ocol conmands.

Redefinition of RTS, STR, ERR (link) to Handl e Hal f-cl osed
Connecti ons

The "mi ssing CLS" situation described above can nanifest itself in
two ways. The first way involves action taken by the NCP at the
"open" end of the connection. It nmay continue to send regul ar
nmessages on the link of the hal f-cl osed connection, or contro
nmessages referencing its link. The NCP at the "closed" end should
respond with the ERR nmessage, specifying that the link is unknown.
(Error code = 5 does not correspond to an open connection). On

Bur chfi el [Page 6]

RFC 467 February 1973

recei pt of such an ERR nessage, the NCP at the "open" end should
cl ose the connection by nodifying its tables, (w thout sending any
CLS command) thereby bringing both ends into agreenent.

The second way this inconsistency can show up involves actions
initiated by the NCP at the "closed" end. It may (thinking the
connection is closed) send an STR or RTS to reopen the connection

The NCP at the "open" end will detect an inconsistency when it

recei ves such an RTS or STR command, because it specifies the sane
foreign socket as an existing open connection. In this case, the NCP
at the "open" end should close the connection (w thout sending any
CLS command) to bring the two ends into agreenent before responding
to the RTS/ STR

VI11. Concl usions

The schene presented in Section Il to resynchronize all ocation has
one very inportant property: the data streamis preserved through the
exchange. Since no data is lost, it is safe to initiate re-

synchroni zation fromeither end at any time. Wen in doubt, re-
synchroni ze

The changes in the semantics of RTS, STR, and ERR(code 5) commuands
provi de the synchroni zati on needed to conplete the closing of "half-
cl osed" connecti ons.

The protocol changes above will nake the host-host protocol far nore

robust, in that useful work can continue in spite of |apses by the
conmuni cati ons conponents.

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Via Genie 08/00]

Bur chfi el [Page 7]

