
Network Working Group J. Burchfiel
Request for Comments: 467 R. Tomlinson
NIC: 14741 Bolt Beranek and Newman
 20 February 1973

 Proposed Change To Host-Host Protocol
 Resynchronization Of Connection Status

I. Introduction

 The current Host-Host protocol (NIC #8246) contains no provisions for
 resynchronizing the status information kept at the two ends of each
 connection. In particular, if either host suffers a service
 interruption, or if a control message is lost or corrupted in an
 interface or in the subnet, the status information at the two ends of
 the connection will be inconsistent.

 Since the current protocol provides no way to correct this condition,
 the NCP’s at the two ends stay "confused" forever. A frequent and
 frustrating symptom of this effect is the "lost allocate" phenomenon,
 where the receiving NCP believes that it has bit and message
 allocations outstanding, while the sending NCP believes that it does
 not have any allocation. As a result, information flow over that
 connection can never be restarted.

 Use of the Host-Host RST (reset) command is inappropriate here, as it
 destroys all connections between the two hosts. What is needed is a
 way to reset only the affected connection without disturbing any
 others.

 A second troublesome symptom of inconsistency in status information
 is the "half-closed" connection: after a service interruption or
 network partitioning, one NCP may believe that a connection is still
 open, while the other believes that the connection is closed. (Does
 not exist.) When such an inconsistency is discovered, the "open" end
 of the connection should be closed.

Burchfiel [Page 1]

RFC 467 February 1973

II. The RCR and RCS Commands

 To achieve resynchronization of allocation, we propose the addition
 of the following two commands to the host-host protocol.

 8 8
 +-----------+-----------+
 | RCS | link | Reset connection by sender
 +-----------+-----------+

 8 8
 +-----------+-----------+
 | RCR | link | Reset connection by receiver
 +-----------+-----------+

 The RCS command is sent from the host sending on "link" to the host
 receiving on "link". This command may be sent whenever the sending
 host desires to re-synch the status information associated with the
 connection. Some circumstances in which the sending Host may choose
 to do this are:

 1.) After a timeout when there is traffic to move but no
 allocation. (Assumes that an allocation has been lost)

 2.) When an inconsistent event occurs associated with that
 connection (e.g. an outstanding allocation in excess of 2^32 bits
 or 2^16 messages.

 The mechanics of re-synchronizing the allocations is simply:

 1.) Empty all messages and allocates from the "pipeline".

 2.) Zero the variables at both ends indicating bit and message
 allocation.

 3.) Restart allocate/message exchanges in the normal way.

 This resynchronization scheme is race-free because the RCS and RCR
 commands are used as a positive acknowledgement pair.

III. Resynchronization by Sender

 To initiate resynchronization, the sending NCP should:

 1.) Put the connection in a "waiting-for-RCR-reply" state. No
 more regular messages may be transmitted over this connection
 until the RCR reply is received.

Burchfiel [Page 2]

RFC 467 February 1973

 2.) Wait until the message pipeline is empty, i.e. until a RFNM
 has been received for each regular message sent over this
 connection. This synchronizes the control and data activity, and
 also assures that the data stream will not be corrupted during the
 control re-synchronization exchange.

 3.) Send the RCS command.

 4.) Continue to process allocates normally, updating the variables
 which indicate outstanding bit and message allocation.

 When the receiving NCP receives the RCS, it should:

 1.) Zero the variables indicating outstanding bit and message
 allocation.

 2.) Reset the connection to the state which indicates readiness to
 accept a message.

 3.) Confirm the re-synchronization by sending the RCR reply.

 4.) Reconsider bit and message allocation, and send an ALL command
 for any allocation it cares to do.

 When the sending host receives the RCR reply, it should:

 1.) Zero the variables indicating outstanding bit and message
 allocate.

 2.) Put the connection into the "ready-to-send-message" state in
 preparation for any forthcoming ALL commands.

 At this point, the "pipeline" contains no messages and no allocates,
 and the outstanding allocation variables at both ends are in
 agreement. (With value zero)

IV. Resynchronization By Receiver

 The re-synchronization sequence may be triggered by the receiving
 NCP. Such resynchronization could be initiated manually by TIP and
 TELNET users who are expecting output but receiving none. Again
 assuming that allocation has been lost, the appropriate action is to
 reset the connection by sending an RCR command. This action is also
 appropriate if an inconsistent event occurs with respect to the
 connection. (e.g. arrival of a message which exceeds allocation).

Burchfiel [Page 3]

RFC 467 February 1973

 To initiate re-synchronization, the receiving NCP should:

 1.) Put the connection into a "waiting-for-RCS-reply" state. No
 more allocates may be transmitted for this connection until the
 RCS reply is received.

 2.) Send the RCR command.

 3.) Continue to process regular messages normally, updating the
 variables which indicate outstanding bit and message allocation.

 When the sending NCP receives the RCR command, it should:

 1.) Wait until the message pipeline is empty, i.e. until the RFNM
 has been received for each regular message sent over the
 connection. This synchronizes the control and data activity, and
 also assures that the data stream will not be corrupted during the
 control re-synchronization exchange.

 2.) Zero the variables indicating outstanding bit and message
 allocation.

 3.) Put the connection into the "ready-to-send-message" state in
 preparation for any forthcoming ALL commands.

 4.) Confirm the re-synchronization by sending the RCS reply.

 When the receiving host receives the RCS reply, it should:

 1.) Zero the variables indicating outstanding bit and message
 allocation.

 2.) Reset the connection to the state which indicates readiness to
 accept a message.

 3.) Reconsider bit and message allocation, and send an ALL command
 for any allocation it cares to do.

V. Simultaneous Resynchronization

 This specification for a re-synchronization exchange is guaranteed to
 restore the allocation information at the two ends to a consistent
 state. This happens correctly whether the re-synchronization is
 triggered by the sender, the receiver, or both at the same time.
 When both ends initiate a command at the same time, (the RCS and RCR
 commands cross in the pipeline) each interprets the other’s command
 as a confirmation reply; thus, the resynchronization happens
 correctly independent of the relative timing.

Burchfiel [Page 4]

RFC 467 February 1973

 The essential factor here is that when either end receives the reset
 request, it is sure that the other end will take no further actions
 which could affect the allocation variables. The activity which
 occurs during simultaneous resynchronization by both ends is as
 follows:

 The sending NCP:

 1. Puts the connection into a "waiting-for-RCR-reply" state. No
 more regular messages may be transmitted over this connection
 until the RCR reply is received.

 2. Waits until the message pipeline is empty, i.e. until a RFNM
 has been received for each regular message sent over this
 connection. This synchronizes the control and data activity, and
 also assures that the data stream will not be corrupted during the
 control re-synchronization exchange.

 3. Sends the RCS command.

 4. Continues to process allocates normally, updating the variables
 which indicate outstanding bit and message allocation.

 Concurrently with 1, 2, 3 and 4 above, the receiving NCP:

 5. Puts the connection into a "waiting-for-RCS-reply" state. No
 more allocates may be transmitted for this connection until the
 RCS reply is received.

 6. Sends the RCR command.

 7. Continues to process regular messages normally.

 The RCS and RCR commands cross somewhere in the pipeline. When the
 sender receives the RCR command, it interprets it as a reply to its
 own RCS command. It then:

 8. Zeroes the variables indicating outstanding bit and message
 allocation.

 9. Puts the connection into the "ready-to-send-message" state in
 preparation for any forthcoming ALL commands.

 Concurrently with 8 and 9 above, the receiving NCP will receive the
 RCS command. It will interpret it as a reply to its own RCR command.
 It then:

Burchfiel [Page 5]

RFC 467 February 1973

 10. Zeroes the variables indicating outstanding bit and message
 allocation.

 11. Resets the connection to the state which indicates readiness
 to accept a message.

 12. Reconsiders bit and message allocation, and sends an ALL
 command for any allocation it cares to do.

VI. The Problem Of Half-closed Connections

 The above procedures provide a way to resynchronize a connection
 after a brief lapse by a communications component, which results in
 lost messages or allocates for an open connection.

 A longer and more severe interruption of communication may result
 from a partitioning of the subnet or from a service interruption on
 one of the communicating hosts. It is undesirable to tie up
 resources indefinitely under such circumstances, so the user is
 provided with the option of freeing up these resources (including
 himself) by unilaterally dissolving the connection. Here
 "unilaterally" means sending the CLS command and closing the
 connection without receiving the CLS acknowledgement. Note that this
 is legal only if the subnet indicates that the destination is dead.

 When service is restored after such an interruption, the status
 information at the two ends of the connection is out of
 synchronization. One end believes that the connection is open, and
 may proceed to use the connection. The disconnecting end believes
 that the connection is closed (does not exist), and may proceed to
 re-initialize communication by opening a new connection (RTS or STR
 command) using the same local socket.

 The re-synchronization needed here is to properly close the open end
 of the connection when the inconsistency is detected. We propose to
 accomplish this by changing the semantics of three existing host-host
 protocol commands.

VII. Redefinition of RTS, STR, ERR (link) to Handle Half-closed
 Connections

 The "missing CLS" situation described above can manifest itself in
 two ways. The first way involves action taken by the NCP at the
 "open" end of the connection. It may continue to send regular
 messages on the link of the half-closed connection, or control
 messages referencing its link. The NCP at the "closed" end should
 respond with the ERR message, specifying that the link is unknown.
 (Error code = 5 does not correspond to an open connection). On

Burchfiel [Page 6]

RFC 467 February 1973

 receipt of such an ERR message, the NCP at the "open" end should
 close the connection by modifying its tables, (without sending any
 CLS command) thereby bringing both ends into agreement.

 The second way this inconsistency can show up involves actions
 initiated by the NCP at the "closed" end. It may (thinking the
 connection is closed) send an STR or RTS to reopen the connection.
 The NCP at the "open" end will detect an inconsistency when it
 receives such an RTS or STR command, because it specifies the same
 foreign socket as an existing open connection. In this case, the NCP
 at the "open" end should close the connection (without sending any
 CLS command) to bring the two ends into agreement before responding
 to the RTS/STR.

VIII. Conclusions

 The scheme presented in Section II to resynchronize allocation has
 one very important property: the data stream is preserved through the
 exchange. Since no data is lost, it is safe to initiate re-
 synchronization from either end at any time. When in doubt, re-
 synchronize.

 The changes in the semantics of RTS, STR, and ERR(code 5) commands
 provide the synchronization needed to complete the closing of "half-
 closed" connections.

 The protocol changes above will make the host-host protocol far more
 robust, in that useful work can continue in spite of lapses by the
 communications components.

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Via Genie 08/00]

Burchfiel [Page 7]

