
Network Working Group M. Friedl
Request for Comments: 4419 N. Provos
Category: Standards Track W. Simpson
 March 2006

 Diffie-Hellman Group Exchange for
 the Secure Shell (SSH) Transport Layer Protocol

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This memo describes a new key exchange method for the Secure Shell
 (SSH) protocol. It allows the SSH server to propose new groups on
 which to perform the Diffie-Hellman key exchange to the client. The
 proposed groups need not be fixed and can change with time.

1. Overview and Rationale

 SSH [RFC4251] is a very common protocol for secure remote login on
 the Internet. Currently, SSH performs the initial key exchange using
 the "diffie-hellman-group1-sha1" method [RFC4253]. This method
 prescribes a fixed group on which all operations are performed.

 The Diffie-Hellman key exchange provides a shared secret that cannot
 be determined by either party alone. Furthermore, the shared secret
 is known only to the participant parties. In SSH, the key exchange
 is signed with the host key to provide host authentication.

 The security of the Diffie-Hellman key exchange is based on the
 difficulty of solving the Discrete Logarithm Problem (DLP). Since we
 expect that the SSH protocol will be in use for many years in the
 future, we fear that extensive precomputation and more efficient
 algorithms to compute the discrete logarithm over a fixed group might
 pose a security threat to the SSH protocol.

Friedl, et al. Standards Track [Page 1]

RFC 4419 SSH DH Group Exchange March 2006

 The ability to propose new groups will reduce the incentive to use
 precomputation for more efficient calculation of the discrete
 logarithm. The server can constantly compute new groups in the
 background.

2. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Diffie-Hellman Group and Key Exchange

 The server keeps a list of safe primes and corresponding generators
 that it can select from. A prime p is safe if p = 2q + 1 and q is
 prime. New primes can be generated in the background.

 The generator g should be chosen such that the order of the generated
 subgroup does not factor into small primes; that is, with p = 2q + 1,
 the order has to be either q or p - 1. If the order is p - 1, then
 the exponents generate all possible public values, evenly distributed
 throughout the range of the modulus p, without cycling through a
 smaller subset. Such a generator is called a "primitive root" (which
 is trivial to find when p is "safe").

 The client requests a modulus from the server indicating the
 preferred size. In the following description (C is the client, S is
 the server, the modulus p is a large safe prime, and g is a generator
 for a subgroup of GF(p), min is the minimal size of p in bits that is
 acceptable to the client, n is the size of the modulus p in bits that
 the client would like to receive from the server, max is the maximal
 size of p in bits that the client can accept, V_S is S’s version
 string, V_C is C’s version string, K_S is S’s public host key, I_C is
 C’s KEXINIT message, and I_S is S’s KEXINIT message that has been
 exchanged before this part begins):

 1. C sends "min || n || max" to S, indicating the minimal acceptable
 group size, the preferred size of the group, and the maximal
 group size in bits the client will accept.

 2. S finds a group that best matches the client’s request, and sends
 "p || g" to C.

 3. C generates a random number x, where 1 < x < (p-1)/2. It
 computes e = g^x mod p, and sends "e" to S.

Friedl, et al. Standards Track [Page 2]

RFC 4419 SSH DH Group Exchange March 2006

 4. S generates a random number y, where 0 < y < (p-1)/2, and
 computes f = g^y mod p. S receives "e". It computes K = e^y mod
 p, H = hash(V_C || V_S || I_C || I_S || K_S || min || n || max ||
 p || g || e || f || K) (these elements are encoded according to
 their types; see below), and signature s on H with its private
 host key. S sends "K_S || f || s" to C. The signing operation
 may involve a second hashing operation.

 5. C verifies that K_S really is the host key for S (e.g., using
 certificates or a local database to obtain the public key). C is
 also allowed to accept the key without verification; however,
 doing so will render the protocol insecure against active attacks
 (but may be desirable for practical reasons in the short term in
 many environments). C then computes K = f^x mod p, H = hash(V_C
 || V_S || I_C || I_S || K_S || min || n || max || p || g || e ||
 f || K), and verifies the signature s on H.

 Servers and clients SHOULD support groups with a modulus length of k
 bits, where 1024 <= k <= 8192. The recommended values for min and
 max are 1024 and 8192, respectively.

 Either side MUST NOT send or accept e or f values that are not in the
 range [1, p-1]. If this condition is violated, the key exchange
 fails. To prevent confinement attacks, they MUST accept the shared
 secret K only if 1 < K < p - 1.

 The server should return the smallest group it knows that is larger
 than the size the client requested. If the server does not know a
 group that is larger than the client request, then it SHOULD return
 the largest group it knows. In all cases, the size of the returned
 group SHOULD be at least 1024 bits.

 This is implemented with the following messages. The hash algorithm
 for computing the exchange hash is defined by the method name, and is
 called HASH. The public key algorithm for signing is negotiated with
 the KEXINIT messages.

 First, the client sends:

 byte SSH_MSG_KEY_DH_GEX_REQUEST
 uint32 min, minimal size in bits of an acceptable group
 uint32 n, preferred size in bits of the group the server will send
 uint32 max, maximal size in bits of an acceptable group

Friedl, et al. Standards Track [Page 3]

RFC 4419 SSH DH Group Exchange March 2006

 The server responds with

 byte SSH_MSG_KEX_DH_GEX_GROUP
 mpint p, safe prime
 mpint g, generator for subgroup in GF(p)

 The client responds with:

 byte SSH_MSG_KEX_DH_GEX_INIT
 mpint e

 The server responds with:

 byte SSH_MSG_KEX_DH_GEX_REPLY
 string server public host key and certificates (K_S)
 mpint f
 string signature of H

 The hash H is computed as the HASH hash of the concatenation of the
 following:

 string V_C, the client’s version string (CR and NL excluded)
 string V_S, the server’s version string (CR and NL excluded)
 string I_C, the payload of the client’s SSH_MSG_KEXINIT
 string I_S, the payload of the server’s SSH_MSG_KEXINIT
 string K_S, the host key
 uint32 min, minimal size in bits of an acceptable group
 uint32 n, preferred size in bits of the group the server will send
 uint32 max, maximal size in bits of an acceptable group
 mpint p, safe prime
 mpint g, generator for subgroup
 mpint e, exchange value sent by the client
 mpint f, exchange value sent by the server
 mpint K, the shared secret

 This value is called the exchange hash, and it is used to
 authenticate the key exchange as per [RFC4253].

4. Key Exchange Methods

 This document defines two new key exchange methods:
 "diffie-hellman-group-exchange-sha1" and
 "diffie-hellman-group-exchange-sha256".

Friedl, et al. Standards Track [Page 4]

RFC 4419 SSH DH Group Exchange March 2006

4.1. diffie-hellman-group-exchange-sha1

 The "diffie-hellman-group-exchange-sha1" method specifies
 Diffie-Hellman Group and Key Exchange with SHA-1 [FIPS-180-2] as
 HASH.

4.2. diffie-hellman-group-exchange-sha256

 The "diffie-hellman-group-exchange-sha256" method specifies
 Diffie-Hellman Group and Key Exchange with SHA-256 [FIPS-180-2] as
 HASH.

 Note that the hash used in key exchange (in this case, SHA-256) must
 also be used in the key derivation pseudo-random function (PRF), as
 per the requirement in the "Output from Key Exchange" section in
 [RFC4253].

5. Summary of Message Numbers

 The following message numbers have been defined in this document.
 They are in a name space private to this document and not assigned by
 IANA.

 #define SSH_MSG_KEX_DH_GEX_REQUEST_OLD 30
 #define SSH_MSG_KEX_DH_GEX_REQUEST 34
 #define SSH_MSG_KEX_DH_GEX_GROUP 31
 #define SSH_MSG_KEX_DH_GEX_INIT 32
 #define SSH_MSG_KEX_DH_GEX_REPLY 33

 SSH_MSG_KEX_DH_GEX_REQUEST_OLD is used for backward compatibility.
 Instead of sending "min || n || max", the client only sends "n". In
 addition, the hash is calculated using only "n" instead of "min || n
 || max".

 The numbers 30-49 are key exchange specific and may be redefined by
 other kex methods.

6. Implementation Notes

6.1. Choice of Generator

 One useful technique is to select the generator, and then limit the
 modulus selection sieve to primes with that generator:

 2 when p (mod 24) = 11.
 5 when p (mod 10) = 3 or 7.

Friedl, et al. Standards Track [Page 5]

RFC 4419 SSH DH Group Exchange March 2006

 It is recommended to use 2 as generator, because it improves
 efficiency in multiplication performance. It is usable even when it
 is not a primitive root, as it still covers half of the space of
 possible residues.

6.2. Private Exponents

 To increase the speed of the key exchange, both client and server may
 reduce the size of their private exponents. It should be at least
 twice as long as the key material that is generated from the shared
 secret. For more details, see the paper by van Oorschot and Wiener
 [VAN-OORSCHOT].

7. Security Considerations

 This protocol aims to be simple and uses only well-understood
 primitives. This encourages acceptance by the community and allows
 for ease of implementation, which hopefully leads to a more secure
 system.

 The use of multiple moduli inhibits a determined attacker from
 precalculating moduli exchange values, and discourages dedication of
 resources for analysis of any particular modulus.

 It is important to employ only safe primes as moduli, as they allow
 us to find a generator g so that the order of the generated subgroup
 does not factor into small primes, that is, with p = 2q + 1, the
 order has to be either q or p - 1. If the order is p - 1, then the
 exponents generate all possible public values, evenly distributed
 throughout the range of the modulus p, without cycling through a
 smaller subset. Van Oorshot and Wiener note that using short private
 exponents with a random prime modulus p makes the computation of the
 discrete logarithm easy [VAN-OORSCHOT]. However, they also state
 that this problem does not apply to safe primes.

 The least significant bit of the private exponent can be recovered
 when the modulus is a safe prime [MENEZES]. However, this is not a
 problem if the size of the private exponent is big enough. Related
 to this, Waldvogel and Massey note: When private exponents are chosen
 independently and uniformly at random from {0,...,p-2}, the key
 entropy is less than 2 bits away from the maximum, lg(p-1)
 [WALDVOGEL].

 The security considerations in [RFC4251] also apply to this key
 exchange method.

Friedl, et al. Standards Track [Page 6]

RFC 4419 SSH DH Group Exchange March 2006

8. Acknowledgements

 The document is derived in part from "SSH Transport Layer Protocol"
 [RFC4253] by T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S.
 Lehtinen.

 Markku-Juhani Saarinen pointed out that the least significant bit of
 the private exponent can be recovered efficiently when using safe
 primes and a subgroup with an order divisible by two.

 Bodo Moeller suggested that the server send only one group, reducing
 the complexity of the implementation and the amount of data that
 needs to be exchanged between client and server.

Friedl, et al. Standards Track [Page 7]

RFC 4419 SSH DH Group Exchange March 2006

Appendix A: Generation of Safe Primes

 The "Handbook of Applied Cryptography" [MENEZES] lists the following
 algorithm to generate a k-bit safe prime p. It has been modified so
 that 2 is a generator for the multiplicative group mod p.

 1. Do the following:

 1. Select a random (k-1)-bit prime q, so that q mod 12 = 5.

 2. Compute p := 2q + 1, and test whether p is prime (using,
 e.g., trial division and the Rabin-Miller test).

 2. Repeat until p is prime.

 If an implementation uses the OpenSSL libraries, a group consisting
 of a 1024-bit safe prime and 2 as generator can be created as
 follows:

 DH *d = NULL;
 d = DH_generate_parameters(1024, DH_GENERATOR_2, NULL, NULL);
 BN_print_fp(stdout, d->p);

 The order of the subgroup generated by 2 is q = p - 1.

References

Normative References

 [FIPS-180-2] National Institute of Standards and Technology (NIST),
 "Secure Hash Standard (SHS)", FIPS PUB 180-2,
 August 2002.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4253] Lonvick, C., "The Secure Shell (SSH) Transport Layer
 Protocol", RFC 4253, January 2006.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Informative References

 [MENEZES] Menezes, A., van Oorschot, P., and S. Vanstone,
 "Handbook of Applied Cryptography", CRC Press, p. 537,
 1996.

Friedl, et al. Standards Track [Page 8]

RFC 4419 SSH DH Group Exchange March 2006

 [VAN-OORSCHOT] van Oorschot, P. and M. Wiener, "On Diffie-Hellman key
 agreement with short exponents", Advances in
 Cryptology -EUROCRYPT’96, LNCS 1070,
 Springer-Verlag, pp. 332-343, 1996.

 [WALDVOGEL] Waldvogel, C. and J. Massey, "The probability
 distribution of the Diffie-Hellman key", Proceedings
 of AUSCRYPT 92, LNCS 718, Springer-Verlag, pp.
 492-504, 1993.

Authors’ Addresses

 Markus Friedl
 EMail: markus@openbsd.org

 Niels Provos
 EMail: provos@citi.umich.edu

 William A. Simpson
 EMail: wsimpson@greendragon.com

Friedl, et al. Standards Track [Page 9]

RFC 4419 SSH DH Group Exchange March 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Friedl, et al. Standards Track [Page 10]

