
Network Working Group                                         M. Bellare
Request for Comments: 4344                                      T. Kohno
Category: Standards Track                                   UC San Diego
                                                           C. Namprempre
                                                    Thammasat University
                                                            January 2006

        The Secure Shell (SSH) Transport Layer Encryption Modes

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   Researchers have discovered that the authenticated encryption portion
   of the current SSH Transport Protocol is vulnerable to several
   attacks.

   This document describes new symmetric encryption methods for the
   Secure Shell (SSH) Transport Protocol and gives specific
   recommendations on how frequently SSH implementations should rekey.

Table of Contents

   1. Introduction ....................................................2
   2. Conventions Used in This Document ...............................2
   3. Rekeying ........................................................2
      3.1. First Rekeying Recommendation ..............................3
      3.2. Second Rekeying Recommendation .............................3
   4. Encryption Modes ................................................3
   5. IANA Considerations .............................................6
   6. Security Considerations .........................................6
      6.1. Rekeying Considerations ....................................7
      6.2. Encryption Method Considerations ...........................8
   Normative References ...............................................9
   Informative References ............................................10

Bellare, et al.             Standards Track                     [Page 1]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

1.  Introduction

   The symmetric portion of the SSH Transport Protocol was designed to
   provide both privacy and integrity of encapsulated data.  Researchers
   ([DAI,BKN1,BKN2]) have, however, identified several security problems
   with the symmetric portion of the SSH Transport Protocol, as
   described in [RFC4253].  For example, the encryption mode specified
   in [RFC4253] is vulnerable to a chosen-plaintext privacy attack.
   Additionally, if not rekeyed frequently enough, the SSH Transport
   Protocol may leak information about payload data.  This latter
   property is true regardless of what encryption mode is used.

   In [BKN1,BKN2], Bellare, Kohno, and Namprempre show how to modify the
   symmetric portion of the SSH Transport Protocol so that it provably
   preserves privacy and integrity against chosen-plaintext, chosen-
   ciphertext, and reaction attacks.  This document instantiates the
   recommendations described in [BKN1,BKN2].

2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   The used data types and terminology are specified in the architecture
   document [RFC4251].

   The SSH Transport Protocol is specified in the transport document
   [RFC4253].

3.  Rekeying

   Section 9 of [RFC4253] suggests that SSH implementations rekey after
   every gigabyte of transmitted data.  [RFC4253] does not, however,
   discuss all the problems that could arise if an SSH implementation
   does not rekey frequently enough.  This section serves to strengthen
   the suggestion in [RFC4253] by giving firm upper bounds on the
   tolerable number of encryptions between rekeying operations.  In
   Section 6, we discuss the motivation for these rekeying
   recommendations in more detail.

   This section makes two recommendations.  Informally, the first
   recommendation is intended to protect against possible information
   leakage through the MAC tag, and the second recommendation is
   intended to protect against possible information leakage through the
   block cipher.  Note that, depending on the block length of the

Bellare, et al.             Standards Track                     [Page 2]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

   underlying block cipher and the length of the encrypted packets, the
   first recommendation may supersede the second recommendation, or vice
   versa.

3.1.  First Rekeying Recommendation

   Because of possible information leakage through the MAC tag, SSH
   implementations SHOULD rekey at least once every 2**32 outgoing
   packets.  More explicitly, after a key exchange, an SSH
   implementation SHOULD NOT send more than 2**32 packets before
   rekeying again.

   SSH implementations SHOULD also attempt to rekey before receiving
   more than 2**32 packets since the last rekey operation.  The
   preferred way to do this is to rekey after receiving more than 2**31
   packets since the last rekey operation.

3.2.  Second Rekeying Recommendation

   Because of a birthday property of block ciphers and some modes of
   operation, implementations must be careful not to encrypt too many
   blocks with the same encryption key.

   Let L be the block length (in bits) of an SSH encryption method’s
   block cipher (e.g., 128 for AES).  If L is at least 128, then, after
   rekeying, an SSH implementation SHOULD NOT encrypt more than 2**(L/4)
   blocks before rekeying again.  If L is at least 128, then SSH
   implementations should also attempt to force a rekey before receiving
   more than 2**(L/4) blocks.  If L is less than 128 (which is the case
   for older ciphers such as 3DES, Blowfish, CAST-128, and IDEA), then,
   although it may be too expensive to rekey every 2**(L/4) blocks, it
   is still advisable for SSH implementations to follow the original
   recommendation in [RFC4253]: rekey at least once for every gigabyte
   of transmitted data.

   Note that if L is less than or equal to 128, then the recommendation
   in this subsection supersedes the recommendation in Section 3.1.  If
   an SSH implementation uses a block cipher with a larger block size
   (e.g., Rijndael with 256-bit blocks), then the recommendations in
   Section 3.1 may supersede the recommendations in this subsection
   (depending on the lengths of the packets).

4.  Encryption Modes

   This document describes new encryption methods for use with the SSH
   Transport Protocol.  These encryption methods are in addition to the
   encryption methods described in Section 6.3 of [RFC4253].

Bellare, et al.             Standards Track                     [Page 3]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

   Recall from [RFC4253] that the encryption methods in each direction
   of an SSH connection MUST run independently of each other and that,
   when encryption is in effect, the packet length, padding length,
   payload, and padding fields of each packet MUST be encrypted with the
   chosen method.  Further recall that the total length of the
   concatenation of the packet length, padding length, payload, and
   padding MUST be a multiple of the cipher’s block size when the
   cipher’s block size is greater than or equal to 8 bytes (which is the
   case for all of the following methods).

   This document describes the following new methods:

     aes128-ctr       RECOMMENDED       AES (Rijndael) in SDCTR mode,
                                        with 128-bit key
     aes192-ctr       RECOMMENDED       AES with 192-bit key
     aes256-ctr       RECOMMENDED       AES with 256-bit key
     3des-ctr         RECOMMENDED       Three-key 3DES in SDCTR mode
     blowfish-ctr     OPTIONAL          Blowfish in SDCTR mode
     twofish128-ctr   OPTIONAL          Twofish in SDCTR mode,
                                        with 128-bit key
     twofish192-ctr   OPTIONAL          Twofish with 192-bit key
     twofish256-ctr   OPTIONAL          Twofish with 256-bit key
     serpent128-ctr   OPTIONAL          Serpent in SDCTR mode, with
                                        128-bit key
     serpent192-ctr   OPTIONAL          Serpent with 192-bit key
     serpent256-ctr   OPTIONAL          Serpent with 256-bit key
     idea-ctr         OPTIONAL          IDEA in SDCTR mode
     cast128-ctr      OPTIONAL          CAST-128 in SDCTR mode,
                                        with 128-bit key

   The label <cipher>-ctr indicates that the block cipher <cipher> is to
   be used in "stateful-decryption counter" (SDCTR) mode.  Let L be the
   block length of <cipher> in bits.  In stateful-decryption counter
   mode, both the sender and the receiver maintain an internal L-bit
   counter X.  The initial value of X should be the initial IV (as
   computed in Section 7.2 of [RFC4253]) interpreted as an L-bit
   unsigned integer in network-byte-order.  If X=(2**L)-1, then
   "increment X" has the traditional semantics of "set X to 0."  We use
   the notation <X> to mean "convert X to an L-bit string in network-
   byte-order."  Naturally, implementations may differ in how the
   internal value X is stored.  For example, implementations may store X
   as multiple unsigned 32-bit counters.

   To encrypt a packet P=P1||P2||...||Pn (where P1, P2, ..., Pn are each
   blocks of length L), the encryptor first encrypts <X> with <cipher>
   to obtain a block B1.  The block B1 is then XORed with P1 to generate
   the ciphertext block C1.  The counter X is then incremented, and the
   process is repeated for each subsequent block in order to generate

Bellare, et al.             Standards Track                     [Page 4]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

   the entire ciphertext C=C1||C2||...||Cn corresponding to the packet
   P.  Note that the counter X is not included in the ciphertext.  Also
   note that the keystream can be pre-computed and that encryption is
   parallelizable.

   To decrypt a ciphertext C=C1||C2||...||Cn, the decryptor (who also
   maintains its own copy of X) first encrypts its copy of <X> with
   <cipher> to generate a block B1 and then XORs B1 to C1 to get P1.
   The decryptor then increments its copy of the counter X and repeats
   the above process for each block to obtain the plaintext packet
   P=P1||P2||...||Pn.  As before, the keystream can be pre-computed, and
   decryption is parallelizable.

   The "aes128-ctr" method uses AES (the Advanced Encryption Standard,
   formerly Rijndael) with 128-bit keys [AES].  The block size is 16
   bytes.

      At this time, it appears likely that a future specification will
      promote aes128-ctr to be REQUIRED; implementation of this
      algorithm is very strongly encouraged.

   The "aes192-ctr" method uses AES with 192-bit keys.

   The "aes256-ctr" method uses AES with 256-bit keys.

   The "3des-ctr" method uses three-key triple-DES (encrypt-decrypt-
   encrypt), where the first 8 bytes of the key are used for the first
   encryption, the next 8 bytes for the decryption, and the following 8
   bytes for the final encryption.  This requires 24 bytes of key data
   (of which 168 bits are actually used).  The block size is 8 bytes.
   This algorithm is defined in [DES].

   The "blowfish-ctr" method uses Blowfish with 256-bit keys [SCHNEIER].
   The block size is 8 bytes.  (Note that "blowfish-cbc" from [RFC4253]
   uses 128-bit keys.)

   The "twofish128-ctr" method uses Twofish with 128-bit keys [TWOFISH].
   The block size is 16 bytes.

   The "twofish192-ctr" method uses Twofish with 192-bit keys.

   The "twofish256-ctr" method uses Twofish with 256-bit keys.

   The "serpent128-ctr" method uses the Serpent block cipher [SERPENT]
   with 128-bit keys.  The block size is 16 bytes.

   The "serpent192-ctr" method uses Serpent with 192-bit keys.

Bellare, et al.             Standards Track                     [Page 5]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

   The "serpent256-ctr" method uses Serpent with 256-bit keys.

   The "idea-ctr" method uses the IDEA cipher [SCHNEIER].  The block
   size is 8 bytes.

   The "cast128-ctr" method uses the CAST-128 cipher with 128-bit keys
   [RFC2144].  The block size is 8 bytes.

5.  IANA Considerations

   The thirteen encryption algorithm names defined in Section 4 have
   been added to the Secure Shell Encryption Algorithm Name registry
   established by Section 4.11.1 of [RFC4250].

6.  Security Considerations

   This document describes additional encryption methods and
   recommendations for the SSH Transport Protocol [RFC4253].
   [BKN1,BKN2] prove that if an SSH application incorporates the methods
   and recommendations described in this document, then the symmetric
   cryptographic portion of that application will resist a large class
   of privacy and integrity attacks.

   This section is designed to help implementors understand the
   security-related motivations for, as well as possible consequences of
   deviating from, the methods and recommendations described in this
   document.  Additional motivation and discussion, as well as proofs of
   security, appear in the research papers [BKN1,BKN2].

   Please note that the notion of "prove" in the context of [BKN1,BKN2]
   is that of practice-oriented reductionist security: if an attacker is
   able to break the symmetric portion of the SSH Transport Protocol
   using a certain type of attack (e.g., a chosen-ciphertext attack),
   then the attacker will also be able to break one of the transport
   protocol’s underlying components (e.g., the underlying block cipher
   or MAC).  If we make the reasonable assumption that the underlying
   components (such as AES and HMAC-SHA1) are secure, then the attacker
   against the symmetric portion of the SSH protocol cannot be very
   successful (since otherwise there would be a contradiction).  Please
   see [BKN1,BKN2] for details.  In particular, attacks are not
   impossible, just extremely improbable (unless the building blocks,
   like AES, are insecure).

   Note also that cryptography often plays only a small (but critical)
   role in an application’s overall security.  In the case of the SSH
   Transport Protocol, even though an application might implement the
   symmetric portion of the SSH protocol exactly as described in this
   document, the application may still be vulnerable to non-protocol-

Bellare, et al.             Standards Track                     [Page 6]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

   based attacks (as an egregious example, an application might save
   cryptographic keys in cleartext to an unprotected file).
   Consequently, even though the methods described herein come with
   proofs of security, developers must still execute caution when
   developing applications that implement these methods.

6.1.  Rekeying Considerations

   Section 3 of this document makes two rekeying recommendations: (1)
   rekey at least once every 2**32 packets, and (2) rekey after a
   certain number of encrypted blocks (e.g., 2**(L/4) blocks if the
   block cipher’s block length L is at least 128 bits).  The motivations
   for recommendations (1) and (2) are different, and we consider each
   recommendation in turn.  Briefly, (1) is designed to protect against
   information leakage through the SSH protocol’s underlying MAC, and
   (2) is designed to protect against information leakage through the
   SSH protocol’s underlying encryption scheme.  Please note that,
   depending on the encryption method’s block length L and the number of
   blocks encrypted per packet, recommendation (1) may supersede
   recommendation (2) or vice versa.

   Recommendation (1) states that SSH implementations should rekey at
   least once every 2**32 packets.  If more than 2**32 packets are
   encrypted and MACed by the SSH Transport Protocol between rekeyings,
   then the SSH Transport Protocol may become vulnerable to replay and
   re-ordering attacks.  This means that an adversary may be able to
   convince the receiver to accept the same message more than once or to
   accept messages out of order.  Additionally, the underlying MAC may
   begin to leak information about the protocol’s payload data.  In more
   detail, an adversary looks for a collision between the MACs
   associated to two packets that were MACed with the same 32-bit
   sequence number (see Section 4.4 of [RFC4253]).  If a collision is
   found, then the payload data associated with those two ciphertexts is
   probably identical.  Note that this problem occurs regardless of how
   secure the underlying encryption method is.  Also note that although
   compressing payload data before encrypting and MACing and the use of
   random padding may reduce the risk of information leakage through the
   underlying MAC, compression and the use of random padding will not
   prevent information leakage.  Implementors who decide not to rekey at
   least once every 2**32 packets should understand these issues.  These
   issues are discussed further in [BKN1,BKN2].

   One alternative to recommendation (1) would be to make the SSH
   Transport Protocol’s sequence number more than 32 bits long.  This
   document does not suggest increasing the length of the sequence
   number because doing so could hinder interoperability with older
   versions of the SSH protocol.  Another alternative to recommendation
   (1) would be to switch from basic HMAC to a another MAC, such as a

Bellare, et al.             Standards Track                     [Page 7]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

   MAC that has its own internal counter.  Because of the 32-bit counter
   already present in the protocol, such a counter would only need to be
   incremented once every 2**32 packets.

   Recommendation (2) states that SSH implementations should rekey
   before encrypting more than 2**(L/4) blocks with the same key
   (assuming L is at least 128).  This recommendation is designed to
   minimize the risk of birthday attacks against the encryption method’s
   underlying block cipher.  For example, there is a theoretical privacy
   attack against stateful-decryption counter mode if an adversary is
   allowed to encrypt approximately 2**(L/2) messages with the same key.
   It is because of these birthday attacks that implementors are highly
   encouraged to use secure block ciphers with large block lengths.
   Additionally, recommendation (2) is designed to protect an encryptor
   from encrypting more than 2**L blocks with the same key.  The
   motivation here is that, if an encryptor were to use SDCTR mode to
   encrypt more than 2**L blocks with the same key, then the encryptor
   would reuse keystream, and the reuse of keystream can lead to serious
   privacy attacks [SCHNEIER].

6.2.  Encryption Method Considerations

   Researchers have shown that the original CBC-based encryption methods
   in [RFC4253] are vulnerable to chosen-plaintext privacy attacks
   [DAI,BKN1,BKN2].  The new stateful-decryption counter mode encryption
   methods described in Section 4 of this document were designed to be
   secure replacements to the original encryption methods described in
   [RFC4253].

   Many people shy away from counter mode-based encryption schemes
   because, when used incorrectly (such as when the keystream is allowed
   to repeat), counter mode can be very insecure.  Fortunately, the
   common concerns with counter mode do not apply to SSH because of the
   rekeying recommendations and because of the additional protection
   provided by the transport protocol’s MAC.  This discussion is
   formalized with proofs of security in [BKN1,BKN2].

   As an additional note, when one of the stateful-decryption counter
   mode encryption methods (Section 4) is used, then the padding
   included in an SSH packet (Section 4 of [RFC4253]) need not be (but
   can still be) random.  This eliminates the need to generate
   cryptographically secure pseudorandom bytes for each packet.

   One property of counter mode encryption is that it does not require
   that messages be padded to a multiple of the block cipher’s block
   length.  Although not padding messages can reduce the protocol’s
   network consumption, this document requires that padding be a
   multiple of the block cipher’s block length in order to (1) not alter

Bellare, et al.             Standards Track                     [Page 8]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

   the packet description in [RFC4253] and (2) not leak precise
   information about the length of the packet’s payload data.  (Although
   there may be some network savings from padding to only 8-bytes even
   if the block cipher uses 16-byte blocks, because of (1) we do not
   make that recommendation here.)

   In addition to stateful-decryption counter mode, [BKN1,BKN2] describe
   other provably secure encryption methods for use with the SSH
   Transport Protocol.  The stateful-decryption counter mode methods in
   Section 4 are, however, the preferred alternatives to the insecure
   methods in [RFC4253] because stateful-decryption counter mode is the
   most efficient (in terms of both network consumption and the number
   of required cryptographic operations per packet).

Normative References

   [AES]       National Institute of Standards and Technology, "Advanced
               Encryption Standard (AES)", Federal Information
               Processing Standards Publication 197, November 2001.

   [DES]       National Institute of Standards and Technology, "Data
               Encryption Standard (DES)", Federal Information
               Processing Standards Publication 46-3, October 1999.

   [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2144]   Adams, C., "The CAST-128 Encryption Algorithm", RFC 2144,
               May 1997.

   [RFC4250]   Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
               Protocol Assigned Numbers", RFC 4250, January 2006.

   [RFC4251]   Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
               Protocol Architecture", RFC 4251, January 2006.

   [RFC4253]   Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
               Transport Layer Protocol", RFC 4253, January 2006.

   [SCHNEIER]  Schneier, B., "Applied Cryptography Second Edition:
               Protocols algorithms and source in code in C", Wiley,
               1996.

   [SERPENT]   Anderson, R., Biham, E., and Knudsen, L., "Serpent: A
               proposal for the Advanced Encryption Standard", NIST AES
               Proposal, 1998.

Bellare, et al.             Standards Track                     [Page 9]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

   [TWOFISH]   Schneier, B., et al., "The Twofish Encryptions Algorithm:
               A 128-bit block cipher, 1st Edition", Wiley, 1999.

Informative References

   [BKN1]      Bellare, M., Kohno, T., and Namprempre, C.,
               "Authenticated Encryption in SSH: Provably Fixing the SSH
               Binary Packet Protocol", Ninth ACM Conference on Computer
               and Communications Security, 2002.

   [BKN2]      Bellare, M., Kohno, T., and Namprempre, C., "Breaking and
               Provably Repairing the SSH Authenticated Encryption
               Scheme: A Case Study of the Encode-then-Encrypt-and-MAC
               Paradigm", ACM Transactions on Information and System
               Security, 7(2), May 2004.

   [DAI]       Dai, W., "An Attack Against SSH2 Protocol", Email to the
               ietf-ssh@netbsd.org email list, 2002.

Bellare, et al.             Standards Track                    [Page 10]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

Authors’ Addresses

   Mihir Bellare
   Department of Computer Science and Engineering
   University of California at San Diego
   9500 Gilman Drive, MC 0404
   La Jolla, CA 92093-0404

   Phone: +1 858-534-8833
   EMail: mihir@cs.ucsd.edu

   Tadayoshi Kohno
   Department of Computer Science and Engineering
   University of California at San Diego
   9500 Gilman Drive, MC 0404
   La Jolla, CA 92093-0404

   Phone: +1 858-534-8833
   EMail: tkohno@cs.ucsd.edu

   Chanathip Namprempre
   Thammasat University
   Faculty of Engineering
   Electrical Engineering Department
   Rangsit Campus, Klong Luang
   Pathumthani, Thailand 12121

   EMail: meaw@alum.mit.edu

Bellare, et al.             Standards Track                    [Page 11]



RFC 4344          SSH Transport Layer Encryption Modes      January 2006

Full Copyright Statement

   Copyright (C) The Internet Society (2006).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).

Bellare, et al.             Standards Track                    [Page 12]


