
Network Working Group J. Rosenberg
Request for Comments: 4235 Cisco Systems
Category: Standards Track H. Schulzrinne
 Columbia University
 R. Mahy, Ed.
 SIP Edge LLC
 November 2005

 An INVITE-Initiated Dialog Event Package for the
 Session Initiation Protocol (SIP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 01) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document defines a dialog event package for the SIP Events
 architecture, along with a data format used in notifications for this
 package. The dialog package allows users to subscribe to another
 user and to receive notification of the changes in state of INVITE-
 initiated dialog usages in which the subscribed-to user is involved.

Table of Contents

 1. Introduction ..3
 2. Terminology ...4
 3. Dialog Event Package ..4
 3.1. Event Package Name ...4
 3.2. Event Package Parameters4
 3.3. SUBSCRIBE Bodies ...5
 3.4. Subscription Duration6
 3.5. NOTIFY Bodies ..6
 3.6. Notifier Processing of SUBSCRIBE Requests7
 3.7. Notifier Generation of NOTIFY Requests8
 3.7.1. The Dialog State Machine8
 3.7.2. Applying the State Machine11

Rosenberg, et al. Standards Track [Page 1]

RFC 4235 Dialog Package November 2005

 3.8. Subscriber Processing of NOTIFY Requests12
 3.9. Handling of Forked Requests12
 3.10. Rate of Notifications13
 3.11. State Agents ...13
 4. Dialog Information Format13
 4.1. Structure of Dialog Information13
 4.1.1. Dialog Element14
 4.1.2. State Element15
 4.1.3. Duration Element15
 4.1.4. Replaces Element15
 4.1.5. Referred-By Element16
 4.1.6. Local and Remote Elements16
 4.2. Sample Notification Body17
 4.3. Constructing Coherent State18
 4.4. Schema ..19
 5. Definition of New Media Feature Parameters22
 5.1. The "sip.byeless" Parameter22
 5.2. The "sip.rendering" parameter23
 6. Examples ...24
 6.1. Basic Example ...24
 6.2. Emulating a Shared-Line Phone System26
 6.3. Minimal Dialog Information with Privacy31
 7. Security Considerations ..32
 8. IANA Considerations ..32
 8.1. application/dialog-info+xml MIME Registration33
 8.2. URN Sub-Namespace Registration for
 urn:ietf:params:xml:ns:dialog-info34
 8.3. Schema Registration34
 8.4. Media Feature Parameter Registration34
 8.4.1. sip.byeless ..35
 8.4.2. sip.rendering35
 9. Acknowledgements ...36
 10. References ..36
 10.1. Normative References36
 10.2. Informative References37

Rosenberg, et al. Standards Track [Page 2]

RFC 4235 Dialog Package November 2005

1. Introduction

 The SIP Events framework [1] defines general mechanisms for
 subscription to, and notification of, events within SIP networks. It
 introduces the notion of a package, which is a specific
 "instantiation" of the events mechanism for a well-defined set of
 events. Packages have been defined for user presence [16], watcher
 information [17], and message waiting indicators [18], amongst
 others. This document defines an event package for INVITE-initiated
 dialog usages. Dialogs refer to the SIP relationship established
 between two SIP peers [2]. Dialogs can be created by many methods,
 although RFC 3261 defines only one: the INVITE method. RFC 3265 [1]
 defines the SUBSCRIBE and NOTIFY methods, which also create new
 dialog usages. However, using this package to model state for non-
 session dialog usages is out of the scope of this specification.

 A variety of applications are enabled through knowledge of INVITE
 dialog usage state. Some examples include:

 Automatic Callback: In this basic Public Switched Telephone
 Network (PSTN) application, user A calls user B but User B is
 busy. User A would like to get a callback when user B hangs
 up. When B hangs up, user A’s phone rings. When A picks up,
 they hear ringing, while they are being connected to B. To
 implement this with SIP, a mechanism is required for A to
 receive a notification when the dialogs at B are complete.

 Presence-Enabled Conferencing: In this application, user A wishes
 to set up a conference call with users B and C. Rather than
 being scheduled, the call is created automatically when A, B
 and C are all available. To do this, the server providing the
 application would like to know whether A, B, and C are
 "online", not idle, and not in a phone call. Determining
 whether or not A, B, and C are in calls can be done in two
 ways. In the first, the server acts as a call-stateful proxy
 for users A, B, and C, and therefore knows their call state.
 This won’t always be possible, however, and it introduces
 scalability, reliability, and operational complexities. In the
 second way, the server subscribes to the dialog state of those
 users and receives notifications as this state changes. This
 enables the application to be provided in a distributed way;
 the server need not reside in the same domain as the users.

 IM Conference Alerts: In this application, a user can receive an
 Instant Message (IM) on their phone whenever someone joins a
 conference that the phone is involved in. The IM alerts are
 generated by an application separate from the conference
 server.

Rosenberg, et al. Standards Track [Page 3]

RFC 4235 Dialog Package November 2005

 In general, the dialog package allows for construction of distributed
 applications, where the application requires information on dialog
 state but is not co-resident with the end user on which that state
 resides.

 This document also defines two new callee capability [10] feature
 parameters:

 o "sip.byeless", which indicates that a SIP user agent (UA) is not
 capable of terminating a session itself (for example, in some
 announcement or recording services, or in some call centers) in
 which the UA is no longer interested in participating; and

 o "sip.rendering", which positively describes whether the user
 agent is rendering any of the media it is receiving. These
 feature parameters are useful in many of the same applications
 that motivated the dialog package, such as conferencing,
 presence, and the shared-line example described in Section 6.2.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [9] and
 indicate requirement levels for compliant implementations.

3. Dialog Event Package

 This section provides the details for defining a SIP Events package,
 as specified in [1].

3.1. Event Package Name

 The name of this event package is "dialog". This package name is
 carried in the Event and Allow-Events header fields, as defined in
 [1].

3.2. Event Package Parameters

 This package defines four Event Package parameters: call-id, to-tag,
 from-tag, and include-session-description. If a subscription to a
 specific dialog is requested, the first three of these parameters
 MUST be present, to identify the dialog that is being subscribed to.
 The to-tag is matched against the local tag, the from-tag is matched
 against the remote tag, and the call-id is matched against the
 Call-ID. The include-session-description parameter indicates whether
 the subscriber would like to receive the session descriptions
 associated with the subscribed dialog usage or usages.

Rosenberg, et al. Standards Track [Page 4]

RFC 4235 Dialog Package November 2005

 It is also possible to subscribe to the set of dialogs created as a
 result of a single INVITE sent by a UAC (user agent client). In that
 case, the call-id and to-tag MUST be present. The to-tag is matched
 against the local tag and the call-id is matched against the Call-ID.

 The ABNF for these parameters is shown below. It refers to many
 constructions from the ABNF of RFC3261, such as EQUAL, DQUOTE, and
 token.

 call-id = "call-id" EQUAL (token / DQUOTE callid DQUOTE)
 ;; NOTE: any DQUOTEs inside callid MUST be escaped!
 from-tag = "from-tag" EQUAL token
 to-tag = "to-tag" EQUAL token
 with-sessd = "include-session-description"

 If any call-ids contain embedded double-quotes, those double-quotes
 MUST be escaped using the backslash-quoting mechanism. Note that the
 call-id parameter may need to be expressed as a quoted string. This
 is because the ABNF for the callid production and the word
 production, which is used by callid (both from RFC 3261 [1]), allow
 some characters (such as "@", "[", and ":") that are not allowed
 within a token.

3.3. SUBSCRIBE Bodies

 A SUBSCRIBE request for a dialog package MAY contain a body. This
 body defines a filter to be applied to the subscription. Filter
 documents are not specified in this document, and at the time of
 writing, they are expected to be the subject of future
 standardization activity.

 A SUBSCRIBE request for a dialog package MAY be sent without a body.
 This implies the default subscription filtering policy. The default
 policy is:

 o If the Event header field contained dialog identifiers, a
 notification is generated every time there is a change in the
 state of any matching dialogs for the user identified in the
 request URI of the SUBSCRIBE.

 o If there were no dialog identifiers in the Event header field, a
 notification is generated every time there is any change in the
 state of any dialogs for the user identified in the request URI of
 the SUBSCRIBE with the following exceptions. If the target
 (Contact) URI of a subscriber is equivalent to the remote target
 URI of a specific dialog, then the dialog element for that dialog
 is suppressed for that subscriber. (The subscriber is already a
 party in the dialog directly, so these notifications are

Rosenberg, et al. Standards Track [Page 5]

RFC 4235 Dialog Package November 2005

 superfluous.) If no dialogs remain after suppressing dialogs, the
 entire notification to that subscriber is suppressed and the
 version number in the dialog-info element is not incremented for
 that subscriber. Implicit filtering for one subscriber does not
 affect notifications to other subscribers.

 o Notifications do not normally contain full state; rather, they
 only indicate the state of the dialog(s) whose state has changed.
 The exceptions are a NOTIFY sent in response to a SUBSCRIBE, and a
 NOTIFY that contains no dialog elements. These NOTIFYs contain
 the complete view of dialog state.

 o The notifications contain the identities of the participants in
 the dialog, the target URIs, and the dialog identifiers. Session
 descriptions are not included unless explicitly requested and
 explicitly authorized.

3.4. Subscription Duration

 Dialog state changes fairly quickly. Once established, a typical
 phone call lasts a few minutes (this is different for other session
 types, of course). However, the interval between new calls is
 typically long. Clients SHOULD specify an explicit duration.

 There are two distinct use cases for dialog state. The first is when
 a subscriber is interested in the state of a specific dialog or
 dialogs (and they are authorized to find out just the state of those
 dialogs). In that case, when the dialogs terminate, so too does the
 subscription. In these cases, the value of the subscription duration
 is largely irrelevant; it SHOULD be longer than the typical duration
 of a dialog. We recommend a default duration of two hours, which is
 likely to cover most dialogs.

 In another case, a subscriber is interested in the state of all
 dialogs for a specific user. In these cases, a shorter interval
 makes more sense. The default is one hour for these subscriptions.

3.5. NOTIFY Bodies

 As described in RFC 3265 [1], the NOTIFY message will contain bodies
 that describe the state of the subscribed resource. This body is in
 a format listed in the Accept header field of the SUBSCRIBE, or in a
 package-specific default format if the Accept header field was
 omitted from the SUBSCRIBE.

 In this event package, the body of the notification contains a dialog
 information document. This document describes the state of one or
 more dialogs associated with the subscribed resource. All

Rosenberg, et al. Standards Track [Page 6]

RFC 4235 Dialog Package November 2005

 subscribers and notifiers MUST support the "application/
 dialog-info+xml" data format described in Section 4. The subscribe
 request MAY contain an Accept header field. If no such header field
 is present, it has a default value of "application/dialog-info+xml".
 If the header field is present, it MUST include "application/
 dialog-info+xml", and it MAY include any other types capable of
 representing dialog state.

 Of course, the notifications generated by the server MUST be in one
 of the formats specified in the Accept header field in the SUBSCRIBE
 request.

3.6. Notifier Processing of SUBSCRIBE Requests

 The dialog information for a user contains sensitive information.
 Therefore, all subscriptions SHOULD be authenticated and then
 authorized before approval. All implementors of this package MUST
 support the digest authentication mechanism as a baseline. The
 authorization policy is at the discretion of the administrator, as
 always. However, a few recommendations can be made.

 It is RECOMMENDED that, if the policy of user B is that user A is
 allowed to call them, dialog subscriptions from user A be allowed.
 However, the information provided in the notifications does not
 contain any dialog identification information, merely an indication
 of whether the user is in at least one call. Specifically, they
 should not be able to find out any more information than if they sent
 an INVITE. (This concept of a "virtual" dialog is discussed more in
 Section 3.7.2, and an example of such a notification body is shown
 below).

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="0" state="full"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8">
 <state>confirmed</state>
 </dialog>
 </dialog-info>

 A user agent that registers with the address-of-record X SHOULD
 authorize subscriptions that come from any entity that can
 authenticate itself as X. Complete information on the dialog state
 SHOULD be sent in this case. This authorization behavior allows a
 group of devices representing a single user to become aware of each
 other’s state. This is useful for applications such as
 single-line-extension, also known as shared lines.

Rosenberg, et al. Standards Track [Page 7]

RFC 4235 Dialog Package November 2005

 Note that many implementations of "shared-lines" have a feature
 that allows details of calls on a shared address-of-record to be
 made private. This is a completely reasonable authorization
 policy that could result in notifications that contain only the id
 attribute of the dialog element and the state element when
 shared-line privacy is requested, and notifications with more
 complete information when shared-line privacy is not requested.

3.7. Notifier Generation of NOTIFY Requests

 Notifications are generated for the dialog package when an INVITE
 request is sent, when a new dialog comes into existence at a UA, or
 when the state or characteristics of an existing dialog changes.
 Therefore, a model of dialog state is needed in order to determine
 precisely when to send notifications, and what their content should
 be. The SIP specification has a reasonably well defined lifecycle
 for dialogs. However, it is not explicitly modelled. This
 specification provides an explicit model of dialog state through a
 finite state machine.

 It is RECOMMENDED that NOTIFY requests only contain information on
 the dialogs whose state or participation information has changed.
 However, if a notifier receives a SUBSCRIBE request, the triggered
 NOTIFY SHOULD contain the state of all dialogs that the subscriber is
 authorized to see.

3.7.1. The Dialog State Machine

 Modelling of dialog state is complicated by two factors. The first
 is forking, which can cause a single INVITE to generate many dialogs
 at a UAC. The second is the differing views of state at the UAC
 (user agent client) and UAS (usage agent server). We have chosen to
 handle the first issue by extending the dialog finite state machine
 (FSM) to include the states between transmission of the INVITE and
 the creation of actual dialogs through receipt of 1xx and 2xx
 responses. As a result, this specification supports the notion of
 dialog state for dialogs before they are fully instantiated.

 We have also chosen to use a single FSM for both UAC and UAS.

Rosenberg, et al. Standards Track [Page 8]

RFC 4235 Dialog Package November 2005

 +----------+ +----------+
 | | 1xx-notag | |
 | |----------->| |
 | Trying | |Proceeding|-----+
 | |---+ +-----| | |
 | | | | | | |
 +----------+ | | +----------+ |
 | | | | | |
 | | | | | |
 +<--C-----C--+ |1xx-tag |
 | | | | |
 cancelled| | | V |
 rejected| | |1xx-tag +----------+ |
 | | +------->| | |2xx
 | | | | |
 +<--C--------------| Early |-----C---+ 1xx-tag
 | | replaced | | | | w/new tag
 | | | |<----C---+ (new FSM
 | | +----------+ | instance
 | | 2xx | | created)
 | +----------------+ | | |
 | | |2xx |
 | | | |
 V V V |
 +----------+ +----------+ |
 | | | | |
 | | | | |
 |Terminated|<-----------| Confirmed|<----+
 | | error | |
 | | timeout | |
 +----------+ replaced +----------+
 local-bye | ^
 remote-bye | |
 | |
 +------+
 2xx w. new tag
 (new FSM instance
 created)

 Figure 3

 The FSM for dialog state is shown in Figure 3. The FSM is best
 understood by considering the UAC and UAS cases separately.

Rosenberg, et al. Standards Track [Page 9]

RFC 4235 Dialog Package November 2005

 The FSM is created in the Trying state when the UAC sends an INVITE
 request. Upon receipt of a 1xx without a tag, the FSM transitions to
 the Proceeding state. Note that there is no actual dialog yet, as
 defined by the SIP specification. However, there is a "half-dialog",
 in the sense that two of the three components of the dialog ID (the
 call identifier and local tag) are known. If a 1xx with a tag is
 received, the FSM transitions to the Early state. The full dialog
 identifier is now defined. Had a 2xx been received, the FSM would
 have transitioned to the Confirmed state.

 If, after transitioning to the Early or Confirmed states, the UAC
 receives another 1xx or 2xx respectively with a different tag,
 another instance of the FSM is created, initialized into the Early or
 Confirmed state, respectively. The benefit of this approach is that
 there will be a single FSM representing the entire state of the
 invitation and resulting dialog when dealing in the common case of no
 forking.

 If the UAC sends a CANCEL and then subsequently receives a 487 to its
 INVITE transaction, all FSMs spawned from that INVITE transition to
 the Terminated state with the event "cancelled". If the UAC receives
 a new invitation (with a Replaces [13] header) that replaces the
 current Early or Confirmed dialog, all INVITE transactions spawned
 from the replaced invitation transition to the Terminated state with
 the event "replaced". If the INVITE transaction terminates with a
 non-2xx response for any other reason, all FSMs spawned from that
 INVITE transition to the Terminated state with the event "rejected".

 Once in the Confirmed state, the call is active. It can transition
 to the Terminated state if the UAC sends a BYE or receives a BYE
 (corresponding to the "local-bye" and "remote-bye" events as
 appropriate), if a mid-dialog request generates a 481 or 408 response
 (corresponding to the "error" event), or a mid-dialog request
 generates no response (corresponding to the "timeout" event).

 From the perspective of the UAS, when an INVITE is received, the FSM
 is created in the Trying state. If it sends a 1xx without a tag, the
 FSM transitions to the Proceeding state. If a 1xx is sent with a
 tag, the FSM transitions to the Early state, and if a 2xx is sent, it
 transitions to the Confirmed state. If the UAS receives a CANCEL
 request and then generates a 487 response to the INVITE (which can
 occur in the Proceeding and Early states), the FSM transitions to the
 Terminated state with the event "cancelled". If the UAS generates
 any other non-2xx final response to the INVITE request, the FSM
 transitions to the Terminated state with the event "rejected". If
 the UAS receives a new invitation (with a Replaces [13] header field)
 that replaces the current Confirmed dialog, the replaced invitation
 transitions to the Terminated state with the event "replaced". Once

Rosenberg, et al. Standards Track [Page 10]

RFC 4235 Dialog Package November 2005

 in the Confirmed state, the other transitions to the Terminated state
 occur for the same reasons they do in the case of UAC.

 There should never be a transition from the Trying state to the
 Terminated state with the event "cancelled", since the SIP
 specification prohibits transmission of CANCEL until a provisional
 response is received. However, this transition is defined in the
 FSM just to unify the transitions from Trying, Proceeding, and
 Early states to the Terminated state.

3.7.2. Applying the State Machine

 The notifier MAY generate a NOTIFY request on any event transition of
 the FSM. Whether it does or not is policy dependent. However, some
 general guidelines are provided.

 When the subscriber is unauthenticated, or it is authenticated but
 represents a third party with no specific authorization policies, it
 is RECOMMENDED that subscriptions to an individual dialog or to a
 specific set of dialogs be forbidden. Only subscriptions to all
 dialogs (i.e., there are no dialog identifiers in the Event header
 field) are permitted. In that case, actual dialog states across all
 dialogs will not be reported. Rather, a single "virtual" dialog FSM
 will be used, and event transitions on that FSM will be reported.

 If there is any dialog at the UA whose state is Confirmed, the
 virtual FSM is in the Confirmed state. If there are no dialogs at
 the UA in the Confirmed state but there is at least one in the Early
 state, the virtual FSM is in the Early or Confirmed state. If there
 are no dialogs in the Confirmed or Early states but there is at least
 one in the Proceeding state, the virtual FSM is in the Proceeding,
 Early, or Confirmed state. If there are no dialogs in the Confirmed,
 Early, or Proceeding states but there is at least one in the Trying
 state, the virtual FSM is in the Trying, Proceeding, Early or
 Confirmed state. The choice of state to use depends on whether the
 UA wishes to let unknown users know that their phone is ringing, as
 opposed to being in an active call.

 It is RECOMMENDED that, in the absence of any preference, Confirmed
 is used in all cases as shown in the example in Section 3.6.
 Furthermore, it is RECOMMENDED that the notifications of changes in
 the virtual FSM machine not convey any information except the state
 of the FSM and its event transitions - no dialog identifiers (which
 are ill-defined in this model in any case). The use of this virtual
 FSM allows minimal information to be conveyed. A subscriber cannot
 know how many calls are in progress, or with whom, just that there
 exists a call. This is the same information they would receive if

Rosenberg, et al. Standards Track [Page 11]

RFC 4235 Dialog Package November 2005

 they simply sent an INVITE to the user instead; a 486 (Busy Here)
 response would indicate that they are on a call.

 When the subscriber is authenticated and has authenticated itself
 with the same address-of-record that the UA itself uses, if no
 explicit authorization policy is defined, it is RECOMMENDED that all
 state transitions on dialogs that have been subscribed to be
 reported, along with complete dialog IDs. This means either all of
 the dialogs, if no dialog identifiers were present in the Event
 header field, or the specific set of dialogs identified by the Event
 header field parameters.

 The notifier SHOULD generate a NOTIFY request on any change in the
 characteristics associated with the dialog. Since these include
 Contact URIs, Contact parameters, and session descriptions, receipt
 of re-INVITEs and UPDATE requests [3] that modify this information
 MAY trigger notifications.

3.8. Subscriber Processing of NOTIFY Requests

 The SIP Events framework expects packages to specify how a subscriber
 processes NOTIFY requests in package-specific ways. In particular, a
 package should specify how it uses the NOTIFY requests to construct a
 coherent view of the state of the subscribed resource.

 Typically, the NOTIFY for the dialog package will contain information
 about only those dialogs whose state has changed. To construct a
 coherent view of the total state of all dialogs, a subscriber to the
 dialog package will need to combine NOTIFYs received over time.

 Notifications within this package can convey partial information;
 that is, they can indicate information about a subset of the state
 associated with the subscription. This means that an explicit
 algorithm needs to be defined in order to construct coherent and
 consistent state. The details of this mechanism are specific to the
 particular document type. See Section 4.3 for information on
 constructing coherent information from an application/dialog-info+xml
 document.

3.9. Handling of Forked Requests

 Since dialog state is distributed across the UA for a particular
 user, it is reasonable and useful for a SUBSCRIBE request for dialog
 state to fork and to reach multiple UAs.

 As a result, a forked SUBSCRIBE request for dialog state can install
 multiple subscriptions. Subscribers to this package MUST be prepared

Rosenberg, et al. Standards Track [Page 12]

RFC 4235 Dialog Package November 2005

 to install subscription state for each NOTIFY generated as a result
 of a single SUBSCRIBE.

3.10. Rate of Notifications

 For reasons of congestion control, it is important that the rate of
 notifications not be excessive. It is RECOMMENDED that the server
 not generate notifications for a single subscriber faster than once
 every 1 second.

3.11. State Agents

 Dialog state is ideally maintained in the user agents in which the
 dialog resides. Therefore, the elements that maintain the dialog are
 the ones best suited to handle subscriptions to it. However, in some
 cases, a network agent may also know the state of the dialogs held by
 a user. Such state agents MAY be used with this package.

4. Dialog Information Format

 Dialog information is an XML document [4] that MUST be well-formed
 and SHOULD be valid. Dialog information documents MUST be based on
 XML 1.0 and MUST be encoded using UTF-8. This specification makes
 use of XML namespaces for identifying dialog information documents
 and document fragments. The namespace URI for elements defined by
 this specification is a URN [5], using the namespace identifier
 ’ietf’ defined by [6] and extended by [7]. This URN is:

 urn:ietf:params:xml:ns:dialog-info

 A dialog information document begins with the root element tag
 "dialog-info".

4.1. Structure of Dialog Information

 A dialog information document starts with a dialog-info element.
 This element has three mandatory attributes:

 o version: This attribute allows the recipient of dialog information
 documents to properly order them. Versions start at 0, and
 increment by one for each new document sent to a subscriber.
 Versions are scoped within a subscription. Versions MUST be
 representable using a non-negative 32 bit integer.

 o state: This attribute indicates whether the document contains the
 full dialog information, or whether it contains only information
 on those dialogs that have changed since the previous document
 (partial).

Rosenberg, et al. Standards Track [Page 13]

RFC 4235 Dialog Package November 2005

 o entity: This attribute contains a URI that identifies the user
 whose dialog information is reported in the remainder of the
 document. This user is referred to as the "observed user".

 The dialog-info element has a series of zero or more dialog sub-
 elements. Each of those represents a specific dialog. An example:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="0" notify-state="full"
 entity="sip:alice@example.com">
 </dialog-info>

4.1.1. Dialog Element

 The dialog element reports information about a specific dialog or
 "half-dialog". It has a single mandatory attribute: id. The id
 attribute provides a single string that can be used as an identifier
 for this dialog or "half-dialog". This is a different identifier
 than the dialog ID defined in RFC 3261 [2], but related to it.

 For a caller, the id is created when an INVITE request is sent. When
 a 1xx response with a tag, or a 2xx response is received, the dialog
 is formally created. The id remains unchanged. However, if an
 additional 1xx or 2xx is received, resulting in the creation of
 another dialog (and resulting FSM), that dialog is allocated a new
 id.

 For a callee, the id is created when an INVITE outside of an existing
 dialog is received. When a 2xx or a 1xx with a tag is sent, creating
 the dialog, the id remains unchanged.

 The id MUST be unique amongst all current dialogs at a UA.

 There are a number of optional attributes that provide identification
 information about the dialog:

 o call-id: This attribute is a string that represents the call-id
 component of the dialog identifier. (Note that single and
 double quotes inside a call-id must be escaped using "e;
 for " and ' for ’ .)

 o local-tag: This attribute is a string that represents the
 local-tag component of the dialog identifier.

 o remote-tag: This attribute is a string that represents the
 remote-tag component of the dialog identifier. The remote tag
 attribute won’t be present if there is only a "half-dialog",

Rosenberg, et al. Standards Track [Page 14]

RFC 4235 Dialog Package November 2005

 resulting from the generation of an INVITE for which no final
 responses or provisional responses with tags has been received.

 o direction: This attribute is either initiator or recipient, and
 indicates whether the observed user was the initiator of the
 dialog, or the recipient of the INVITE that created it.

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="0" state="partial"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8" call-id="a84b4c76e66710"
 local-tag="1928301774" direction="initiator">
 ...
 </dialog>
 </dialog-info>

 The sub-elements of the dialog element provide additional information
 about the dialog. Some of these sub-elements provide more detail
 about the dialog itself, while the local and remote sub-elements
 describe characteristics of the participants involved in the dialog.
 The only mandatory sub-element is the state element.

4.1.2. State Element

 The "state" element indicates the state of the dialog. Its value is
 an enumerated type describing one of the states in the FSM above. It
 has an optional event attribute that can be used to indicate the
 event that caused any transition into the terminated state, and an
 optional code attribute that indicates the response code associated
 with any transition caused by a response to the original INVITE.

 <state event="rejected" code="486">terminated</state>

4.1.3. Duration Element

 The "duration" element contains the amount of time, in seconds, since
 the FSM was created.

 <duration>145</duration>

4.1.4. Replaces Element

 The "replaces" element is used to correlate a new dialog with one it
 replaced as a result of an invitation with a Replaces header field.
 This element is present in the replacement dialog only (the newer
 dialog) and contains attributes with the call-id, local-tag, and
 remote-tag of the replaced dialog.

Rosenberg, et al. Standards Track [Page 15]

RFC 4235 Dialog Package November 2005

 <replaces call-id="hg287s98s89"
 local-tag="6762h7" remote-tag="09278hsb"/>

4.1.5. Referred-By Element

 The "referred-by" element is used to correlate a new dialog with a
 REFER [12] request that triggered it. The element is present in a
 dialog that was triggered by a REFER request that contained a
 Referred-By [11] header field and contains the (optional) display
 name attribute and the Referred-By URI as its value.

 <referred-by display="Bob">sip:bob@example.com</referred-by>

4.1.6. Local and Remote Elements

 The "local" and "remote" elements are sub-elements of the dialog
 element that contain information about the local and remote
 participants, respectively. They both have a number of optional
 sub-elements that indicate the identity conveyed by the participant,
 the target URI, the feature-tags of the target, and the
 session-description of the participant.

4.1.6.1. Identity Element

 The "identity" element indicates a local or remote URI, as defined in
 [2] as appropriate. It has an optional attribute, display, that
 contains the display name from the appropriate URI.

 Note that multiple identities (for example a sip: URI and a tel:
 URI) could be included if they all correspond to the participant.
 To avoid repeating identity information in each request, the
 subscriber can assume that the identity URIs are the same as in
 previous notifications if no identity elements are present in the
 corresponding local or remote element. If any identity elements
 are present in the local or remote part of a notification, the new
 list of identity tags completely supersedes the old list in the
 corresponding part.

 <identity display="Anonymous">
 sip:anonymous@anonymous.invalid</identity>

4.1.6.2. Target Element

 The "target" contains the local or remote target URI constructed by
 the user agent for this dialog, as defined in RFC 3261 [2] in a "uri"
 attribute.

Rosenberg, et al. Standards Track [Page 16]

RFC 4235 Dialog Package November 2005

 It can contain a list of Contact header parameters in param sub-
 elements (such as those defined in [10]). The param element contains
 two required attributes, pname and pval. Boolean parameters are
 represented by the explicit pval values, "true" and "false" (for
 example, when a feature parameter is explicitly negated). Parameters
 that have no value at all are represented by the explicit pval value
 "true". The param element itself has no contents. To avoid
 repeating Contact information in each request, the subscriber can
 assume that the target URI and parameters are the same as in previous
 notifications if no target element is present in the corresponding
 local or remote element. If a target element is present in the local
 or remote part of a notification, the new target tag and list of
 parameter tags completely supersedes the old target and parameter
 list in the corresponding part. Note that any quoting (including
 extra angle-bracket quoting used to quote string values in [10]) or
 backslash escaping MUST be removed before being placed in a pval
 attribute. Any remaining single quotes, double quotes, and
 ampersands MUST be properly XML escaped.

 <target uri="sip:alice@pc33.example.com">
 <param pname="isfocus" pval="true"/>
 <param pname="class" pval="business"/>
 <param pname="description" pval="Alice’s desk & office"/>
 <param pname="sip.rendering" pval="no"/>
 </target>

4.1.6.3. Session Description Element

 The session-description element contains the session description used
 by the observed user for its end of the dialog. This element should
 generally NOT be included in the notifications, unless it was
 explicitly requested by the subscriber. It has a single attribute,
 "type", which indicates the MIME media type of the session
 description. To avoid repeating session description information in
 each request, the subscriber can assume that the session description
 is the same as in previous notifications if no session description
 element is present in the corresponding local or remote element.

4.2. Sample Notification Body

 <?xml version="1.0" encoding="UTF-8"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ietf:params:xml:ns:dialog-info"
 version="1" state="full">
 <dialog id="123456">
 <state>confirmed</state>
 <duration>274</duration>

Rosenberg, et al. Standards Track [Page 17]

RFC 4235 Dialog Package November 2005

 <local>
 <identity display="Alice">sip:alice@example.com</identity>
 <target uri="sip:alice@pc33.example.com">
 <param pname="isfocus" pval="true"/>
 <param pname="class" pval="personal"/>
 </target>
 </local>
 <remote>
 <identity display="Bob">sip:bob@example.org</identity>
 <target uri="sip:bobster@phone21.example.org"/>
 </remote>
 </dialog>
 </dialog-info>

4.3. Constructing Coherent State

 The dialog information subscriber maintains a table listing the
 dialogs, with a row for each dialog. Each row is indexed by an ID
 that is present in the "id" attribute of the "dialog" element. Each
 row contains the state of that dialog, as conveyed in the document.

 The table is also associated with a version number. The version
 number MUST be initialized with the value of the "version" attribute
 from the "dialog-info" element in the first document received. Each
 time a new document is received, the value of the local version
 number is compared to the "version" attribute in the new document.
 If the value in the new document is one higher than the local version
 number, the local version number is increased by one and the document
 is processed. If the value in the document is more than one higher
 than the local version number, the local version number is set to the
 value in the new document and the document is processed. If the
 document did not contain full state, the subscriber SHOULD generate a
 refresh request (SUBSCRIBE) to trigger a full state notification. If
 the value in the document is less than the local version, the
 document is discarded without processing.

 The processing of the dialog information document depends on whether
 it contains full or partial state. If it contains full state,
 indicated by the value of the "state" attribute in the "dialog-info"
 element, the contents of the table are flushed and then repopulated
 from the document. A new row in the table is created for each
 "dialog" element. If the document contains partial state, as
 indicated by the value of the "state" attribute in the "dialog-info"
 element, the document is used to update the table. For each "dialog"
 element in the document, the subscriber checks to see whether a row
 exists for that dialog. This check compares the ID in the "id"
 attribute of the "dialog" element with the ID associated with the
 row. If the dialog does not exist in the table, a row is added and

Rosenberg, et al. Standards Track [Page 18]

RFC 4235 Dialog Package November 2005

 its state is set to the information from that "dialog" element. If
 the dialog does exist, its state is updated to be the information
 from that "dialog" element. If a row is updated or created, such
 that its state is now terminated, that entry MAY be removed from the
 table at any time.

4.4. Schema

 The following is the schema for the application/dialog-info+xml type:

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema
 targetNamespace="urn:ietf:params:xml:ns:dialog-info"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="urn:ietf:params:xml:ns:dialog-info"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <!-- This import brings in the XML language
 attribute xml:lang-->
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/03/xml.xsd"/>

 <xs:element name="dialog-info">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:dialog" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:nonNegativeInteger"
 use="required"/>
 <xs:attribute name="state" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="full"/>
 <xs:enumeration value="partial"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="entity" type="xs:anyURI"
 use="required"/>
 </xs:complexType>
 </xs:element>

Rosenberg, et al. Standards Track [Page 19]

RFC 4235 Dialog Package November 2005

 <xs:element name="dialog">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:state" minOccurs="1" maxOccurs="1"/>
 <xs:element name="duration" type="xs:nonNegativeInteger"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="replaces" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:attribute name="call-id" type="xs:string"
 use="required"/>
 <xs:attribute name="local-tag" type="xs:string"
 use="required"/>
 <xs:attribute name="remote-tag" type="xs:string"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="referred-by" type="tns:nameaddr"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="route-set" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="hop" type="xs:string"
 minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="local" type="tns:participant"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="remote" type="tns:participant"
 minOccurs="0" maxOccurs="1"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 <xs:attribute name="call-id" type="xs:string"
 use="optional"/>
 <xs:attribute name="local-tag" type="xs:string"
 use="optional"/>
 <xs:attribute name="remote-tag" type="xs:string"
 use="optional"/>
 <xs:attribute name="direction" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="initiator"/>
 <xs:enumeration value="recipient"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

Rosenberg, et al. Standards Track [Page 20]

RFC 4235 Dialog Package November 2005

 </xs:complexType>
 </xs:element>

 <xs:complexType name="participant">
 <xs:sequence>
 <xs:element name="identity" type="tns:nameaddr"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="target" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="param" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="pname" type="xs:string"
 use="required"/>
 <xs:attribute name="pval" type="xs:string"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="uri" type="xs:string"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="session-description" type="tns:sessd"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="cseq" type="xs:nonNegativeInteger"
 minOccurs="0" maxOccurs="1"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="nameaddr">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="display-name" type="xs:string"
 use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="sessd">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" type="xs:string"
 use="required"/>
 </xs:extension>
 </xs:simpleContent>

Rosenberg, et al. Standards Track [Page 21]

RFC 4235 Dialog Package November 2005

 </xs:complexType>

 <xs:element name="state">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="event" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="cancelled"/>
 <xs:enumeration value="rejected"/>
 <xs:enumeration value="replaced"/>
 <xs:enumeration value="local-bye"/>
 <xs:enumeration value="remote-bye"/>
 <xs:enumeration value="error"/>
 <xs:enumeration value="timeout"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="code" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:positiveInteger">
 <xs:minInclusive value="100"/>
 <xs:maxInclusive value="699"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:schema>

5. Definition of New Media Feature Parameters

 This section defines two new media feature parameters that are useful
 as input to user presence, in conferencing applications, and in
 applications like the shared-line example described in Section 6.2.
 These feature parameters are especially useful in combination with
 the dialog package, as they allow an authorized third party to become
 aware of these characteristics.

5.1. The "sip.byeless" Parameter

 The "sip.byeless" media feature parameter is a new boolean parameter,
 defined in this document, that provides a positive indication that
 the user agent setting the parameter is unable to terminate sessions
 on its own (for example, by sending a BYE request). For example,

Rosenberg, et al. Standards Track [Page 22]

RFC 4235 Dialog Package November 2005

 continuous announcement services and certain recording services are
 unable to determine when it would be desirable to terminate a
 session, and therefore they do not have the ability to terminate
 sessions at all. Also, many human call centers are configured so
 that they never terminate sessions. (This is to prevent call center
 agents from accidentally disconnecting the caller). (Note that per
 [10], this parameter name must be preceded by a "+" character when
 used in a SIP Contact header field.)

 Contact: <sip:recording-service@host.example.net>
 ;automaton;+sip.byeless

5.2. The "sip.rendering" Parameter

 The "sip.rendering" media feature parameter is a new string
 parameter, defined in this document, that can provide a positive
 indication whether the user agent setting the parameter is currently
 rendering any of the media it is receiving in the context of a
 specific session. It MUST only be used in a Contact header field in
 a dialog created using the INVITE request.

 This parameter has three legal values: "yes", "no", and "unknown".
 The value "yes" indicates positive knowledge that the user agent is
 rendering at least one of the streams of media that it is receiving.
 The value "no" indicates positive knowledge that the user agent is
 rendering none of the media that it is receiving. The value
 "unknown" indicates that the user agent does not know whether the
 media associated with the session is being rendered (which may be the
 case if the user agent is acting as a 3pcc (Third Party Call Control)
 [19] controller).

 The "sip.rendering" parameter is useful in applications such as
 shared appearances, conference status monitoring, or as an input to
 user presence.

 Contact: <sip:musak-onhold@host.example.net>
 ;automaton;+sip.rendering="no"

Rosenberg, et al. Standards Track [Page 23]

RFC 4235 Dialog Package November 2005

6. Examples

6.1. Basic Example

 For example, if a UAC sends an INVITE that looks, in part, like:

 INVITE sip:bob@example.com SIP/2.0
 Via: SIP/2.0/UDP pc33.example.com;branch=z9hG4bKnashds8
 Max-Forwards: 70
 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@example.com>;tag=1928301774
 Call-ID: a84b4c76e66710
 CSeq: 314159 INVITE
 Contact: <sip:alice@pc33.example.com>
 Content-Type: application/sdp
 Content-Length: 142

 [SDP not shown]

 The XML document in a notification from Alice might look like:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="0"
 state="full"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8" call-id="a84b4c76e66710"
 local-tag="1928301774" direction="initiator">
 <state>trying</state>
 </dialog>
 </dialog-info>

 If the following 180 response is received:

 SIP/2.0 180 Ringing
 Via: SIP/2.0/UDP pc33.example.com;branch=z9hG4bKnashds8
 To: Bob <sip:bob@example.com>;tag=456887766
 From: Alice <sip:alice@example.com>;tag=1928301774
 Call-ID: a84b4c76e66710
 CSeq: 314159 INVITE
 Contact: <sip:bob@host.example.com>

Rosenberg, et al. Standards Track [Page 24]

RFC 4235 Dialog Package November 2005

 The XML document in a notification might look like:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="1"
 state="full"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8" call-id="a84b4c76e66710"
 local-tag="1928301774" remote-tag="456887766"
 direction="initiator">
 <state>early</state>
 </dialog>
 </dialog-info>

 If it receives a second 180 with a different tag:

 SIP/2.0 180 Ringing
 Via: SIP/2.0/UDP pc33.example.com;branch=z9hG4bKnashds8
 To: Bob <sip:bob@example.com>;tag=hh76a
 From: Alice <sip:alice@example.com>;tag=1928301774
 Call-ID: a84b4c76e66710
 CSeq: 314159 INVITE
 Contact: <sip:jack@host.example.com>

 This results in the creation of a second dialog:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="2"
 state="full"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8" call-id="a84b4c76e66710"
 local-tag="1928301774" remote-tag="456887766"
 direction="initiator">
 <state>early</state>
 </dialog>
 <dialog id="as7d900as8" call-id="a84b4c76e66710"
 local-tag="1928301774" remote-tag="hh76a"
 direction="initiator">
 <state>early</state>
 </dialog>
 </dialog-info>

Rosenberg, et al. Standards Track [Page 25]

RFC 4235 Dialog Package November 2005

 If a 200 OK response is received on the second dialog, the dialog
 moves to confirmed:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="3"
 state="partial"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8" call-id="a84b4c76e66710"
 local-tag="1928301774" remote-tag="hh76a"
 direction="initiator">
 <state>confirmed</state>
 </dialog>
 </dialog-info>

 32 seconds later, the other early dialog terminates because no 2xx
 response has been received for it. This implies that it was
 successfully cancelled, and therefore the following notification is
 sent:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="4"
 state="partial"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8" call-id="a84b4c76e66710"
 local-tag="1928301774" remote-tag="hh76a"
 direction="initiator">
 <state event="cancelled">terminated</state>
 </dialog>
 </dialog-info>

6.2. Emulating a Shared-Line Phone System

 The following example shows how a SIP telephone user agent can
 provide detailed state information and also emulate a shared-line
 telephone system (the phone "lies" about having a dialog while it is
 merely offhook).

 Idle:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="0" state="full"
 entity="sip:alice@example.com">
 </dialog-info>

Rosenberg, et al. Standards Track [Page 26]

RFC 4235 Dialog Package November 2005

 Seized:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="1" state="partial"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8">
 <state>trying</state>
 </dialog>
 </dialog-info>

 Dialing:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="2" state="partial"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8" call-id="a84b4c76e66710"
 local-tag="1928301774" direction="initiator">
 <state>trying</state>
 <local>
 <identity display="Alice Smith">
 sip:alice@example.com
 </identity>
 <target uri="sip:alice@pc33.example.com"/>
 </local>
 <remote>
 <identity>sip:bob@example.net</identity>
 </remote>
 </dialog>
 </dialog-info>

 Ringing:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="3" state="partial"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8" call-id="a84b4c76e66710"
 local-tag="1928301774"
 remote-tag="07346y131" direction="initiator">
 <state code="180">early</state>
 <remote>
 <target uri="sip:bobster@host2.example.net"/>
 </remote>
 </dialog>
 </dialog-info>

Rosenberg, et al. Standards Track [Page 27]

RFC 4235 Dialog Package November 2005

 Answered (by voicemail):

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="4" state="partial"
 entity="sip:alice@example.com">
 <dialog id="as7d900as8" call-id="a84b4c76e66710"
 local-tag="1928301774"
 remote-tag="07346y131" direction="initiator">
 <state reason="cancelled">terminated</state>
 </dialog>
 <dialog id="zxcvbnm3" call-id="a84b4c76e66710"
 local-tag="1928301774"
 remote-tag="8736347" direction="initiator">
 <state code="200">confirmed</state>
 <remote>
 <target uri="sip:bob-is-not-here@vm.example.net">
 <param pname="actor" pval="msg-taker"/>
 <param pname="automaton" pval="true"/>
 <param pname="+sip.byeless" pval="true"/>
 </target>
 </remote>
 </dialog>
 </dialog-info>

Rosenberg, et al. Standards Track [Page 28]

RFC 4235 Dialog Package November 2005

 Alice would rather talk to Bob’s assistant (Cathy Jones) than to
 Bob’s voicemail. She indicates this preference by pressing a key
 (perhaps "0" in North America or "9" in Europe). Bob’s voicemail
 system then acts on this keypress by transferring [20] Alice’s call
 to Cathy’s AOR.

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="5" state="partial"
 entity="sip:alice@example.com">
 <dialog id="zxcvbnm3" call-id="a84b4c76e66710"
 local-tag="1928301774"
 remote-tag="8736347" direction="initiator">
 <state reason="replaced">terminated</state>
 </dialog>
 <dialog id="sfhjsjk12" call-id="o34oii1"
 local-tag="8903j4"
 remote-tag="78cjkus" direction="receiver">
 <state reason="replaced">confirmed</state>
 <replaces call-id="a84b4c76e66710"
 local-tag="1928301774"
 remote-tag="8736347"/>
 <referred-by>
 sip:bob-is-not-here@vm.example.net
 </referred-by>
 <local>
 <target uri="sip:alice@pc33.example.com"/>
 <param pname="+sip.rendering" pval="yes"/>
 </local>
 <remote>
 <identity display="Cathy Jones">
 sip:cjones@example.net
 </identity>
 <target uri="sip:line3@host3.example.net">
 <param pname="actor" pval="attendant"/>
 <param pname="automaton" pval="false"/>
 </target>
 </remote>
 </dialog>
 </dialog-info>

Rosenberg, et al. Standards Track [Page 29]

RFC 4235 Dialog Package November 2005

 Alice and Cathy talk, Cathy adds Alice to a local conference:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="6" state="partial"
 entity="sip:alice@example.com">
 <dialog id="sfhjsjk12" call-id="o34oii1"
 local-tag="8903j4"
 remote-tag="78cjkus" direction="receiver">
 <state>confirmed</state>
 <remote>
 <target uri="sip:confid-34579@host3.example.net">
 <param pname="isfocus" pval="true"/>
 </target>
 </remote>
 </dialog>
 </dialog-info>

 Alice puts Cathy on hold:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="7" state="partial"
 entity="sip:alice@example.com">
 <dialog id="sfhjsjk12" call-id="o34oii1"
 local-tag="8903j4"
 remote-tag="78cjkus" direction="receiver">
 <state>confirmed</state>
 <local>
 <target uri="sip:alice@pc33.example.com"/>
 <param pname="+sip.rendering" pval="no"/>
 </target>
 </local>
 </dialog>
 </dialog-info>

Rosenberg, et al. Standards Track [Page 30]

RFC 4235 Dialog Package November 2005

 Cathy hangs up:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="8" state="partial"
 entity="sip:alice@example.com">
 <dialog id="sfhjsjk12" call-id="o34oii1"
 local-tag="8903j4"
 remote-tag="78cjkus" direction="receiver">
 <state reason="remote-bye">terminated</state>
 </dialog>
 <dialog id="08hjh1345">
 <state>trying</state>
 </dialog>
 </dialog-info>

 Alice hangs up:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="9" state="full"
 entity="sip:alice@example.com">
 </dialog-info>

6.3. Minimal Dialog Information with Privacy

 The following example shows the same user agent providing minimal
 information to maintain privacy for services like automatic callback.

 Onhook:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="0" state="full"
 entity="sip:alice@example.com">
 </dialog-info>

Rosenberg, et al. Standards Track [Page 31]

RFC 4235 Dialog Package November 2005

 Offhook: (implementation/policy choice for Alice to transition to
 this "state" when "seized", when Trying, when Proceeding, or when
 Confirmed.)

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="1" state="full"
 entity="sip:alice@example.com">
 <dialog id="1">
 <state>confirmed</state>
 </dialog>
 </dialog-info>

 Onhook: (implementation/policy choice for Alice to transition to this
 "state" when terminated, or when no longer "seized")

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="2" state="full"
 entity="sip:alice@example.com">
 </dialog-info>

7. Security Considerations

 Subscriptions to dialog state can reveal sensitive information. For
 this reason, Section 3.6 discusses authentication and authorization
 of subscriptions, and provides guidelines on sensible authorization
 policies. All implementations of this package MUST support the
 digest authentication mechanism.

 Since the data in notifications is sensitive as well, end-to-end SIP
 encryption mechanisms using S/MIME MAY be used to protect it. User
 agents that implement the dialog package SHOULD also implement SIP
 over TLS [15] and the sips: scheme.

8. IANA Considerations

 This document registers a new MIME type, application/dialog-info+xml;
 a new XML namespace; and two new media feature parameters in the SIP
 tree.

Rosenberg, et al. Standards Track [Page 32]

RFC 4235 Dialog Package November 2005

8.1. MIME Registration for application/dialog-info+xml Type

 MIME media type name: application

 MIME subtype name: dialog-info+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [8].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [8].

 Security considerations: See Section 10 of RFC 3023 [8] and Section 7
 of this specification.

 Interoperability considerations: none.

 Published specification: This document.

 Applications that use this media type: This document type has been
 used to support SIP applications such as call return and
 auto-conference.

 Additional Information:

 Magic Number: None
 File Extension: .xml
 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, <jdrosen@jdrosen.net>

 Intended usage: COMMON

 Author/Change controller: The IETF.

Rosenberg, et al. Standards Track [Page 33]

RFC 4235 Dialog Package November 2005

8.2. URN Sub-Namespace Registration for
 urn:ietf:params:xml:ns:dialog-info

 This section registers a new XML namespace, per the guidelines in
 [7].

 URI: The URI for this namespace is
 urn:ietf:params:xml:ns:dialog-info.

 Registrant Contact: The IESG, <iesg@ietf.org>
 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>Dialog Information Namespace</title>
 </head>
 <body>
 <h1>Namespace for Dialog Information</h1>
 <h2>urn:ietf:params:xml:ns:dialog-info</h2>
 <p>See
 RFC4235.</p>
 </body>
 </html>
 END

8.3. Schema Registration

 This specification registers a schema, per the guidelines in [7].

 URI: urn:ietf:params:xml:schema:dialog-info

 Registrant Contact: The IESG, <iesg@ietf.org>

 XML: The XML can be found as the sole content of Section 4.4.

8.4. Media Feature Parameter Registration

 This section registers two new media feature tags, per the procedures
 defined in RFC 2506 [14]. The tags are placed into the sip tree,
 which is defined in [10].

Rosenberg, et al. Standards Track [Page 34]

RFC 4235 Dialog Package November 2005

8.4.1. Media Feature Tag sip.byeless
 Media feature tag name sip.byeless

 ASN.1 Identifier 19

 Summary of the media feature indicated by this tag: This feature tag
 is a boolean flag. When set it indicates that the device is
 incapable of terminating a session autonomously.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation mechanisms: This
 feature tag is most useful in a communications application for
 describing the capabilities of an application, such as an
 announcement service, recording service, conference, or call center.

 Examples of typical use: Call centers and media services.

 Related standards or documents: RFC 4235
 Security Considerations: This media feature tag can be used in ways
 that affect application behaviors or may reveal private information.
 For example, a conferencing or other application may decide to
 terminate a call prematurely if this media feature tag is set.
 Therefore, if an attacker can modify the values of this tag, they may
 be able to affect the behavior of applications. As a result of this,
 applications that utilize this media feature tag SHOULD provide a
 means for ensuring its integrity. Similarly, this feature tag should
 only be trusted as valid when it comes from the user or user agent
 described by the tag. As a result, protocols for conveying this
 feature tag SHOULD provide a mechanism for guaranteeing authenticity.

8.4.2. Media Feature Tag sip.rendering

 Media feature tag name: sip.rendering

 ASN.1 Identifier: 20

 Summary of the media feature indicated by this tag: This feature tag
 contains one of three string values indicating if the device is
 rendering any media from the current session ("yes"), none of the
 media from the current session ("no"), or if this status is not
 known to the device ("unknown").

 Values appropriate for use with this feature tag: String.

Rosenberg, et al. Standards Track [Page 35]

RFC 4235 Dialog Package November 2005

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation mechanisms: This
 feature tag is most useful in a communications application, for
 describing the state of a device (such as a phone or PDA) during a
 multimedia session.

 Examples of typical use: Conferencing, telephone shared-line
 emulation, and presence applications.

 Related standards or documents: RFC 4235

 Security Considerations: This media feature tag can be used in ways
 that affect application behaviors or may reveal private
 information. For example, a conferencing or other application may
 decide to terminate a call prematurely if this media feature tag
 is set to "no". Therefore, if an attacker can modify the values
 of this tag, they may be able to affect the behavior of
 applications. As a result of this, applications that utilize this
 media feature tag SHOULD provide a means for ensuring its
 integrity. Similarly, this feature tag should only be trusted as
 valid when it comes from the user or user agent described by the
 tag. As a result, protocols for conveying this feature tag SHOULD
 provide a mechanism for guaranteeing authenticity.

9. Acknowledgements

 The authors would like to thank Sean Olson for his comments.

10. References

10.1. Normative References

 [1] Roach, A.B., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [3] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
 Method", RFC 3311, October 2002.

 [4] Paoli, J., Sperberg-McQueen, C., Bray, T., and E. Maler,
 "Extensible Markup Language (XML) 1.0 (Second Edition)", W3C
 FirstEdition REC-xml-20001006, October 2000.

 [5] Moats, R., "URN Syntax", RFC 2141, May 1997.

Rosenberg, et al. Standards Track [Page 36]

RFC 4235 Dialog Package November 2005

 [6] Moats, R., "A URN Namespace for IETF Documents", RFC 2648,
 August 1999.

 [7] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [8] Murata, M., St. Laurent, S., and D. Kohn, "XML Media Types",
 RFC 3023, January 2001.

 [9] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [10] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating
 User Agent Capabilities in the Session Initiation Protocol
 (SIP)", RFC 3840, August 2004.

 [11] Sparks, R., "The Session Initiation Protocol (SIP) Referred-By
 Mechanism", RFC 3892, September 2004.

 [12] Sparks, R., "The Session Initiation Protocol (SIP) Refer
 Method", RFC 3515, April 2003.

 [13] Mahy, R., Biggs, B., and R. Dean, "The Session Initiation
 Protocol (SIP) "Replaces" Header", RFC 3891, September 2004.

 [14] Holtman, K., Mutz, A., and T. Hardie, "Media Feature Tag
 Registration Procedure", BCP 31, RFC 2506, March 1999.

 [15] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
 2246, January 1999.

10.2. Informative References

 [16] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

 [17] Rosenberg, J., "A Watcher Information Event Template-Package
 for the Session Initiation Protocol (SIP)", RFC 3857, August
 2004.

 [18] Mahy, R., "A Message Summary and Message Waiting Indication
 Event Package for the Session Initiation Protocol (SIP)", RFC
 3842, August 2004.

 [19] Rosenberg, J., Peterson, J., Schulzrinne, H., and G. Camarillo,
 "Best Current Practices for Third Party Call Control (3pcc) in
 the Session Initiation Protocol (SIP)", BCP 85, RFC 3725, April
 2004.

Rosenberg, et al. Standards Track [Page 37]

RFC 4235 Dialog Package November 2005

 [20] Sparks, R., "Session Initiation Protocol Call Control -
 Transfer", Work in Progress, July 2005.

Authors’ Addresses

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 EMail: jdrosen@cisco.com
 URI: http://www.jdrosen.net

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027
 US

 EMail: schulzrinne@cs.columbia.edu
 URI: http://www.cs.columbia.edu/˜hgs

 Rohan Mahy (editor)
 SIP Edge LLC

 EMail: rohan@ekabal.com

Rosenberg, et al. Standards Track [Page 38]

RFC 4235 Dialog Package November 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rosenberg, et al. Standards Track [Page 39]

